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Abstract

Retrieval from graph data is crucial for aug-
menting large language models (LLM) with
both open-domain knowledge and private enter-
prise data, and it is also a key component in the
recent GraphRAG system (Edge et al., 2024).
Despite decades of research on knowledge
graphs and knowledge base question answer-
ing, leading LLM frameworks (e.g., Langchain
and LlamaIndex) have only minimal support
for retrieval from modern encyclopedic knowl-
edge graphs like Wikidata. In this paper, we
analyze the root cause and suggest that mod-
ern RDF knowledge graphs (e.g., Wikidata,
Freebase) are less efficient for LLMs due to
overly large schemas that far exceed the typical
LLM context window, use of resource iden-
tifiers, overlapping relation types and lack of
normalization. As a solution, we propose prop-
erty graph views on top of the underlying RDF
graph that can be efficiently queried by LLMs
using Cypher. We instantiated this idea on
Wikidata and introduced CypherBench, the first
benchmark with 11 large-scale, multi-domain
property graphs with 7.8 million entities and
over 10,000 questions. To achieve this, we
tackled several key challenges, including de-
veloping an RDF-to-property graph conversion
engine, creating a systematic pipeline for text-
to-Cypher task generation, and designing new
evaluation metrics.

1 Introduction

Graphs, as a natural modality for modeling entity-
relation data, have been widely used for stor-
ing both large-scale encyclopedic knowledge and

*The work began during Simone Papicchio’s internship at
Megagon Labs. As part of one subtask of his overall intern-
ship goal, he implemented an initial version of the benchmark
that involved SQL-inspired template design, query categoriza-
tion, and validation of the generated benchmark. The work
has since further evolved to broaden and bolster the template
generation process and redefining query categories while in-
troducing new evaluation metrics.

†Work done while at Megagon Labs.

domain-specific enterprise data. Compared to raw
textual documents, graphs enable efficient process-
ing of complex multi-hop aggregation queries (e.g.,
What is the average height of point guards who
have played for the Toronto Raptors?), where the
answer might depend on information spread across
thousands of documents or even the entire corpus.
Graphs also provide a more compact representation
of knowledge. For example, Wikidata (Vrandečić
and Krötzsch, 2014) contains on average 4.6 times
the entities covered by Wikipedia across the do-
mains we experimented with. These advantages
has motivated decades of research in knowledge
graphs and knowledge base question answering
(KBQA) (Berant et al., 2013; Moon et al., 2019;
Dubey et al., 2019; Gu et al., 2021; Cao et al.,
2022), as well as the recent proposal of GraphRAG
(Edge et al., 2024; Peng et al., 2024).

However, retrieval1 from modern encyclope-
dic knowledge graphs (Vrandečić and Krötzsch,
2014; Bollacker et al., 2008; Suchanek et al., 2007;
Lehmann et al., 2015), which are predominantly
based on RDF, has proven challenging even with
the use of LLMs, unlike the success achieved with
relational databases using text-to-SQL. Previous
studies in KBQA (detailed in Appendix A) typ-
ically focused on simplified settings for evaluat-
ing algorithmic improvements, using either smaller
subgraphs (Cao et al., 2022; Baek et al., 2023;
Emonet et al., 2024), simple queries without ag-
gregation or grouping (Berant et al., 2013; Dubey
et al., 2019; Nie et al., 2022; Baek et al., 2023), or
assuming the entity identifiers are provided (Furrer
et al., 2020; Kovriguina et al., 2023; Banerjee et al.,
2022), which limits their practical application in
real-world scenarios. As a result, leading LLM
frameworks, including LangChain and LlamaIn-
dex, have only minimal support for retrieval from

1Graph retrieval can be considered as a broader task than
KBQA, as it is not only essential for question answering but
also for other tasks such as fact checking (Kim et al., 2023).
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Figure 1: An illustration of Cypher as a unified interface for RDF and property graphs. A graph retrieval for RAG
workflow involves: 1) text-to-Cypher translation, 2) query execution, and optionally, 3) final response generation.

modern RDF knowledge graphs as of the writing of
this paper. Instead, they have prioritized retrieval
from property graphs, which are typically domain-
specific with smaller schemas (Santos et al., 2022;
Himmelstein et al., 2017), using text-to-Cypher
generation.

We analyze the root cause of why retrieval
from RDF knowledge graphs is challenging in sec-
tion 2 and propose transforming them into multiple
smaller property graphs. These property graphs
function as domain-specific views (analogous to
views in relational databases) that can be efficiently
queried by LLMs. This approach not only simpli-
fies retrieval from modern RDF knowledge graphs,
but also enables the use of Cypher as a unified
query language for both RDF graphs and property
graph databases like Neo4j that are widely used in
enterprise.

As a proof of concept, we introduced Cypher-
Bench, a collection of 11 property graphs trans-
formed from Wikidata (detailed in section 3). Each
graph contains the complete set of entities and re-
lations from Wikidata that conform to a domain-
specific schema. Together, these graphs include
a total of 7 million entities, covering roughly
25% of Wikipedia and 6% of Wikidata. In ad-
dition, we constructed over 10,000 natural lan-
guage questions that spans 12 types of graph match-
ing patterns (detailed in section 4). Notably, we
include global queries which have been largely
overlooked by prior KBQA benchmarks. The
benchmark presents significant challenges, with
gpt-4o achieving 60.18% execution accuracy, and
no LLMs with <10B parameters surpassing 20%.

In summary, this paper makes the following
main contributions:

• A novel methodology to enable efficient and
accurate text-to-Cypher retrieval over modern

RDF knowledge graphs.

• A collection of 11 large-scale property graphs
with 7 million entities, serving as groundwork
for future graph retrieval research and as a high-
quality locally-deployable knowledge source
(with a knowledge cutoff of April 2024) for
augmenting LLMs.

• An RDF-to-property-graph transformation en-
gine for Wikidata that creates the aforemen-
tioned graphs. It handles triple transformation,
datatype conversion, and unit standardization
to produce clean, schema-enforced property
graphs as output.

• A text-to-Cypher / KBQA benchmark with
over 10,000 instances spanning 12 types of
graph patterns, covering global queries, multi-
hop queries, temporal queries and aggregation
queries.

• An automatic text-to-Cypher task generation
pipeline that creates the aforementioned bench-
mark. It can be used to generate (question,
Cypher) pairs for any Neo4j graph database
endpoint.

• A set of related tools, including graph deploy-
ment Docker, evaluation scripts, and graph vi-
sualization tools.

2 Knowledge Graph Modeling in the
LLM Era

2.1 Preliminaries: Knowledge Graphs, RDF
and Property Graphs

The Resource Description Framework (RDF) and
property graph are two approaches to modeling
and querying knowledge graphs. We begin with an
abstract definition of a knowledge graph and then
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discuss how it is implemented in RDF and property
graphs.

In its most basic form, a knowledge graph is a
list of relations (also called triples) in the format
(subject entity, relation type, object entity), such
as ("LeBron James", playsFor, "LA Lakers"). 2

Additionally, entities are often assigned entity types
(e.g., Person). Entities and relations can also be
associated with literal values as properties (e.g.,
receivesAward.year).

The most popular public knowledge graphs to
date (e.g., Wikidata, Freebase, and DBpedia) are
predominantly based on the RDF and queried using
SPARQL. In RDF, entities are stored and accessed
using Internationalized Resource Identifiers (IRIs).
Entity properties, including entity names, are stored
as relations, with the subject being the entity IRI
and the object being a literal value. To store relation
properties, RDF uses a process called reification,
which creates a copy of the relation as a special
entity3 and links it to the relation property using an
additional relation.

Property graph databases have gained significant
popularity in industry in recent years, with Neo4j
being the most popular graph database manage-
ment system today4. Unlike RDF, the property
graph model treats entities and relations as objects,
each of which can be assigned types and have asso-
ciated properties. In property graphs, entities are
often accessed directly using their names.

2.2 Why is retrieval over modern KG hard?

Retrieval over modern encyclopedic knowledge
graphs, which are predominantly RDF graphs
(shown in Figure 1), poses significant challenges
due to several factors.
Overly large schemas. Modern encyclopedic
knowledge graphs aim to cover entities and re-
lations across all domains within a single graph,
resulting in an extremely large schema that far ex-
ceeds the context window sizes of typical LLMs.
For instance, Wikidata currently includes over 4
million entity types and 12,000 relation types. Fur-
thermore, RDF graphs allow entities of arbitrary
type to serve as subjects or objects for the same

2Note that relation types are also called properties in Wiki-
data or predicates in KBQA literature. In this paper, we use
"properties" specifically to denote entity and relation attributes
in property graphs.

3Specifically, the statement node in Wikidata and the CVT
node in Freebase.

4According to https://db-engines.com/en/ranking/
graph+dbms

relation types, which further increases the number
of unique relation schemas.
Use of resource identifiers. SPARQL queries
require identifiers for entities, entity types, relation
types which must be obtained via external linkers
(Sakor et al., 2020; Feng et al., 2023). This also
makes SPARQL queries less readable. For instance,
consider the SPARQL and Cypher queries for the
question “Q4. What are the names of taxa that feed
on Synsphyronus lathrius?”:

SPARQL

SELECT ?name WHERE {
item wdt:P31/wdt:P279* wd:Q16521.
?item wdt:P1034 wd:Q10687580.
?item rdfs:label ?name. FILTER(LANG(? itemLabel) = "en")

}

Cypher

MATCH (n:Taxon)-[r0:feedsOn]->(m0:Taxon {name:
'Synsphyronus lathrius '})

RETURN n.name

Overlapping relation types. Wikidata contains
semantically overlapping relation types that are cre-
ated for domain-specific usage. For instance, there
are at least six relation types to indicate the start-
ing time of an entity: start time (P580), inception

(P571), date of official opening (P1619), date of

first performance (P1191), publication date (P577),

service entry (P729). This leads to considerable
confusion when selecting the correct relation type
to use during retrieval.
Lack of normalization. RDF does not enforce
type constraints and standardized units on values.
As a result, literal values in Wikidata often ap-
pear with different units (e.g., centimeters and feet
for heights) and sometimes incorrect types, which
leads to incorrect results when computing aggrega-
tion over these values.

