
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 8843–8869
July 27 - August 1, 2025 ©2025 Association for Computational Linguistics

Large Language and Reasoning Models are Shallow Disjunctive Reasoners

Irtaza Khalid1, Amir Masoud Nourollah1, Steven Schockaert1
1School of Computer Science and Informatics, Cardiff University, United Kingdom

{khalidmi,nourollaha,schockaerts1}@cardiff.ac.uk

Abstract

Large Language Models (LLMs) have been
found to struggle with systematic reasoning.
Even on tasks where they appear to perform
well, their performance often depends on short-
cuts, rather than on genuine reasoning abilities,
leading them to collapse on out-of-distribution
(OOD) examples. Post-training strategies
based on reinforcement learning and chain-of-
thought prompting have recently been hailed
as a step change. However, little is known
about the potential of the resulting “Large Rea-
soning Models” (LRMs) beyond maths and
programming-based problem solving, where
genuine OOD problems can be sparse. In this
paper, we focus on tasks that require system-
atic relational composition for qualitative spa-
tial and temporal reasoning. The setting al-
lows fine control over problem difficulty to
precisely measure OOD generalization. We
find that, zero-shot LRMs generally outperform
their LLM counterparts in single-path reason-
ing tasks but struggle in the multi-path setting.
Whilst showing comparatively better results,
fine-tuned LLMs are also not capable of multi-
path generalization. We also provide evidence
for the behavioral interpretation for this, i.e.,
that LRMs are shallow disjunctive reasoners.

1 Introduction

Large Language Models (LLMs) have shown re-
markable generalization abilities, being able to
learn from in-context demonstrations, and to gen-
eralize to unseen tasks in multi-task settings (Rad-
ford et al., 2019; Brown et al., 2020; Bubeck et al.,
2023), with abilities in mathematics and program-
ming that appear to go beyond the level of high-
school students (Guo et al., 2024; Jimenez et al.,
2024; OpenAI et al., 2025). Moreover, recent
advances in post-training based on reinforcement
learning have unlocked a further axis along which
the ability of LLMs can be improved, for easily ver-
ifiable analytical problems (such as mathematics

and programming) (Guo et al., 2025; Shao et al.,
2024; Sprague et al., 2024). The resulting models,
called Large Reasoning Models (LRMs), are then
encouraged to leverage chains-of-thought (CoT) or
thinking tokens (Wei et al., 2022) to search though
a solution space, which provably increases the com-
plexity of problems that can be tackled (Feng et al.,
2023), compared to standard LLM prompting.

Yet, a competing narrative is that current LLMs
are not, in fact, general-purpose reasoners and
rather rely on shallow pattern matching (Dziri et al.,
2023; McCoy et al., 2024; Nguyen, 2024) and
heuristics (Nikankin et al., 2024). There are recur-
ring issues, even with the latest LLMs and LRMs,
such as memorization of training data (Zhang et al.,
2024), the reversal curse (Berglund et al., 2024)
and an over-reliance on co-occurrence statistics
(Kang and Choi, 2023). This line of argument
is further bolstered by the risk that popular static
benchmarks, such as GSM8k and MMLU, may
have been included in training corpora (Zhang et al.,
2024; Oren et al., 2024). The potential for dataset
contamination is increasingly problematic, given
the scaling laws for memorization (Carlini et al.,
2023), and may explain why despite displaying eru-
dite behaviour, current models still fail at seemingly
basic tasks that are trivial for ordinary humans.

In this paper, we highlight the importance of
using benchmarks that require Systematic General-
ization (SG) for reliably evaluating the reasoning
capabilities of LLMs and LRMs. SG is the ability
of a model to solve test instances by composing
knowledge that was learned from multiple train-
ing instances (Hupkes et al., 2020), where the test
instances are systematically made larger than the
informationally complete training instances. Com-
posing atomic units into larger pieces for construct-
ing a solution to an arbitrarily large problem is an
essential ingredient for machines and humans to
generalize from a limited amount of data (Lake
et al., 2017). We specifically advocate the use

8843

of synthetic benchmarks, where the difficulty of
problem instances can be controlled along different
dimensions.

For the analysis in this paper, we leverage the
Spatial Temporal and Reasoning (STaR) bench-
mark (Khalid and Schockaert, 2025). Its problem
instances have a combinatorial structure, which
makes it straightforward to generate large num-
bers of previously unseen cases, and in particular
avoid issues of dataset contamination. The StaR
benchmark has proven challenging for state-of-the-
art neuro-symbolic reasoning methods (Minervini
et al., 2020; Cheng et al., 2023; Lu et al., 2022),
but has not yet been used for evaluating LLMs and
LRMs. It poses an interesting challenge, because
the disjunctive nature of the rules that govern the
reasoning problems means that the answer cannot
be obtained by a single derivation (i.e. a single
chain-of-thought) and essentially requires simu-
lating the algebraic closure algorithm (Renz and
Ligozat, 2005). Note, however, that these prob-
lems are computationally tractable (i.e. they can
be solved in polynomial time) and should thus, in
principle, be within the reach of LRMs. This is
fundamentally different from evaluating LRMs on
PSPACE-hard planning problems, where at best
strong heuristic approximations can be expected
(Valmeekam et al., 2024).

Our main finding is that many popular LLMs
and LRMs struggle on STaR but do reason beyond
random chance. We find that LRMs are remarkably
able to zero-shot exploit a trivial path heuristic. We
analyze the effects of increasing model size, fine-
tuning and CoT test-time compute on reasoning per-
formance and provide a behavioral interpretation
behind the reasoning abilities of models showing
that they shallowly simulate the algebraic closure
algorithm required for disjunctive reasoning.

2 Related Work

Spatial Reasoning The spatial reasoning capabil-
ities of LLMs have already been studied from vari-
ous angles. For instance, SPARTQA (Mirzaee et al.,
2021), StepGame (Shi et al., 2022) and RoomSpace
(Li et al., 2024b) are question answering datasets
which require the model to infer the relative posi-
tion of two objects based on a description of their
position relative to other objects. However, rather
than focusing on qualitative reasoning, these tasks
involve geometric computations, e.g. determining
if a given point belongs to some region or deter-

mining the regions through which a given trajec-
tory passes. Cohn and Blackwell (2024a) evaluate
whether LLMs can infer the composition of two
RCC-8 relations, when given a description of their
meaning, while Cohn and Blackwell (2024b) eval-
uate their commonsense understanding of cardinal
directions. Wang et al. (2024) consider spatial rea-
soning in a multi-modal setting.

Several authors have also tried to improve LLM
spatial reasoning. Li et al. (2024a) study the ef-
fectiveness of chain-of-thought (Wei et al., 2022)
and tree-of-thoughts (Yao et al., 2023) prompting.
They also show the effectiveness of using the LLM
for semantic parsing and leaving the reasoning to a
symbolic solver. Wu et al. (2024) improve chain-
of-thought methods for spatial reasoning, by gener-
ating a visualization after each inference step. In
multimodal settings, pre-training on synthetic data
is common. Interestingly, Tang et al. (2024) found
that by training the model on basic (visual) spatial
reasoning capabilities, the model also performs bet-
ter on out-of-distribution composite tasks, such as
finding the shortest path between two objects.

Systematic Generalization There is a plethora
of work on measuring Systematic Generalization
(SG) beyond relational reasoning, including SCAN
(Lake and Baroni, 2018) for RNNs (Schuster and
Paliwal, 1997), addition (Nye et al., 2021) and
LEGO (Zhang et al., 2023), for trainable trans-
formers (Vaswani, 2017). These works suggests
that transformers struggle with SG. The most pop-
ular benchmark for SG for relational reasoning is
CLUTRR Sinha et al. (2019), which involves pre-
dicting family relations. Zhu et al. (2024) evaluated
LLMs on this benchmark, showing that even mod-
ern LLMs with CoT prompting struggle with this
task. The problems we consider in this paper are
more challenging than those in CLUTRR, due to
the need for combining multiple reasoning paths.

