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Abstract

Clinical coding is crucial for healthcare billing
and data analysis. Manual clinical coding is
labour-intensive and error-prone, which has
motivated research towards full automation of
the process. However, our analysis, based on
US English electronic health records and au-
tomated coding research using these records,
shows that widely used evaluation methods are
not aligned with real clinical contexts. For ex-
ample, evaluations that focus on the top 50
most common codes are an oversimplification,
as there are thousands of codes used in practice.
This position paper aims to align Al coding re-
search more closely with practical challenges
of clinical coding. Based on our analysis, we
offer eight specific recommendations, suggest-
ing ways to improve current evaluation meth-
ods. Additionally, we propose new Al-based
methods beyond automated coding, suggesting
alternative approaches to assist clinical coders
in their workflows.

1 Introduction

Clinical coding is a process that transforms clini-
cal notes into a set of alphanumeric codes, which
represent diagnoses and procedures during medical
visits. This process is essential to tasks like hospi-
tal billing and disease prevalence studies. Manual
clinical coding is labour-intensive and error-prone
(Karimi et al., 2017; Li and Yu, 2020). To address
these issues, automated coding has been widely
explored. While many existing studies frame it
as a multi-label classification task (Mullenbach
et al., 2018; Vu et al., 2020; Huang et al., 2022;
Li et al., 2023), no analysis has examined whether
that matches the needs of clinicians.

This position paper critically reviews automated
coding studies based on multi-label classification,
focusing on those using the public US Medical
Information Mart for Intensive Care (MIMIC)
datasets (Goldberger et al., 2000; Johnson et al.,

2016, 2023). For consistency, we use the clini-
cal term ‘code’ instead of ‘label’ throughout this
paper. We focus on the MIMIC datasets as they
are far larger than other public datasets. Specifi-
cally, MIMIC provides English electronic health
records of acute and emergent inpatients, with the
latest version, MIMIC-1V, including 331,675 pa-
tient admissions. The few other public datasets,
such as those released by Pestian et al. (2007) and
Miranda-Escalada et al. (2020), contain 978 and
1,000 admissions, respectively. This significant
scale difference allows MIMIC to cover a broader
range of diagnoses and procedures, making it more
suitable for comprehensive analyses.

We show that current evaluations do not align
with the needs of clinical contexts. In practice,
coders must select from over a thousand codes
and sequence them correctly (CMS and NCHS,
2024), yet many studies use smaller code sets and
overlook code sequencing in evaluation. Addi-
tionally, the Area Under the Receiver Operating
Characteristic Curve (AUC-ROC) is often the only
threshold-independent metric reported, which is
inappropriate given the imbalanced code distribu-
tion. Common human coding metrics like Exact
Match Ratio and Jaccard Score are often omitted,
making it difficult to measure the accuracy gap
between automated and human coding. In other
words, widely used evaluation strategies do not
measure what truly matters for clinical application.

We then propose new methodologies to support
clinical coders rather than automating the entire
process. Given the limited effectiveness of auto-
mated coding (Edin et al., 2023), manual coding
with software assistance remains prevalent, with
code auditing essential in clinical workflows to re-
duce errors. Despite its significance, research on
Al-assisted coding and auditing is limited. This un-
derscores the need for future studies in these areas,
which have the potential to yield practical solutions
sooner than fully automated coding.
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2 Clinical Coding Workflow

In this section, we present a typical clinical coding
workflow in an inpatient setting, outline the indi-
vidual coding processes, and provide an overview
of the current state-of-the-art strategies and tools
used in these processes. The workflow presented
is specific to the US context; other countries may
have similar or different processes.

The upper diagram in Figure 1 outlines a high-
level, four-step clinical coding workflow for an
inpatient episode. First, a patient is admitted to the
hospital. During care, all relevant documentation
(e.g., pathology reports) is entered into their Elec-
tronic Health Record (EHR). Upon discharge, the
attending doctor writes a summary detailing the
patient’s stay, including diagnosis and treatment.
Clinical coders then assign International Classifi-
cation of Diseases (ICD) codes based on the EHR.
For reimbursement purposes, relevant ICD codes
are grouped into a Diagnosis Related Group (DRG)
code. DRG is a classification system that organises
hospital cases into groups; each DRG has a spe-
cific payment rate based on the average resources
needed to treat patients in that group. The lower
diagram in Figure 1 gives additional details of the
ICD coding task, illustrating the processes before
and after coding episodes with ICD.

