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Abstract

This study provides the first comprehensive
comparison of New York Times-style text gen-
erated by six large language models against
real, human-authored NYT writing. The com-
parison is based on a formal syntactic theory.
We use Head-driven Phrase Structure Grammar
(HPSG) to analyze the grammatical structure
of the texts. We then investigate and illustrate
the differences in the distributions of HPSG
grammar types, revealing systematic distinc-
tions between human and LLM-generated writ-
ing. These findings contribute to a deeper un-
derstanding of the syntactic behavior of LLMs
as well as humans, within the NYT genre.

1 Introduction

Studying linguistic properties of LLM-generated
text and comparing it to human-authored text is
a topic of growing interest in the field of natural
language processing (NLP). Previous research has
predominantly focused on training classifiers (is the
text LLM-generated or no); a few studies include
an analysis of differences in vocabulary distribu-
tion, use of dependency structures, or sentiment
properties of the text (see § 2). In this study, we
systematically analyze grammatical differences of
LLM-generated vs. human-authored text through
the lens of a formal syntactic theory developed for
linguistic research independently of NLP.1 Using
a formal theory for analysis and evaluation is a
way to overcome some of the biases that arise from
using tools developed directly in the context of
designing NLP tasks. We hope this will lead to
further systematic discoveries about grammatical

1Annotation schemes such as Universal Dependencies
(UD: Nivre et al., 2016) or Penn Treebank (PTB: Marcus
et al., 1993) are related to syntactic theory but they have been
developed as guidelines for hand-annotating corpora specifi-
cally for NLP. As such, they are less detailed and consistent
than a formal theory and less independent from NLP tasks
themselves.

properties of LLM-generated text and how they dif-
fer from human-authored text. In this paper, we
use the broad-coverage English Resource Gram-
mar (Flickinger, 2000, 2011) to analyze texts in the
New York Times genre.

2 Related work

Our study is concerned with the analysis of the
grammatical properties of LLM-generated texts as
compared to human-authored texts. Here, we re-
view the literature with a similar focus. This leaves
out of scope papers concerned with building classi-
fiers or with sentiment and semantic analysis.

Muñoz-Ortiz et al. 2024 include a study of syn-
tactic and vocabulary diversity in NYT-style news.
They conclude that measurable differences can be
detected, including at the level of grammar, and that
human-authored texts exhibit more variety of vo-
cabulary, shorter constituents, and more optimized
dependency distances. Narayanan et al. (2024)
use the Universal Sentence Encoder (USE: Cer
et al., 2018) to compare human-authored and AI-
generated code explanations and find statistical dif-
ferences, though without linguistic analysis. San-
dler et al. (2024) base the comparison on ChatGPT-
human dialogues, using primarily lexical features,
not syntactic, and find greater diversity in texts
written by humans. Notably, they use dictionary-
style features and not just raw vocabulary. So do
Alvero et al. (2024), who compare college appli-
cation essays (submitted in 2016-2017) with texts
generated by GPT-3.5 and GPT-4. They find that
human authors show more variety in e.g. verb us-
age. Juzek and Ward (2025) study the vocabulary
of LLMs linking it to the increase of use in certain
vocabulary items in scientific abstracts (e.g. the
word ‘delve’). Park et al. (2025) perform a statis-
tical comparison by clustering linguistic features
(this is necessary to obtain statistically significant
results in the context of multiple comparisons be-
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tween many features). They conclude that LLM-
generated texts have a distinct statistical footprint
from human-authored text. Shaib et al. (2024) com-
pare strings of POS-tags, which they call “syntactic
templates”, finding that LLMs tend to repeat these
templates more than humans do. Finally, several
studies base the comparison on a set of linguis-
tic features proposed for rhetoric styles by Biber
(1991, 1995) and Biber and Conrad (2019). In
particular, Reinhart et al. (2024) show that LLMs
prefer certain grammatical constructions and thus
struggle to match styles that do not employ them
(according to Biber). The constructions include
participial clauses, ‘that’-subject clauses, nominal-
ization, phrasal and clause coordination. Sardinha
2024 also uses the “Biber features”. This study is
perhaps the closest in spirit to ours, since it uses an
independently developed linguistic framework and
presents examples of the differences found.

3 Methodology

The central idea of our methodology is to apply for-
mal syntactic theory to analyzing structural prop-
erties of texts generated by LLMs as compared to
human-authored texts. We use the HPSG theory
of syntax (§3.1), specifically its implementation as
the English Resource Grammar (§3.2), the largest
available implementation of a formal grammar in
terms of its coverage over naturally occurring text
(in any language and in any theory). While apply-
ing such methodology implies the investment in
building the grammar, the HPSG theory and the
formalism were developed precisely to be used for
a wide variety of languages. The cross-linguistic
applicability of the theory has been continuously
tested in the context of the Grammar Matrix (Ben-
der et al., 2002, 2010; Zamaraeva et al., 2022) and
the AGGREGATION (Bender et al., 2020; Howell
and Bender, 2022) projects.

3.1 HPSG

Head-driven Phrase Structure Grammar (HPSG:
Pollard and Sag, 1994) is a formal theory of syntax
that uses a fully explicit formalism, so it can be
implemented on the computer in its entirety as a
grammar which then maps sentences to complete
structures automatically, while remaining fully con-
sistent and interpretable. The theory represents syn-
tactic structure and elements of the syntax-semantic
interface (dependencies, quantifier scope, informa-
tion structure) as a complex graph, which can also

be visualized as an attribute-value matrix of fea-
tures and their values (such as the feature HEAD

having a value noun). HPSG assumes lexical types
which can house multiple lexical entries, and, un-
like raw vocabulary forms, lexical types contain
information about syntactic properties of words.

The grammar as a whole (the lexicon included)
is a hierarchy of types. Figure 1 shows a very small
and simplified portion of the HPSG type hierarchy,
with only two features (HEAD and COMPS, com-
plement list). This part pertains to the lexicon and
lexical types. The noun ‘law’ can behave in differ-
ent ways syntactically, which motivates two lexical
entries belonging to two different types (which may
house other nouns as well). In §5 we report on how
this word is one of the examples of differences in
human-authored and LLM-generated texts that we
examined. The real type hierarchy, such as the one
in the ERG (§3.2), consists of hundreds of types
with dozens of features, allowing us to examine
grammatical properties of sentences in detail.

noun
[
LOCAL |HEAD noun

]

clausal complement
[
COMPS nonempty

]

law-n2

mass-count
[
COMPS empty

]

law-n1

Figure 1: Part of the HPSG type hierarchy (simplified;
adapted from ERG).