Rule-based Reasoning with LLMs Sun et al.
(2024) studied the ability of LLMs to apply a given
rule, when provided as part of the prompt. In con-
trast to our experiments in this paper, they only
evaluated the application of a single rule, some of
which were complex (e.g. encoding the composi-
tion of a path of several relations). They found
chain-of-thought prompting to be largely ineffec-
tive, which appears to be related to the fact that
multi-hop reasoning was not required for their
benchmark. They also found evidence that mod-
els rely on prior knowledge about the considered

8844

1

Instruction (Q): You are a helpful assistant. Just answer the question as a single

integer. Given a consistent graph with edges comprising the 8 base relations, predict the

label of the target edge. More specifically, Given a data row delimited by a comma with

the following columns: `graph_edge_index`, `edge_labels`, `query_edge`, predict the label

of the `query_edge` as one of the 8 base relations as a power of 2 as defined above.

Composition Table (T): The following are the base elements of RCC-8: DC = 1 EC = 2 PO = 4

TPP = 8 ...

Graph Edge Index (E_i): "[(0, 1), (1, 2)]"

Edge labels (L_i): "['EC' 'NTPPI']"

Query Edge ((0, n_i)): "(0, 2)"

Figure 1: An illustration of the input representation to the language model which is prompted to respond (modulo
thinking tokens) with a single label for the query edge.

Figure 2: Illustration of the RCC-8 relations.

domains (e.g. the composition of family relations).

3 The STaR Problem

In each problem instance of STaR, we are given
a set of facts F , referring to a set of binary rela-
tionsR and a set of entities E . The set of relations
is fixed across problem instances, but the entities
are not. Each of the facts is an atom of the form
r(a, b), with r ∈ R and a, b ∈ E . The problems we
consider essentially require models to learn a set of
rules K, which they can then use to decide whether
a given atom r(a, b) can be inferred from the set
of facts F . To be successful, models must be capa-
ble of composing the learned rules in a systematic
way. In particular, most problem instances require
multiple rule applications to be chained, and the
number of such inference steps may be larger for
test examples than for training examples.

Disjunctive Rules Most reasoning benchmarks
focus on Horn rules of the following form (k ≥ 3):

r(X1, Xk)←
k−1∧

i=1

ri(Xi, Xi+1) (1)

where Xi are entity variables. Given a setK of such
rules, the main reasoning task of interest is typi-
cally to decide whether some hypothesis rℓ(e, f)
can be inferred from a set of facts F using the rules
in K. This can be decided by repeatedly selecting
facts r1(e1, e2), ..., rk−1(ek−1, ek) that match the
body of a rule of the form (1) in F and adding the
conclusion r(e1, ek) of that rule to F . This itera-
tive derivation of facts is well-aligned with the style
of reasoning that is enabled by chain-of-thought
prompting, which can partially explain the success
of such strategies for tasks that require simple log-
ical reasoning. However, in many domains, Horn
rules are not sufficient for capturing the required
knowledge. A more general approach is to focus
on disjunctive rules of the following form:

m∨

i=1

sl(X1, Xk)←
k−1∧

i=1

ri(Xi, Xi+1) (2)

Given such a rule and the facts
r1(e1, e2), ..., rk−1(ek−1, ek), then all we can infer
is that one of s1(e1, ek), ..., sm(e1, ek) must be
true. When reasoning with disjunctive rules, we
are typically also given a set of constraints, such
as:

⊥ ← r1(X,Y) ∧ r2(X,Y)

encoding that at most one of the facts
r1(e, f), r2(e, f) can be true for any entities
e, f . Reasoning with disjunctive rules is provably
more expressive, but computationally also more
expensive: while reasoning with Horn rules is

8845

possible in polynomial time, reasoning with
disjunctive rules and constraints is an NP-complete
problem. However, there are important special
cases where reasoning with disjunctive rules is still
possible in polynomial time. This is the case, in
particular, for many of the calculi that have been
proposed for qualitative reasoning about time and
space, such as the Interval Algebra (IA (Allen,
1983)) and the Region Connection Calculus (RCC8
(Randell et al., 1992)).1

StaR Benchmark STaR (Khalid and Schockaert,
2025) consists of spatial and temporal reasoning
problems. The spatial reasoning problems involve
reasoning in RCC-8 (Randell et al., 1992). This
calculus is defined using 8 relations, illustrated in
Fig. 2. The entities in this case represent spatial re-
gions. For instance, the fact ec(a, b) specifies that
the region a is adjacent (i.e. Externally Connected)
to the region b. Reasoning in RCC-8 is based on
two types of knowledge. First, we have the knowl-
edge that the relations are Jointly Exhaustive and
Pairwise Disjoint (JEPD), meaning that there is ex-
actly one of the eight relations that holds between
any two regions. Second, we have knowledge about
the composition of the eight relations. For instance,
knowing that ec(a, b) and po(b, c) hold, the rela-
tions that may hold between a and c are dc, ec, po,
tpp and ntpp. This knowledge can be encoded us-
ing a disjunctive rule. It is typically summarized in
a so-called composition table, which encodes the
compositions of all relations in a compact format.
The temporal instances in StaR involve reasoning
in IA (Allen, 1983). The overall structure of these
reasoning problems is similar as in RCC-8, but here
there is a set of 13 JEPD relations. The entities in
this case represent time intervals, and we have rela-
tions such as m(e, f), encoding that the end point
of e coincides with the starting point of f .

Each problem instance is formulated as a di-
rected labelled graph G, where the vertices rep-
resent entities and the edges are labelled with a
relation fromR, whereR is either the set of RCC-
8 relations or the set of IA relations. The goal is
to infer the relationship that holds between two
designated entities: a source entity s and a tail en-
tity t. The problem instances are constructed such
that there is a unique relation that can be inferred.
To find this relation, however, information from

1When the set F is allowed to contain disjunctions of facts,
then reasoning with these calculi is NP-complete. However,
since we only focus on the case where F is a set of facts,
reasoning for our purposes is tractable in these calculi.

Model Param. Quantization Reasoning

A B C

Sm
al

l Qwen-2.5 7B × × ✓ N/A

Qwen-2.5 (R) 7B × × ✓ ✓

Llama-3 8B × × ✓ N/A

Gemma-2 9B × × ✓ N/A

M
ed

iu
m Phi-4 14B × × ✓ N/A

Qwen-2.5 14B × × ✓ N/A

Qwen-2.5 (R) 14B × × ✓ ✓

Gemma-2 27B × × ✓ N/A

L
ar

ge

Llama-3.3 70B ✓ ✓ N/A N/A

Qwen-2.5 72B ✓ ✓ N/A N/A

o3-mini ? N/A N/A N/A ✓

Table 1: Model configurations for experimental settings
in 4. All the quantizations are four-bit. (R) denotes the
R1 distilled models (Guo et al., 2024).

multiple paths between s and t may need to be
combined. Each of these paths makes it possible to
infer a conclusion of the form r1(s, t)∨...∨rm(s, t).
In other words, each path allows us to eliminate
certain relationships as candidate answers, but we
may need to combine several paths to eliminate
all-but-one of the relations and thus obtain the an-
swer. The dataset is constructed with two levers
of complexity: b, the number of simple paths be-
tween the source and tail entity, and k, the length
of each simple path. In accordance with the focus
on SG, the training or fine-tuning data is comprised
of small problem instances, with k ∈ {2, 3, 4} and
b ∈ {1, 2, 3}. The test data contains instances with
k ∈ {2, . . . , 10} and b ∈ {1, 2, 3, 4}.