The implementation of ICD and DRG varies
across countries, and the coding inputs can dif-
fer depending on healthcare settings (e.g., hospital
policies). Previous Al coding studies often use
discharge summaries as inputs but have also ex-
plored other sources, such as radiology reports (Pes-
tian et al., 2007) and multilingual death certificates
(Névéol et al., 2018). Given all these differences, it
is important that Al coding research carefully con-
siders the clinical coding workflow it is addressing.
Of note, many references in the following subsec-
tion are corporate products, as previous research
has largely focused on the automated coding ap-
proach in the clinical coding workflow.

2.1 Task Allocation

With many hospitals facing backlogs of uncoded
cases (Alonso et al., 2020), optimising task allo-
cation is crucial. The order in which cases are
processed depends on hospital-specific business
metrics, such as maximising profit and reducing
backlog. Tools like Beamtree’s Q Coding plat-
form (Beamtree, 2024) support task forecasting,
rule-based distribution, and scheduling, enabling
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Figure 1: Typical clinical coding workflow for an inpa-
tient episode of care in the US.

hospitals to address backlogs systematically and
ensure critical cases are handled promptly.

After determining case priority, the next step is
to allocate cases to the appropriate expert. In as-
sisted coding (i.e., manual coding with computer
software support), assigning cases based on coder
specialty or experience effectively manages the
complexity of coding tasks (Alonso et al., 2020;
Beamtree, 2024). Likewise, with Al-based coding
solutions, cases could be assigned to either assisted
or automated coding pathways. This step is specu-
lative and will be discussed further in Section 3.

2.2 Assisted Coding

In assisted coding, where coders use computer soft-
ware to manually enter codes, each keystroke, word
read, and thought incurs a cost. By minimising the
manual effort involved, these tasks become more
efficient. This promise of higher efficiency has mo-
tivated health tech companies to develop various
assisted coding tools.

Existing tools include features such as searching
and navigating codes with integrated guidelines,
which help users quickly find relevant codes and
follow best practices (Beamtree, 2024; 3M, 2024d).
Al-suggested codes and DRG grouping helps in
streamlining the coding process (Beamtree, 2024;
3M, 2024b,d). Customisable rules allow users to
automate coding based on criteria drawn from their
expertise (3M, 2024b). Online audits against or-
ganisational policies ensure quality control (3M,
2024a). Evidence linking for assigned codes facili-
tates efficient edits and reviews (Goinvo, 2024; 3M,
2024c). Collectively, these features contribute to a
more efficient and cost-effective coding workflow.
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2.3 Automated Coding

Automated coding refers to the process of assign-
ing accurate diagnostic and procedural ICD codes
without human intervention. It is closely related
to other real-world problems, such as tagging in
social networks (Coope et al., 2019) and indexing
biomedical literature (Krithara et al., 2023), where
a piece of text is categorised using multiple labels.
Automated coding can address coding of episodes
where the accuracy of an Al system is higher than
human performance or is otherwise sufficient given
operational cost-benefit considerations. CodeAs-
sist (3M, 2024c), for example, is a commercial sys-
tem used in many hospitals, with its main feature
being automated coding.

Automated coding has also been the focus of
Al coding research to date, with most studies rely-
ing solely on discharge summaries as model inputs.
Mullenbach et al. (2018) propose the Convolutional
Attention for Multi-Label Classification (CAML)
model. CAML combines convolutional neural net-
works (CNNs) with per-code attention to focus on
text sections relevant to each ICD code. This atten-
tion mechanism enhances interpretability by high-
lighting the text that contributes to the model’s deci-
sions. Li and Yu (2020) extend this framework with
the Multi-Filter Residual Convolutional Neural Net-
work (MultiResCNN), which uses multiple filter
layers and residual connections for better feature
extraction. On the other hand, Vu et al. (2020) in-
troduce the Label Attention Model (LAAT), using
a bidirectional long short-term memory (LSTM)
to capture clinical context in text. LAAT uses a
distinct per-code attention mechanism compared to
CAML, incorporating additional steps in attention
weight calculations and a hierarchical joint learning
strategy, which leads to better predictions for rare
ICD codes. Huang et al. (2022) adapt LAAT’s at-
tention mechanism for pretrained language models
in ICD coding (PLM-ICD). PLM-ICD also incor-
porates domain-specific pretraining and segment
pooling, addressing challenges such as the domain
mismatch between pretraining and clinical text and
the large code space.

Recent benchmarking by Edin et al. (2023) com-
pares CAML, MultiResCNN, LAAT, PLM-ICD,
and a few other models. PLM-ICD consistently
achieves best results on MIMIC-III and MIMIC-1V
datasets. However, all models, including PLM-
ICD, struggle with rare codes, which is a persistent
issue in automated coding. Notably, document

length had minimal effect on model performance,
with little difference when truncating documents
from 4,000 to 2,500 words. In Section 3, we demon-
strate that prior studies fail to measure key factors
critical for real-world applications. Our analysis
reveals realistic upper bounds of existing state-of-
the-art models compared to human performance.