2.3 Hasn’t KBQA already solved KG
retrieval?

KBQA requires graph retrieval to answer questions.
However, most existing studies focused on simpli-
fied settings to evaluate algorithmic improvements.
For example, a common simplification made by
recent work is assuming that the entity and rela-
tion identifiers are already provided (Furrer et al.,
2020; Kovriguina et al., 2023; Banerjee et al., 2022;
LUO et al., 2024; Yu et al., 2022; Jiang et al.,
2023), which reduces the task to retrieval over a
small local subgraph. Moreover, many studies use
custom-designed intermediate logical forms that
lack support for certain graph querying functional-
ities (e.g., relation properties querying, grouping,
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Figure 2: CypherBench construction process: Wikidata is transformed into schema-enforced property graphs,
which enables efficient and accurate text-to-Cypher querying. These property graphs are then used to generate
text-to-Cypher tasks.

variable-length path matching) (Berant et al., 2013;
Berant and Liang, 2014; Gu et al., 2021; Yih et al.,
2015; Cao et al., 2022; Nie et al., 2022; Li et al.,
2023). As a result, the majority of existing KBQA
approaches (see Appendix A for a complete catego-
rization) struggle with some or all of the following
types of queries: 1) queries involving relation
properties, such as time-sensitive queries; 2) global
queries that do not contain any named entities; and
3) queries requiring complex aggregations over a
large number of entities.

2.4 Our Proposal: Property Graphs and
Cypher as a Unified Interface

To address the aforementioned challenges, we
propose transforming the RDF graph into mul-
tiple domain-specific property graphs and using
Cypher to query them (see Figure 2 for an illus-
tration). We chose Cypher, the query language
for Neo4j, because of its widespread adoption in
open-source projects (including LLM frameworks
and GraphRAG). These property graphs function
as (materialized) views on top of the original RDF
graph that can be queried efficiently by LLM. Each
property graph view contains all data that conforms
to its respective schema and can be updated when
the underlying RDF data changes. These views
operate independently, may overlap, and may be
created on-demand, offering substantial flexibility.

This design enables scaling to a large number
of domains without introducing an overly complex
schema and eliminates ambiguity from overlapping
relation types by contextualizing them within spe-
cific domains. Our RDF-to-property-graph trans-
formation layer manages datatype conversion and
unit standardization, producing schema-enforced,

strictly typed data to ensure the result correctness
for aggregation queries. This transformation is
also efficient and takes only a few seconds for
small graphs (fewer than 10,000 entities), as it is is
achieved by executing SPARQL queries and aggre-
gating the results, rather than processing the entire
RDF dump.

In the following sections, we instantiated this
idea on Wikidata, the largest knowledge graph to-
day. We demonstrate that a direct prompting base-
line using gpt-4o, without the use of external link-
ers or retrievers, achieves reasonable performance.

3 Transforming RDF to Property Graphs

In this section, we introduce our approach for trans-
forming RDF, specifically Wikidata, into property
graphs as the initial step in building CypherBench
(Figure 2). We selected Wikidata because it is the
largest and most actively maintained knowledge
graph, comprising 114 million entities and having
received 270 million edits from over 42,000 active
editors in the past 12 months5.

3.1 Domain-specific Schema Curation

We begin by selecting a domain and manually cu-
rating the property graph schema, along with the
mapping from the Wikidata schema to this schema.
This process typically involves identifying the en-
tity and relation types and their properties rele-
vant to the domain, followed by exploring Wiki-
data to find the corresponding Wikidata identifiers
(QIDs for entity types and PIDs for relation types
and properties). A sample entry is shown below:

5https://stats.wikimedia.org/#/wikidata.org

8937

https://stats.wikimedia.org/#/wikidata.org


Sample Relation Schema with Wikidata Mappings

{
"label": "receivesAward",
"wd_source ": "P166",
"subj_label ": "Movie",
"obj_label ": "Award",
"properties ": [

{
"label": "year",
"wd_source ": "P585",
"datatype ": "int"

}
]

}

Each property is assigned a datatype. Prop-
erties that represent quantities are also given a
unit, which is indicated in the property label (e.g.,
runtime_minute) to inform LLMs during graph
retrieval.

The authors created all 11 property graph
schemas from scratch, with an average time in-
vestment of approximately 4 hours per graph. The
schemas for all graphs are listed in Table 8.

3.2 Automatic RDF-to-property-graph
Transformation

Next, our RDF-to-property-graph engine issues
SPARQL queries to Wikidata, using the identifiers
from the curated schema to fetch all entities
and relations that conform to the schema. For
example, the following SPARQL query (simplified
for illustration) fetches all Wikidata award
received (P166) relations where the subject
is an instance of Film (Q11424) and the object
is an instance of Award (Q618779). These
relations are then converted into receivesAward
relations in the target property graph.

Wikidata SPARQL

SELECT DISTINCT ?subj ?obj ?statement
WHERE {

?subj wdt:P31 wd:Q11424. ?obj wdt:P31 wd:Q618779.
?subj p:P166 ?statement. ?statement ps:P166 ?obj.

}

The conversion engine further supports datatype
conversion, date conversion, unit standardization,
rank filtering, and selective entity fetching. Due to
space constraints, we only discuss unit standard-
ization and rank filtering and leave the remaining
details to Appendix B.6.
Unit standardization. The engine enforces stan-
dardized units (e.g., centimeters) on property val-
ues that represent quantities by converting all val-
ues that can be converted. This eliminates the need
for unit conversion during retrieval and ensures
accuracy of aggregation queries.
Rank filtering. Wikidata uses rank
(wikibase:rank) to indicate the reliability
or recency of a relation, which can be one of

three values: preferred, normal, or deprecated.
For time-sensitive relations (e.g., the president of
the United States), the currently valid entries are
typically marked as preferred, while previously
valid entries are marked as normal with additional
properties indicating the relevant time period. For
time-sensitive relations with time qualifiers in the
target schema, we fetch all Wikidata relations with
non-deprecated ranks, along with their starting and
ending times. For other types of relations, we fetch
only the highest-ranked available relation.

The results are aggregated into the final property
graph and stored in a DBMS-independent JSON
format and ultimately deployed using a custom
Neo4j Docker image.

4 Constructing Questions

With 11 large-scale property graphs as a testbed,
the next step is to construct questions that require
graph retrieval to be answered. We adopt text-to-
Cypher as the primary graph retrieval approach
and develop a benchmark consisting of (question,
Cypher) pairs, but also record execution results of
the Cypher queries as answers so that it can serve
as a generic KBQA benchmark for evaluating non-
Cypher-based approaches.

A text-to-Cypher task can be formulated as
follows: given the graph schema and a natural
language question as input, output an executable
Cypher query that returns the desired answer6.

Our Text-to-Cypher task generation pipeline in-
volves two main steps: 1) generating initial (ques-
tion, Cypher) pairs with diverse graph patterns us-
ing templates, and 2) rewriting the questions to
sound more natural using a LLM.

4.1 Preliminaries: Cypher Query Structure

A Cypher query typically begins with a MATCH
clause, which identifies the subgraphs that match
the specified graph pattern. Following this,
the remaining Cypher clauses perform various
transformations—such as filtering, ranking, or
aggregation—to generate the desired result. For
simplicity, we refer to all clauses that follow the
MATCH clause as the RETURN clause, which may in-
clude WHERE , WITH, ORDER BY and RETURN clauses.

6We require the Cypher query to produce the final answer
on its own, thus eliminating the need for an additional answer
generation step with an LLM as in a standard RAG pipeline.
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Pattern/Template Sample Question Cypher Query

(Basic MATCH)

Q1. What are the names of terrorist attacks that oc-
curred before March 13th, 1997? (terrorist attack)

MATCH (n:TerroristAttack) WITH DISTINCT n
WHERE n.date < date('1997 -03 -13') RETURN n.name

Optional Match
(Special MATCH)

Q10. Provide the names of all aircraft models man-
ufactured by ATR, along with the number of flight
accidents each has been involved in. (flight acci-
dent)

MATCH (n:AircraftModel)-[r1:manufacturedBy]->
(m1:AircraftManufacturer {name: 'ATR'})

OPTIONAL MATCH (n:AircraftModel)<-
[r0:involves]-(m0:FlightAccident)

WITH n, count(DISTINCT m0) AS num
RETURN n.name , num

AGGREGATE
(RETURN Template)

Q18. What is the average longest lifespan of taxa
that feed on Leporidae? (biology)

MATCH (n:Taxon)-[r0:feedsOn]->(m0:Taxon {name:
'Leporidae '}) WITH DISTINCT n

RETURN avg(n.longest_lifespan_years)

Table 1: A basic MATCH pattern, a special MATCH pattern, and a RETURN template, along with sample questions.
The nodes in purple denote the answer entities. Square nodes

( )
denote all entities of a particular type, while

circular nodes
( )

represent named entities. Nodes and edges with dashed lines
( )

are optional. The
complete list of patterns are provided in Table 10 and Table 11.

Figure 3: Distribution of graph matching patterns,
RETURN templates, domains, and answer lengths (num-
ber of rows in the answer) in the CypherBench test set.

