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Abstract

With the increasing prominence of large lan-
guage models (LLMs), evaluating their text-
generation capabilities has become an essen-
tial research challenge. Although LLM-based
evaluation methods exhibit robust performance,
the inherent stochastic nature of the LLM gen-
eration process introduces a degree of uncer-
tainty in alignment with human preferences. To
address this limitation, we propose Semantic-
Eval, the first training-free framework designed
to assess LLM-generated text based on seman-
tic understanding. This framework computes
semantic similarity between pairwise texts to
evaluate the interdependence of semantic units,
integrating a graph-based weighting mecha-
nism to account for the differential contribu-
tions of individual sentences. A pre-trained
natural language inference (NLI) model is also
incorporated to mitigate potential semantic re-
lationship biases. We evaluate Semantic-Eval
across eight datasets that encompass four com-
mon NLP tasks. The experimental results in-
dicate that Semantic-Eval surpasses traditional
N-gram and BERT-based evaluation metrics,
aligning more closely with human judgments
and demonstrating a higher correlation than
smaller LLMs. However, it slightly lags behind
GPT-4. Finally, we demonstrate the effective-
ness of Semantic-Eval in evaluating the genera-
tion quality of 13 large language models. The
code is publicly available at1.

1 Introduction

Large Language Models, including OpenAI o12,
LLaMA-3 (Dubey et al., 2024), and DeepSeek-
R1 (Guo et al., 2025), have emerged as pivotal
drivers of progress in the field of natural language
processing. LLMs have demonstrated exceptional
capabilities in text generation by learning and cap-
turing intricate semantic relationships from large-

*Wenjun Tan is the corresponding author.
1https://github.com/LssTry/Semantic-Eval
2https://openai.com/o1/
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Figure 1: The diagram depicts scores for evaluating
sentence similarity using various methods. The prompt
is:"Please assess the similarity of the two sentences
and provide a score from 0 to 1." The path indicates the
number of samples. The text-embedding-ada-002 model
is utilized as the embedding backbone in the Semantic-
Eval framework. The Human (average) score represents
the mean score obtained by five human evaluators.

scale corpora, utilizing either autoregressive or self-
encoding mechanisms. As the adoption of LLMs
continues to proliferate, evaluating the text quality
they generate has become a critical area of schol-
arly attention (Polo et al., 2024).

Traditional evaluation metrics employed to as-
sess the quality of text generation are commonly
used to evaluate the output of large language mod-
els(Li et al., 2023). Metrics such as BLEU (Pa-
pineni et al., 2002) and ROUGE (Lin, 2004) pri-
marily assess text similarity by calculating n-gram
overlap between the generated and reference texts.
However, these metrics are often limited by their
emphasis on superficial lexical overlap and fail to
effectively capture the deeper semantic relation-
ships between the generated and reference texts.
As demonstrated in Figure 1, when evaluating the
quality of LLM-generated text, the scores from n-
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gram evaluation metrics are all zero. To overcome
the limitations of traditional evaluation metrics in
assessing LLM-generated content, recent studies
(Zhang et al., 2023a; Zhou et al., 2023; Peng et al.,
2024) have employed BERT-based methods. These
approaches (Reimers et al., 2019; Zhang et al.,
2019) utilize the semantic embeddings inherent
in the BERT (Kenton and Toutanova, 2019) model
to capture semantic similarity within the text. As
shown in Figure 1, while BERT scores are closely
aligned with human ratings, a noticeable discrep-
ancy remains, indicating that BERT-based methods
have inherent limitations in capturing semantic in-
formation.

Recent studies increasingly employ LLM-based
evaluation methods to assess the performance of
LLMs. These approaches typically leverage the
language understanding capabilities of LLMs as
the primary criteria for performance assessment
(Yu et al., 2024; Ke et al., 2024; Park et al., 2024).
Notable methodologies within this domain include
instruction-tuning optimization (Wang et al., 2023;
Polo et al., 2024; Song et al., 2024; Jiang et al.,
2024) and multi-dimensional evaluation frame-
works (Lin and Chen, 2023; Liang et al., 2024),
both of which heavily rely on LLMs. Among these,
GPT-based evaluation methods are often regarded
as better aligned with human preferences to a cer-
tain extent. As illustrated in Figure 1, the prompt-
optimized GPT-4 evaluator demonstrates notable
consistency with human preferences. Neverthe-
less, GPT-4 (Achiam et al., 2023), which utilizes a
probabilistic generation strategy, tends to produce
outputs with inherent uncertainty. Furthermore,
existing benchmarks (Hendrycks et al., 2020; Sar-
lin et al., 2020; Cobbe et al., 2021), designed for
evaluating LLMs, generally yield strong perfor-
mance results on these specific tasks. However,
these benchmarks are meticulously crafted, and
the task configurations and evaluation criteria they
employ may not directly translate to real-world
application scenarios.