2.4 Code Auditing

Clinical coding is complex, and even human coders
often make mistakes (Burns et al., 2012). In the US,
coding errors and quality improvement efforts cost
an estimated $25 billion annually (Xie and Xing,
2018). Even more concerning, some errors may be
treated as fraud, leading to legal liability (Rudman
et al., 2009). To address this, many asynchronous
auditing tools have been developed. For exam-
ple, 3M (2024a) provides offline tools for batch
auditing, referencing documents and codes used in
patient claims to ensure compliant coding, and inte-
grated denial tracking for managing coding quality.
Beamtree (2024) ofters tools for audits against qual-
ity indicators, dynamic code sequencing, and code
combination validation. In general, these tools aim
to enhance coding quality and reduce error-related
costs in both time and revenue.

3 Data and Automation: Analysis and
Recommendations

In this section, we (1) identify key shortcomings in
the evaluation methodologies widely used in auto-
mated coding studies, (2) analyse the widely used
MIMIC datasets, and (3) offer corresponding rec-
ommendations. Many of these shortcomings are
not limited to studies using the MIMIC datasets,
but are also prevalent in other methodologies pro-
posed for automated coding shared tasks involving
different datasets (Pestian et al., 2007; Miranda-
Escalada et al., 2020).

3.1 Evaluations Using the Top 50 Codes Do
Not Reflect Real Effectiveness

Table 1 shows that many of the existing studies
evaluate their methods using the 50 most frequent
codes!. When considering the application of mod-
els in a real-world healthcare environment, this
evaluation strategy is sub-optimal (Liu et al., 2021);
it focuses solely on the most frequent codes, failing

'This is not intended as a systematic literature review. In-
stead, the aim is to demonstrate that many studies rely on the
top 50 codes to validate their methodologies.
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Count

Reported only top 50 results 8

\S}

Reported only full results
Reported one or more top k results, excluding full results 3

Reported both top 50 and full results, but used top 50 4
results to emphasise contribution

Reported both top 50 and full results without emphasis- 8
ing top 50 results

References

(Shi et al., 2017; Wang et al., 2018; Teng et al., 2020;
Feucht et al., 2021; Sun et al., 2021; Liu et al., 2022;
Michalopoulos et al., 2022; Liu et al., 2023)
(Wiegreffe et al., 2019; Kim and Ganapathi, 2021)
(Prakash et al., 2017; Xie and Xing, 2018; Zhang et al.,
2020)

(Li and Yu, 2020; Li et al., 2021; Shi et al., 2021; Yang
et al., 2022)

(Mullenbach et al., 2018; Xie et al., 2019; Vu et al., 2020;
Cao et al., 2020; Liu et al., 2021; Zhou et al., 2021; Yuan
et al., 2022; Li et al., 2023)

Table 1: Overview of Automated Coding Studies and Their Evaluation Strategy.
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Figure 2: Code coverage in MIMIC-III.

to cover all diagnoses and procedures encountered
in clinical practice.

We demonstrate the coverage issue by showing
the distribution of codes in MIMIC-III. The green
line in Figure 2 shows that the top 50 codes com-
prise only 33.92% of total code occurrences. We
further measure how well the episodes” in MIMIC-
III are covered by the top 50 codes. Specifically,
we calculate the percentage of episodes where all
assigned codes are within the top 50. The dark
blue line shows that none of the episodes are fully
covered, meaning every episode has some codes
outside the top 50. Even when we increase this
to include the top 800 codes, the coverage rate re-
mains very low, at 20.48%. In other words, even
with the top 800 codes, we miss some coding in-
formation in about 80% of episodes. If we use a
more generous measure, calculating the percent-

2A single episode usually has many codes.
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Figure 3: Code coverage for the first primary diagnosis
code in an episode only.

age of episodes that include at least one of the
top 50 codes, the light blue line shows a coverage
rate of 93.95%. If we preprocess the MIMIC-III
episodes to retain only the first primary diagnosis
code, which typically has the highest clinical and
billing priority, the issue of low coverage rates per-
sists. We observe an 8% higher coverage rate with
the top 50 primary diagnosis codes (see Figure 3),
yet the improvement is still marginal in terms of
overall coverage.