3.2 English Resource Grammar
The English Resource grammar is a grammar of
English implemented in HPSG (Flickinger, 2000,
2011).2 The ERG is continuously developed as
part of the DELPH-IN open-source grammar engi-
neering initiative.3 It is a broad coverage precision
grammar, meaning that it will parse 94%4 of rea-
sonably well-edited English text but is not expected
to yield any structure for a sentence impossible in
English. Since the grammar is precise and consis-
tent, it can be used to automatically create precise
and consistent treebanks. It has been shown that
including such treebanks in the training data im-
proves performance of various NLP systems (Lin
et al., 2022; Hajdik et al., 2019; Chen et al., 2018;

2Regular releases: https://github.com/delph-in/erg
3https://github.com/delph-in/docs/wiki
4Per the 2025 release documentation
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Table 1: Datasets: reproduced in full from Table 1 in Muñoz-Ortiz et al. 2024, plus the information on Redwoods.

Dataset # Sent. in dataset Model size Training tokens Data sources

LLaMa

37,825 7B 1T English CommonCrawl (67%), C4 (15%),
37,800 13B 1T GitHub (4.5%), Wikipedia (4.5%),
37,568 30B 1.5T Gutenberg and Books3 (4.5%), ArXiv (2.5%),
38,107 65B 1.5T Stack Exchange (2%)

Falcon
RefinedWeb-English (76%), RefinedWeb-Euro (8%),

27,769 7B 1.5T Gutenberg (6%), Conversations (5%)
GitHub (3%), Technical (2%)

Mistral 35,086 7B Not disclosed Not disclosed

Original NYT 26,102 N/A N/A New York Times Archive, Oct. 1, 2023 - Jan. 24, 2024

Redwoods (WSJ) 43,043 N/A N/A Wall Street Journal sections 1-21
Redwoods (Wikipedia) 10,726 N/A N/A Wikipedia

Buys and Blunsom, 2017). Some of the properties
of the ERG are summarized in §4, Table 2. The
grammar is implemented in the DELPH-IN Joint
Reference Formalism (Copestake, 2002) and can
be used with any DELPH-IN tools. We parsed the
data with the latest version of the ERG5 and ACE
(Crysmann and Packard, 2012),6 and then used
the Pydelphin tools7 along with packages such as
Numpy (Harris et al., 2020), Pandas (McKinney,
2010), and scikit-learn (Pedregosa et al., 2011) to
analyze the derivations by counting the occurrences
of phrasal constructions, lexical (inflectional and
derivational) rules, and lexical types, and studying
the relative frequency distributions through cosine
similarity and diversity metrics (see §5).

4 Data and generative models

To study the differences between LLM-generated
and human-authored news texts, we use the dataset
created by Muñoz-Ortiz et al. (2024). We choose
this dataset for two main reasons: 1) by using news
articles, we can make sure the LLMs did not have
access to the corresponding human-authored arti-
cles at the time of training; 2) by reusing the dataset
from a previous study, we enable comparisons of
analyzing the data with UD and with the fully-
fledged grammatical theory provided by HPSG. In
addition, we used the Wall Street Journal (WSJ)
and Wikipedia portions of the Redwoods Treebank
(Oepen et al., 2004), an ERG-parsed corpus accom-
panying each release of the ERG. We use WSJ and
Wikipedia to see which differences between human
and LLM writing persist beyond the NYT style.

5https://github.com/delph-in/erg/releases/tag/
2025

6https://sweaglesw.org/linguistics/ace/
download/ace-0.9.34-x86-64.tar.gz

7https://pydelphin.readthedocs.io/

We release the ERG-parsed LLM-generated data
through GitHub.8

The ‘NYT’ datasets from Muñoz-Ortiz et al.
2024 include the original New York Times (NYT)
article lead paragraphs and LLM-generated texts
obtained from 6 different LLMs by prompting them
with the headlines together with the first 3 words
of the lead paragraph.9 The original NYT human-
authored data consists of the lead paragraphs for
articles between October 1, 2023, and January 24,
2024 obtained with the NYT Archive API.10 The
LLMs they used were all released prior to October
1, 2023, and included various versions of LLaMA
(Touvron et al., 2023), the 7B version of Falcon (Al-
mazrouei et al., 2023), and the 7B version of Mis-
tral (Jiang et al., 2023). Following Muñoz-Ortiz
et al. (2024), we want to consider the influence of
scaling (different LLaMas with the same architec-
ture, training dataset and training setup, but differ-
ent model size) separately from the other aspects
that differentiate the LLMs (LLaMa vs Mistral vs
Falcon). The properties of the datasets and the
models used to generate them (where appropriate)
are in Table 1. LLM-generated datasets have more
sentences, but the sentences written by humans are
longer (see Figure 3 in Muñoz-Ortiz et al. 2024).

The NYT data accounts for almost all syntactic
and morphological rules registered in the grammar;
for about 79% of the lexical types, and for about
61% of the lexical entries (Table 2).

8https://github.com/olzama/llm-syntax/
releases/tag/1.0.0

9The LLM-generated data associated with Muñoz-Ortiz
et al. 2024 can be found here: https://zenodo.org/
records/11186264

10https://developer.nytimes.com/docs/
archive-product/1/overview
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Figure 2: Cosine similarity: syntactic types Figure 3: Cosine similarity: lexical types

Figure 4: Cosine similarity: lexical rules

Construction type ERG Data
syntactic 298 289
lexical type 1,398 1,105
lexical entry 44,366 27,311
morphological rule 100 99

Table 2: Properties of the English Resource Grammar
and the coverage of types by the NYT data

5 Results

We present the comparison of type distributions
between the human-authored and LLM-generated
data, including WSJ and Wikipedia data to see
whether the differences persist across styles or gen-
res. We look at cosine similarity of the construc-
tion distributions (§5.1) and at two diversity indices
(§5.2). We look at syntactic and lexical types as
well as lexical (morphological) rules separately.