4 Experimental Setup

Input Representation In principle, the only con-
textual information needed to solve an instance
of STaR is the composition table. Khalid and
Schockaert (2025) considered to what extent neuro-
symbolic models were able to learn (and then sys-
tematically apply) this composition table from the
training data provided. Here, we focus on a simpler
setting, where we provide the composition table
as part of the prompt. Our main focus is thus on
whether LLMs and LRMs are able to follow the
instructions and apply the composition rules in a
systematic way. This allows us to evaluate mod-
els in a zero-shot fashion, or with a small number
of in-context demonstrations (as well as evaluat-

8846

2 3 4 5 6 7 8 9 100.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Ze
ro

-s
ho

t
b = 1

2 3 4 5 6 7 8 9 100.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0 b = 2

2 3 4 5 6 7 8 9 100.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0 b = 3

2 3 4 5 6 7 8 9 100.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0 b = 4

2 3 4 5 6 7 8 9 100.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Fe
w

-s
ho

t

2 3 4 5 6 7 8 9 100.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

2 3 4 5 6 7 8 9 100.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

2 3 4 5 6 7 8 9 100.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

2 3 4 5 6 7 8 9 100.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Fi
ne

-t
un

ed

2 3 4 5 6 7 8 9 100.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

2 3 4 5 6 7 8 9 100.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

2 3 4 5 6 7 8 9 100.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

k-hops

Ac
cu

ra
cy

Meta-Llama-3-8B-Instruct
Qwen2.5-7B-Instruct

gemma-2-9b-it
Qwen2.5-14B-Instruct

phi-4
gemma-2-27b-it

Llama-3.3-70B-Instruct
Qwen2.5-72B-Instruct

Figure 3: The results for the non-reasoning models on RCC-8 for the 3 settings (accuracy).

ing fine-tuned models which should in principle be
able to learn the composition table). We specify
the composition table using a compact integer en-
coding (using powers of two; see the appendix for
an example of the full prompt). The graph that de-
fines a given problem instance is similarly encoded
using integer labels. The model is furthermore
instructed to provide the answer using the same
integer encoding. This is illustrated in Fig. 1.

Evaluation Setup To evaluate the models, for
each combination of (k, b), we use a uniform sub-
sample of the full set of test problem instances for
RCC-8 and IA. For RCC-8, each of the eight re-
lations appears equally frequently as gold labels,
meaning that the performance of naive baselines
such as random guessing is at 1/8 = 0.125. Sim-
ilarly, the performance of naive baselines on IA
is at 1/13 ≈ 0.076. We evaluate 2 types of mod-
els, LLMs (instruction tuned) and LRMs, on 3 dis-
tinct settings: (A) Zero-shot, (B) Few-shot and
(C) Fine-tuned. Settings (A) and (B) evaluate the
model’s in-context learning and instruction follow-
ing abilities. For the few-shot experiments, we
provide 5 in-context demonstrations of the desired
input/output pairs. For the experiments with fine-
tuned models, we leverage the entire training set
comprising 57600 and 93400 instances for RCC-
8 and IA respectively. For testing, for settings
(A) and (B) we use 500 test sample instances for
RCC-8 and 100 for IA, for each combination of k
and b. We use 50 samples per (k, b) configuration

for setting (C) and the reasoning experiment. We
use the following models: Llama-3 and Llama-3.3
(Grattafiori et al., 2024), Qwen (Qwen et al., 2025),
Phi-4 (Abdin et al., 2024), Gemma-2 (Team et al.,
2024) o3-mini (OpenAI et al., 2025). The setup
is summarized in Table 1. Further implementation
details and data statistics are provided in App. B.

5 Results

Systematicity results are divided into two sections,
first focussing on the non-reasoning models in Sec-
tion 5.1 (i.e. the standard LLMs), and then on the
reasoning models in Section 5.2.

5.1 Non-reasoning Models

The results for RCC-8 are summarized in Figure 3
and for IA in Figure 4. Broadly, both of these are
similar. We therefore focus on RCC-8 below.

For the zero-shot experiments, all models per-
form close to random guessing for all but the
simplest problem instances. Somewhat better re-
sults are observed only when b ≤ 2 and k ≤ 4.
Qwen2.5-72B overall emerges as the strongest
model. Its results remain clearly above random
chance (although still very weak) for b = 1 and
k ≥ 5. For lower values of k, gemma-2-9b and
gemma-2-27b are the next best-peforming mod-
els. Interestingly, the much larger Llama-3.3-70B
model performs poorly for low values of k, but
performs the best for b = 2, k = 10, and similar to
Qwen2.5-72B for b = 1, k = 10.

8847

2 3 4 5 6 7 8 9 100.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Ze
ro

-s
ho

t
b = 1

2 3 4 5 6 7 8 9 100.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0 b = 2

2 3 4 5 6 7 8 9 100.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0 b = 3

2 3 4 5 6 7 8 9 100.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0 b = 4

2 3 4 5 6 7 8 9 100.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Fe
w

-s
ho

t

2 3 4 5 6 7 8 9 100.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

2 3 4 5 6 7 8 9 100.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

2 3 4 5 6 7 8 9 100.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

2 3 4 5 6 7 8 9 100.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Fi
ne

-t
un

ed

2 3 4 5 6 7 8 9 100.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

2 3 4 5 6 7 8 9 100.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

2 3 4 5 6 7 8 9 100.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

k-hops

Ac
cu

ra
cy

Meta-Llama-3-8B-Instruct
Qwen2.5-7B-Instruct

gemma-2-9b-it
Qwen2.5-14B-Instruct

phi-4
gemma-2-27b-it

Llama-3.3-70B-Instruct
Qwen2.5-72B-Instruct

Figure 4: The results for the non-reasoning models on IA for the 3 settings (accuracy).

The results for the few-shot experiments are sim-
ilar, with non-trivial performance only achieved for
k ≤ 3. Qwen2.5-72B performs consistently better
than in the zero-shot case. The most interesting
changes can be seen for b = 1, where some of the
smaller models now perform notably better, espe-
cially Qwen2.5-14B, gemma-2-9b and phi-4. Fi-
nally, the results for the fine-tuned models are much
better. We can see a noticeable performance gap,
with the Qwen models and gemma-2-27b clearly
outperforming the others. It is surprising to see that
the performance for b = 2, b = 3 and b = 4 is
similar, despite the latter setting being much harder.
We will come back to this point in Section 6. In
short, however, this is due to the fact that these
models have learned to reliably predict some of
the simplest relations, exploiting the trivial path
heurisitc. A path is trivial if there is a (s-t) path
between the source (s) and tail (t) entities that only
consists of eq and at most one other relation. Then
the solution is either the identity or that non-identity
relation. The ability of these models to discover
underlying principles, and reliably apply them in
OOD settings is remarkable but it is clear that they
are not capable of principled reasoning, as their
performance on the hardest relations remains poor.
The performance of all the considered models, even
the best-performing fine-tuned models, remains far
below that of state-of-the-art neuro-symbolic meth-
ods (Khalid and Schockaert, 2025), which achieve
near-perfect results on these problem instances, de-

Conf. o3-mini Qwen 7B Qwen 14B

(k, b) Acc F1 Acc F1 Acc. F1

R
C

C
-8

(9, 3) 0.30 0.24 0.12 0.07 0.06 0.05
(9, 2) 0.48 0.38 0.06 0.02 0.26 0.23
(9, 1) 0.90 0.85 0.08 0.07 0.20 0.15
(8, 4) 0.44 0.35 0.10 0.08 0.16 0.12
(8, 3) 0.56 0.52 0.12 0.11 0.14 0.10
(5, 2) 0.68 0.63 0.12 0.07 0.24 0.19

IA

(9, 3) 0.30 0.29 0.04 0.03 0.10 0.10
(9, 2) 0.44 0.42 0.06 0.04 0.22 0.18
(9, 1) 0.78 0.74 0.20 0.15 0.14 0.09
(8, 4) 0.36 0.30 0.04 0.06 0.12 0.07
(8, 3) 0.34 0.36 0.04 0.03 0.14 0.07
(5, 2) 0.56 0.52 0.04 0.03 0.18 0.11

Table 2: Zero-shot (setting (A)) results for the reasoning
models on the STaR benchmark. The Qwen models are
distilled R1 models which were run locally. The accura-
cies and macro F1 scores are reported for a sample of
test configurations due to API resource constraints.

spite having to learn the composition table from
training examples.