The low coverage rate leads to a generalisation
issue, where the ranking of different models shows
low correlation between the top 50 and full code
settings. According to Mullenbach et al. (2018),
in the top 50 setting, CNN outperforms their pro-
posed CAML model in terms of Micro F1, Macro
F1, and Precision@5. However, CAML performs
better in the full code setting. This contradiction
is also observed in a reproducibility study (Edin
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et al., 2023). If we rank the six reproduced models
by macro AUC-ROC scores from lowest to highest,
the order in the top 50 setting is Bi-GRU, CAML,
CNN, MultiResCNN, LAAT, PLM-ICD, whereas
in the full code setting, it is CNN, Bi-GRU, CAML,
LAAT, MultiResCNN, PLM-ICD. Therefore, we
suggest that future studies compare models cau-
tiously using top 50 results and prioritise full
code setting improvements.

3.2 Global Thresholds Do Not Account for
Variable Error Cost

In many existing studies, a threshold is defined
as the minimum confidence level required to as-
sign a specific code, and a fixed threshold of 0.5 is
used without justification (Mullenbach et al., 2018;
Wang et al., 2018; Li and Yu, 2020; Vu et al., 2020).
This is important because the standard evaluation
includes the F1 score, a threshold-dependent clas-
sification metric. Edin et al. (2023) found that not
tuning the threshold significantly degraded the per-
formance of most models, so they fine-tuned a sin-
gle threshold by maximising the model’s micro F1
score on the validation set. This does not account
for the inherent differences between codes, such as
prior probabilities and misclassification costs. This
leads to an interesting direction of research: adapt-
ing dynamic thresholds (Wu et al., 2019; Alotaibi
and Flach, 2021) for classification-based automated
coding methods. Additionally, this highlights
the importance of threshold-independent met-
rics, such as Area Under the Receiver Operating
Characteristic Curve (AUC-ROC) and Area Un-
der the Precision-Recall Curve (AUC-PR), as
they provide comprehensive assessment of auto-
mated coding models across various thresholds.

3.3 AUC-ROC Score Is Not Ideal for
Imbalanced Datasets

AUC-ROC is a binary classification metric. In
multi-label classification, a common approach is
to convert the task into a one-vs-all setting, where
one code (class) is treated as the positive code and
all remaining codes as the negative code. Then, the
AUC-ROC scores for each code are computed in-
dividually. AUC-PR offers a different perspective
by focusing on the relationship between precision
and recall. One way to calculate AUC-PR is by
using Average Precision (AP), which represents
the average of precision values at different recall
levels as the threshold varies. Since multiple codes
can be predicted for each episode, we can calculate

the mean AP for all possible codes, known as the
Mean Average Precision (MAP). In other words,
the AUC-PR for each code can be calculated using
AP, while MAP extends this by averaging the AP
values across all predicted codes.

In an imbalanced dataset like MIMIC, the dom-
inance of the negative code can result in a mis-
leadingly high AUC-ROC score. A study by Edin
et al. (2023) on three MIMIC splits shows that the
SOTA automated coding model, PLM-ICD, con-
sistently achieves macro AUC-ROC scores greater
than 95%, indicating it is very effective at scoring
relevant codes higher than irrelevant ones. By only
looking at this metric, one might infer that this is
a robust model. However, PLM-ICD’s MAP re-
mains below 70% across all three splits, indicating
that when it predicts a certain code given various
threshold values, it is often incorrect. Previous
work (Mullenbach et al., 2018; Liu et al., 2021;
Yuan et al., 2022; Huang et al., 2022) reported only
the AUC-ROC score, which can be misleading, as
the model’s precision trade-off is not well reflected.
Thus, we recommend reporting AUC-PR as well
as AUC-ROC.

3.4 Automated Coding Evaluation Should
Match Human Coding Evaluation

Existing studies aim for automated coding, which
assumes that the model acts as an independent
coder. Howeyver, their evaluations do not include
the common accuracy metrics that are used to mea-
sure human performance.

The term ‘accuracy’ can be confusing due to its
many possible implementations. Different studies
have reported human accuracy in clinical coding,
but their definitions of accuracy are inconsistent
(Burns et al., 2012). In this position paper, we
will examine two implementations of accuracy. In-
stance accuracy, or Exact Match Rate (EMR), mea-
sures the percentage of instances (i.e., episodes of
care or medical cases) where the predicted code
set exactly matches the true code set. Code accu-
racy, or Jaccard Score, is defined as the ratio of
the size intersection of a predicted code set and a
target code set to the size of their union. Instance
accuracy is stricter, as it requires a perfect match
for every code in an instance.