4.2 Graph Pattern Design

At the core of graph retrieval is the task of locating
the subgraph relevant to the query, which is a fun-
damental feature of all mainstream graph database
query languages (e.g., MATCH clauses in Cypher,
WHERE clauses in SPARQL, etc.). To ensure a bal-
anced distribution across various graph matching
patterns, we adopt a template-based generation ap-
proach rather than crowd-sourcing (as shown in
Table 5, even crowd-sourced multi-hop QA bench-
marks like HotpotQA tend to be biased toward only
a few types of graph matching patterns).

Graph patterns can be categorized based on the
isomorphism structure of an undirected graph (see
Table 1 for sample patterns and Table 10 for the
complete notations). As shown in Table 10, we
define seven basic graph patterns, covering all pos-
sible isomorphism structures with a single answer
node and up to two edges. Additionally, we de-

sign five special graph patterns that cover compar-
ison, grouping, optional matching, time-sensitive
queries, and union.

We compare the graph patterns covered by repre-
sentative benchmark in Table 5. A notable observa-
tion is that most existing KBQA benchmarks over-
look global queries, which we define as queries
without any specific named entities. These can
range from simple listing queries like “Q13. List
the names of all teams”

( )
to more complex ones

like “Q7. What are the unique countries of citizen-
ship of individuals who both wrote and acted in
the same movie?”

( )
. The answers to these

global queries typically depend on a large num-
ber of documents and cannot be easily handled by
standard RAG approaches.

4.3 Text-to-Cypher Task Generation

4.3.1 MATCH Clause Instantiation

For each graph pattern, we create multiple Cypher
MATCH clause templates by enumerating all pos-
sible edge directions, with each MATCH template
paired with a human-written question template. For
example, one of the (question, Cypher) template
for pattern is

(
“MATCH (n)-[r0]->(m0<name>)”,

“${n_LABEL} that ${r0_LABEL} ${m0_name}”
)
. Next,

the template is instantiated by sampling entity types
for node variables (n, m0), relation types for edge
variables (r0), and entity names for named nodes
(m0). We accomplish this by executing a special
Cypher query on a sampled subgraph, which en-
sures that the instantiated MATCH clause returns non-
empty results.
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4.3.2 RETURN Clause Instantiation
Each instantiated MATCH clause in the special cat-
egories is paired with its dedicated RETURN clause
template, while those in the basic categories are
paired with one of the six templates (showns in
Table 11) that covers basic property fetching (NAME,
PROPERTY), ranking (SORT), filtering (WHERE) and
aggregation (AGGREGATE, ARGMAX). The RETURN
clause template is instantiated by sampling proper-
ties, ranking orders, comparison operators (e.g., ≤,
̸=) and aggregate functions (e.g., min, avg, count).
We take the datatype into account when sampling
operators and aggregate functions to ensure the
question is realistic. For instance, we do not allow
≤ on string properties or avg on dates. Similar to
MATCH clauses, each RETURN clause also has a tex-
tual template that is instantiated and combined with
the one for the MATCH clause to form the complete
question.

One subtle design choice we made is to ensure
the Cypher always returns literal values, such as
entity names, instead of node objects. This allows
the benchmark to be used to evaluate non-Cypher
graph retrieval methods in the future.

The questions are split into training and test sets
by domain, with 4 graphs allocated for training and
7 graphs for testing (Table 7). We remove Cypher
queries that produce more than 105 records or take
more than 30 seconds to execute. The distribution
of the test set across four dimensions, as shown in
Figure 3, demonstrates that the benchmark is both
diverse and balanced.

4.3.3 Detecting Semantically Unrealistic
Questions

Blind sampling often results in semantically un-
realistic or uninteresting questions, such as “Who
is married to someone married to Rhaenyra Tar-
garyen?” This issue has been noted in previous
KBQA studies (Su et al., 2016), where it was ad-
dressed using heuristics that might incorrectly ex-
clude realistic questions. In this work, we take a
more systematic approach by modeling the cardi-
nality and participation characteristics of relation-
ships:
Cardinality. A directional relationship7 can have
one of four cardinalities: one-to-one, one-to-many,
many-to-one, or many-to-many. For example,
hasSpouse represents a one-to-one relationship.

7A relationship here can be considered as an edge in the
graph schema—a (subject entity type, relation type, object
entity type) triplet.

Cardinality is used to detect unrealistic group-
ings—groupings that would always result in a sin-
gle member per group (e.g., “For each charac-
ter, return the number of fathers.”), as well as un-
necessary consecutive inverse relations (as in the
hasSpouse example).

Participation. The participation of the subject or
object in a relationship describes whether its entity
instances are always associated with that relation-
ship. Participation can either be total (e.g., Movie
in directedBy, assuming every movie has a direc-
tor) or partial (e.g., Movie in receivesAward, as
not all movies receive awards). We use participa-
tion to detect redundant conditions (e.g., “List all
movies directed by someone”).

Entailment. A relationship can imply another
(e.g., hasFather implies hasParent). This infor-
mation is also used to detect redundant conditions.

The characteristics of cardinality, participation,
and entailment are manually determined rather than
derived from the data, due to the presence of miss-
ing data. They are also not enforced as constraints
on the data for the same reason.

4.4 Question Rewriting and Verification

We employ LLMs to rewrite the template-generated
questions into more natural-sounding questions and
to diversify their phrasing. However, we inten-
tionally preserve entity names and string values
to avoid introducing the additional complexity of
entity linking. This design choice allows us to
evaluate LLMs directly through prompting without
introducing external linkers or retrievers, leaving
the task of entity linking for future work. Finally,
the authors inspect all instances in the test set to
ensure they are correct.

5 Evaluation Metrics

5.1 Execution Accuracy (EX)

Execution accuracy, the standard metric in text-to-
SQL evaluation, measures whether the results re-
turned by the predicted query match those returned
by the ground truth query:

EX(q, q̂) = 1V=V̂ (V, V̂ )

where V and V̂ are the execution results of the
ground-truth and predicted Cypher. The final
dataset-level metric is obtained by averaging across
all instances.
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5.2 Provenance Subgraph Jaccard Similarity
(PSJS)

As discussed in subsection 4.2, the core task of
graph retrieval is to locate the relevant subgraph
using the MATCH clause. While a LLM might gen-
erate the correct MATCH clause, it can make subtle
mistakes such as returning node objects instead of
entity names, or including an extra column that
was not requested by the question. In other cases,
the MATCH clause might be partially correct, either
missing or including a few extra entities. All these
scenarios would result in zero execution accuracy.

We propose Provenance Subgraph Jaccard Sim-
ilarity (PSJS) as an isolated measure of the sub-
graph matching performance. We define the prove-
nance subgraph as the subgraph matched by the
MATCH clause, which can be obtained by pairing
the MATCH clause with RETURN *. For example,
the provenance subgraph for “Q18. What is the
average longest lifespan of taxa that feed on Lep-
oridae?” would include the entity Leporidae and
all taxa that feed on Leporidae. PSJS is then calcu-
lated as the Jaccard similarity — a standard metric
for comparing two sets — between the provenance
subgraph of the predicted Cypher and that of the
ground truth Cypher:

PSJS(q, q̂) =
G ∩ Ĝ

G ∪ Ĝ

where G and Ĝ are the provenance subgraphs of
the ground-truth and predicted Cypher.

As another example, a predicted Cypher query
that satisfies only one condition in a UNION query
would receive an execution accuracy of 0 and a
PSJS score equal to the fraction of correctly re-
trieved nodes.

6 Experiments

Due to space constraints, we provide the experi-
ment details in Appendix B.8.

6.1 Main Results
As shown in Table 2, the best-performing model
claude3.5-sonnet achieves an execution accu-
racy of 61.58% and a PSJS of 80.85%, with gpt-4o
performing slightly worse. The highest-performing
open-source model reaches only 41.87% execu-
tion accuracy, while smaller models in the <10B
parameter range achieve less than 20% execution
accuracy. These results highlight the difficulty of
CypherBench.

Model EX (%) PSJS (%) Exec. (%)

Open-source LLMs (<10B)
llama3.2-3b 11.20 17.33 86.46
llama3.1-8b 18.82 30.98 90.67
gemma2-9b 18.61 30.67 68.57

Open-source LLMs (10-100B)
mixtral-8x7b 19.21 37.01 59.33
qwen2.5-72b 41.87 56.39 86.84
llama3.1-70b 38.84 54.79 92.25

Proprietary LLMs
yi-large 33.82 47.21 83.52
gemini1.5-flash-001 25.26 41.46 83.65
gemini1.5-pro-001 39.95 57.70 86.03
gpt-4o-mini-20240718 31.43 45.91 87.39
gpt-4o-20240806 60.18 76.87 94.93
claude3.5-sonnet-20240620 61.58 80.85 96.34

Table 2: Zero-shot execution accuracy (EX), provenance
subgraph jaccard similarity (PSJS) and executable per-
centage (Exec.) on the CypherBench test set.

Furthermore, the low PSJS scores across most
models indicate that the challenges are not merely
due to basic formatting errors (e.g., including an
extra column or duplicate entries) but stem from
fundamental graph matching issues. In addition,
smaller models within the same family perform
significantly worse (as seen in the gpt-, llama-,
and gemini- series), highlighting the benchmark’s
effectiveness in differentiating LLM capabilities.

6.2 Performance Across Graph Matching
Patterns

Next, we analyze the performance breakdown
across various dimensions8. Figure 5 shows the
execution accuracy and PSJS scores of these mod-
els across various graph matching patterns. Among
the basic categories, all models exhibit similar
trends—achieving near-perfect accuracy on pattern

while performing worst on pattern . The
PSJS chart, which evaluates graph matching alone,
shows a consistent gradual decline in performance
as the graph patterns include more relations.