5.1 Cosine similarity
We find that human authors and LLMs clearly differ
in terms of their corresponding syntactic and lexical
type distributions, and that this may persist across
style and genre.11 If we consider only syntactic and
lexical types (Figures 2-3),12 we see clearly that
human-authored texts are distinct in their HPSG
type distributions from the closely-clustered LLMs
and furthermore, that human-authored NYT texts
are more similar to WSJ (different style, same
genre) than to Wikipedia (different genre). This is
true for syntactic and lexical types, although with
lexical types, Falcon is an outlier, and the effect of
style and genre seems bigger. However, in terms
of lexical (inflectional and derivational) rules, we
observe that the distribution of human NYT au-
thors is very similar to LLMs except Falcon. These
findings align with what we see when we apply
diversity metrics (§5.2). In this paper, we focus
on the most salient differences between LLMs and
human NYT authors, and investigating the intrigu-
ing role of lexical rules remains future work. One
hypothesis is that the distribution of lexical rules
is very closely tied to genre and style (and that the
Falcon model is somehow special in this respect).

5.1.1 Frequent syntactic constructions
Among the frequent syntactic constructions (Fig-
ure 5; Appendix A), we see differences insensitive
to genre13 in the head-complement construction

11We use PCA projection to help visualize the differences in
the 98-100% similarity range. The underlying data is provided
in Appendix B.

12The data is not directly comparable, hence the scale dif-
ferences.

13We have run the Mann-Whitney U-test for statistical sig-
nificance for these comparisons. The p-values < 0.05 are listed
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Figure 5: LLM use of syntactic constructions compared to human writers. Cases of particular interest are where the
dots cluster closely together and are noticeably higher or lower than the blue bar representing LLM. Also of certain
interest are cases where all the dots are higher or lower than the bar but not very close to each other.

(human authors use less of it in all human-authored
datasets we examined), a couple of punctuation-
related constructions (note that from the point of
view of the ERG, punctuation is not only a token;
it also matters how exactly it gets placed in the sen-
tence, so, this is a syntactic matter), and the adjunct-
head construction licensing double modification
(e.g. big old cat). There might be something of note
going on with bare noun phrases and noun com-
pounds as well; the human authors appear to use
them more; however the differences between styles
(WSJ) and genre (Wikipedia) seem to be greater
than the differences between human NYT writers
and LLM-generated NYT-style news. Differences
in punctuation have been observed (Muñoz-Ortiz
et al., 2024); however the head-complement con-
struction is a general grammatical feature which
does not have a direct equivalent in the UD frame-
work. In UD, there is the OBJ dependency, which
refers to a dependency between a direct object and
a verb, and is a concept from the syntax-semantic
interface. A head-complement construction is a
general syntactic construction that licenses con-
stituents which combine a head element with its

in Appendix D. However, we perform a large number of com-
parisons, and when we apply FDR correction to the p-values,
none of them come out as significant, which is not surprising
given that we only have 9 datasets to compare.

complement. The head does not need to be a verb
(nouns and adjectives can have complements too,
for example). In this study, we do not include fur-
ther analysis of the differences in the use of head-
complement constructions by LLMs and by human
authors, but in future work, it would be interesting
to see, for example, whether there is a difference
in subconstituents or in the lexical types or entries
forming the head-complement constituent itself.

5.1.2 Syntactic long tail
It is possible that some salient differences lie in the
“long tail” of the distributions (not shown in Figure
5). The ERG is a unique resource to study this
long tail, being a comprehensive representation
of the English language which, while validated
empirically, was developed with close attention
to a wide range of phenomena, not only the most
frequently occurring ones.

The following constructions occur only 0 or 1
times in a sample from human-authored NYT text,
while similar size samples from the LLM-generated
texts contain more than 10 instances: sequence of
numbers; fragment lexical conjunction (“But!”);
parenthetical modifier (“Some person (tall) was
running away”); mass noun coordination (‘sand
and gravel’);14 modifier phrase formed from ‘mea-

14Note the special syntactic properties of this construction,
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Figure 6: Humans vary more from one another than
they do from an LLM, and LLMs vary little from each
other.

Figure 7: Human authors have particularly large vari-
ance when it comes to the lexical types they use

sure’ nouns (We slept the last mile).
Humans use all of these long-tail constructions

occasionally (which is how they came to be repre-
sented in the ERG in the first place); their not oc-
curring in the NYT dataset could just be by chance.
Future experiments with more data are needed. In
the meantime, we show that HPSG analysis aligns
with previous findings with UD (e.g. that current
LLMs are known to favor numbers and measure-
related vocabulary (Muñoz-Ortiz et al., 2024)), and
identify constructions possibly typical for LLMs
which have not previously been noted (§6.1).

5.1.3 Lexical (morphological) rules
We do not observe any differences of note in the
LLM and human use of frequent lexical rules (in-
flectional and derivational morphology),15 except
in all human-authored datasets, plural nouns have
been used with greater relative frequency than in
the LLM-generated texts (but there is more vari-
ation between the genre/style). This shows once
again the importance of separating morphological
information from syntactic and lexical when ana-
lyzing language (cf. Bender and Good 2005).

5.1.4 Lexical entries and types
Human writers use roughly twice as many differ-
ent lexical entries as each LLM taken separately
(Table 3). This confirms previous findings that hu-
mans show more variation in vocabulary use (see
§2). But if we combine all of the LLM-generated
data and sample from it, this collective LLM au-
thor has a greater lexical diversity than the human

such as underspecified number agreement: Sand and gravel
has/have arrived.

15The only infrequent rule of note is the one related to
currencies (“A one-dollar book”, where the rule is responsible
for the special currency-related properties of the phrase “one
dollar”, as compared to any generic noun phrase).

Model Lexical Types Lexical Entries
Not in Only in Not in Only in

llama 7B 62 70 5,704 2,519
llama 13B 71 80 5,557 2,617
llama 30B 65 62 5,531 2,608
llama 65B 66 74 5,302 2,745
mistral 7B 73 76 5,809 2,353
falcon 7B 91 55 6,212 2,015
all llms 66 70 1,721 2,398

Table 3: Lexical types and entries found only in human-
authored or only in synthetic data, sample 25K.

authors. This calls for further investigation of what
makes the collective LLM vocabulary more varied.
As for lexical types, LLMs seem to have greater
diversity in terms of just the number of unique lexi-
cal types they use in the sample (with the exception
of falcon-7B). When we look at the specific lexical
types accounting for these distinct footprints, we
see that of the 66 types which do not occur in any
of the LLMs, 43 belong to the bottom 10% in terms
of frequency, 21 to the bottom 25%, and only 2 to
the bottom 50%. The two frequent ones include a
special kind of mass noun such as ‘next’ in ‘The
next is Kim’, and the special kind of ‘if’ such as in
‘The happy if confused customer left’ (the customer
was confused, but was happy nevertheless).