5.2 Reasoning Models

For the reasoning models, we focus on the zero-
shot evaluation setting. The results are summarized
in Table 2. Note that we only include results for a
sample of all (k, b) configurations due to the much
higher cost that is involved in using these models.

Compared to the non-reasoning models without
fine-tuning, the performance of o3-mini (OpenAI
et al., 2025) is remarkably strong. The setting with
b = 1 is intuitively well-aligned with the chain-of-

8848

Label Pr. Re. F1. Count

R
C

C
-8

DC 0.14 0.31 0.20 13
EC 0.43 0.25 0.32 12
PD 0.14 0.18 0.16 11
TPP 1.00 0.09 0.17 11
NTPP 0.00 0.00 0.00 17
TPPI 0.72 1.00 0.84 13
NTPPI 0.68 1.00 0.81 13

EQ 1.00 1.00 1.00 10

IA

= 0.14 0.83 0.24 6
< 0.00 0.00 0.00 4
> 0.00 0.00 0.00 9
d 1.00 0.10 0.18 10
di 0.00 0.00 0.00 9
o 1.00 0.57 0.73 7
oi 1.00 1.00 1.00 5
m 1.00 1.00 1.00 9
mi 1.00 0.67 0.80 6
s 1.00 1.00 1.00 9
si 1.00 1.00 1.00 8
f 1.00 0.83 0.91 6
fi 1.00 1.00 1.00 12

Table 3: Fine-grained breakdown of classification scores
for the k = 9, b = 2 dataset configuration for the fine-
tuned Qwen2.5-14B LLM. We sample 50 points ran-
domly from each STaR dataset.

thought process. Accordingly, we can see that the
model performs well for b = 1, even with k = 9,
achieving an accuracy of 0.9, which is substantially
higher than what any of the fine-tuned models has
achieved. However, for b ≥ 2 the results quickly
deteriorate. Interestingly, this behavior is qualita-
tively different from that of the fine-tuned models.
Where the fine-tuned models have learned to iden-
tify trivial path relations, o3-mini seems capable
of interpreting the composition table and system-
atically applying it to a single reasoning path (al-
though not with perfect accuracy, even for b = 1).
For b ≥ 2, the disjunctive nature of the reasoning
problem proves problematic, suggesting that the
model is limited in its capacity to generalize to
unseen reasoning tasks. For the distilled Deepseek-
R1 models (Guo et al., 2025), the results are below
random chance for all settings where b ≥ 2. For
k = 9 and b = 1, the results are above random
chance (except for Qwen 7B on RCC-8), but not
meaningfully better than the non-reasoning models
in the zero-shot setting.

6 Analysis

6.1 Fine-grained Classification Breakdown

In Section 5, we already saw that the behavior of
the fine-tuned LLMs, on the one hand, and o3-mini,
on the other hand, was qualitatively different. To

Label Pr. Re. F1. Count

R
C

C
-8

DC 0.69 0.90 0.78 10
EC 0.50 1.00 0.67 3
PD 0.43 0.27 0.33 11
TPP 0.33 0.44 0.38 9

NTPP 1.00 0.20 0.33 5
TPPI 0.00 0.00 0.00 2
NTPPI 0.50 0.25 0.33 4

EQ 0.75 0.50 0.60 6

IA

= 0.50 0.17 0.25 6
< 0.10 1.00 0.18 1
> 0.83 1.00 0.91 5
d 0.50 0.60 0.55 5
di 0.67 0.50 0.57 4
o 0.00 0.00 0.00 2
oi 0.75 1.00 0.86 3
m 1.00 0.50 0.67 4
mi 1.00 0.33 0.50 3
s 1.00 0.20 0.33 5
si 1.00 0.25 0.40 4
f 0.33 0.50 0.40 2
fi 1.00 0.17 0.29 6

Table 4: Fine-grained breakdown of classification scores
for the k = 9, b = 2 dataset configuration for the o3-
mini LRM. We sample 50 points randomly from each
STaR dataset.

further analyze this, Table 3 shows a breakdown
of the results per relation type, for one of the best-
performing fine-tuned models (Qwen2.5-14B). Ta-
ble 4 shows the same breakdown for o3-mini. In
both tables, we focus on the case where k = 9 and
b = 2. Focusing on Table 3 first, for RCC-8 we
can see that the fine-tuned Qwen2.5-14B model
achieves perfect results on eq, which can be ex-
plained by the fact that this relation can only be
predicted if there is a trivial (s-t) path. For ntppi
and tppi, the model was able to exploit a similar
insight. The performance on the other relations,
however, is much worse, although still better than
random chance (except for ntpp). For IA, we can
see a similar pattern. Some of the relations are
easier to predict, with the model achieving perfect
results on several relations: oi, m, s, si and fi. How-
ever, for other relations, the results are very poor.
This again shows that the model was able to learn
some “tricks” that allow it to reliably predict some
of the easier relations, even on out-of-distribution
settings, while at the same time failing to apply the
rules from the composition table in a systematic
way.

The results for o3-mini in Table 4 paint a dra-
matically different picture. First, note that o3-mini
does not achieve perfect results on any of the re-
lations. This shows that it was not able to lever-

8849

k = 9, b = 3 k = 9, b = 2 k = 9, b = 1 k = 8, b = 4 k = 8, b = 3 k = 5, b = 2 k = 5, b = 10

500

1000

1500

2000

2500

3000

3500
Ou

tp
ut

 To
ke

ns
 C

ou
nt

RCC8
Interval

Figure 5: The median number of output tokens with the
interquartile range for the Qwen 7B reasoning model
for the same dataset splits as in Table 2. The number of
maximum tokens was set to 8192.

age domain-specific insights (such as the idea that
eq can only be predicted if there is a chain of eq-
relations). On the other hand, the model achieves
non-trivial results for almost all the relations. This
suggests that the correct predictions are due to the
ability of the model to follow the instructions from
the composition table in a somewhat systematic,
albeit error-prone way.

6.2 CoT Analysis
Reasoning models can adapt the number of output
tokens, i.e. the amount of test-time compute, based
on the difficulty of a given problem instance. To
analyze this aspect, Figure 5 shows the number
of output tokens that were generated by the Qwen
7B reasoning model. Note that we cannot do this
analysis for o3-mini as the intermediate reasoning
process is hidden for this model. Counterintuitively,
the analysis in Figure 5 reveals that the number of
output tokens goes down, as the number of paths b
increases, for all the considered values of k. This
seems to suggest that the model is aware of its
limitations on these problem instances, giving up
the reasoning process more quickly. In contrast, we
can see that considerably more output tokens were
used for k = 9, b = 1 than for k = 5, b = 1, which
further supports our hypothesis that single-path
problem instances are more natural for chain-of-
thought based reasoning.

6.3 Shallow Algebraic Closure Algorithm
Simulation

To solve disjunctive reasoning, the model needs
to simulate a disjunctive reasoning algorithm, the
algebraic closure algorithm (ACA) (Renz and
Ligozat, 2005) where multiple possible solutions
are refined iteratively during graph traversal. ACA
is novel compared to reasoning algorithms for lin-
earizable computation graphs (Dziri et al., 2023) or
constraint satisfiability problems (Lin et al., 2025).

0.0 0.2 0.4 0.6 0.8 1.0
Fraction of s-t paths recovered from CoT

0

50

100

150

200

250

300

Nu
m

be
r o

f P
ro

bl
em

 in
st

an
ce

s Qwen-7B
Qwen-14B

Figure 6: Fraction of source-to-tail paths recovered from
the model’s CoT for IA.

Importantly, the intermediate nodes store partial
solutions that are atomic whereas for disjunctive
reasoning the nodes need to contain multiple possi-
ble solutions or sets.