To address the aforementioned challenges, this
paper introduces Semantic-Eval, the first consis-
tent, training-free automatic evaluation framework
designed to assess the quality of text generated by
LLMs from the perspective of semantic compre-
hension. Specifically, the framework computes the
semantic similarity between all pairs of sentence
embeddings within each text to quantify the degree
of interdependence among the semantic units of
the text. Recognizing the varying contributions of

individual sentence units to the overall semantic
content, Semantic-Eval incorporates a graph-based
weighting mechanism that evaluates the relative
significance of each semantic unit. The weight as-
signed to each sentence embedding is determined
by analyzing the strength of associations between
semantic units within an undirected, self-similar
weighted graph. Subsequently, the semantic simi-
larity values and their corresponding weights in the
weighting matrix are utilized to evaluate sentence-
level cross-text similarity between reference and
candidate texts. To account for potential semantic
dyadic relationships, the framework integrates a
pre-trained NLI model, which generates a confi-
dence score that mitigates bias in cross-text simi-
larity measurements. Semantic-Eval was systemat-
ically evaluated on seven English datasets and one
Dutch dataset, encompassing four tasks in NLP:
sentiment analysis, text summarization, natural lan-
guage Q&A, and sentence similarity. The experi-
mental results demonstrate that, compared to tradi-
tional evaluation methods and BERT-based metrics,
Semantic-Eval exhibits a significantly higher cor-
relation with human judgments. Moreover, it out-
performs smaller parameter large language models
in aligning with human preferences, trailing only
slightly behind GPT-4. Finally, Semantic-Eval was
employed to assess the text generation quality of
13 large language models across six datasets. In
summary, the primary contributions of this work
are as follows:

1) We propose Semantic-Eval, the first training-
free framework for evaluating text generated by
large language models based on semantic compre-
hension.

2) We introduce a graph-based weighting mech-
anism that computes sentence-level similarity by
evaluating the interdependence of semantic units
within the text.

3) We demonstrate that Semantic-Eval aligns
with human preferences across eight datasets and
is used to assess the text generation quality of 13
large language models.

2 Related Work

2.1 LLM-based evaluation

The evaluation methods based on LLMs capitalize
on the models’ semantic understanding capabilities
to conduct quantitative assessments of language
models. Primary categories of LLM-based evalu-
ation include instruction-based evaluation (Wang
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et al., 2022a,b; Ajith et al., 2023), comparative
evaluation (Chan et al., 2023; Lango and Dušek,
2023; Lambert et al., 2024), and multidimensional
evaluation (Liang et al., 2022; Liu et al., 2023;
Nguyen et al., 2024). These methods offer dynamic
frameworks that provide more comprehensive as-
sessments of model robustness compared to tradi-
tional static benchmarks (Zhang et al., 2024). How-
ever, the LLM generation process is often based on
probabilistic sampling, which introduces variabil-
ity, such that identical inputs may yield divergent
scores (Holtzman et al., 2019). Moreover, the eval-
uation outcomes are highly sensitive to the preci-
sion of the instructions provided (Zeng et al., 2023).
These limitations in current evaluation methodolo-
gies contribute to the uncertainty in aligning LLM-
based evaluations with human preferences.

2.2 Static Benchmarks evaluation

The static benchmark evaluation methodology as-
sesses the performance of LLMs using predeter-
mined datasets, which are generally categorized
into two primary groups: general language task
benchmarks and specific downstream task bench-
marks. General Language Task Benchmarks aim to
evaluate the overall language comprehension abili-
ties of LLMs across a wide array of tasks, with
prominent benchmarks including GLUE (Wang
et al., 2018), SuperGLUE (Sarlin et al., 2020),
MMLU (Hendrycks et al., 2020), BIG-bench (Sri-
vastava et al., 2022), and C-EVAL (Huang et al.,
2024). In contrast, Specific Downstream Task
Benchmarks are designed to assess LLM perfor-
mance within specific application domains, with
notable examples such as MultiMedQA (Sing-
hal et al., 2023), MathBench (Liu et al., 2024),
GAOKAO-Bench (Zhang et al., 2023b), and Law-
Bench (Fei et al., 2023). Nevertheless, relying
on static datasets in benchmark evaluations con-
strains the generalization capabilities of LLMs in
real-world contexts (Mousavi et al., 2024). Fur-
thermore, developing static benchmark datasets ne-
cessitates significant resource investment (Li et al.,
2024).

2.3 Human evaluation

HumanEval-based methods primarily rely on man-
ual scoring, user feedback, and expert reviews
to evaluate LLMs across various dimensions, in-
cluding accuracy, fluency, relevance, and diversity
(Elangovan et al., 2024; Feng et al., 2024; Watts
et al., 2024). However, these approaches are in-

herently prone to subjectivity and inconsistency,
which may undermine the reliability of the assess-
ment results (Chang et al., 2024; Li et al., 2025).
Moreover, human evaluation methods face chal-
lenges related to inefficiency and scalability when
assessing LLMs (Chiang and Lee, 2023; Chen et al.,
2024a).

3 Semantic-Eval Framework

The Semantic-Eval framework aims to evaluate
the quality of generated text by LLMs from the
perspective of semantic understanding without ad-
ditional training. Additionally, Semantic-Eval fo-
cuses on various NLP tasks, demonstrating its gen-
eralizability. The computation illustration of the
Semantic-Eval framework is shown in Figure 2. An
overview of the details of the semantic evaluation
framework is provided below.