5.1.5 Individual author variance
In addition to looking at NYT human authors col-
lectively, we are interested in how much they dif-
fer from each other and whether these individual
differences are greater or not than the differences
between humans and LLMs (Figures 6-7). We
perform the comparison with 12 authors that have
more than 100 sentences attributed to them in the
NYT data. The comparison is again based on
cosine similarity, where the vectors are construc-
tion/type frequencies normalized by total number
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Figure 8: Construction Diversity (Shannon Index) Figure 9: Lexical Type Diversity (Shannon Index)

of occurrences in the data. Here we include a com-
parison based on all the HPSG types together.

We find that human writers differ from each
other more than a human author differs from an
LLM, and LLMs differ very little from each other
(Figure 6). If we look at lexical types, we see that
humans vary particularly strongly in their use of
lexical types, while LLMs have the same kind of
small variance in this respect as they do in other
types of constructions (Figure 7).16

As far as we know, our study is the first pairwise
comparison of human authors and LLMs along
detailed grammatical dimensions, and we show for
the first time that a human-authored text is more
similar to an LLM-generated text than to another
human-authored text (by a different author). This
makes sense if we see an LLM-generated text as
“averaged” with respect to grammatical features that
humans use in their language. This can also be seen
in their increased use of the most general structures
such as the head-complement phrase (Figure 5).
Our results also confirm the previous observations
that LLMs are very similar to each other in terms
of the types of constructions that they use (see §2).

5.2 Diversity

To quantify diversity in the texts we applied two
biodiversity measures that have become standard in
stylometry and authorship attribution (McKinney,
2010; Stamatatos, 2009): Shannon entropy H
and the Gini–Simpson index 1 − λ. The former
captures the balance (evenness) of the distribution,
while the latter is interpretable as the probability
that two randomly drawn tokens belong to different
types. Because both indices give the same rank
orderings in our data (see Appendix C), we only
discuss Shannon entropy here.

16Since we have more data for each LLM than for each
human, we confirmed that we see similar distributions in a
balanced dataset, if we sample randomly from the LLM data.

Constructions Figure 8 plots H for syntactic
constructions. Human-produced texts (“original”)
are clearly the most diverse (H = 3.342), and
all language-model outputs fall below that bench-
mark (H = 3.221–3.284).17 The largest LLaMa
model (65 B) is the closest to humans (H = 3.284),
whereas the Falcon model is the least diverse
(H = 3.221). Interestingly, when we pool every
LLM output into a single corpus, its diversity drops
slightly to H = 3.265. Aggregation adds a handful
of rare constructions that were unique to individual
models, but it also amplifies the high-frequency,
general constructions that all models share, skew-
ing the distribution and lowering overall entropy.

Lexical types The pattern reverses when we con-
sider lexical types (Figure 9). Here, LLM outputs
are more diverse than human-authored texts: the
least diverse system (Falcon) scores H = 4.700,
followed by the original human data at H = 4.727.
All other LLMs surpass humans, with LLaMA-13B
at the top (H = 4.877). These differences are sta-
tistically significant (p < 0.01). Investigating this
pattern reversal is future work.

6 Examples of salient differences

6.1 Syntactic constructions

We have examined some of the constructions which
are used noticeably more by human authors than by
the collective LLM, or vice versa.18 The construc-
tions where the difference in relative frequency is
most clear notably include the head-complement
construction and the subject-head construction —
the two most basic constructions forming any typi-
cal clause. Here we do not attempt to analyze the
numerous examples of this kind of construction use

17A permutation test with 10,000 resamples confirms a
reliable gap (p < 0.01).

18We have selected such constructions based on the statisti-
cal significance of the comparison between relative frequen-
cies.
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Construction Ex Humans LLMs (avg)
Absolute VP ‘As told, ...’ 10 3.8
Double NP apposition ‘an eye for detail, decades of a culture in transition’ 11 5.2
Double appos. modifier ‘accurate, but inadequate, descriptor’ 12 5.6
Adjective-participle modifier ‘right-handed’, ‘red-colored’ 125 64.6
Bare NP coordination ‘..., author and commentator, ...’ 311 117
Paired marker ‘Both this article and other discussions’, ‘not only...’ 326 185
Adjective coordination ‘emotional and spiritual’ 390 625
Modifier clause appos. ‘his critics, mostly unnamed’ 826 434
Participial clause ‘...having tried that,...’ 1,736 1,116
Inverted adjunct ‘Below are some of the facts...’ 5 14.8
Clause-clause coordination ‘which ones are and which ones aren’t’ 45 105
Filler-head non-question wh ‘How best to proceed: [...]’ 149 306
Questions ‘How do you stay safe?’ 268 428
Clause conjunction fragment ‘But the observation suits him.’ 939 2,076
Marker clause ‘..., and that’s a good thing’ 2,891 5,660
Relative clauses ‘...a vote that many in Europe have seen as a bellwether or support...’ 4,929 6,721
Clause with extracted subject ‘Chris Snow, [...], became an advocate for the victims of the disease.’ 5,072 7,327
Subject-head ‘The house passed the measure earlier this week.’ 17,850 27,753
Quantity NP ‘many in Europe’ 23,611 40,881
Head-complement ‘It’s not acceptable for democracy’ 164,806 224,529

Table 4: Examples of selected syntactic constructions which seem to have noticeably different frequency in
human-authored and in LLM-generated data (25K sentence sample)

(leaving it to future work) but nonetheless include
an example from the corpus for each (Table 4).

Table 4 aligns with some of the previous find-
ings (Muñoz-Ortiz et al. 2024 and Sardinha 2024,
among others), namely that LLMs tend to use more
quantity-related words and phrases; that LLM-
generated texts have more structures which can be
classified as a generic ‘verb phrase’ (VP) or ‘sen-
tence’ (S), which in our analysis would correlate
with the higher frequencies of head-complement
and head-subject constructions; that LLMs tend
to use more clause coordination; and that human
authors tend to produce more prepositional phrases
in the NYT-style writing. However, we do not con-
firm the finding of Sardinha (2024) that LLMs use
more participial modifiers; in our data, humans
use it more. In addition, we can hypothesize sev-
eral other systematic differences using the ERG
elaborate syntactic type hierarchy. According to
our analysis, the LLMs collectively tend to use
more relative clauses and questions, more clause
chains, more clauses with extraposed subjects, and
more extraposed adjuncts. In contrast, human au-
thors use more stylistic devices such as participial
modifiers, full clause modifiers, double adjective
apposition, coordinated prepositional phrases, co-
ordinated adjective modifiers, double noun phrase
apposition, and the so-called absolute verb phrase.
In summary, human authors use more of the lower
frequency, stylistically special constructions.