ACA consists of 3 basic operations: relational
composition, union and intersection, where the last
two are operations on sets of possible relations. In
addition, graph traversal is necessary to find paths
between two nodes e.g. by simulating the Bellman-
Ford algorithm. Our findings show that reasoning
models are shallow ACA simulators by looking
at the trend in performance as a function of these
basic operations. All LRMs attempt to solve STaR-
type problems using path-based reasoning which
necessitates enumerating all possible paths between
the source and tail nodes in the query edge.

Firstly, we analyze the CoT of open LRMs to
quantify the fraction of unique source-to-tail (s-t)
paths that is recovered by the models. Figure 6
shows, for Qwen 7B and 14B models on IA, an
exponential decline in the coverage of paths per
problem instance, in spite of being alloted ample
CoT tokens (cf. App D for an example CoT and
the companion RCC-8 analysis). Manually inspect-
ing some CoT summaries from o3-mini (where
full CoT is inaccessible) confirms similar behav-
ior. This implies that the reasoning algorithms
cannot properly simulate graph traversal, in line
with search-related findings (Saparov et al., 2025).

Secondly, we quantify the number of inter-
sections required per STaR problem instance by
adding all in-degrees of a node in the graph minus 1.
This is a strong predictor of problem difficulty as it
directly quantifies its disjunctive multi-path nature.
A clear linear trend in the decline in performance
of o3-mini for RCC-8 and IA as a function of the
number of intersections is shown in Figure 7(a).
Union and composition operations are correlated

8850

0 10 20 30 40 50
Number of intersections

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

(a) o3 results breakdown

RCC-8, spearman's r: -0.65 pval: 2.68e-06
IA, spearman's r: -0.66 pval: 8.46e-06

0 50 100 150 200 250
total number of s-t paths

0.0

0.2

0.4

0.6

0.8

1.0

m
ea

na
cc

ur
ac

y
pe

r b
in

(b) RCC-8

0 50 100 150 200
total number of s-t paths

0.0

0.2

0.4

0.6

0.8

1.0 (c) Interval Algebra

non-trivial o3-mini
trivial o3-mini

non-trivial qwen-14B
trivial qwen-14B

non-trivial qwen-7B
trivial qwen-7B

Figure 7: LRMs are shallow Algebraic Closure Algorithm (ACA) simulators. (a) o3-mini’s performance on both
RCC-8 and IA datasets degrades approximately linearly as a function of the number of intersection operations in
a problem instance, which are required whenever the in-degree of a node in the graph is greater than 1. (b)-(c)
o3-mini, R1 distilled Qwen-7B and Qwen-14B noisily degrade in performance as the number of source-tail paths in
the problem instance increases. Performance scaling with model size is also observed. Remarkably, the models,
increasingly with size, zero-shot exploit the trivial path heuristic for solving STaR problems. Error bars are ±1σ.

and occur with each edge-wise composition in the
graph so it is harder to quantify their quality but
similar noisier trends are observed in App. C.2.

Thirdly, we confirm explicitly that all models
zero-shot exploit the trivial path heuristic to solve
problem instances that avoid a full computation.
From the CoTs, since all the models reason by con-
sidering full s-t paths but are unable to enumerate
them all, they are unable to always exploit this
heuristic, making use of it only when it is seen. It
is remarkable that LRMs are able to exploit this
heuristics, as they were not trained on RCC-8 or IA
problem instances (to the best of our knowledge).
There is a separation in performance with respect
to the presence of trivial paths in problem instances
for all reasoning models on RCC-8 and IA and is
shown in Figure 7(b)-(c). Moreover, performance
improvement with respect to size scaling is also
clearly observable.

7 Conclusions

We have studied the performance of recent LLMs
and so-called Large Reasoning Models (LRMs) on
a challenging benchmark involving qualitative spa-
tial and temporal reasoning problems. This analysis
allows us test the abilities of models on a differ-
ent style of reasoning than those that are typically
considered, and crucially, than those that are used
for training LRMs. The setting requires composing
relations, using rules that are specified in a compo-
sition table. A particular challenge arises because
multiple “reasoning paths” need to be combined to
arrive at the final answer, which is harder to capture

using a chain-of-thought process.

Several insights arise from our analysis. While
LLMs perform poorly in zero-shot and few-shot
settings, fine-tuned LLMs achieved notably better
results. However, further analysis shows that this
is because fine-tuned models achieve near-perfect
results on some of the easier test instances, i.e. re-
lations that can be predicted by relying on simple
rules and heuristics, rather than a systematic ap-
plication of the composition table. In particular,
these models still perform poorly on problem in-
stances that require multi-path reasoning. As far as
LRMs are concerned, o3-mini performs much bet-
ter than LLMs in zero-shot and few-shot settings,
but does not overall improve on the performance
of fine-tuned LLMs. Interestingly, the behavior of
the fine-tuned LLMs and o3-mini is qualitatively
different. Indeed, o3-mini seems to rely more on
an error-prone, but systematic application of the
rules from the composition table, achieving strong
results for problems involving only a single reason-
ing path. However, when multiple reasoning paths
need to be combined, its performance deteriorates
quickly. We further conduct a behavioral analysis
of how the LRMs perform and find that they are
shallow disjunctive reasoning algorithm simulators
due to their inability to properly simulate crucial
steps like graph traversal and intersection.

These results suggest that LRMs, despite demon-
strating improved reasoning, are still limited in
terms of their ability to generalize to previously
unseen reasoning tasks.

8851

Acknowledgments

This work was supported by the EPSRC grant
EP/W003309/1.

Limitations

The state-of-the-art in reasoning models is still
quickly changing, and any conclusions that can be
drawn from current models, such as o3-mini, may
quickly become obsolete as newer models are re-
leased. A key question, which remains unanswered,
is whether reasoning models can be designed that
generalize to previously unseen reasoning tasks.
Furthermore, while we have advocated the use of
temporal and spatial reasoning, further analysis
is needed to test the reasoning abilities of current
models on a broader range of problems, and to
better understand their failure modes more gener-
ally. In terms of the considered models, we have
focused our analysis on open-source models that
can be run locally (with the exception of o3-mini),
and quantization was used to make this possible. It
is possible that fine-tuning larger models may lead
to better results. Finally, only a limited set of (k, b)
configurations was used to evaluate the reasoning
models due to compute constraints.

References

Marah Abdin, Jyoti Aneja, Harkirat Behl, Sébastien
Bubeck, Ronen Eldan, Suriya Gunasekar, Michael
Harrison, Russell J. Hewett, Mojan Javaheripi, Piero
Kauffmann, James R. Lee, Yin Tat Lee, Yuanzhi Li,
Weishung Liu, Caio C. T. Mendes, Anh Nguyen, Eric
Price, Gustavo de Rosa, Olli Saarikivi, Adil Salim,
Shital Shah, Xin Wang, Rachel Ward, Yue Wu, Dingli
Yu, Cyril Zhang, and Yi Zhang. 2024. Phi-4 technical
report. Preprint, arXiv:2412.08905.

James F Allen. 1983. Maintaining knowledge about
temporal intervals. Communications of the ACM,
26(11):832–843.

Lukas Berglund, Meg Tong, Maximilian Kaufmann,
Mikita Balesni, Asa Cooper Stickland, Tomasz Ko-
rbak, and Owain Evans. 2024. The reversal curse:
LLMs trained on “a is b” fail to learn “b is a”. In
The Twelfth International Conference on Learning
Representations.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877–1901.

Sébastien Bubeck, Varun Chandrasekaran, Ronen El-
dan, Johannes Gehrke, Eric Horvitz, Ece Kamar,
Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lund-
berg, et al. 2023. Sparks of artificial general intelli-
gence: Early experiments with gpt-4. arXiv preprint
arXiv:2303.12712.

Nicholas Carlini, Daphne Ippolito, Matthew Jagielski,
Katherine Lee, Florian Tramer, and Chiyuan Zhang.
2023. Quantifying memorization across neural lan-
guage models. In The Eleventh International Confer-
ence on Learning Representations.