Initially, the reference text x and the candidate
text y generated by LLM are parsed into a se-
quence of sentences using regular expressions, pro-
ducing x = {x1, . . . , xn} and y = {y1, . . . , yn},
respectively. Next, the same pre-trained vector
embedding model, specifically text-embedding-3-
large3, projects each sentence from x and y into a
d-dimensional vector space, yielding vector embed-
ding ti ∈ Rd. To unify the notation, let T represent
a text which can be x or y, where |T | denotes the
number of sentences. The cosine similarity is then
used to measure the semantic correlation between
all pairs of sentence embeddings within T , produc-
ing a self-similarity matrix ST :

ST
i,j =

ti · tj
∥ti∥ ∥tj∥

, 1 ≤ i, j ≤ |T |.

Given that the contribution of individual sen-
tences to the overall semantics of a text is often
disproportionate, it is critical to assign appropriate
weights to sentences according to their semantic
relevance to highlight key information. LLMs em-
ployed for sentence scoring (Zhang et al., 2023c)
have demonstrated remarkable performance, illus-
trating their capacity for nuanced language com-
prehension. However, the inherent sampling strat-
egy employed by these models introduces a de-
gree of stochasticity, which leads to variability in
the generated results. To ensure the consistency
of evaluation outcomes, an unsupervised method,
SemanticRank, is introduced to assign sentence

3https://platform.openai.com/docs/guides/
embeddings
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Reference 𝑥

Candidate 𝑦

text-embedding-3-large

weighting matrix 𝑊
cross-text semantic 
similarity matrix 𝐶

Reference 𝑥 is: ”No, the poster does not suffer from 
depression. Reasoning: The post does not display clear 
emotional indicators of very severe depression. It revolves 
around a specific question regarding family relationships and 
marriage. While there is a mention of a divorced parent and 
potential step-siblings, the tone of the post remains neutral 
and does not convey intense emot ional distress  or 
hopelessness. The post seems to be seeking clarification on a 
potentially confusing familial situation rather than expressing 
significant emotional distress.”

Candidate 𝑦 is:” Yes, the post indeed exhibits signs of thwarted belongingness. Thwarted belongingness is a
state where an individual feels disconnected from others, views themselves as a burden, or perceives a lack of
true belonging and meaningful connections with others. In this post:
The user explicitly refrains from seeking help to avoid burdening others or causing them worry. They engage in
self-neglect as a subtle form of self-punishment or expression of self-loathing, yet are careful not to let
others notice, suggesting a desire to remain invisible or disconnected. The user downplays their struggles and
withholds them from others to prevent being a concern, indicating emotional isolation. These are strong
indicators of emotional loneliness, self-isolation, and feeling unworthy of care, all of which are core aspects of
thwarted belongingness. From the perspective of a mental health framework such as the Interpersonal Theory
of Suicide, it is important to monitor signs like perceived burdensomeness and capability for suicide, even
though the user explicitly states they are not suicidal. However, their emotional state may still warrant gentle
and supportive intervention. ”

Question is: ”Does the post show risk of thwarted belongingness?”

Score      = 0.40

confidence score

roberta-large-mnli

= 0.648Score    = 0.259 

Reweight Row-wise maximum 
extraction

Sentence-level 
Segmentation

Sentence 
Similarity

SemanticRank

Figure 2: Illustration of the computation of the Semantic-Eval. The candidate y is the text generated by GPT-4o in
response to a corresponding query. The reference text x and candidate y represent semantically opposing responses
to the same question.

weights based on semantic significance without re-
quiring training. Initially, an undirected graph is
constructed to quantify the semantic relevance of
each sentence vector embedding in relation to other
sentences within the same text, using cosine simi-
larity between sentence embeddings. Subsequently,
TextRank (Mihalcea and Tarau, 2004) is employed
to evaluate the relative importance of each sentence
vector embedding derived from the connectivity
and centrality of sentence embeddings within the
graph. Further details are provided below.

The undirected weighted graph GT = (V T , ET )
is constructed using a self-similarity matrix ST ,
where V T = {vT1 , vT2 , . . . , vT|T |} represents the set
of nodes corresponding to the embeddings of in-
dividual sentences, and ET = {eT1 , eT2 , . . . , eT|T |}
represents the edges connecting the nodes based
on the similarity between their vector embeddings.
To filter out sentences with weaker semantic rela-
tionships, an edge is created between two nodes if
the cosine similarity ST

i,j between their embeddings
exceeds a threshold of 0.1, the weight of the edge is
then set to the similarity value. Then, TextRank is
employed to calculate the score wT

i for each node
vTi :

wT
i = (1− α) + α

∑

vTj ∈Γ(vTi )

wT
j · ST

j,i∑
vTk ∈Γ(vTj ) S

T
j,k

,

where Γ(vTi ) denotes the set of neighbors of vTi ,
and α is the damping factor, which is set to 0.85.
After several iterations, the steady-state vector
scores denoted as wT , are obtained and subse-
quently normalized:

w̃T
i =

wT
i∑|T |

i=1w
T
i

,

where,
∑|T |

i=1 w̃
T
i = 1. Then, the normalized

weight vectors w̃x = (w̃x
1 , . . . , w̃

x
n) and w̃y =

(w̃y
1 , . . . , w̃

y
m) of sentences in the reference x and

candidate y texts are obtained. Here, n and m
represent the number of sentences for x and y, re-
spectively.

With the above operations, we have completed
the sentence slicing of the reference text x and
candidate text y and re-weighted the sliced sen-
tences according to their semantic importance de-
gree. Next, we will assess the semantic similarity
between the reference text x and the candidate text
y.