Comparing the EX and PSJS charts provides
insight into whether errors are caused by graph
matching. For example, all models achieve near-
perfect PSJS scores but low EX on pattern .
Upon manual inspection, we identified that most
errors for this pattern result from incorrect dedu-
plication—merging distinct entities that have the
same name.

Within the special categories, models display
varying weaknesses across different patterns. For

8For this analysis, we focus on gpt-4o,
claude3.5-sonnet, qwen2.5-72b, and llama3.1-70b,
which represent the top 2 performing proprietary LLMs and
the top 2 open-source LLMs.
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Figure 4: Distribution of errors made by gpt-4o and llama3.1-8b on 50 randomly sampled incorrect predictions.
Note that a model might make multiple errors on one instance.

Figure 5: Performance across basic and special MATCH
patterns, RETURN templates and domains.

instance, gpt-4o struggles with time-sensitive
questions, whereas claude3.5-sonnet performs
poorly on comparison questions.

6.3 Performance Across RETURN Templates

The models also demonstrate different weak-
nesses depending on the template. Interestingly,
claude3.5-sonnet achieves near-zero accuracy
on SORT questions. Upon closer inspection, we ob-
served that it frequently includes the variable used
to rank the entities as an extra column, even though
the questions only request the entity names, thus re-
sulting in zero execution accuracy (however, PSJS
is 1.0 in most of these cases since it is designed to
be independent of the RETURN clause).

6.4 Error Analysis
We further conduct an error analysis to investigate
the types of errors made by LLMs. Specifically,
we focus on gpt-4o and llama3.1-8b to examine
whether smaller models behave differently from
larger ones. For each model, we randomly sample
50 task instances where they make incorrect pre-
dictions and annotate the errors observed in each
instance. The error category taxonomy is devel-
oped during the annotation process (Appendix B.5
shows the definitions of each error category with
examples). The distribution of error categories is
shown in Figure 4.

Both models exhibit diverse errors spanning 10
distinct categories. Some error categories that fre-
quently occur in both models include Reversed
Direction (where the model reverses the direction
of a relation), Entity Linking (where the entity
name does not correspond to the intended entity in
the database), and Pattern Not Aligned with
Question (where the MATCH pattern conforms to
the schema but does not align with the question’s
intent). Compared to gpt-4o, llama3.1-8b makes
a significantly higher proportion of schema viola-
tion errors, indicating its inferior schema following
capabilities.

7 Conclusion

Since its inception, Wikidata has received over 2
billion edits by users worldwide and continues to
be actively maintained by over 42,000 editors in
the past year, making it one of the most compre-
hensive knowledge sources available today. This
study offers a viable pathway for integrating full-
scale modern knowledge graphs like Wikidata with
LLMs. The techniques we proposed, along with
the numerous design choices made throughout this
study, are all centered around accomplishing this
goal. We believe our work offers new research op-
portunities in the areas of knowledge graphs and
large-scale graph retrieval.
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8 Limitations

One of the limitations of CypherBench arises from
its template-based generation approach. Despite
our substantial efforts to make the templates as
comprehensive as possible, they still fail to cover
certain graph querying features, such as variable-
length path matching. Additionally, due to lim-
ited resources, the training set has not undergone
human verification and might contain annotation
errors. Furthermore, some features of our RDF-
to-property-graph conversion engine are currently
tailored for Wikidata. Extending it to support other
RDF knowledge graphs, such as DBpedia, would
require additional effort.
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A Related Work

A.1 KBQA and Graph Retrieval Methods

Our work is related to knowledge base question
answering (KBQA) as CypherBench serves as a
benchmark for evaluating KBQA and graph re-
trieval methods.

We categorize existing KBQA and graph re-
treival methods into two types (see Table 3): ap-
proximate retrieval methods, which identify top
relevant elements based on some notion of rele-
vance to the question, and precise retrieval methods,
which retrieve exactly what the question specifies
by executing a formal language query.

The most common approximate retrieval method
involves retrieving the k-hop neighborhood of the
entities mentioned in the question (Dong et al.,
2015; Oguz et al., 2022; Christmann et al., 2022a,b,
2023; Cheng et al., 2024; Zhang et al., 2022; Ya-
sunaga et al., 2021; Feng et al., 2020; LUO et al.,
2024; Jiang et al., 2023). Another line of work
verbalizes entities or relations into text and uses
embedding-based methods to retrieve the top-k
most relevant elements (Wu et al., 2024; Baek et al.,
2023; Ma et al., 2022; Yu et al., 2022). The funda-
mental limitation of these methods is their inability
to handle questions involving a large number of
entities (i.e., global queries or complex aggregation
queries), as they require processing all the retrieved
information during the answer generation step. Ad-
ditionally, these methods usually rely on expensive
in-memory operations or require embedding the
entire graph, which limits their feasibility when ap-
plied to full-scale modern knowledge graphs which
typically contain billions of triples.

Precise retrieval methods translate the question
into a formal language query that fetches exactly
what the question asks for. However, most ap-
proaches in this category are based on custom log-
ical forms, which are either transpiled into actual
database queries or executed by a custom engine
(Gu et al., 2021; Berant et al., 2013; Berant and
Liang, 2014; Talmor and Berant, 2018; Yih et al.,
2015; Su et al., 2016; Chen et al.; Cao et al., 2022;
Nie et al., 2022; Li et al., 2023). These custom
logical forms are easier to generate for pre-LLM
models due to their simpler syntax, but often lack
support for certain graph querying features like
grouping and variable-length path matching. The
ones that are executed by custom engines also
face limitations in scalability and real-world ap-
plicability compared to standard database query

languages. For example, the recently proposed
KoPL (Cao et al., 2022) queries are executed by
loading the entire graph into memory and process-
ing it in-memory, which makes it impractical to
handle graphs of a size comparable to Wikidata.
While some recent works use LLMs to directly
generate graph database queries (e.g., SPARQL or
Cypher) (Kovriguina et al., 2023; Banerjee et al.,
2022; Emonet et al., 2024; Lee and Shin, 2024;
Li et al., 2024b), they often make simplifications
such as assuming that identifiers are provided or
working with smaller graphs. Notably, the recently
introduced SPINACH (Liu et al., 2024) operates
over full Wikidata using an agentic workflow.

A.2 Text-to-Query and KBQA Benchmarks
CypherBench takes the form of a text-to-query
benchmark, consisting of databases along with
(question, database query) pairs. KBQA bench-
marks represent a specific type of text-to-query
benchmarks, where the databases are knowledge
graphs, and the queries are graph database queries.
In Table 4, we compare CypherBench with current
representative text-to-query benchmarks.

Looking at the Schema Size and Data Size
columns provides insights into the complexity of
the databases in existing text-to-query benchmarks,
both in terms of their schemas and stored data.
Most existing KBQA benchmarks (Berant et al.,
2013; Moon et al., 2019; Dubey et al., 2019; Gu
et al., 2021; Cao et al., 2022) are predominantly
based on text-to-SPARQL over RDF knowledge
graphs. However, as discussed in section 2, the
massive schema of RDF knowledge graphs poses
significant challenges when using these bench-
marks to evaluate LLMs in zero-shot settings. In
contrast, the graphs in CypherBench have a schema
size comparable to those in text-to-SQL bench-
marks, while still encompassing up to 7 million
entities.

In recent years, several benchmarks focusing on
text-to-Cypher or text-to-nGQL9 have been pro-
posed (Nie et al., 2022; Guo et al., 2022; Zhou
et al., 2024; Liang et al., 2024; Zhong et al., 2024).
MetaQA-Cypher (Nie et al., 2022) and SpCQL
(Guo et al., 2022) are the earliest efforts to develop
text-to-Cypher benchmarks. MetaQA-Cypher is
adapted from MetaQA (Zhang et al., 2018), a
KBQA dataset built on a movie knowledge graph,
with Cypher queries annotated using rule-based

9nGQL is the query language for NebulaGraph, a property
graph database.
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Graph Retrieval Method Papers / Open-source Projects

Approximate Retrieval

Entity linking + k-hop neighbourhood LlamaIndex (LlamaIndex Team, 2023), MCCNN (Dong et al., 2015), UniK-QA (Oguz et al.,
2022), CLOCQ (Christmann et al., 2022a), Convinse (Christmann et al., 2022b), Explaignn (Christ-
mann et al., 2023), Temple-MQA (Cheng et al., 2024), Subgraph Retriever (Zhang et al., 2022),
QA-GNN (Yasunaga et al., 2021), MHGRN (Feng et al., 2020), RoG (LUO et al., 2024), UniKGQA
(Jiang et al., 2023)

Top-k entities / relations / pseudo-doc STaRK (Wu et al., 2024), DiFaR (Baek et al., 2023), UDT-QA (Ma et al., 2022), DecAF (Yu et al.,
2022)

Precise Retrieval
Text-to-SPARQL through intermediate logical form
(e.g., λ-DCS, S-expression, etc.)

S-expression (Gu et al., 2021), λ-DCS (Berant et al., 2013; Berant and Liang, 2014), ComplexWebQ
(Talmor and Berant, 2018), Staged Query Graph (Yih et al., 2015), Graph Query (Su et al., 2016),
Abstract Query Graph (Chen et al.), KoPL (Cao et al., 2022), GraphQ IR (Nie et al., 2022), KB-
BINDER (Li et al., 2023)

Text-to-SPARQL Langchain (Chase, 2022), sparqlgen (Kovriguina et al., 2023), T5-sparql (Banerjee et al.,
2022), sparql-llm (Emonet et al., 2024), SPARKLE (Lee and Shin, 2024), WikiSP (Xu et al., 2023),
SPINACH (Liu et al., 2024)

Text-to-Cypher (Our focus) LlamaIndex (LlamaIndex Team, 2023), Langchain (Chase, 2022), UniOQA (Li et al.,
2024b)

Table 3: Graph retrieval methods adopted by existing research papers and open-source projects.