6.2 Lexical types and lexical entries

There are many differences between the lexical
footprints of LLM-generated and human-authored
text in terms of low-frequency items. If the word
is both low frequency and belongs to a lexical type
which does not have many members, it is hard to
say whether its use is just an accident or could be in-
formative. Therefore, we focus on items which are
high frequency but occur only in human-authored
or only in LLM-generated data (Tables 5-6).19

We take advantage of the ERG lexical type hier-
archy and look at how the lexical entries which
seem to distinguish LLM-generated text from
human-authored text can be grouped together in
grammatical terms. One example of the lexical en-
tries found only in human-authored data is ‘law_n2’
(with a clausal complement). This lexical entry is
present in the ERG lexicon along with the mass-
count noun ‘law_n1’ and belongs to a different lex-
ical type. The word ‘law’ certainly occurs in LLM-
generated data as well, but only as the mass-count
noun. We find that only in the human-authored
data is this word used as something that can take
a clausal complement, e.g. ‘There is a law that...’.
This is the kind of distinction that we are looking
for in our study; if we did not have the ERG lexicon

19We must note that such differences can always be at-
tributed to sampling. Obviously, a human writer can use any
of the items from Table 6, and it is trivial to have an LLM
produce any of the things from Table 5.
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Lex. entry occurr. example
OOV verb 178 ‘twerk’, ‘steamroll’
risk_n3 144 ‘at your own risk’
haven’t 88 ‘If you haven’t already...’
night_def 82 ‘spend the night’
a_per_p 81 ‘a night’, ‘a barrel’
see_imp 69 ‘See the results...’
including_pp 65 ‘...including on April 17’
yet_conj 64 ‘...yet there it is’
dozen_a1 62 ‘a couple dozen pages’
winter_n1 61 ‘With winter approaching,..’
down_vmod 59 ‘walk/skip/sprint down’
almost_deg2 56 ‘almost always’
present_v1 51 ‘A puzzle presented to students’
over_pp 50 ‘The wait is over.’
black_n2 50 ‘growing up Black’

Table 5: Frequent (top 15) lexical entry usages unique
for the human-authored dataset

at our disposal, we could overlook the distinction.20

One of the main things that we see in Table 5 is
that the real (human) authors of the NYT use more
informal language even though they are following
a style guide. A LLM certainly could also use ex-
pressions like ‘a couple dozen’ and ‘haven’t’, and
in fact it does use ‘won’t’ and ‘that’s’ (Table 6), but
overall each LLM seems to be more consistently
adhering to the style of the prompt. Another trait
of the human-authored data is more direct/strong
language, such as imperatives and expressions such
as ‘at your own risk’.21 In contrast, the top frequent
items unique for LLM-generated data contain en-
tries belonging to numeric and punctuation types,
in other words things related to formal presentation
of the text. We note also the words ‘fact’ and ‘clear’
as generic but persuasive, and as such perhaps typi-
cal for LLM language (Table 6).

7 Conclusion

We present the first systematic comparison of LLM-
and human-authored text through the lens of a for-
mal grammatical theory (HPSG). We leverage the
English Resource Grammar’s explicit modeling of
the principles of English syntax and lexicon, where
detailed lexical types reflect the nuances of syntac-
tic behavior of words.

Comparing to the previous study by Muñoz-
Ortiz et al. (2024), which used the same dataset
but employed the UD syntactic framework, our

20Of course such distinctions should correlate with the dif-
ferences in syntactic construction use.

21We have no ready explanation for why the word ‘winter’
(without the article) would only occur in human-authored data,
or why the verb ‘realize’, in its most common usage, would
happen to not occur there.

Lex. entry occurr. example
ellipsis 202 ‘She was 86...’
and_or_conj 156 ‘SF/SPCA’
like_comp 125 ‘It looks like the case...’
num_ne 119 ‘28th of July, 1966’
square_brack 117 ‘...using [the law]’
time_ne 100 ‘January 31st, 2019 5:34 pm’
please_root 100 ‘Please write to corrections’
be_nv_is_cx_3 96 ‘That’s why we did it.’
then_adv 82 ‘by/since then’
fact_n2 81 ‘The fact that...’
wasn’t 81 ‘It wasn’t that loud’
clear_a2 70 ‘It is not clear how.’
OOV noun 76 ‘Anwar al-Awlaki’
won’t 70 ‘He won’t care...’
realize_v2 69 ‘I realized that...’

Table 6: Frequent lexical entry usages unique for the
LLaMa 65B-generated dataset

analysis through the lens of formal syntactic the-
ory confirms the validity of its conclusions even
at a finer-grained level. It also offers greater de-
tail on specific constructions that distinguish LLM-
generated text from human-authored news. Our
study also reaches novel conclusions on the same
dataset by comparing individual human authors
between each other as well as to LLMs.

We find that overall, LLMs tend to be more sim-
ilar to each other along these grammatical dimen-
sions than to humans. We show the importance of
separating syntactic analysis from morphological,
and that in the use of morphological rules, LLMs
and humans are strikingly similar within the NYT
genre. We find that human authors show greater
variation between each other than a human-LLM
pair; an LLM appears as an “average” human au-
thor. Further investigation of this syntactic and
lexical flattening should be the subject of future
papers, now that we have laid the groundwork of
methodology, presented our analytical tools, and
identified specific HPSG types to look into.

Diversity indices show human-authored news as
clearly distinct from all the LLMs (more diverse);
however this is not so if we only look at lexical
types. This opens up specific areas for future work.

We present some examples of constructions
that occur more in human-authored than in LLM-
generated news texts, and vice versa, confirming
some but not other previous findings (such as the
use of participial modifiers as more characteristic
of LLM-generated text, which we do not confirm).
Further experiments with various sampling tech-
niques can provide further insight; in any case, us-
ing a resource such as the ERG is a way to ensure
consistency and depth with respect to data analysis.