Kewei Cheng, Nesreen K. Ahmed, and Yizhou Sun.
2023. Neural compositional rule learning for knowl-
edge graph reasoning. In The Eleventh International
Conference on Learning Representations, ICLR 2023,
Kigali, Rwanda, May 1-5, 2023. OpenReview.net.

Anthony G. Cohn and Robert E. Blackwell. 2024a. Can
large language models reason about the region con-
nection calculus? CoRR, abs/2411.19589.

Anthony G. Cohn and Robert E. Blackwell. 2024b.
Evaluating the ability of large language models to
reason about cardinal directions (short paper). In
16th International Conference on Spatial Informa-
tion Theory, COSIT 2024, September 17-20, 2024,
Québec City, Canada, volume 315 of LIPIcs, pages
28:1–28:9. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik.

Michael Han Daniel Han and Unsloth team. 2023. Un-
sloth.

Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and
Christopher Ré. 2022. Flashattention: Fast and
memory-efficient exact attention with io-awareness.
Advances in Neural Information Processing Systems,
35:16344–16359.

Tim Dettmers, Mike Lewis, Sam Shleifer, and Luke
Zettlemoyer. 2021. 8-bit optimizers via block-wise
quantization. arXiv preprint arXiv:2110.02861.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and
Luke Zettlemoyer. 2024. Qlora: Efficient finetuning
of quantized llms. Advances in Neural Information
Processing Systems, 36.

Nouha Dziri, Ximing Lu, Melanie Sclar, Xiang Lorraine
Li, Liwei Jiang, Bill Yuchen Lin, Sean Welleck, Peter
West, Chandra Bhagavatula, Ronan Le Bras, Jena D.
Hwang, Soumya Sanyal, Xiang Ren, Allyson Et-
tinger, Zaid Harchaoui, and Yejin Choi. 2023. Faith
and fate: Limits of transformers on compositionality.
In Thirty-seventh Conference on Neural Information
Processing Systems.

Guhao Feng, Bohang Zhang, Yuntian Gu, Haotian Ye,
Di He, and Liwei Wang. 2023. Towards revealing
the mystery behind chain of thought: A theoretical
perspective. In Thirty-seventh Conference on Neural
Information Processing Systems.

8852

https://arxiv.org/abs/2412.08905
https://arxiv.org/abs/2412.08905
https://openreview.net/forum?id=GPKTIktA0k
https://openreview.net/forum?id=GPKTIktA0k
https://openreview.net/forum?id=TatRHT_1cK
https://openreview.net/forum?id=TatRHT_1cK
https://openreview.net/pdf?id=F8VKQyDgRVj
https://openreview.net/pdf?id=F8VKQyDgRVj
https://doi.org/10.48550/ARXIV.2411.19589
https://doi.org/10.48550/ARXIV.2411.19589
https://doi.org/10.48550/ARXIV.2411.19589
https://doi.org/10.4230/LIPICS.COSIT.2024.28
https://doi.org/10.4230/LIPICS.COSIT.2024.28
http://github.com/unslothai/unsloth
http://github.com/unslothai/unsloth
https://openreview.net/forum?id=Fkckkr3ya8
https://openreview.net/forum?id=Fkckkr3ya8
https://openreview.net/forum?id=qHrADgAdYu
https://openreview.net/forum?id=qHrADgAdYu
https://openreview.net/forum?id=qHrADgAdYu

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri,
Abhinav Pandey, Abhishek Kadian, Ahmad Al-
Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten,
and et al Alex Vaughan. 2024. The llama 3 herd of
models. Preprint, arXiv:2407.21783.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song,
Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma,
Peiyi Wang, Xiao Bi, et al. 2025. Deepseek-r1: In-
centivizing reasoning capability in llms via reinforce-
ment learning. arXiv preprint arXiv:2501.12948.

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie,
Kai Dong, Wentao Zhang, Guanting Chen, Xiao
Bi, Yu Wu, YK Li, et al. 2024. Deepseek-coder:
When the large language model meets programming–
the rise of code intelligence. arXiv preprint
arXiv:2401.14196.

Dieuwke Hupkes, Verna Dankers, Mathijs Mul, and Elia
Bruni. 2020. Compositionality decomposed: How
do neural networks generalise? Journal of Artificial
Intelligence Research, 67:757–795.

Carlos E Jimenez, John Yang, Alexander Wettig,
Shunyu Yao, Kexin Pei, Ofir Press, and Karthik R
Narasimhan. 2024. SWE-bench: Can language mod-
els resolve real-world github issues? In The Twelfth
International Conference on Learning Representa-
tions.

Cheongwoong Kang and Jaesik Choi. 2023. Impact
of co-occurrence on factual knowledge of large lan-
guage models. In Findings of the Association for
Computational Linguistics: EMNLP 2023, pages
7721–7735, Singapore. Association for Computa-
tional Linguistics.

Irtaza Khalid and Steven Schockaert. 2025. Systematic
relational reasoning with epistemic graph neural net-
works. In The Thirteenth International Conference
on Learning Representations.

Diederik P. Kingma and Jimmy Ba. 2017. Adam: A
method for stochastic optimization. ICLR.

Brenden Lake and Marco Baroni. 2018. Generalization
without systematicity: On the compositional skills
of sequence-to-sequence recurrent networks. In Pro-
ceedings of the 35th International Conference on
Machine Learning, volume 80 of Proceedings of Ma-
chine Learning Research, pages 2873–2882. PMLR.

Brenden M Lake, Tomer D Ullman, Joshua B Tenen-
baum, and Samuel J Gershman. 2017. Building ma-
chines that learn and think like people. Behavioral
and brain sciences, 40:e253.

Fangjun Li, David C. Hogg, and Anthony G. Cohn.
2024a. Advancing spatial reasoning in large lan-
guage models: An in-depth evaluation and enhance-
ment using the stepgame benchmark. In Thirty-
Eighth AAAI Conference on Artificial Intelligence,
AAAI 2024, Thirty-Sixth Conference on Innovative
Applications of Artificial Intelligence, IAAI 2024,
Fourteenth Symposium on Educational Advances

in Artificial Intelligence, EAAI 2014, February 20-
27, 2024, Vancouver, Canada, pages 18500–18507.
AAAI Press.

Fangjun Li, David C. Hogg, and Anthony G. Cohn.
2024b. Reframing spatial reasoning evaluation in
language models: A real-world simulation bench-
mark for qualitative reasoning. In Proceedings of
the Thirty-Third International Joint Conference on
Artificial Intelligence, IJCAI 2024, Jeju, South Korea,
August 3-9, 2024, pages 6342–6349. ijcai.org.

Bill Yuchen Lin, Ronan Le Bras, Kyle Richardson,
Ashish Sabharwal, Radha Poovendran, Peter Clark,
and Yejin Choi. 2025. Zebralogic: On the scaling
limits of llms for logical reasoning. arXiv preprint
arXiv:2502.01100.

Shengyao Lu, Bang Liu, Keith G. Mills, Shangling Jui,
and Di Niu. 2022. R5: rule discovery with reinforced
and recurrent relational reasoning. In The Tenth In-
ternational Conference on Learning Representations,
ICLR 2022, Virtual Event, April 25-29, 2022. Open-
Review.net.

R Thomas McCoy, Shunyu Yao, Dan Friedman,
Mathew D Hardy, and Thomas L Griffiths. 2024.
Embers of autoregression show how large language
models are shaped by the problem they are trained
to solve. Proceedings of the National Academy of
Sciences, 121(41):e2322420121.

Pasquale Minervini, Sebastian Riedel, Pontus Stenetorp,
Edward Grefenstette, and Tim Rocktäschel. 2020.
Learning reasoning strategies in end-to-end differ-
entiable proving. In Proceedings of the 37th Inter-
national Conference on Machine Learning, ICML
2020, 13-18 July 2020, Virtual Event, volume 119 of
Proceedings of Machine Learning Research, pages
6938–6949. PMLR.