Benchmark Data Source #graph/db Avg. Schema Size (per graph/db) Data Size LLM Efficient?

Text-to-SQL / relational data
Spider (Yu et al., 2018) Wikipedia, etc. 200 5.1 tables, 27.6 columns 400k rows ✓
BIRD-SQL (Li et al., 2024a) Kaggle, etc. 95 7.3 tables, 54.2 columns 52M rows ✓
Text-to-SPARQL / RDF graphs
LC-Quad 2.0 (Dubey et al., 2019) Wikidata 1 12k relation types 114M entities ×
GrailQA (Gu et al., 2021) Freebase 1 37k relation types 45M entities ×
KQA Pro (Cao et al., 2022) FB15k-237 1 0.8k relation types 16k entities ×

Text-to-nGQL / property graphs

R3-NL2GQL† (Zhou et al., 2024) OpenKG 3 5.3 relation types, 13 properties 46k entities ✓
Fin/Medi-GQL† (Liang et al., 2024) OpenKG 2 13 relation types, 38 properties 713k entities ✓
Text-to-Cypher / property graphs
MetaQA-Cypher (Nie et al., 2022) OMDb 1 5 relation types, 5 properties 43k entities ✓
SpCQL† (Guo et al., 2022) OwnThink 1 480k relation types, 1 property 16M entities ×
Neo4j Text2Cypher (2024) neo4j-graph-examples - - - ✓
CypherBench (ours) Wikidata 11 7.5 relation types, 18.7 properties 7.8M entities ✓

Table 4: Comparison of representative text-to-query benchmarks. Benchmarks marked by † are non-English
(R3-NL2GQL, FinGQL, MediGQL and spQCL are in Chinese). The column “LLM Efficient?” refers to whether the
database schema from the benchmark can fit in the typical context window of LLMs. Existing KBQA benchmarks
pose challenges for evaluation in zero-shot settings with LLMs due to the massive schema of RDF knowledge
graphs.

methods. SpCQL is based on OwnThink10, a Chi-
nese encyclopedic knowledge graph. The questions
in SpCQL were collected from online forums and
annotated with Cypher queries by database profes-
sionals. Zhou et al. (2024) constructed a text-to-
nGQL dataset over three domain knowledge graphs
through a combination of human curation and LLM
generation. Liang et al. (2024) instead employed a
templated generation approach using eight human-
curated templates. However, these benchmarks are

10OwnThink is provided in a plain triple format, lacking the
notion of entity types as well as entity and relation properties.
When stored in Neo4j, it uses a single entity type, ENTITY, and
a single relation type, Relationship, with the actual relation
type stored in the name property of the relations. Consequently,
OwnThink resembles RDF graphs more closely than property
graphs.

restricted to a small number of domains (with the
exception of SpCQL), and their questions lack di-
versity, covering only a limited number of the graph
matching patterns in CypherBench (as shown in Ta-
ble 5).

A parallel effort to create a large-scale text-
to-Cypher benchmark is the Neo4j Text2Cypher
(2024) dataset11(Ozsoy et al., 2024). This dataset
was developed by cleaning and combining 25 pub-
lic datasets from Neo4j internal projects, Hugging
Face, and academic papers. Compared to previ-
ous benchmarks, it is significantly more diverse in
terms of domains and question types. However,
49% of the questions in the dataset are not linked

11https://huggingface.co/datasets/neo4j/
text2cypher-2024v1
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Natural Questions HotpotQA KQA Pro MetaQA-Cypher
(single-hop Text QA) (multi-hop Text QA) (latest text-to-SPARQL) (latest text-to-Cypher)

✓ ✓ ✓

✓ ✓ ✓ ✓
✓ ✓

✓ ✓

✓

Table 5: Graph matching patterns covered by previous question answering datasets. We also include Natural
Questions (Kwiatkowski et al., 2019) and HotpotQA (Yang et al., 2018) as representative knowledge-intensive
single-hop and multi-hop text QA datasets here. We determined the patterns based on the question curation approach
described in the paper and 100 randomly sampled questions.

to any actual graphs (many of these questions are
synthetically generated and do not have a corre-
sponding database). Instead, the dataset only pro-
vides a textual description of the graph schema
for text-to-Cypher generation. This makes it im-
possible to execute the Cypher queries to evaluate
execution-based metrics like EX and PSJS. The
remaining 51% of the questions is based on demo
graphs from the neo4j-graph-examples reposito-
ries12. These demo graphs are typically smaller in
size and do not comprehensively cover all domain
entities, unlike CypherBench, which provides full
coverage of domain entities.

A.3 GraphRAG

Recently, Microsoft introduced GraphRAG (Edge
et al., 2024) to address corpus-level summarization
queries (e.g., “What are the main themes in the
dataset?”), which are similar to the global queries
explored in this work and cannot be handled by
standard top-k embedding-based retrieval methods.
At a high level, GraphRAG leverages a central-
ized knowledge graph to index textual documents,
enabling it to handle queries that rely on a large
volume of documents. The GraphRAG system has
two main stages: knowledge graph construction
during indexing time and graph retrieval during
query time (Peng et al., 2024). It is worth noting
that the original GraphRAG system in (Edge et al.,
2024) uses a graph structure slightly different from
a typical knowledge graph, where the nodes include
entities and communities at multiple levels, with

12https://github.com/neo4j-graph-examples

retrieval performed by fetching all communities at
a specific level.

Subsequently, LlamaIndex, the leading open-
source LLM framework for RAG workflows, in-
troduced the Property Graph Index (LlamaIndex
Team, 2023) for general-purpose question answer-
ing. It constructs a Neo4j property graph from tex-
tual documents using LLMs during indexing time,
and conducts graph retrieval via text-to-Cypher dur-
ing query time. Our work provides the first compre-
hensive text-to-Cypher benchmark for evaluating
graph retrieval, a critical component in GraphRAG.

A.4 Mapping RDF to Property Graphs

Several studies from the semantic web com-
munity have explored methods for transforming
RDF graphs into property graphs (Hartig, 2014;
Tomaszuk, 2016; Schätzle et al., 2016; Angles et al.,
2020; Matsumoto et al., 2018)13. However, many
of these methods require processing the entire RDF
dump, which can be computationally expensive for
full-size modern RDF graphs like Wikidata. For ex-
ample, (Hartig, 2014) proposed a two-step process
for RDF*, an RDF extension: first, RDF triples are
mapped directly to edges in the property graph, and
then edges that represent entity properties are trans-
formed into node properties. An exception is (Mat-
sumoto et al., 2018) 14, which adopts an approach
similar to ours by transforming RDF into property
graphs through executing SPARQL queries over

13For a more detailed survey, we refer readers to (Angles
et al., 2019).

14https://github.com/g2glab/g2g
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RDF. However, their method lacks key functionali-
ties described in section 3 which are essential for
ensuring the output quality.

A.5 Knowledge Graph Subsetting

There are also a few tools developed to extract
domain-specific subgraphs of Wikidata or gen-
eral RDF knowledge graphs to tackle the scala-
bility challenges of modern knowledge graphs15.
For example, KGTK (Ilievski et al., 2020),
WDumper16, and WDSub17 are a few such tools
(Hosseini Beghaeiraveri et al., 2023). However,
these tools also operate by processing the entire
RDF dump and produce RDF as output.

B Technical Details

B.1 Graph Matching Patterns and RETURN
Templates

The complete list of graph matching patterns is
shown in Table 10 and the complete list of RETURN
templates is shown in Table 11.

B.2 Question Rewriting Prompt

The prompt used to rewrite template-generated
questions into more natural-sounding ones is pre-
sented in Table 12.

B.3 Text-to-Cypher Prompt

The text-to-Cypher prompt for evaluating LLMs is
shown in Table 13.

B.4 Schema Fetching in Neo4j

In a practical text-to-Cypher scenario where
only the Neo4j database endpoint (host and
port) is provided, the graph schema must be
retrieved from the database by executing cer-
tain Cypher queries. Neo4j provides built-in
procedures such as db.schema.visualization
and apoc.meta.data for this purpose. How-
ever, we observed that both methods yield in-
accurate results when applied to large graphs:
db.schema.visualization may return non-
existent relationships, while apoc.meta.data can
miss certain relationships. To address this issue, we
use the following queries to retrieve the schemas:

15Note that this differs from subgraph retrieval in approx-
imate graph retrieval methods, where a smaller subgraph is
extracted for each question.

16https://github.com/bennofs/wdumper
17https://github.com/weso/wdsub

Cypher for fetching entity property schemas

MATCH (n)
UNWIND labels(n) AS label
WITH label , keys(n) AS propertyKeys , n
UNWIND propertyKeys AS property
WITH DISTINCT label , property ,

apoc.meta.cypher.type(n[property ]) as type
WITH label AS label , apoc.coll.sortMaps(collect ({

property:property , type:type}), 'property ') AS
properties

RETURN label , properties ORDER BY label

Cypher for fetching relation property schemas

MATCH () -[r]-()
WITH type(r) AS type , keys(r) AS propertyKeys , r
UNWIND propertyKeys AS property
WITH DISTINCT type , property ,

apoc.meta.cypher.type(r[property ]) AS propType
WITH type , apoc.coll.sortMaps(collect ({

property:property , type:propType }), 'property ') AS
properties

RETURN type , properties ORDER BY type

Cypher for fetching relation schemas

MATCH (n)-[r]->(m)
UNWIND labels(n) AS start UNWIND labels(m) AS end
RETURN DISTINCT start , type(r) as type , end
ORDER BY type , start , end

The results are then aggregated and serial-
ized into the format shown in Table 13. While
these queries are less efficient than the built-in
procedures (approximately 15 times slower than
apoc.meta.data), they produce complete and ac-
curate schemas deterministically.