Firstly, the weighting matrix W ∈ Rn×m is con-
structed, where each element is the average of the
normalized weight vectors w̃x and w̃y:

Wi,j =
w̃x
i + w̃y

j

2
, 1 ≤ i ≤ n, 1 ≤ j ≤ m.

9678



Class Metrics
SemRel2024(eng) STS-B
r ρ τ r ρ τ

BLEU-1 0.542 0.533 0.375 0.445 0.432 0.304
BLEU-2 0.514 0.513 0.357 0.460 0.444 0.311

Traditional-Eval
ROUGE-1 0.619 0.614 0.436 0.615 0.590 0.425
ROUGE-2 0.536 0.544 0.411 0.474 0.459 0.326
ROUGE-L 0.574 0.567 0.401 0.571 0.543 0.387
METEOR 0.415 0.412 0.285 0.311 0.304 0.210

BERT 0.582 0.578 0.413 0.531 0.491 0.345

BERT-based
BERTScore_P 0.671 0.668 0.485 0.565 0.520 0.367
BERTScore_R 0.657 0.653 0.472 0.561 0.520 0.367
BertScore_F1 0.678 0.675 0.491 0.578 0.536 0.380

LLM-based
Qwen2-7B 0.763 0.751 0.586 0.759 0.746 0.608

GPT-4 0.803 0.798 0.634 0.861 0.851 0.698
OUR Semantic-Eval 0.806 0.808 0.620 0.787 0.807 0.635

Table 1: The correlations between automatic metrics and annotated sentence similarity scores on Natural Language
Sentence Similarity Task. r, ρ, and τ denote the Pearson correlation coefficient, Spearman’s rank correlation
coefficient, and Kendall’s tau coefficient, respectively. In each column, the top score is displayed in bold while the
second highest is underlined.

Secondly, cosine similarity is employed to mea-
sure the semantic correlation between the sentences
of the reference x and the candidate y, result-
ing in the cross-text semantic similarity matrix
C ∈ Rn×m. Then, each row of the C is normalized.
Following this, the sentences embedding in candi-
date text y most semantically related to reference
text x are selected:

ci = arg max
1≤j≤m

xei · yej
∥xei∥∥yej∥

/ m∑

j=1

xei · yej
∥xei∥∥yej∥

.

where, xei and yej represent the vector embed-
dings of xi and yj , respectively. ci denotes the
similarity value of the semantic most relevant em-
bedding.

Finally, the sentence-level cross-text similarity
between the reference text x and the candidate text
y is quantified:

Sρ =
n∑

i=1

(
ci ×Wi,j∗i

)
,

The Wi,j∗i represents the element of the weighting
matrix W corresponding to ci, where j∗i denotes
the index of the element in W that corresponds to
ci. However, cross-text similarity fails to fully ac-
count for potential semantic opposition or ambigu-
ity between the reference text x and the candidate
text y. To address this, the confidence score from
natural language inference is introduced to evaluate

the reliability of Sρ. Specifically, the confidence
score ∆(x, y), output by the pre-trained roberta-
large-mnli model(Liu et al., 2019), is computed
as the dot product with Sρ, resulting in the final
semantic score S = ∆(x, y) · Sρ.

4 Experiments

4.1 Datasets

This study utilizes seven English-language datasets
and one Dutch-language dataset to investigate four
distinct tasks in NLP: text summarization, senti-
ment analysis, natural language Q&A, and natural
language sentence similarity.
Natural Language Sentence Similarity Task
SemRel2024(Ousidhoum et al., 2024) is a semantic
text relevance dataset encompassing 13 languages.
Each data sample consists of a pair of sentences,
each assigned a relevance score ranging from 0 to
1. For this study, only the English subset of the
dataset is utilized.
STS-B(Cer et al., 2017) is a subtask of SemEval-
2017 Task 1, designed to evaluate the semantic
similarity between text pairs. The dataset com-
prises 8,628 sentence pairs from diverse corpora
across domains and scenarios. Each sentence pair
is manually labeled with a similarity score ranging
from 0 to 5, where 0 indicates complete seman-
tic irrelevance, and 5 indicates perfect semantic
equivalence.
Text Summarization Task
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Class Metrics
CNN/Daily Mail XSUM
r ρ τ r ρ τ

BLEU-1 0.322 0.316 0.217 0.029 0.142 0.098
BLEU-2 0.367 0.376 0.260 0.082 0.195 0.133

Traditional-Eval
ROUGE-1 0.383 0.358 0.246 0.465 0.412 0.288
ROUGE-2 0.350 0.359 0.246 0.316 0.305 0.215
ROUGE-L 0.335 0.332 0.227 0.398 0.352 0.244
METEOR 0.357 0.330 0.227 0.160 0.219 0.150

BERT 0.479 0.441 0.307 0.272 0.202 0.138

BERT-based
BERTScore_P 0.558 0.531 0.373 0.291 0.226 0.155
BERTScore_R 0.518 0.504 0.354 0.304 0.241 0.165

BERTScore_F1 0.601 0.580 0.414 0.304 0.241 0.165

LLM-based
Qwen2-7B 0.427 0.454 0.320 0.607 0.577 0.426

GPT-4 0.669 0.572 0.450 0.842 0.820 0.662
OUR Semantic-Eval 0.554 0.583 0.429 0.699 0.661 0.494

Table 2: The correlations between automatic metrics and human judgments on Text Summarization Task. r, ρ, and
τ denote the Pearson correlation coefficient, Spearman’s rank correlation coefficient, and Kendall’s tau coefficient,
respectively. In each column, the top score is displayed in bold while the second highest is underlined.