In automated coding, even if a case contains a
single error, human coders must re-code or correct
the errors. This means the effort and cost associ-
ated with reviewing the entire clinical note are not
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MIMIC-III Clean

MIMIC-IV ICD-9  MIMIC-1V ICD-10

Three digits accuracy 52.84 +0.34 55.22 £ 0.19 51.17 £ 0.22
Four digits accuracy 46.21 £0.33 49.28 £ 0.19 4497 £ 0.22
Full code accuracy 44.01 £0.33 46.75 £ 0.18 42.05 £0.22

Table 2: The code accuracy of PLM-ICD calculated using Jaccard Score, with values spread within the 95%

confidence interval determined using the Z-score.

mitigated, highlighting the need for measuring in-
stance accuracy. On the other hand, code accuracy
is useful because not all codes are equally impor-
tant. When assigning a DRG code, the primary
diagnosis code is usually the first and most impor-
tant determinant factor (IHACPA, 2023). Given
this, when evaluating coding accuracy, it is bene-
ficial to allow for partial matches, acknowledging
that capturing overlap in codes can still be valuable.

We recommend that future studies include
both of these accuracy metrics to better demon-
strate the performance gap between Al and hu-
man coding.

3.5 Low Automation Accuracy Suggests
Subset-Specific Automation

When considering instance accuracy, a study in the
UK that included 50 episodes of care showed that
human accuracy is 54%. In a UK hospital setting,
Abdulla et al. (2020) reported an average of 67.5%
accuracy each month over four months. In contrast,
Among the ‘MIMIC-III clean’, ‘MIMIC-IV ICD-
9’, and ‘MIMIC-IV ICD-10’ splits, none of the six
advanced models replicated by Edin et al. (2023)
achieved an instance accuracy greater than 1.1%.
When considering code accuracy, the median hu-
man performance in the UK was 83.2%, with large
variance among thirty-two studies (50-98%) (Burns
et al., 2012). However, the definition of accuracy
is inconsistent across the explored studies; some
defined inaccurate coding as inaccurate three digit
coding, while the majority defined it as inaccurate
four digit coding. In fact, many inaccuracies occur
at the four digit level (Burns et al., 2012) instead of
the three digit level. We select PLM-ICD, the best
model according to Edin et al. (2023), and report its
code accuracy with respect to three-digit, four-digit,
and full code levels across three MIMIC splits. For
each split, we train a single PLM-ICD instance on
the full code prediction task, adjusting the accuracy
measure across different digits to account for vary-
ing evaluation complexities. Table 2 shows that
PLM-ICD’s three digit accuracy, the most gener-
ous evaluation measure, is much higher than the

other two in all splits. If we compare this result
against human accuracy, PLM-ICD is only half as
good as an average human at best, indicating there
still exists a notable gap to reach full automation.

Instead of full automation, we could consider the
task allocation part of clinical coding workflows.
A recent study in radiology (Agarwal et al., 2023)
suggests that the best approach for combining hu-
man expertise with Al is to delegate cases to either
Al or humans, rather than having Al augment hu-
man decisions. In other words, automating a subset
of tractable episodes may be a promising direction
for Al coding. The main challenge, however, is
the choice of the subset. Figure 4 shows that in
MIMIC-1V, approximately only 1% of episodes
contain one unique ICD-10-CM three-digit code,
while more than half include at least six. This sug-
gests we cannot simply choose the subset based
on a single disease or symptom. We encourage
future research to investigate the selection of
tractable subsets of care and estimate realistic
upper bounds for these subsets.

3.6 MIMIC Episodes Are Challenging to
Fully Automate

The MIMIC cohort consists intensive care unit
(ICU) and emergent inpatients, who often present
complex conditions requiring multiple diagnoses
(see Figure 4) and treatments (Alonso et al., 2020).
More details on the MIMIC cohort can be found
in Appendix B. Campbell and Giadresco (2020)
noted that, compared to inpatient coders, outpatient
coders are more concerned that assisted coding will
replace their role. One possible reason for this is
that outpatient episodes often involve less complex
conditions (Alonso et al., 2020). This suggests
that outpatient episodes, which are not included in
MIMIC, may be better automation candidates.

A common problem in the MIMIC datasets is
the imbalanced code distribution, where less than
half of the full codes occur at least 10 times, ex-
cept in the MIMIC-1V ICD-9 collection (see Ap-
pendix C for more details). MIMIC-III’s coverage
of the ICD-9-CM code space is relatively low, rep-
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Figure 4: Distribution of MIMIC-IV episodes by the
number of unique three-digit ICD-10-CM codes (e.g.,
G47 for ’sleep disorders’). About 4% of the episodes
have at most two of these three-digit codes.

resenting only 50.16% of the possible 17,800 full
codes (Wikipedia, 2024). This limitation is worse
in MIMIC-1V’s ICD-10-CM/PCS data, which in-
cludes 18.78% of the possible 139,000 full codes
(Wikipedia, 2024). In other words, the evaluations
are omitting a large proportion of ICD codes that
may be easier to automate but are missing or rare
in MIMIC due to the nature of the dataset.