B.5 Text-to-Cypher Error Taxonomy

Table 14 shows the detailed definitions of each error
category with examples.

B.6 RDF-to-Property-Graph Conversion
Engine Details

Datatype conversion. The engine enforces type
constraints on property values by converting them
into one of the following types and discarding those
that cannot be converted: str, int, float, date,
list[str].

Date conversion. Wikidata stores precision for
time values ranging from seconds up to centuries
or more (e.g., a historical event might be recorded
with century-level precision like 18th century). For
date properties, we retrieve the precision using
the predicate wikibase:timePrecision and keep
only those with a precision at least as fine as a
date, which are ultimately mapped to Neo4j’s Date
values.

Selective entity fetching. The engine supports
fetching only entities linked to certain relations to
avoid out-of-memory issues for very broad entity
types (e.g., people or organizations). For instance,
in the movie graph, instead of fetching all instances
of Person from Wikidata, the engine limits the
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Graph Ent. Rel. Ent. Types Rel. Types Properties Wikipedia

art 1.1M 1.3M 6 8 16 64.9k
biology 3.7M 7.5M 4 5 8 447.7k
company 581.3k 299.6k 4 6 14 166.3k
fictional character 28.9k 40.5k 4 11 12 8.5k
flight accident 1.7k 2.2k 5 5 25 1.6k
geography 773.5k 903.8k 8 12 19 73.1k
movie 459.4k 1.9M 7 9 21 262.2k
nba 4.3k 19.0k 7 7 27 4.3k
politics 885.2k 1.5M 6 11 25 414.2k
soccer 275.2k 1.1M 6 5 26 206.6k
terrorist attack 1.6k 1.5k 5 4 13 1.3k

Total 7.8M 14.7M 62 83 206 1.7M

Table 6: Statistics of the graphs. Wikipedia refers to the number of English Wikipedia articles linked from the
entities (roughly the number of entities with Wikipedia articles).

fetch to only those connected to a Movie through
relations like directedBy or hasCastMember.

The SPARQL queries issued by the engine are
executed against a local Wikidata endpoint loaded
with the April 2024 Wikidata dump, allowing us to
bypass the time limit of the public endpoint, and the
results are aggregated into the final property graph.
The transformation time ranges from seconds to
hours, depending on the graph size. The graph
statistics are shown in Table 6. The property graph
is stored in a DBMS-independent JSON format and
ultimately deployed using a custom Neo4j Docker
container that initializes the data from the JSON
file upon startup.

B.7 EX Implementation
Cypher returns results in a tabular format, thus
allowing us to borrow the execution accuracy im-
plementation from the text-to-SQL literature. In
this work, we adapt the execution accuracy im-
plementation18 from the Spider (Yu et al., 2018)
leaderboard, which considers two tables as identi-
cal if one can be transformed into the other through
row and column permutations. One difference be-
tween Cypher and SQL is that Cypher supports
objects (e.g., lists and maps) in query results. We
serialize these objects to enable direct comparisons.
Note that execution accuracy can also be applied
to non-Cypher-based graph retrieval approaches
in future research, as long as the approach returns
results in the tabular format.

B.8 Experiment Details
We deployed the graphs using a custom Neo4j
Docker image on a local server with 1TB memory.
Since the Neo4j community edition does not sup-
port multiple databases, we ran a separate Docker

18https://github.com/taoyds/
test-suite-sql-eval

container for each graph.
To evaluate the zero-shot text-to-Cypher perfor-

mance of state-of-the-art LLMs, we run a variety
of popular LLMs of different sizes on the Cypher-
Bench test set19. For each task instance, the model
was prompted with the question, the graph schema,
and a brief instruction. The complete prompt is
shown in Table 13. The open-source models and
yi-large were run using the Fireworks AI API,
gemini1.5 and claude3.5-sonnet were run on
Google Cloud Vertex AI, while gpt- models were
run using OpenAI’s API. The cost per run is $5.5
for gpt-4o and $0.3 for gpt-4o-mini.

Finally, the predicted Cypher queries were exe-
cuted on Neo4j using 8-thread parallelization with
a 120-second timeout (4x the maximum execution
time of the ground-truth Cypher) to compute the
metrics.

C Additional CypherBench Statistics

The graph statistics are shown in Table 6. The ques-
tion data split is shown in Table 7. The schemas of
the 11 property graphs are shown in Table 8 and
Table 9.

Split Graphs #Questions

Train art, biology, soccer, terrorist attack 8817

Test company, fictional character, flight acci-
dent, geography, movie, nba, politics

2488

Table 7: Statistics of the data splits.

19The training set was not used in this study.
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Name Graph Schema Entity/Relation Properties

art
Painting name STR creation_year INT country_of_origin STR ArtMovement

start_year INT name STR end_year INT Sculpture name STR creation_year INT

country_of_origin STR Person place_of_birth STR name STR gender STR

date_of_death DATE date_of_birth DATE Museum name STR Genre name STR

biology
Taxon taxon_name STR name STR longest_lifespan_years FLOAT diel_cycle STR

avg_gestation_period_days FLOAT ConservationStatus name STR TaxonRank

name STR Habitat name STR

company
Company name STR launch_year INT Country name STR Person

place_of_birth STR name STR gender STR date_of_death DATE date_of_birth DATE

country_of_citizenship LIST[STR] Industry name STR

hasBoardMember start_year INT end_year INT hasCEO start_year INT

end_year INT

fictional character
Organization name STR Location name STR Character occupation LIST[STR]

name STR gender STR creator STR country_of_citizenship LIST[STR] birth_name STR

FictionalUniverse name STR inception_year INT creator STR

flight accident
FlightAccident number_of_survivors INT number_of_injuries INT number_of_deaths INT

name STR location STR flight_number STR date DATE Airport name STR

location STR icao_code STR iata_code STR country STR AircraftModel

wingspan_metre FLOAT service_entry DATE range_km FLOAT name STR

length_metre FLOAT height_metre FLOAT first_flight DATE AircraftManufacturer

name STR launch_year INT country STR Operator name STR launch_year INT

country STR

geography
River name STR length_km FLOAT discharge_m3_s FLOAT Lake

vertical_depth_m FLOAT name STR area_km2 FLOAT Ocean name STR

max_vertical_depth_m FLOAT avg_vertical_depth_m FLOAT area_km2 FLOAT Country

name STR capital STR area_km2 FLOAT Continent name STR DrainageBasin

name STR area_km2 FLOAT Mountain name STR elevation_m FLOAT MountainRange

name STR

Table 8: Schemas of the 11 graphs in the benchmark. The color of the property boxes indicates whether they are
entity properties

(
e.g., name STR

)
or relation properties

(
e.g., start_year INT

)
.
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Name Graph Schema Entity/Relation Properties

movie
Movie runtime_minute FLOAT original_language LIST[STR] name STR

global_box_office_usd FLOAT filming_location LIST[STR] Person

place_of_birth STR name STR gender STR date_of_death DATE date_of_birth DATE

country_of_citizenship LIST[STR] Genre name STR Country name STR

FilmSeries name STR ProductionCompany name STR country STR Award

name STR

hasCastMember character_role STR receivesAward year INT winners LIST[STR]

releasedIn date DATE

nba
Player schools_attended LIST[STR] place_of_birth STR nicknames LIST[STR] name STR

mass_kg FLOAT height_cm FLOAT handedness STR gender STR date_of_death DATE

date_of_birth DATE country_of_citizenship LIST[STR] Team owners LIST[STR]

name STR inception_year INT head_coach STR Venue name STR Division

name STR Conference name STR Position name STR Award name STR

draftedBy year INT hasHomeVenue start_year INT end_year INT playsFor

start_year INT sport_number INT end_year INT receivesAward year INT

politics
GovernmentOrganization name STR Country official_language LIST[STR] name STR

founding_date DATE PoliticalParty name STR founding_date DATE Politician

schools_attended LIST[STR] place_of_death STR place_of_birth STR name STR

gender STR date_of_death DATE date_of_birth DATE country_of_citizenship LIST[STR]

Position name STR InternationalOrganization name STR founding_year INT

hasHeadOfGovernment start_year INT end_year INT hasHeadOfState start_year INT

end_year INT headedBy start_year INT end_year INT holdsPosition

start_year INT end_year INT

soccer
Club owners LIST[STR] name STR inception_year INT head_coach STR country STR

Venue name STR League name STR Player schools_attended LIST[STR]

place_of_birth STR nicknames LIST[STR] name STR mass_kg FLOAT height_cm FLOAT

gender STR footedness STR date_of_death DATE date_of_birth DATE

country_of_citizenship LIST[STR] Position name STR Award name STR

hasHomeVenue start_year INT end_year INT playsFor start_year INT

sport_number INT end_year INT receivesAward year INT

terrorist attack
TerroristAttack number_of_injuries INT number_of_deaths INT name STR

locations LIST[STR] date DATE Weapon name STR Country name STR

Terrorist place_of_birth STR name STR gender STR date_of_birth DATE

country_of_citizenship LIST[STR] Target name STR

Table 9: (Continued) Schemas of the 11 graphs in the benchmark.
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Graph Pattern Sample Question Cypher Query

Basic Categories

Q1. What are the names of terrorist attacks that oc-
curred before March 13th, 1997? (terrorist attack)