CNN/Daily Mail(Nallapati et al., 2016)(Nallapati
et al., 2016) is a dataset predominantly employed
for abstractive text summarization in NLP. It con-
tains approximately 30K data pairs, each consisting
of a news article sourced from CNN or the Daily
Mail, alongside a manually generated summary.
XSUM(Narayan et al., 2018) is a dataset designed
to assess abstractive single-document summariza-
tion systems, focusing on producing concise single-
sentence summaries from lengthy news articles.
The dataset contains 226,711 BBC news articles
from a variety of domains. Each data entry com-
prises a news article and its corresponding manu-
ally labeled single-sentence summary. In this study,
the Dutch version of the XSum dataset is employed.
Sentiment Analysis Task
IMDB(Maas et al., 2011) is a dataset widely used
in sentiment analysis research containing many
movie reviews. The dataset consists of 50K re-
views, each labeled as positive (1) or negative (0).
Yelp Polarity(Zhang et al., 2015) is a dataset de-
signed to support sentiment analysis research. It
contains 560,000 labelled samples, with ratings
ranging from 1 to 5 stars. Reviews with ratings of
1 or 2 are classified as negative, while reviews of 3
or 4 are classified as positive.
Natural Language Q&A Task
IMHI(Yang et al., 2024) is a dataset tailored for in-
terpretable mental health analysis on social media.
It contains 105K samples covering eight distinct
mental health-related tasks. Each sample consists

of expert-written instructions and labels.
Medical-o1(Chen et al., 2024b) is a dataset de-
signed for complex medical reasoning tasks, con-
taining 40K samples that span a wide range of
clinical scenarios. Each entry includes a prompt,
an open-ended question, and a corresponding au-
thentic answer based on a challenging medical ex-
amination.

4.2 Implementation Details
In all experiments, four RTX 4090 GPUs, each
equipped with 24GB of memory, were utilized.
Due to constraints in computational resources and
the associated costs of the OpenAI API, we ran-
domly selected 1,000 samples from each dataset
to form the evaluation subset for each task. These
evaluation subsets were then input into 13 LLMs
to generate output results. The performance of
Semantic-Eval in validating the tasks exhibited
slight variation across different task types. Specifi-
cally, for sentence-level tasks, Semantic-Eval func-
tions as an evaluator, assessing the outputs of the
evaluation subsets, after which the dataset’s evalua-
tion scores are used to compute correlations. In con-
trast, for the text-level task, to the best of our knowl-
edge, no existing dataset provides labeled scores to
evaluate the similarity between pairs of texts. Con-
sequently, three natural language processing anno-
tators were employed to manually score the simi-
larity of each text pair in the text-level evaluation
subset. Furthermore, the self-labeled texts from
the natural language Q&A and text summarization
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Class Metrics
IMDB Yelp Polarity

r ρ τ r ρ τ

BLEU-1 0.098 0.016 0.011 0.109 0.163 0.115
BLEU-2 0.121 0.040 0.027 0.144 0.238 0.170

Traditional-Eval
ROUGE-1 0.409 0.168 0.114 0.447 0.515 0.383
ROUGE-2 0.310 0.227 0.155 0.417 0.523 0.389
ROUGE-L 0.387 0.190 0.128 0.419 0.503 0.372
METEOR 0.540 0.211 0.145 0.463 0.509 0.377

BERT 0.656 0.275 0.252 0.459 0.554 0.415

BERT-based
BERTScore_P 0.644 0.320 0.220 0.529 0.555 0.416
BERTScore_R 0.550 0.157 0.108 0.517 0.592 0.445

BERTScore_F1 0.542 0.232 0.172 0.534 0.589 0.444

LLM-based
Qwen2-7B 0.614 0.418 0.393 0.516 0.552 0.412

GPT-4 0.864 0.626 0.480 0.649 0.679 0.546
OUR Semantic-Eval 0.705 0.523 0.461 0.531 0.571 0.432

Table 3: The correlations between automatic metrics and human judgments on Sentiment Analysis Task. r, ρ, and
τ denote the Pearson correlation coefficient, Spearman’s rank correlation coefficient, and Kendall’s tau coefficient,
respectively. In each column, the top score is displayed in bold while the second highest is underlined.

tasks were used as reference texts, while texts gen-
erated by GPT-4o mini were used as candidate texts.
For the two datasets in the sentiment analysis task,
the original datasets include sentiment scores for
individual texts. Since one objective of this experi-
ment is to evaluate the effectiveness of Semantic-
Eval in comparing reference and candidate texts
in the sentiment analysis task, the focus was on
verifying the alignment between Semantic-Eval’s
semantic understanding of the two texts and human
judgment. Thus, we only used Llama-3-8B-Instruct
as the candidate text and GPT-4o mini-generated
text as the reference text.

4.3 Meta-evaluation
We evaluated the alignment between Semantic-
Eval and human assessments across four NLP tasks
involving textual data: natural language sentence
similarity, text summarization, sentiment analysis,
and natural language Q&A. To quantify this align-
ment, we employed three statistical coefficients:
Pearson’s correlation coefficient (r), Spearman’s
rank correlation coefficient (ρ), and Kendall’s tau
coefficient (τ ), which served as meta-evaluation
metrics for comparing the assessment outputs with
human judgments.