Large public datasets that cover a broader
range of care types are currently lacking. There-
fore, developing such datasets would be invalu-
able for automated coding.

Additionally, we suggest exploring the use
of MIMIC for AI coding research in other key
parts of the workflow: task allocation, assisted
coding, and code auditing. We will discuss this
further in Section 4.

3.7 Code Sequence Matters

It is not sufficient to consider only the correctness
of the assigned codes; their sequence is also impor-
tant. For instance, certain conditions have both an
underlying etiology and manifest across multiple
body systems. The official ICD-10-CM American
guideline requires the underlying condition to be se-
quenced before the manifestation (CMS and NCHS,
2024). Similarly, the official Australian ICD-10-
AM guideline requires the anaesthetic codes to be
sequenced immediately following the procedure
code to which they relate (IHPA, 2022). There-
fore, it is evident that clinical coding requires the
modeling of both code sequence and dependency.
However, the sequence of the target codes is ne-

glected by existing work despite this information
being provided in the MIMIC datasets. In fact,
both sequence and dependency issues are inherent
in some multi-label classification tasks. Many cor-
responding solutions have been developed (Read
et al., 2011; Alvares-Cherman et al., 2012; Yeh
et al., 2017; Yang and Liu, 2019). We recommend
that future studies include code sequences in
their evaluation to better estimate the real im-
pact on workflow.

4 New Workflow-Inspired Methodologies

In Section 3, we explored limitations of the current
formulation of the task as a multi-label classifi-
cation problem. Now, we propose alternatives to
integrate Al into clinical coding workflows as rec-
ommendation systems or asynchronous (offline)
auditing assistants. In these cases, information re-
trieval metrics such as Precision @k, Recall @k, and
Coverage Error are more appropriate.

4.1 New Assisted Coding Methodologies

We consider three types of tasks to augment the
manual coding process: (1) a sequential task, where
the system predicts one code at a time and receives
human feedback after each prediction; (2) a recall
task, where coders start with a large set of possi-
ble codes in mind and select from a set of system
suggested codes; and (3) a structural task, where
coders take a top-down approach, and instead of
predicting complete codes, the system only predicts
partial codes.

We propose various assisted coding systems to
address the three tasks. While these systems pro-
vide a great starting point, they are not exhaustive.
The proposed assisted coding systems leverage
both human and Al strengths, but their implemen-
tation is likely not straightforward. Multiple user
designs can be implemented for the same system,
leading to varying performance results. Additional
challenges include the time needed for humans
to adapt to collaborating with Al and the risk of
over-trust or under-trust in Al suggestions (Agar-
wal et al., 2023). Therefore, we recommend in-
cluding user studies or field tests when evaluating
assisted coding systems, measuring not only accu-
racy and efficiency but also user satisfaction and
trust in the system, and user-Al effectiveness.

4.1.1 The Sequential Task

The goal of this task is to transform the multi-
label classification problem into a simpler multi-
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classification problem. Instead of predicting all
codes in a single step, the objective is to assign
codes sequentially like real coding practice. We
can implement this in several ways:

1. Chain a group of classifiers sequentially, sim-
ilar to the classifier chain proposed by Read
et al. (2011) for related problems in other do-
mains. Each classifier makes a binary choice
about assigning a code and receives user feed-
back, where the feedback is then used as part
of the input for the next classifier.

2. Train a single multi-class classifier that pre-
dicts one code at a time, receives user feed-
back, and stops when a predefined termination
criterion is met.

3. Treat all ICD codes as vocabulary and use a
seq2seq model to predict the codes, prompting
the user for feedback after each decoding step.

All three designs add sequential information as
part of the input to tackle the code sequencing and
dependency issue. Relevant evaluation metrics in-
clude Precision @k, the number of steps required
to achieve full recall, and the model’s convergence
rate with human feedback. Importantly, while it
is true that human-in-the-loop is not absolutely
mandatory in the suggested designs, the inclusion
of human input offers significant benefits. These
include higher accuracy over long run, real-time
error correction, and improved user trust (critical
for clinical applications) as users contribute to the
model’s learning process.

4.1.2 The Recall Task

This task can be framed as a multiple-choice prob-
lem, where the objective is to maximise relevant
choices while minimising the total number of
choices. We propose two designs:

1. A system where all predicted codes are pre-
sented to a human expert.

2. A system where high-confidence predicted
codes are assigned automatically, whereas
low-confidence predicted codes are presented
to a human expert.