MATCH (n:TerroristAttack) WITH DISTINCT n
WHERE n.date < date('1997 -03 -13') RETURN n.name

Q2. What is the discharge rate in cubic meters per
second of the Guamués River? (geography)

MATCH (n:River {name: 'Guamués River '}) WITH DISTINCT n
RETURN n.discharge_m3_s

Q3. List the players who have received an award,
from tallest to shortest. (soccer)

MATCH (n:Player)-[r0:receivesAward ]->(m0:Award)
WITH DISTINCT n RETURN n.name
ORDER BY n.height_cm DESC

Q4. What are the names of taxa that feed on Syn-
sphyronus lathrius? (biology)

MATCH (n:Taxon)-[r0:feedsOn]->(m0:Taxon {name:
'Synsphyronus lathrius '})

WITH DISTINCT n RETURN n.name

Q5. What are the names of companies that oper-
ate in the same industries as Bardel Entertainment?
(company)

MATCH (n:Company)-[r0:operatesIn]->(m0:Industry)<-
[r1:operatesIn ]-(m1:Company {name: 'Bardel

Entertainment '})
WITH DISTINCT n RETURN n.name

Q6. Who are the point guards who have played for
the Toronto Raptors? (nba)

MATCH (n:Player)-[r0:playsFor]->(m0:Team {name: 'Toronto
Raptors '}) ,(n:Player)-
[r1:playsPosition]->(m1:Position {name: 'point

guard '})
WITH DISTINCT n RETURN n.name

Q7. What are the unique countries of citizenship of
individuals who both wrote and acted in the same
movie? (movie)

MATCH (n:Person)<-[r0:writtenBy]-(m0:Movie),
(n:Person)<-[r1:hasCastMember ]-(m0:Movie)

WITH DISTINCT n
UNWIND n.country_of_citizenship AS prop
RETURN DISTINCT prop

Special Categories

Comparison

Q8. Which painting was created later, Edward
George Villiers Stanley, 17th Earl of Derby or Tulip
Field in Holland? (art)

MATCH (n:Painting {name: 'Edward George Villiers Stanley ,
17th Earl of Derby'}), (m0:Painting {name: 'Tulip
Field in Holland '})

RETURN CASE
WHEN n.creation_year > m0.creation_year THEN n.name ELSE

m0.name
END AS answer

Group By

Q9. What are the names of the mothers whose chil-
dren were killed by Cersei Lannister, and how many
children did Cersei kill for each of these mothers?
(fictional character)

MATCH (n:Character) <-[r0:hasMother]-(m0:Character)-
[r1:killedBy]->(m1:Character {name: 'Cersei

Lannister '})
WITH n, count(DISTINCT m0) AS num
RETURN n.name , num

Optional Match

Q10. Provide the names of all aircraft models man-
ufactured by ATR, along with the number of flight
accidents each has been involved in. (flight acci-
dent)

MATCH (n:AircraftModel)-[r1:manufacturedBy]->
(m1:AircraftManufacturer {name: 'ATR'})

OPTIONAL MATCH (n:AircraftModel)<-[r0:involves]-
(m0:FlightAccident)

WITH n, count(DISTINCT m0) AS num
RETURN n.name , num

Time-sensitive

Q11. Who was the CEO of Mercedes-AMG in the
year 1999? (company)

MATCH (n:Person)<-[r0:hasCEO]-(m0:Company {name:
'Mercedes -AMG'})

WHERE r0.start_year <= 1999 AND (r0.end_year >= 1999 OR
r0.end_year IS NULL)

WITH DISTINCT n RETURN n.name

Union

Q12. Who are the politicians who have either led
the Law and Justice party or served as the head of
state of Poland at any time? (politics)

CALL {
MATCH (n:Politician)<-[r0:headedBy]-(m0:PoliticalParty

{name: 'Law and Justice '}) RETURN n, m0 AS m
UNION
MATCH (n:Politician)<-[r1:hasHeadOfState ]-(m1:Country

{name: 'Poland '}) RETURN n, m1 AS m
}
WITH DISTINCT n RETURN n.name

Table 10: Sample questions with various graph matching patterns from the benchmark. The nodes in purple denote
the answer entities. Square nodes

( )
denote all entities of a particular type, while circular nodes

( )

represent named entities. Nodes and edges with dashed lines
( )

are optional. Edges with diamond arrowheads( )
indicate relations with time sensitivity constraints.
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Return Clause Category Sample Question Cypher Query

NAME Q13. List the names of all teams. (nba) MATCH (n:Team) WITH DISTINCT n
RETURN n.name

PROPERTY Q14. When did the Falcon 50 have its first flight?
(flight accident)

MATCH (n:AircraftModel {name: 'Falcon 50'})
WITH DISTINCT n
RETURN n.first_flight

SORT Q15. What are the names of mountains located in Nepal,
sorted by elevation from lowest to highest? (geography)

MATCH (n:Mountain)-[r0:locatedIn]->(m0:Country
{name: 'Nepal '})

WITH DISTINCT n
RETURN n.name
ORDER BY n.elevation_m ASC

ARGMAX Q16. What is the name of the Spider-Verse movie that
earned the most at the global box office? (movie)

MATCH (n:Movie) -[r0:partOfSeries]->(m0:FilmSeries
{name: 'Spider -Verse'})

WITH DISTINCT n RETURN n.name
ORDER BY n.global_box_office_usd DESC
LIMIT 1

FILTER Q17. What are the names of companies in the public
relations industry that were launched after 1927? (com-
pany)

MATCH (n:Company)-[r0:operatesIn]->(m0:Industry
{name: 'public relations '})

WITH DISTINCT n
WHERE n.launch_year > 1927
RETURN n.name

AGGREGATE Q18. What is the average longest lifespan of taxa that
feed on Leporidae? (biology)

MATCH (n:Taxon) -[r0:feedsOn]->(m0:Taxon {name:
'Leporidae '})

WITH DISTINCT n
RETURN avg(n.longest_lifespan_years)

Table 11: RETURN clause categories and sample questions from the benchmark. The RETURN clauses shown here
apply to any graph pattern in the basic categories.
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Question Rewriting Prompt

Rewrite the given template -generated question in a text -to-Cypher translation task to make it sound more natural:
- Ensure the rewritten question remains semantically equivalent to the original question and the provided Cypher query. Do

not remove or add any constraints.
- Pay attention to the direction of the relation pattern (indicated by `->` or `<-`) in the Cypher query.

For example , `(n:Character)-[r0:hasFather]->(m0:Character)` indicates m0 is the father of n,
while `(n:Character)<-[r0:hasFather]-(m0:Character)` matches n as the father of m0.

- Pay attention to the direction of relation in the template -generated question.
For example `List the names of Character that "Rhaenys Targaryen" hasFather"` means "Rhaenys Targaryen" connects
to the Character via relation `hasFather `, thus the questions is asking for the father of Rhaenys Targaryen.
While `List the names of Character that hasFather "Rhaenys Targaryen"` selects the Character that has Rhaenys

Targaryen as father.
- Ensure the rewritten question is grammatically correct and sounds natural.
- The brackets in the question are parsing hints for the question structure to ensure it is unambiguous. Do not include

them in the rewritten question.
- For relation types (e.g. hasCastMember), rewrite them to natural language and diversify the expressions. Feel free to

change from passive to active voice or vice versa.
- e.g. A hasCastMember B -> B is cast in A, B stars in A, A features B, etc.

- For entity types (e.g. Person , FlightAccident) and properties (e.g. watershed_area_km2) rewrite them to natural language
and diversify the expressions.

- e.g. Person -> individual; human; passenger; etc.
- e.g. TaxonRank -> taxonomic rank; etc.
- e.g. FlightAccident -> aviation accident; plane crash; etc.
- e.g. watershed_area_km2 -> size of the watershed in square kilometers; area covered by the watershed in km^2; etc.

- For multi -hop patterns , you can simplify it if the same meaning is preserved.
- e.g. "teams that belong to a division that belongs to Western Conference" -> "teams in the Western Conference"
- e.g. "the father of the mother of the person" -> "the person 's maternal grandfather"
- e.g. "the children of the father of the person" -> "the person 's paternal siblings"

- For quoted names and string values , remove the quotes but ensure the same text is preserved.
- For numerical values and dates , diversify the expressions , but ensure the same value is preserved.

- e.g. 1990 -07 -04 -> July 4th, 1990; 4 July 1990; 07/04/1990 (US format); 4th of July , 1990; etc.
- e.g. 2000 -> two thousand; 2000; 2,000; 2k; etc.

- For operators (e.g. >, >=, IN, NOT IN, etc.), rewrite them to natural language and diversify the expressions but ensure
the meaning is preserved.

- e.g. NOT 'France ' IN n.country_of_citizenship -> "is not a citizen of France"
- For "ascending" and "descending", rewrite them to natural language and diversify the expressions.

- e.g. "the years in descending order" -> "the years from the most recent to the oldest"
- Output only the rewritten question , without any additional explanation.

=== Example ===
Cypher: MATCH (n:Taxon)<-[r0:hasParent]-(m0:Taxon)-[r1:hasConservationStatus ]->(m1:ConservationStatus {name: 'Near

Threatened '}) WITH DISTINCT n RETURN n.name
question: List the names of Taxon that [some Taxon that hasConservationStatus "Near Threatened "] hasParent
rewritten_question: What are the names of parents of taxa with a conservation status of Near Threatened?

Cypher: MATCH (n:Character)<-[r0:hasFather]-(m0:Character),(n:Character)<-[r1:killedBy]-(m0:Character) WITH DISTINCT n
RETURN n.name

question: List the names of Character that a Character [hasFather and killedBy ].
rewritten_question: List the names of fathers who killed their children.