We validated the performance of Semantic-Eval
on a sentence-level task involving annotated sen-
tence similarity scores, with the experimental re-
sults presented in Table 1. The findings indicate
that Semantic-Eval significantly outperforms tradi-
tional metrics and BERT-based approaches, align-

ing with human relevance judgments on the Sem-
Rel2024(eng) and STS-B datasets. Specifically,
Semantic-Eval yields superior relevance scores for
r, ρ, and τ compared to Qwen2-7B. Notably, on
the SemRel2024(eng) dataset, Semantic-Eval ex-
hibits a slight advantage over GPT-4 regarding r
and τ . While Semantic-Eval’s correlation scores
on the STS-B dataset (i.e., r = 0.787, ρ = 0.807,
τ = 0.635) are slightly lower than those of GPT-
4, they nonetheless demonstrate a high degree of
alignment with human evaluations, confirming the
validity of Semantic-Eval in sentence-level tasks.

Additionally, we evaluated the effectiveness of
Semantic-Eval on text-level tasks, which include
sentiment analysis, text summarization, and natural
language Q&A, with the corresponding. Tables
2, 3, and 4 detail the corresponding experimen-
tal results. Across all text-level tasks, GPT-4 con-
sistently achieved the highest evaluation scores,
most closely mirroring human judgments, while
Semantic-Eval ranked second. Except for the
Medical-o1 dataset, Semantic-Eval’s r scores ex-
ceeded 0.5 on five other datasets, reaching a peak
value 0.705. Of particular note, on the CNN/Daily
Mail dataset, Semantic-Eval’s ρ score surpassed
that of GPT-4 by 1.1%. These results collectively
reinforce the robustness of Semantic-Eval in accu-
rately reflecting human judgments across a range
of multi-task, text-level evaluations.
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Class Metrics
IMHI Medical-o1

r ρ τ r ρ τ

BLEU-1 0.352 0.342 0.254 0.272 0.258 0.175
BLEU-2 0.448 0.429 0.321 0.291 0.289 0.190

Traditional-Eval
ROUGE-1 0.383 0.343 0.256 0.292 0.287 0.196
ROUGE-2 0.415 0.404 0.310 0.282 0.295 0.202
ROUGE-L 0.348 0.309 0.229 0.284 0.293 0.201
METEOR 0.371 0.342 0.258 0.291 0.296 0.203

BERT 0.398 0.471 0.355 0.243 0.246 0.169

BERT-based
BERTScore_P 0.515 0.480 0.366 0.311 0.330 0.227
BERTScore_R 0.465 0.482 0.364 0.275 0.256 0.175

BERTScore_F1 0.503 0.499 0.379 0.309 0.311 0.213

LLM-based
Qwen2-7B 0.562 0.595 0.476 0.403 0.425 0.305

GPT-4 0.806 0.770 0.658 0.618 0.677 0.515
OUR Semantic-Eval 0.637 0.636 0.507 0.473 0.445 0.320

Table 4: The correlations between automatic metrics and human judgments on Natural Language Q&A Task. r,
ρ, and τ denote the Pearson correlation coefficient, Spearman’s rank correlation coefficient, and Kendall’s tau
coefficient, respectively. In each column, the top score is displayed in bold while the second highest is underlined.

Datasets Settings r ρ

w/o SemanticRank 0.646 0.415
IMDB w/o roberta-large-mnli 0.681 0.458

Semantic-Eval 0.705 0.523
w/o SemanticRank 0.595 0.583

IMHI w/o roberta-large-mnli 0.612 0.576
Semantic-Eval 0.637 0.636

w/o SemanticRank 0.630 0.601
XSUM w/o roberta-large-mnli 0.583 0.554

Semantic-Eval 0.699 0.661

Table 5: Text-level Pearson r and Spearman’s rank ρ
correlations of ablation models in settings of Datasets.

4.4 Ablation Study

To further investigate the influence of each com-
ponent of Semantic-Eval on its alignment with hu-
man preferences, we conducted ablation studies
on the system. The results, as presented in Ta-
ble 5, demonstrate that Semantic-Eval, when in-
corporating the SemanticRank module, exhibits a
closer alignment with human ratings across three
text-level task datasets compared to the version of
Semantic-Eval that omits this module. This un-
derscores the importance of assigning semantic
weight distributions to individual sentences within
a text. Furthermore, we visualized the outputs gen-
erated by the SemanticRank module for the three
text-level tasks, with detailed illustrations provided
in Appendix B. Additionally, our analysis reveals
that Semantic-Eval aligns more effectively with hu-

man ratings when equipped with the NIL inference
model, particularly on the XSUM dataset, where
the discrepancy between the human ratings and the
model’s outputs is notably smaller. These findings
emphasize the significance of incorporating seman-
tic relationships within the text when evaluating
text similarity.