9049



Limitations

There are many methodological limitations related
to work with LLM-generated text. An LLM will
generate a different text every time, and a lot de-
pends on the prompt, and our resources in terms of
generation are limited. Otherwise the main limita-
tion here is that we only look at one genre (NYT-
style news). We do include other types of data and
our analysis of the overall distribution reflects this;
however in our discussion of specific examples we
still focus on the NYT-style data. Another limita-
tion is that we only have large HPSG grammars for
a handful of languages, and indeed only the ERG
is big enough to cover 94% of news text, limiting
the utility of our approach in comparisons of text
in other languages. This is why our study is only
about English.
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Appendices

A English Resource Grammar types

Table 7 shows the construction types appearing in
Figure 5 with an expanded name and an example.
This is a slightly modified version of the English
Resource Grammar documentation.

B Cosine similarities

Tables 8-10 present the data underlying Figures 2-4
in §5.

C Diversity Measures

Figure 10 shows the diversities of constructions,
lexical types and lexical rules measured with both
the Shannon Index (on the left) and Simpson Index
(on the right), as discussed in Section 5.2. Scores
for the original human-generated sentences are
shown with a star (⋆), LLMs with a dot (•) and
the combined LLMs with a larger dot (•)

We measured the significance of the difference
between the original human-generated sentences
and combined LLM sentences using a permutation
test, sampled 10,000 times. All combinations had
an observed p-value of less than 0.01, except for the
Lexical Rules measured with the Simpson Index
(which is less sensitive to outliers), with p = 0.13.

D Mann-Whitney U-test

In this Appendix, we report the HPSG types for
which the difference in relative frequency comes
out as statistically significant (p ≤ 0.05; Tables
11-13). However, when we apply the FDR correc-
tion, none of these p-values remain below the 0.05
threshold. The definitions and examples for all of

these HPSG types can be found in the English Re-
source Grammar files.22 The examples of where
these types come up in the NYT corpus can be
found in the data associated with this paper.23

22https://github.com/delph-in/erg/releases/tag/
2025

23https://github.com/olzama/llm-syntax/
releases/tag/1.0.0

9052

https://doi.org/10.1002/asi.21001
https://doi.org/10.1002/asi.21001
https://github.com/delph-in/erg/releases/tag/2025
https://github.com/delph-in/erg/releases/tag/2025
https://github.com/olzama/llm-syntax/releases/tag/1.0.0
https://github.com/olzama/llm-syntax/releases/tag/1.0.0


Figure 10: Diversity (Shannon and Simpson Indices)
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Type Name Definition Example
sb-hd_mc_c Head+subject, main clause C arrived.
sb-hd_nmc_c Hd+subject, embedded clause, subj has no gap B thought [C arrived].
hd-cmp_u_c Hd+complement B [hired C].
hd_optcmp_c Head discharges optional complement B [ate] already.
hdn_optcmp_c NomHd discharges opt complement The [picture] appeared.
mrk-nh_evnt_c Marker + event-based complement B sang [and danced.]
mrk-nh_cl_c Marker + clause B sang [and C danced.]
mrk-nh_nom_c Marker + NP Cats [and some dogs] ran.
mrk-nh_n_c Marker + N-bar Every cat [and dog] ran.
hd_xcmp_c Head extracts compl (to SLASH) Who does B [admire] now?
hd_xsb-fin_c Extract subject from finite hd Who do you think [went?]
sp-hd_n_c Hd+specifier, nonhd = sem hd [Every cat] slept.
sp-hd_hc_c Hd+specifier, hd = sem hd The [very old] cat slept.
aj-hd_scp_c Hd+preceding scopal adjunct Probably B won.
aj-hd_scp-xp_c Hd+prec.scop.adj, VP head B [probably won].
hd-aj_scp_c Hd+following scopal adjunct B wins if C loses.
aj-hdn_norm_c Nominal head + preceding adjnct The [big cat] slept.
aj-hdn_adjn_c NomHd+prec.adj, hd pre-modified The [big old cat] slept.
aj-hd_int_c Hd+prec.intersective adjunct B [quickly left].
hdn-aj_rc_c NomHd+following relative clause The [cat we chased] ran.
hdn-aj_rc-pr_c NomHd+foll.rel.cl, paired pnct A [cat, which ran,] fell.
hdn-aj_redrel_c NomHd+foll.predicative phrase A [cat in a tree] fell.
hd-aj_int-unsl_c Hd+foll.int.adjct, no gap B [left quietly].
hd_xaj-int-vp_c Extract int.adjunct from VP Here we [stand.]
vp_rc-redrel_c Rel.cl. from predicative VP Dogs [chasing cats] bark.
hdn_bnp_c Bare noun phrase (no determiner) [Cats] sleep.
hdn_bnp-pn_c Bare NP from proper name [Browne] arrived.
hdn_bnp-num_c Bare NP from number [42] is even.
hdn_bnp-qnt_c NP from already-quantified dtr [Some in Paris] slept.
hdn_bnp-vger_c NP from verbal gerund Hiring them was easy.
np-hdn_cpd_c Compound from proper-name+noun The [IBM report] arrived.
np-hdn_ttl-cpd_c Compound from title+proper-name [Professor Browne] left.
np-hdn_nme-cpd_c Compound from two proper names [Pat Browne] left.
n-hdn_cpd_c Compound from two normal nouns The [guard dog] barked.
np_adv_c Modifier phrase from NP B arrived [this week.]
hdn_np-num_c NP from number [700 billion] is too much.
flr-hd_nwh_c Filler-head, non-wh filler Kim, we should hire.
flr-hd_wh-nmc-fin_c Fill-head, wh, fin hd, embed cl B wondered [who won.]
flr-hd_rel-fin_c Fill-head, finite, relative cls, NP gap people [who we admired]
vp-vp_crd-fin-t_c Conjnd VP, fin, top B [sees C and chases D.]
cl-cl_crd-t_c Conjoined clauses, non-int, top B sang and C danced.
np-np_crd-t_c Conjoined noun phrases, top [The cat and the dog] ran.
num-n_mnp_c Measure NP from number+noun A [two liter] jar broke.
cl_np-wh_c NP from WH clause [What he saw] scared him.
vp_np-ger_c NP from verbal gerund Winning money [pleased C.]
num_det_c Determiner from number [Ten cats] slept.
cl_cnj-frg_c Fragment clause with conjunctn And Kim stayed.
hd-pct_c Head + punctuation token B [arrived -] C left.
hd-pct_nobrk_c Punctuation unrelated to bracketing
pct-hd_c Punctuation token + head B arrived (today)