=== Your task ===
Cypher: MATCH (n:Continent) WITH DISTINCT n RETURN n.name
question: List the names of Continent
rewritten_question:

Table 12: A sample question rewriting prompt.
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Text-to-Cypher Prompt

Translate the question to Cypher query based on the schema of a Neo4j knowledge graph.
- Output the Cypher query in a single line , without any additional output or explanation. Do not wrap the query with any

formatting like ```.
- Perform graph pattern matching in the `MATCH ` clause if possible.
- Avoid listing the same entity multiple times in the results. However , if multiple distinct entities share the same name ,

their names should be repeated as separate entries.
- Do not return node objects. Instead , return entity names or properties.

Graph Schema:
{

"name": "company",
"entities ": [

{
"label": "Company",
"properties ": {

"launch_year ": "int", "name": "str"
}

},
{

"label": "Country",
"properties ": {

"name": "str"
}

},
{

"label": "Industry",
"properties ": {

"name": "str"
}

},
{

"label": "Person",
"properties ": {

"country_of_citizenship ": "list[str]", "date_of_birth ": "date", "date_of_death ": "date", "gender ": "str", "name":
"str", "place_of_birth ": "str"

}
}

],
"relations ": [

{
"label": "basedIn",
"subj_label ": "Company",
"obj_label ": "Country",
"properties ": {}

},
{

"label": "foundedBy",
"subj_label ": "Company",
"obj_label ": "Person",
"properties ": {}

},
{

"label": "hasBoardMember",
"subj_label ": "Company",
"obj_label ": "Person",
"properties ": {

"end_year ": "int", "start_year ": "int"
}

},
{

"label": "hasCEO",
"subj_label ": "Company",
"obj_label ": "Person",
"properties ": {

"end_year ": "int", "start_year ": "int"
}

},
{

"label": "operatesIn",
"subj_label ": "Company",
"obj_label ": "Industry",
"properties ": {}

},
{

"label": "subsidiaryOf",
"subj_label ": "Company",
"obj_label ": "Company",
"properties ": {}

}
]

}

Question: Provide the names of individuals who have served as board members for companies based in Russia , along with the
count of such companies for each person.

Cypher:

Table 13: A sample text-to-Cypher prompt used in experiments.

8957



Error Category Question Ground-truth Cypher Predicted Cypher

Syntax Error
The Cypher is not executable.

What are the names and
head coaches of teams that
have used the Toyota Coli-
seum as their home venue
at some point? (nba)

M A T C H (n:Team)-[r0:hasHomeVenue]->
(m0:Venue {name: 'Toyota

Coliseum '})
W I T H D I S T I N C T n
R E T U R N n.name , n.head_coach

M A T C H (t:Team)-
[: hasHomeVenue {start_year: start ,

end_year: e n d }]->
(v:Venue {name: 'Toyota Coliseum '})
R E T U R N D I S T I N C T t.name ,

t.head_coach

Wrong Ent/Rel/Property type
The Cypher uses a valid but not in-
tended entity/relation/property type.

What is the name of the
movie from the same coun-
try where The Fighter was
released, which has the
highest global box office
earnings? (movie)

M A T C H (n:Movie)-
[r0:originatesFrom]->
(m0:Country)<-[r1:releasedIn]-
(m1:Movie {name: 'The

Fighter '})
W I T H D I S T I N C T n R E T U R N n.name
O R D E R BY n.global_box_office_usd

D E S C L I M I T 1

M A T C H (m:Movie) -[: releasedIn]->
(c:Country) <-[:releasedIn]-
(f:Movie {name: 'The

Fighter '})
R E T U R N m.name
O R D E R BY m.global_box_office_usd

D E S C L I M I T 1

Reversed Direction
A relation is used in the opposite
direction.

What is the name of the sub-
sidiary of The Coca-Cola
Company that was launched
most recently? (company)

M A T C H

(n:Company)-[r0:subsidiaryOf]->
(m0:Company {name: 'The

Coca -Cola Company '})
W I T H D I S T I N C T n R E T U R N n.name
O R D E R BY n.launch_year D E S C L I M I T 1

M A T C H (parent:Company {name: 'The
Coca -Cola Company '})

-[: subsidiaryOf]->(subsidiary:Company)
R E T U R N subsidiary.name O R D E R BY

subsidiary.launch_year D E S C

L I M I T 1

Entity Linking
An entity name in the Cypher does
not match the name of the intended
entity in the database.

Which ocean, the Atlantic
or the Arctic, has a greater
maximum vertical depth?
(geography)

M A T C H (n:Ocean {name: 'Atlantic
Ocean '}),

(m0:Ocean {name: 'Arctic
Ocean '})

R E T U R N C A S E W H E N

n.max_vertical_depth_m >
m0.max_vertical_depth_m T H E N

n.name E L S E m0.name E N D AS

answer

M A T C H (o:Ocean) W H E R E o.name IN

[ ' Atlantic ', 'Arctic ']
R E T U R N o.name
O R D E R BY o.max_vertical_depth_m

D E S C L I M I T 1

Schema violation
The MATCH pattern does not con-
form to the graph schema (aside
from reversed relations). For exam-
ple, the Cypher contains a halluci-
nated entity/relation/property type,
or a relation that is invalid between
its subject and object.

What are the names of film
series that include movies
originating from the Czech
Republic? (movie)

M A T C H (n:FilmSeries)<-
[r0:partOfSeries ]-(m0:Movie)-
[r1:originatesFrom]->

(m1:Country {name: 'Czech
Republic '})

W I T H D I S T I N C T n
R E T U R N n.name

M A T C H (m:Movie) -[: originatesFrom]->
(c:Country {name: 'Czech

Republic '})-
[: partOfSeries]->(fs:FilmSeries)

R E T U R N D I S T I N C T fs.name

Pattern Not Aligned with
Question
The MATCH pattern conforms to
the graph schema, but does not align
with the question.

What are the names of
aviation accidents that ei-
ther departed from Aeropar-
que Jorge Newbery or
were headed to Ingeniero
Aeronáutico Ambrosio L.V.
Taravella International Air-
port? (flight accident)

C A L L { M A T C H (n:FlightAccident)-
[r0:departsFrom]->(m0:Airport
{name: ' Aeroparque Jorge

Newbery '}) R E T U R N n, m0 as m
U N I O N M A T C H (n:FlightAccident)-
[r1:destinedFor]->(m1:Airport
{name: ' Ingeniero Aeronáutico

Ambrosio L.V. Taravella
International Airport '})

R E T U R N n, m1 as m }
W I T H D I S T I N C T n R E T U R N n.name

M A T C H (fa:FlightAccident)-
[: departsFrom |: destinedFor]->
(a:Airport)

W H E R E a.name IN [ ' Aeroparque Jorge
Newbery ', ' Ingeniero
Aeronáutico Ambrosio L.V.
Taravella International
Airport ']

R E T U R N D I S T I N C T fa.name

Incorrect Grouping
The grouping operation in the
Cypher is incorrect.

Provide the names of all
lakes that are part of the
Congo basin, along with the
number of countries each
lake is located in. (geogra-
phy)

M A T C H (n:Lake)-[r1:partOf]->
(m1:DrainageBasin {name:

'Congo basin '})
O P T I O N A L M A T C H (n:Lake)-

[r0:locatedIn]->(m0:Country)
W I T H n, c o u n t ( D I S T I N C T m0) AS num
R E T U R N n.name , num

M A T C H (l:Lake) -[:partOf]->
(d:DrainageBasin {name:

'Congo '}),
(l) -[:locatedIn]->(c:Country)

R E T U R N l.name AS lakeName ,
c o u n t ( D I S T I N C T c) AS

numberOfCountries

Incorrect Filtering
The filtering operation in the Cypher
is incorrect.

What are the names of
lakes situated in countries
through which the Natara
River flows, with an area
of less than 390,000 square
kilometers? (geography)

M A T C H (n:Lake)-[r0:locatedIn]->
(m0:Country)<-[r1:flowsThrough]-
(m1:River {name: 'Natara '})

W I T H D I S T I N C T n
W H E R E n.area_km2 < 390000
R E T U R N n.name

M A T C H (r:River {name: 'Natara '})-
[: flowsThrough]->(c:Country),
(c) -[:locatedIn]->(co:Continent),
(r) -[:flowsInto]->(l:Lake)

W H E R E c.area_km2 < 390000
R E T U R N D I S T I N C T l.name

Results Not Aligned with
Question
The RETURN clause does not align
with the question, resulting in out-
puts that do not match the intended
results of the query.

What are the unique coun-
tries of citizenship for char-
acters who have a father?
(fictional character)

M A T C H

(n: C h a r a c t e r )-[r0:hasFather]->
(m0: C h a r a c t e r )

W I T H D I S T I N C T n U N W I N D

n.country_of_citizenship AS prop
R E T U R N D I S T I N C T prop

M A T C H (c: C h a r a c t e r ) -[:hasFather]->
(: C h a r a c t e r )

R E T U R N D I S T I N C T

c.country_of_citizenship AS

countries

Incorrect Deduplication
The Cypher execution results con-
tain the same set of entries as the
ground truth, but include entries that
should be deduplicated, or missing
entries that should be duplicated.

What are the names of
mountains that are part of
the Andes mountain range?
(geography)

M A T C H (n:Mountain)-[r0:partOf]->
(m0:MountainRange {name:

'Andes '})
W I T H D I S T I N C T n
R E T U R N n.name

M A T C H (m:Mountain) -[:partOf]->
(mr:MountainRange {name:

'Andes '})
R E T U R N D I S T I N C T m.name

Table 14: Definitions and examples for the 10 text-to-Cypher error categories.

8958