Settings r ρ τ

T(0.1) 0.554 0.583 0.429
T(0.2) 0.542 0.571 0.420
T(0.3) 0.554 0.583 0.429
T(0.4) 0.588 0.622 0.459
T(0.5) 0.606 0.641 0.473
T(0.6) 0.610 0.641 0.474
T(0.7) 0.554 0.584 0.432
T(0.8) 0.544 0.574 0.423
T(0.9) 0.542 0.572 0.422

Table 6: The correlations between automatic metrics
and human judgments on CNN/Daily Mail dataset.
T(number) denotes the threshold for filtering the cosine
similarity of the embedding between two nodes.r, ρ,
and τ denote the Pearson correlation coefficient, Spear-
man’s rank correlation coefficient, and Kendall’s tau
coefficient, respectively. In each column, the top score
is displayed in bold.

Additionally, we investigated the impact of vary-
ing the threshold parameter from 0.1 to 0.9 (in
increments of 0.1) on the performance of the
Semantic-Eval framework using the CNN/Daily
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Mail dataset, as presented in Table 6. As the
threshold increases from 0.1 to 0.6, the Pearson
correlation coefficient r, Spearman’s rank corre-
lation coefficient ρ, and Kendall’s tau τ generally
improve. However, once the threshold surpasses
0.6 (e.g., 0.7 or higher), these correlation metrics
begin to decline. This pattern suggests that, for
the CNN/Daily Mail summarization task, a low
threshold introduces excessive noise by retaining
spurious edges, while a high threshold excessively
prunes the graph, eliminating potentially informa-
tive edges. As shown in Table 6, a threshold of
0.6 yields the highest, or jointly highest, values for
all three correlation measures. Notably, the Spear-
man correlation coefficient ρ remains unchanged
at thresholds 0.5 and 0.6. The observed differences
between the maximum and minimum values for r,
ρ, and τ are 0.068, 0.070, and 0.054, respectively.
Finally, to demonstrate the construction process
of SemanticRank more intuitively under different
threshold conditions, we visualized the candidate
text Y results in Figure 2, as shown in Appendix
Figure 4.

4.5 Evaluation LLMs using Semantic-Eval

Semantic-Eval is employed to assess the quality
of text generation from 13 general-purpose LLMs
on a text-level task dataset, focusing on semantic
understanding. To provide a more intuitive rep-
resentation of the performance differences across
LLMs, we visualized the evaluation results for
these models on the XSUM dataset, as depicted
in Figure 3. Additionally, the evaluation results of

Figure 3: The visualization results of LLMs on the
XSUM dataset assessed by Semantic-Eval.

Semantic-Eval for the LLMs on five other text-level
task datasets are presented in Appendix B. Figure
3 illustrates that, for the text summarization task,
GPT-4o mini achieved the highest score of 64.35,
followed by GLM-4-9b-chat in second place, while

the Qwen-7B-Chat model received the lowest score.
Notably, half of the LLMs scored above 55 points.

5 Conclusion

In this paper, we introduce Semantic-Eval, the first
framework designed for automatically evaluating
text produced by LLMs without requiring training.
The framework emphasizes assessing generated
text quality from the perspective of semantic un-
derstanding. Semantic-Eval utilizes a graph-based
weighting mechanism to evaluate the interdepen-
dence of semantic units within a text. Sentence-
level similarities are computed using semantic em-
beddings, and a NLI model is integrated to ad-
dress potential pairwise relationships. When tested
across various NLP tasks and datasets, including
sentiment analysis, summarization, question an-
swering, and sentence similarity, Semantic-Eval
outperforms existing evaluation metrics and demon-
strates a closer alignment with human judgments.
Additionally, Semantic-Eval is employed to eval-
uate the text quality generated by thirteen distinct
large language models.

6 Limitations

Semantic-Eval is designed to evaluate the quality
of text generated by LLMs from the perspective
of semantic understanding, without the need for
additional training. However, its performance is
inherently limited by the constraints of the pre-
trained sentence embeddings and NLI models upon
which it relies. While Semantic-Eval demonstrates
a higher alignment with human preferences com-
pared to smaller parameter LLMs, its performance
still lags behind state-of-the-art models, such as
GPT-4. This discrepancy suggests that there is sig-
nificant potential for improvement, particularly in
refining the underlying models used for semantic
analysis. In future work, we will focus on enhanc-
ing the precision of Semantic-Eval in aligning with
human preferences, while preserving its training-
free nature.
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A Experimental Setting

A.1 Metrics Baselines

A.1.1 Traditional-Eval
BLEU (Papineni et al., 2002) is a scoring mech-
anism primarily based on the n-gram overlap be-
tween the generated text and the reference text,
which is used to evaluate the quality of the gener-
ated text. BLEU-1,2 is used as one of the metric
baselines.
ROUGE (Lin, 2004) is one of the improved meth-
ods based on BLEU, which evaluates the accuracy
of the generated text by calculating the overlap
between the automatically generated text and the
reference text.ROUGE-1,2 and ROUGE-L are used
as metric baselines.
METEOR(Banerjee and Lavie, 2005) also im-
proves BLEU and assesses quality mainly by cal-
culating the degree of match between the machine
translation result and the reference translation. It
considers lexical variations and allows synonym
matching.

A.1.2 BERT-based
BERT(Devlin et al., 2018) is a pre-trained lan-
guage model based on the transformer(Vaswani
et al., 2017) model, which captures the semantic
relations between sentences by introducing a bidi-
rectional encoding mechanism.
BERTScore(Zhang et al., 2019) provides an over-
all picture of the quality of text generation by cal-
culating Precision, Recall, and F1 scores between
candidate and reference sentences. In particular,
Precision measures the proportion of semantic in-
formation for each word in the generated text that
occurs in the reference text, Recall measures the
proportion of semantic information for each word
in the reference text that occurs in the generated
text, and F1 score is the reconciled average of Preci-
sion and Recall, which is used to combine Precision
and Recall.