Table 7: Construction types and examples.
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Model 1 Model 2 Cos
llama_30 llama_65 0.9999
llama_07 llama_13 0.9999
llama_07 mistral_07 0.9999
llama_13 llama_65 0.9998
llama_07 llama_65 0.9998
llama_13 mistral_07 0.9998
llama_13 llama_30 0.9998
llama_07 llama_30 0.9997
llama_65 mistral_07 0.9996
llama_30 mistral_07 0.9996
falcon_07 llama_30 0.9976
falcon_07 mistral_07 0.9972
falcon_07 llama_65 0.9972
falcon_07 llama_07 0.9966
falcon_07 llama_13 0.9966
llama_30 original NYT 0.9965
llama_65 original NYT 0.9964
falcon_07 original NYT 0.9958
llama_07 original NYT 0.9955
mistral_07 original NYT 0.9950
llama_13 original NYT 0.9950
wsj original NYT 0.9949
llama_65 wsj 0.9908
llama_30 wsj 0.9907
wikipedia wsj 0.9900
llama_07 wsj 0.9899
mistral_07 wsj 0.9894
llama_13 wsj 0.9891
falcon_07 wsj 0.9881
wikipedia original NYT 0.9833
llama_65 wikipedia 0.9768
llama_07 wikipedia 0.9765
llama_30 wikipedia 0.9764
mistral_07 wikipedia 0.9763
llama_13 wikipedia 0.9745
falcon_07 wikipedia 0.9738

Table 8: Cosine similarity between LLM-generated and
human-authored (original NYT) datasets; only syntactic
constructions included.

Model 1 Model 2 Cos
llama_30 llama_65 0.9999
llama_13 llama_65 0.9999
llama_07 llama_13 0.9999
llama_13 llama_30 0.9999
llama_07 llama_65 0.9998
llama_07 llama_30 0.9998
llama_07 mistral_07 0.9997
llama_13 mistral_07 0.9996
llama_30 mistral_07 0.9995
llama_65 mistral_07 0.9995
falcon_07 llama_30 0.9984
falcon_07 llama_13 0.9982
falcon_07 llama_65 0.9980
falcon_07 llama_07 0.9978
falcon_07 mistral_07 0.9977
llama_30 original NYT 0.9976
llama_65 original NYT 0.9975
llama_07 original NYT 0.9969
llama_13 original NYT 0.9968
mistral_07 original NYT 0.9965
falcon_07 original NYT 0.9956
wsj original NYT 0.9922
llama_07 wsj 0.9909
llama_13 wsj 0.9908
llama_65 wsj 0.9906
mistral_07 wsj 0.9906
llama_30 wsj 0.9897
falcon_07 wsj 0.9837
wikipedia wsj 0.9724
wikipedia original NYT 0.9600
llama_07 wikipedia 0.9579
mistral_07 wikipedia 0.9579
llama_65 wikipedia 0.9570
llama_30 wikipedia 0.9565
llama_13 wikipedia 0.9559
falcon_07 wikipedia 0.9506

Table 9: Cosine similarity between LLM-generated and
human-authored (original NYT) datasets; only lexical
type constructions included.
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Model 1 Model 2 Cos
llama_13 llama_65 0.9999
llama_07 llama_65 0.9999
llama_30 llama_65 0.9999
llama_07 llama_13 0.9999
llama_13 llama_30 0.9998
llama_07 mistral_07 0.9998
llama_13 mistral_07 0.9997
llama_07 llama_30 0.9996
llama_65 mistral_07 0.9996
llama_30 mistral_07 0.9993
llama_65 original NYT 0.9990
llama_07 original NYT 0.9989
llama_30 original NYT 0.9989
llama_13 original NYT 0.9987
mistral_07 original NYT 0.9985
falcon_07 llama_30 0.9983
falcon_07 llama_13 0.9976
falcon_07 llama_65 0.9975
falcon_07 llama_07 0.9970
falcon_07 mistral_07 0.9966
falcon_07 original NYT 0.9962
wsj original NYT 0.9932
llama_07 wsj 0.9923
mistral_07 wsj 0.9923
llama_65 wsj 0.9913
llama_13 wsj 0.9908
llama_30 wsj 0.9899
falcon_07 wsj 0.9822
wikipedia wsj 0.9666
mistral_07 wikipedia 0.9476
wikipedia original NYT 0.9474
llama_07 wikipedia 0.9464
llama_65 wikipedia 0.9427
llama_13 wikipedia 0.9418
llama_30 wikipedia 0.9393
falcon_07 wikipedia 0.9305

Table 10: Cosine similarity between LLM-generated
and human-authored (original NYT) datasets; only lexi-
cal rule constructions included.
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Table 11: Mann-Whitney U-test (p ≤ 0.05) — Syntactic constructions

Frequent
aj-hd_int_c 0.0238
aj-hdn_adjn_c 0.0238
aj-hdn_norm_c 0.0238
cl-cl_crd-t_c 0.0238
cl_cnj-frg_c 0.0476
cl_np-wh_c 0.0476
flr-hd_rel-fin_c 0.0238
flr-hd_wh-nmc-fin_c 0.0238
hd-aj_scp-pr_c 0.0238
hd-aj_vmod_c 0.0238
hd-cmp_u_c 0.0238
hd-pct_nobrk_c 0.0238
hd_xsb-fin_c 0.0238
hdn_bnp-qnt_c 0.0238
hdn_bnp_c 0.0238
mrk-nh_cl_c 0.0238
mrk-nh_n_c 0.0238
mrk-nh_nom_c 0.0476
n-hdn_cpd_c 0.0238
np-np_crd-t_c 0.0238
num_det_c 0.0476
sb-hd_mc_c 0.0238
vp_rc-redrel_c 0.0238
vp_sbrd-prd-prp_c 0.0238