Both designs can still be approached using multi-
label classification; however, the evaluation metrics
and optimisation methods should differ. Typically,
multi-label classification uses a loss function that

penalises any incorrect outputs. In this task, it is ac-
ceptable if some of the model’s top confident codes
are incorrect, as long as the correct options are in-
cluded. This approach involves optimising for Re-
call@k, ensuring high recall with a low value of k.
In the second design, the ranking of positive codes
becomes important as well. A key challenge in
this task is designing effective choice minimisation
strategies, which may include grouping by ontol-
ogy or confidence interval. For example, grouping
codes by related ICD categories can reduce the
number of options a coder needs to review, thereby
speeding up the coding process.

4.2 The Structural Task

The structural task we propose is inspired by
Nguyen et al. (2023), but their setup does not in-
corporate human input. The objective of their work
is to use a two-stage decoder that first predicts the
parent (i.e., the first three digits) codes and then
the child (i.e., the digits following the first three)
codes. Their model’s parent prediction on ‘MIMIC-
III Full’ achieves micro and macro F1 scores of
29.1% and 69.0% respectively, outperforming the
overall micro and macro F1 scores of 10.5% and
58.4% by a considerable margin. This confirms
that parent prediction is much simpler for Al mod-
els. Based on this, we could design systems where
the second stage benefit from human input:

1. The system delegates the challenging task
of predicting child codes entirely to humans,
while its parent code predictions are used to
augment human decision-making.

2. The system could predict a set of parent codes,
and upon a human selecting a parent code, it
would use that input to predict the relevant
child codes. This approach leverages human
expertise to refine the Al system’s broader
categorisations.

In addition to standard classification metrics, ex-
plainability metrics (e.g., matching annotated evi-
dence spans) are useful for evaluating the first de-
sign, as the system output is intended to inform hu-
man decision-making. Hierarchical evaluation met-
rics (e.g., Falis et al., 2021) are very useful as they
account for the hierarchical code structure, avoid-
ing equal penalisation for all mispredictions. Over-
all, the proposed designs are more robust in han-
dling rare codes, as parent codes (i.e., the broader
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categories) have more training examples. By incor-
porating a human-in-the-loop approach, the system
effectively reduces the likelihood of error propa-
gation from the first stage, resulting in improved
reliability and efficiency.

4.3 New Code Auditing Methodologies

Clinical coding is challenging and humans often
make errors (Searle et al., 2020; Cheng et al., 2023).
If a model achieves high Precision@k, it could
be integrated as an offline auditor that starts up
immediately after human coders finish coding an
episode. For example, if a model’s Precision@ 1
score is 95%, then its most confident code is correct
95% of the time. This is beneficial in addressing
under-coding. For instance, the model can flag a
high-confidence code that is missing in the episode,
prompting the coder for review. Such offline de-
signs ensure Al interventions do not disrupt the
human’s standard coding workflow, improving cod-
ing quality and reducing the back-and-forth com-
munication between coders and auditors. When
evaluating these models, considering specific met-
rics such as the decrease in under-coding incidents
and the improvement in billing accuracy post-Al
review will provide clear insights into the the AI’s
efficacy in improving the workflow.

5 Summary of Recommendations

1. The top 50 codes have low episode coverage,
limiting the generalisation of evaluation re-
sults to the full code setting, which is more
practical. We recommend against validating
methodologies solely with the top 50 codes.

2. Clinical coding involves variable error costs,
different thresholds might be optimal for dif-
ferent codes. We recommend reporting more
threshold-independent scores for a compre-
hensive evaluation.

3. In imbalanced datasets like MIMIC, a high
AUC-ROC score does not necessarily indicate
a high precision score due to the dominance
of the negative code (class). We recommend
reporting both AUC-PR and AUC-ROC.

4. Existing studies on automated coding often ex-
clude common human accuracy metrics like
EMR and Jaccard Score. We recommend in-
cluding these metrics to demonstrate the prac-
tical effectiveness of automated solutions.

5. Our findings indicate that current SOTA mod-
els do not achieve human accuracy on MIMIC
datasets. We recommend more Al coding re-
search on deliberate task allocation, focusing
on a manageable subset of episodes.

6. MIMIC includes acute inpatients, which are
challenging even for human coders. We rec-
ommend creating datasets of other care types
for automated coding research.

7. MIMIC episodes are challenging to automate.
We recommend using MIMIC datasets for Al
coding research in other parts of clinical cod-
ing workflows, such as developing systems for
code suggestion and coding audit assistance,
as described in our proposed methodologies.

8. Code sequence is part of real-world coding
practice. We recommend including it in future
evaluations to provide a more comprehensive
assessment of system effectiveness.