Roshanak Mirzaee, Hossein Rajaby Faghihi, Qiang
Ning, and Parisa Kordjamshidi. 2021. SPARTQA:
A textual question answering benchmark for spatial
reasoning. In Proceedings of the 2021 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, pages 4582–4598, Online. Association for
Computational Linguistics.

Timothy Nguyen. 2024. Understanding transformers
via n-gram statistics. In The Thirty-eighth Annual
Conference on Neural Information Processing Sys-
tems.

Yaniv Nikankin, Anja Reusch, Aaron Mueller, and
Yonatan Belinkov. 2024. Arithmetic without algo-
rithms: Language models solve math with a bag of
heuristics. CoRR, abs/2410.21272.

Maxwell Nye, Anders Johan Andreassen, Guy Gur-Ari,
Henryk Michalewski, Jacob Austin, David Bieber,
David Dohan, Aitor Lewkowycz, Maarten Bosma,
David Luan, Charles Sutton, and Augustus Odena.
2021. Show your work: Scratchpads for interme-
diate computation with language models. Preprint,
arXiv:2112.00114.

8853

https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https://openreview.net/forum?id=VTF8yNQM66
https://openreview.net/forum?id=VTF8yNQM66
https://doi.org/10.18653/v1/2023.findings-emnlp.518
https://doi.org/10.18653/v1/2023.findings-emnlp.518
https://doi.org/10.18653/v1/2023.findings-emnlp.518
https://openreview.net/forum?id=qNp86ByQlN
https://openreview.net/forum?id=qNp86ByQlN
https://openreview.net/forum?id=qNp86ByQlN
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980
https://proceedings.mlr.press/v80/lake18a.html
https://proceedings.mlr.press/v80/lake18a.html
https://proceedings.mlr.press/v80/lake18a.html
https://doi.org/10.1609/AAAI.V38I17.29811
https://doi.org/10.1609/AAAI.V38I17.29811
https://doi.org/10.1609/AAAI.V38I17.29811
https://www.ijcai.org/proceedings/2024/701
https://www.ijcai.org/proceedings/2024/701
https://www.ijcai.org/proceedings/2024/701
https://openreview.net/forum?id=2eXhNpHeW6E
https://openreview.net/forum?id=2eXhNpHeW6E
http://proceedings.mlr.press/v119/minervini20a.html
http://proceedings.mlr.press/v119/minervini20a.html
https://doi.org/10.18653/v1/2021.naacl-main.364
https://doi.org/10.18653/v1/2021.naacl-main.364
https://doi.org/10.18653/v1/2021.naacl-main.364
https://openreview.net/forum?id=WCc440cUhX
https://openreview.net/forum?id=WCc440cUhX
https://doi.org/10.48550/ARXIV.2410.21272
https://doi.org/10.48550/ARXIV.2410.21272
https://doi.org/10.48550/ARXIV.2410.21272
https://arxiv.org/abs/2112.00114
https://arxiv.org/abs/2112.00114

OpenAI, :, Ahmed El-Kishky, Alexander Wei, Andre
Saraiva, Borys Minaev, Daniel Selsam, David Do-
han, Francis Song, Hunter Lightman, Ignasi Clav-
era, Jakub Pachocki, Jerry Tworek, Lorenz Kuhn,
Lukasz Kaiser, Mark Chen, Max Schwarzer, Mostafa
Rohaninejad, Nat McAleese, o3 contributors, Oleg
Mürk, Rhythm Garg, Rui Shu, Szymon Sidor, Vi-
neet Kosaraju, and Wenda Zhou. 2025. Competitive
programming with large reasoning models. Preprint,
arXiv:2502.06807.

Yonatan Oren, Nicole Meister, Niladri S. Chatterji,
Faisal Ladhak, and Tatsunori Hashimoto. 2024. Prov-
ing test set contamination in black-box language
models. In The Twelfth International Conference
on Learning Representations.

Qwen, :, An Yang, Baosong Yang, Beichen Zhang,
Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin,
Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Yang,
Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang,
Keming Lu, Keqin Bao, Kexin Yang, Le Yu, Mei Li,
Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji
Lin, Tianhao Li, Tianyi Tang, Tingyu Xia, Xingzhang
Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang
Zhang, Yu Wan, Yuqiong Liu, Zeyu Cui, Zhenru
Zhang, and Zihan Qiu. 2025. Qwen2.5 technical
report. Preprint, arXiv:2412.15115.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. 2019. Language
models are unsupervised multitask learners. OpenAI
blog, 1(8):9.

David A. Randell, Zhan Cui, and Anthony G. Cohn.
1992. A spatial logic based on regions and connec-
tion. In Proceedings of the 3rd International Confer-
ence on Principles of Knowledge Representation and
Reasoning (KR’92). Cambridge, MA, USA, October
25-29, 1992, pages 165–176. Morgan Kaufmann.

Jochen Renz and Gérard Ligozat. 2005. Weak compo-
sition for qualitative spatial and temporal reasoning.
In Principles and Practice of Constraint Program-
ming - CP 2005, 11th International Conference, CP
2005, Sitges, Spain, October 1-5, 2005, Proceedings,
volume 3709 of Lecture Notes in Computer Science,
pages 534–548. Springer.

Abulhair Saparov, Srushti Pawar, Shreyas Pimpal-
gaonkar, Nitish Joshi, Richard Yuanzhe Pang,
Vishakh Padmakumar, Seyed Mehran Kazemi, Na-
joung Kim, and He He. 2025. Transformers struggle
to learn to search. In The Thirteenth International
Conference on Learning Representations.

M. Schuster and K.K. Paliwal. 1997. Bidirectional re-
current neural networks. IEEE Transactions on Sig-
nal Processing, 45(11):2673–2681.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu,
Junxiao Song, Xiao Bi, Haowei Zhang, Mingchuan
Zhang, YK Li, Y Wu, et al. 2024. Deepseekmath:
Pushing the limits of mathematical reasoning in open
language models. arXiv preprint arXiv:2402.03300.

Zhengxiang Shi, Qiang Zhang, and Aldo Lipani. 2022.
Stepgame: A new benchmark for robust multi-hop
spatial reasoning in texts. In Thirty-Sixth AAAI Con-
ference on Artificial Intelligence, AAAI 2022, Thirty-
Fourth Conference on Innovative Applications of Ar-
tificial Intelligence, IAAI 2022, The Twelveth Sym-
posium on Educational Advances in Artificial In-
telligence, EAAI 2022 Virtual Event, February 22
- March 1, 2022, pages 11321–11329. AAAI Press.

Koustuv Sinha, Shagun Sodhani, Jin Dong, Joelle
Pineau, and William L. Hamilton. 2019. CLUTRR:
A diagnostic benchmark for inductive reasoning from
text. In Proceedings of the 2019 Conference on Em-
pirical Methods in Natural Language Processing and
the 9th International Joint Conference on Natural
Language Processing, EMNLP-IJCNLP 2019, Hong
Kong, China, November 3-7, 2019, pages 4505–4514.
Association for Computational Linguistics.

Zayne Sprague, Fangcong Yin, Juan Diego Rodriguez,
Dongwei Jiang, Manya Wadhwa, Prasann Singhal,
Xinyu Zhao, Xi Ye, Kyle Mahowald, and Greg
Durrett. 2024. To cot or not to cot? chain-of-
thought helps mainly on math and symbolic reason-
ing. Preprint, arXiv:2409.12183.

Wangtao Sun, Chenxiang Zhang, Xueyou Zhang,
Ziyang Huang, Haotian Xu, Pei Chen, Shizhu He,
Jun Zhao, and Kang Liu. 2024. Beyond instruction
following: Evaluating rule following of large lan-
guage models. CoRR, abs/2407.08440.

Yihong Tang, Ao Qu, Zhaokai Wang, Dingyi Zhuang,
Zhaofeng Wu, Wei Ma, Shenhao Wang, Yunhan
Zheng, Zhan Zhao, and Jinhua Zhao. 2024. Sparkle:
Mastering basic spatial capabilities in vision lan-
guage models elicits generalization to composite spa-
tial reasoning. CoRR, abs/2410.16162.