Infrequent
aj-hd_int-inv_c 0.0238
aj-hdn_crd-cma_c 0.0238
cl-cl_crd-int-t_c 0.0238
cl-np_runon_c 0.0238
cl_rc-inf-modgap_c 0.0476
cl_rc-inf-nwh_c 0.0476
flr-hd_nwh-nmc_c 0.0238
flr-hd_wh-mc_c 0.0476
flr-hd_wh-nmc-inf_c 0.0238
hd-aj_cmod-s_c 0.0476
hd-aj_vmod-s_c 0.0238
hd-hd_rnr-nb_c 0.0476
hd-hd_rnr-nv_c 0.0476
hd-hd_rnr_c 0.0238
hdn-aj_rc-asym_c 0.0238
hdn-aj_rc-propr_c 0.0238
hdn-aj_redrel-asym_c 0.0238
hdn-aj_redrel-pr_c 0.0238
hdn-np_app-dx_c 0.0238
hdn-np_app-mnp_c 0.0238
j-j_crd-att-t_c 0.0476
j-n_crd-m_c 0.0476
j-n_crd-t_c 0.0238
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j_n-ed_c 0.0476
mrk-nh_atom_c 0.0238
n-hdn_cpd-pl-mnp_c 0.0431
n-hdn_cpd-pl_c 0.0238
n-j_j-cpd_c 0.0238
n-j_j-t-cpd_c 0.0238
n-n_crd-asym-t_c 0.0238
n-n_crd-div-t_c 0.0238
n-n_crd-im_c 0.0238
n-n_num-seq_c 0.0275
n-v_j-cpd_c 0.0238
np-np_crd-im_c 0.0238
np-np_crd-nc-m_c 0.0238
np_indef-adv_c 0.0476
np_nb-pr-frg_c 0.0238
num_prt-det-nc_c 0.0238
num_prt-of_c 0.0476
pp-pp_crd-im_c 0.0476
pp-pp_crd-t_c 0.0238
r_cl-frg_c 0.0476
sb-hd_q_c 0.0238
vp_sbrd-prd-pas_c 0.0238
vp_sbrd-pre-lx_c 0.0238
vp_sbrd-pre_c 0.0238

Table 12: Mann-Whitney U-test (p ≤ 0.05) — Lexical types

Frequent
aj_-_i-att_le 0.0238
aj_-_i-ord-one_le 0.0238
aj_pp_i-er_le 0.0238
aj_vp_i-seq_le 0.0238
av_-_dg-cmp-so_le 0.0238
av_-_dg-jo_le 0.0238
av_-_dg-sup_le 0.0238
av_-_i-vp-pr_le 0.0476
av_-_i-vp_le 0.0238
c_xp_but_le 0.0238
cm_np-vp_that_le 0.0238
cm_vp_to_le 0.0238
d_-_poss-my_le 0.0238
d_-_poss-our_le 0.0476
d_-_poss-their_le 0.0476
d_-_poss-your_le 0.0476
n_-_ad-pl_le 0.0476
n_-_c-ed-ns_le 0.0238
n_-_c-nocnh-cap_le 0.0238
n_-_c-ns_le 0.0238
n_-_c-time_le 0.0238
n_-_m-time_le 0.0476
n_-_m_le 0.0238
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n_-_mc_le 0.0238
n_-_pn-sg_le 0.0238
n_-_pn-yoc-gen_le 0.0238
n_-_pr-dei-sg_le 0.0476
n_-_pr-he_le 0.0238
n_-_pr-i_le 0.0275
n_-_pr-it-x_le 0.0238
n_-_pr-it_le 0.0238
n_-_pr-me_le 0.0238
n_-_pr-rel-who_le 0.0238
n_-_pr-she_le 0.0238
n_-_pr-them_le 0.0476
n_-_pr-they_le 0.0238
n_-_pr-we_le 0.0238
n_-_pr-wh_le 0.0476
n_-_pr-you_le 0.0238
n_-_pr_le 0.0476
n_pp_c-ns_le 0.0238
n_pp_c-nsnc-of_le 0.0238
n_pp_c-pl_le 0.0238
n_pp_m_le 0.0476
n_vp_c_le 0.0238
p_cp_s_le 0.0476
p_np_i-ngap_le 0.0238
p_np_i-nm-poss_le 0.0476
p_np_ptcl_le 0.0476
pp_-_i-wh_le 0.0238
pt_-_bang_le 0.0238
pt_-_comma-informal_le 0.0238
pt_-_hyphn-rgt_le 0.0238
pt_-_period_le 0.0238
v_cp_fin-inf-q_le 0.0238
v_cp_prop_le 0.0238
v_np-cp_fin-inf_le 0.0238
v_np-pp_prop_le 0.0238
v_np-vp_bse_le 0.0238
v_np-vp_oeq_le 0.0238
v_np_be_le 0.0238
v_np_is-cx_le 0.0238
v_np_le 0.0238
v_np_poss_le 0.0238
v_np_was_le 0.0238
v_pp*-pp*_le 0.0238
v_prd_are-cx_le 0.0238
v_prd_been_le 0.0238
v_prd_being_le 0.0238
v_prd_is-cx_le 0.0238
v_prd_was_le 0.0238
v_prd_wre_le 0.0238
v_vp_has_le 0.0238
v_vp_have-f_le 0.0238
v_vp_seq_le 0.0238
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v_vp_ssr_le 0.0238

Infrequent
aj_-_i-att-er_le 0.0091
aj_-_i-one-nmd_le 0.0339
av_-_i-unk_le 0.0091
n_-_c-meas_le 0.0091
n_-_c-min_le 0.0091
n_-_m-hldy_le 0.0091
n_-_pn-abb_le 0.0339
n_-_pn-unk_le 0.0091
n_-_pr-her_le 0.0091
n_pp_c-dir_le 0.0091
pp_-_i-po-tm_le 0.0091

Table 13: Mann-Whitney U-test (p ≤ 0.05) — Lexical rules

Frequent
n_det-mnth_dlr 0.0238
n_pl-irreg_olr 0.0238
n_pl_olr 0.0238
v_aux-cx-noinv_dlr 0.0238
v_j-nb-pas-tr_dlr 0.0238
v_n3s-bse_ilr 0.0238
v_nger-tr_dlr 0.0238
v_psp_olr 0.0238

Infrequent
det_prt-of-agr_dlr 0.0476
j_enough-wc-nogap_dlr 0.0476
j_j-non_dlr 0.0238
j_j-un_dlr 0.0476
j_tough-compar_dlr 0.0238
n_n-hour_dlr 0.0238
v_aux-ell-ref_dlr 0.0476
v_aux-ell-xpl_dlr 0.0476
v_aux-sb-inv_dlr 0.0476
v_aux-tag_dlr 0.0238
v_j-nb-intr_dlr 0.0238
v_j-nb-pas-ptcl_dlr 0.0238
v_j-nme-tr_dlr 0.0238
v_v-pre_dlr 0.0476
v_v-re_dlr 0.0238
v_v-un_dlr 0.0238
w_mwe-3-wb_dlr 0.0219
w_mwe-wb_dlr 0.0476
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