6 Conclusion

Most studies have approached clinical coding as a
traditional multi-label classification task. In this po-
sition paper, we conduct a critical review and data
analysis of these studies and the MIMIC dataset.
We show key shortcomings in existing evaluation
methodologies, which fail to align with clinical con-
texts. We offer eight recommendations for aligning
research with the needs of clinical coding work-
flows. Additionally, we introduce new Al-based
methodologies beyond automated coding, propos-
ing alternative research directions with a practical
impact on clinical coding workflows.

7 Limitations

Our analysis focuses exclusively on automated cod-
ing studies that use the US MIMIC datasets. There-
fore, some findings, such as the coverage issue of
the top 50 common codes, may not generalise to
datasets with patient cohorts different from MIMIC.
Likewise, workflow-related discussions may not be
universally applicable. This limitation, however,
arises from the scarcity of public clinical coding
datasets, which is also why MIMIC datasets are
widely used in Al coding research. One of our eight
recommendations is to create new public datasets
for other types of care, which would benefit the
entire Al coding community and enable more com-
prehensive evaluations.
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A Al Coding Task Definition

Previous studies have approached clinical coding as
a fine-grained multi-label classification task. The
objective is to create a model that maps an input
text (usually a discharge summary) to a set of labels
(ICD codes). The term ‘fine-grained’ indicates
that the code space is extremely large, covering
thousands of codes or more. Both code frequency
and the number of associated codes per instance
(an episode or medical case) is highly imbalanced.
The code space is presented as a hierarchy, where
codes exhibit parent-child relationships.

B Descriptive Statistics of the MIMIC
Cohort

An overview of the patient cohorts in MIMIC-
III/IV is shown in Table 3. The preprocess code
is built upon the work of Edin et al. (2023). Ad-
missions without assigned ICD codes are removed.
Age is calculated based on the patients’ age at the
time of admission. The Elixhauser index is calcu-
lated using (Chandrabalan, 2023), with Quan et al.
(2005)’s mapping and Van Walraven et al. (2009)’s
score weighting, and is adjusted for patient age.
LOS refers to the length of stay. Some admissions
contain missing or invalid data, such as missing
LOS values or cases where the discharge time is
earlier than the admission time. Note that many
ICU LOS values are missing in MIMIC-IV. These
admissions are excluded from corresponding sta-
tistical calculations, and the number of included
admissions, /N, is provided accordingly.

C Overview of the MIMIC datasets

Table 4 shows descriptive statistics of the ICD cod-
ing data in MIMIC-III/IV. In the ICD-10 collection
of MIMIC-1V, the median document length is 1,492
words with an interquartile range (IQR) of 1,147-
1,931, and the median number of full codes per
summary is 15, with an IQR of 10-21. These are
comparable across the other two collections. The
varying number of codes in most summaries re-
flects considerable differences in the complexity
of medical issues documented, aligning with the
fluctuating Elixhauser index presented in Table 3.
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1CD-9 ICD-10
MIMIC-IIT MIMIC-IV MIMIC-IV
Years collected 2001-2012 2008-2019 2008-2019
Number of admissions 52,722 209,359 122,316
Number of patients 41,126 97,727 65,685
Age: Median (IQR) 63 (49-77) 61 (48-74) 61 (48-72)
Elixhauser index: Median (IQR) 7(2-14) 6 (2-12) 7 (2-15)
. . 7.18 (4.26-12.78)  3.28 (1.79-5.96) 3.88 (2.02-6.96)
LOS: Median (IQR) [days] N=52,671 N=209,306 N=122,297
. . 243 (1.30-5.29)  1.95(1.09-3.84) 2.14 (1.18-4.30)
ICU LOS: Median (IQR) [days] N=51.938 N=38.717 N=26.606
Table 3: Overview of the MIMIC-III v1.4 and MIMIC-IV v2.2 patient cohort.
ICD-9 ICD-10
MIMIC-1II MIMIC-IV MIMIC-IV
Words per document: Median (IQR) 1,375 (965-1,900) 1,320 (997-1,715) 1,492 (1,147-1,931)
Full codes per document: Median (IQR) 14 (10-20) 12 (8-17) 15 (10-21)
Number of unique three-digit codes 1,606 1,712 2,239
Number of unique four-digit codes 6,120 7,337 11,254
Number of unique full codes 8,929 11,331 26,098
Full code coverage [%] 50.16 63.66 18.78
Full code freq > 10 [%] 41.23 54.28 30.43

Table 4: Overview of the MIMIC-III v1.4 and MIMIC-IV v2.2 ICD coding data. The preprocess code is built upon
the work of Edin et al. (2023). Only admissions without assigned ICD codes are removed.
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