A.1.3 LLM-based
Qwen2-7B4 and GPT-45 (gpt-4-turbo-preview)
generalized LLMs are employed as one of the met-
rics baselines. When LLM-based methods are used
as raters, we design the simplest prompts to guide
these LLMs to score paired texts. The prompt

4https://huggingface.co/Qwen/
Qwen2-7B-Instruct

5https://platform.openai.com/docs/models#
gpt-4-turbo-and-gpt-4

is:"Please score the following two texts on a scale
of 0-1."

A.2 Large Language Models

We compare the quality of generated text
for 13 generalized large language models for
LLMs: Llama-3.1-8B-Instruct6, Llama-2-13b-chat-
hf7, Llama-2-7b-chat-hf8, Llama-3-8B-Instruct9,
Qwen-7B-Chat10, Qwen2-7B-Instruct11, Qwen2.5-
7B-Instruct12, chatglm3-6b-32k13, chatglm3-6b14,
chatglm2-6b15, glm-4-9b-chat16, Baichuan2-7B-
Chat17, GPT-3.5-turbo18, GPT-4o mini19.

Figure 4: The visualization shows the construction of
SemanticRank under different threshold conditions.

6https://huggingface.co/meta-llama/Llama-3.
1-8B-Instruct

7https://huggingface.co/meta-llama/
Llama-2-13b-chat-hf

8https://huggingface.co/meta-llama/
Llama-2-7b-chat-hf

9https://huggingface.co/meta-llama/
Meta-Llama-3-8B-Instruct

10https://huggingface.co/Qwen/Qwen-7B-Chat
11https://huggingface.co/Qwen/

Qwen2-7B-Instruct
12https://huggingface.co/Qwen/Qwen2.

5-7B-Instruct
13https://huggingface.co/THUDM/chatglm3-6b-32k
14https://huggingface.co/THUDM/chatglm3-6b
15https://huggingface.co/THUDM/chatglm2-6b
16https://huggingface.co/THUDM/glm-4-9b-chat
17https://huggingface.co/baichuan-inc/

Baichuan2-7B-Chat
18https://platform.openai.com/docs/models#

gpt-3.5-turbo
19https://platform.openai.com/docs/model#

gpt-4o-mini
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B Semantic-Eval Evaluates LLMs

One data sample was selected from each of the
five datasets in the three text-level tasks, and the
SemanticRank module visualized the construction
process for each of the different data samples, as
shown in the six figures below.
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(a) Visualization of self-
similarity matrix of reference
text.
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(b) Visualization of self-
similarity matrix for candi-
date text.
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(c) Visualization of self-
similar TextRank plots for ref-
erence text.
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(d) Visualization of self-
similar TextRank graphs for
candidate texts.

Figure 5: The visualization shows the construction pro-
cess of the SemanticRank on the sample on the IMHI
dataset.
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(a) Visualization of self-
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(b) Visualization of self-
similarity matrix for candi-
date text.
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(c) Visualization of self-
similar TextRank plots for ref-
erence text.
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(d) Visualization of self-
similar TextRank graphs for
candidate texts.

Figure 6: The visualization shows the construction pro-
cess of the SemanticRank on the sample on the Medical-
o1 dataset.
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(a) Visualization of self-
similarity matrix of reference
text.
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(b) Visualization of self-
similarity matrix for candi-
date text.
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(c) Visualization of self-
similar TextRank plots for ref-
erence text.
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(d) Visualization of self-
similar TextRank graphs for
candidate texts.

Figure 7: The visualization shows the construction pro-
cess of the SemanticRank on the sample on the IMDB
dataset.
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(a) Visualization of self-
similarity matrix of reference
text.
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(b) Visualization of self-
similarity matrix for candi-
date text.
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(c) Visualization of self-
similar TextRank plots for ref-
erence text.
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(d) Visualization of self-
similar TextRank graphs for
candidate texts.

Figure 8: The visualization shows the construction pro-
cess of the SemanticRank on the sample on the Yelp
Polarity dataset.
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(a) Visualization of self-
similarity matrix of reference
text.
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(b) Visualization of self-
similarity matrix for candi-
date text.
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(c) Visualization of self-
similar TextRank plots for ref-
erence text.
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(d) Visualization of self-
similar TextRank graphs for
candidate texts.

Figure 9: The visualization shows the construction
process of the SemanticRank on the sample on the
CNN/Daily Mail dataset.

C Semantic-Eval evaluates LLMs

The following five figures show the results of
Semantic-Eval’s evaluation of LLMs on each of
the five text-level task datasets.

Figure 10: The visualization results of LLMs on the
CNN/Daily Mail dataset assessed by Semantic-Eval.

Figure 11: The visualization results of LLMs on the
IMDB dataset assessed by Semantic-Eval.

Figure 12: The visualization results of LLMs on the
Yelp Polarity dataset assessed by Semantic-Eval.
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Figure 13: The visualization results of LLMs on the
IMHI dataset assessed by Semantic-Eval.

Figure 14: The visualization results of LLMs on the
Medical-o1 dataset assessed by Semantic-Eval.
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