Gemma Team, Morgane Riviere, Shreya Pathak,
Pier Giuseppe Sessa, Cassidy Hardin, Surya Bhupati-
raju, Léonard Hussenot, Thomas Mesnard, Bobak
Shahriari, Alexandre Ramé, Johan Ferret, Peter Liu,
Pouya Tafti, Abe Friesen, Michelle Casbon, Sabela
Ramos, and et al Ravin Kumar. 2024. Gemma 2:
Improving open language models at a practical size.
Preprint, arXiv:2408.00118.

Karthik Valmeekam, Kaya Stechly, and Subbarao Kamb-
hampati. 2024. Llms still can’t plan; can lrms? A
preliminary evaluation of openai’s o1 on planbench.
CoRR, abs/2409.13373.

A Vaswani. 2017. Attention is all you need. Advances
in Neural Information Processing Systems.

Jiayu Wang, Yifei Ming, Zhenmei Shi, Vibhav Vineet,
Xin Wang, and Neel Joshi. 2024. Is A picture worth
A thousand words? delving into spatial reasoning for
vision language models. CoRR, abs/2406.14852.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Brian Ichter, Fei Xia, Ed H. Chi, Quoc V. Le,
and Denny Zhou. 2022. Chain-of-thought prompting

8854

https://arxiv.org/abs/2502.06807
https://arxiv.org/abs/2502.06807
https://openreview.net/forum?id=KS8mIvetg2
https://openreview.net/forum?id=KS8mIvetg2
https://openreview.net/forum?id=KS8mIvetg2
https://arxiv.org/abs/2412.15115
https://arxiv.org/abs/2412.15115
https://doi.org/10.1007/11564751_40
https://doi.org/10.1007/11564751_40
https://openreview.net/forum?id=9cQB1Hwrtw
https://openreview.net/forum?id=9cQB1Hwrtw
https://doi.org/10.1109/78.650093
https://doi.org/10.1109/78.650093
https://doi.org/10.1609/AAAI.V36I10.21383
https://doi.org/10.1609/AAAI.V36I10.21383
https://doi.org/10.18653/V1/D19-1458
https://doi.org/10.18653/V1/D19-1458
https://doi.org/10.18653/V1/D19-1458
https://arxiv.org/abs/2409.12183
https://arxiv.org/abs/2409.12183
https://arxiv.org/abs/2409.12183
https://doi.org/10.48550/ARXIV.2407.08440
https://doi.org/10.48550/ARXIV.2407.08440
https://doi.org/10.48550/ARXIV.2407.08440
https://doi.org/10.48550/ARXIV.2410.16162
https://doi.org/10.48550/ARXIV.2410.16162
https://doi.org/10.48550/ARXIV.2410.16162
https://doi.org/10.48550/ARXIV.2410.16162
https://arxiv.org/abs/2408.00118
https://arxiv.org/abs/2408.00118
https://doi.org/10.48550/ARXIV.2409.13373
https://doi.org/10.48550/ARXIV.2409.13373
https://doi.org/10.48550/ARXIV.2406.14852
https://doi.org/10.48550/ARXIV.2406.14852
https://doi.org/10.48550/ARXIV.2406.14852
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html

Figure 8: Illustration of the IA relations.

elicits reasoning in large language models. In Ad-
vances in Neural Information Processing Systems 35:
Annual Conference on Neural Information Process-
ing Systems 2022, NeurIPS 2022, New Orleans, LA,
USA, November 28 - December 9, 2022.

Thomas Wolf. 2020. Transformers: State-of-the-
art natural language processing. arXiv preprint
arXiv:1910.03771.

Wenshan Wu, Shaoguang Mao, Yadong Zhang, Yan Xia,
Li Dong, Lei Cui, and Furu Wei. 2024. Visualization-
of-thought elicits spatial reasoning in large language
models. CoRR, abs/2404.03622.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran,
Tom Griffiths, Yuan Cao, and Karthik Narasimhan.
2023. Tree of thoughts: Deliberate problem solving
with large language models. In Advances in Neural
Information Processing Systems 36: Annual Confer-
ence on Neural Information Processing Systems 2023,
NeurIPS 2023, New Orleans, LA, USA, December 10
- 16, 2023.

Hugh Zhang, Jeff Da, Dean Lee, Vaughn Robin-
son, Catherine Wu, William Song, Tiffany Zhao,
Pranav Vishnu Raja, Charlotte Zhuang, Dylan Z
Slack, Qin Lyu, Sean M. Hendryx, Russell Kaplan,
Michele Lunati, and Summer Yue. 2024. A careful
examination of large language model performance
on grade school arithmetic. In The Thirty-eight Con-
ference on Neural Information Processing Systems
Datasets and Benchmarks Track.

Yi Zhang, Arturs Backurs, Sébastien Bubeck, Ronen
Eldan, Suriya Gunasekar, and Tal Wagner. 2023. Un-
veiling transformers with lego: a synthetic reasoning
task. Preprint, arXiv:2206.04301.

Zhaocheng Zhu, Yuan Xue, Xinyun Chen, Denny Zhou,
Jian Tang, Dale Schuurmans, and Hanjun Dai. 2024.
Large language models can learn rules. Preprint,
arXiv:2310.07064.

A Details on RCC-8 and IA

Figure 8 provides an illustration of the 13 relations
of the interval algebra. The composition tables for
RCC-8 and IA are shown respectively in Tables

5 and 6. To illustrate how reasoning with these
calculi works, suppose we are given the following
facts:

ec(a, b) ntpp(b, c) po(a, d) ec(d, c)

Using the composition table, from ec(a, b) and
ntpp(b, c), we know that the following must hold:

po(a, c) ∨ tpp(a, c) ∨ ntpp(a, c)

Similarly, from po(a, d) and ec(d, c), we know that
the following must hold:

dc(a,c)∨ec(a,c)∨po(a,c)∨tppi(a,c)∨ntppi(a,c)

Since it is not possible for more than one relation
to hold between a and c, the only possibility is that
po(a, c) holds.

In general, sound and complete reasoning in
RCC-8 and IA is possible by using the algebraic
closure algorithm (for the case where the initial in-
formation does not contain any disjunctions). This
algorithm amounts to maintaining, for each pair of
entities, a set of possible relations. These sets are it-
eratively refined by applying composition rules, un-
til convergence. The algorithm runs in cubic time.
The problem instances in the StaR benchmark are
simpler than general RCC-8 and IA problems. For
these instances, it always suffices to consider the
paths between the designated entities h and t. Each
path gives rise to a set of candidate relations, and
the final answer is obtained by taking the intersec-
tion of these sets. The complexity of reasoning is
thus linear in the number of entities. This ensures
that the considered models should, in principle, be
powerful enough to solve the problem instances,
even for larger problems, and without needing an
excessive number of output tokens for the LRMs.

B Implementation Details

B.1 Compute resources
All relevant hyperparameters were tuned using grid
search, as detailed below. All experiments were
conducted using RTX 4090 and RTX 6000 Ada
NVIDIA GPUs. For the small models, the results
for all (k, b) configurations, for the zero-shot, few-
shot and fine-tuned settings, can be obtained in
around 6-8 hours per model. For the large 70B mod-
els at 4-bit quantization, with a smaller sample size
of 50 instances per (k, b) configuration, a single
full run (i.e. 24 (k, b) configurations) takes around
1 day. We use the unsloth library (Daniel Han and

8855

http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
https://doi.org/10.48550/ARXIV.2404.03622
https://doi.org/10.48550/ARXIV.2404.03622
https://doi.org/10.48550/ARXIV.2404.03622
http://papers.nips.cc/paper_files/paper/2023/hash/271db9922b8d1f4dd7aaef84ed5ac703-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/271db9922b8d1f4dd7aaef84ed5ac703-Abstract-Conference.html
https://openreview.net/forum?id=RJZRhMzZzH
https://openreview.net/forum?id=RJZRhMzZzH
https://openreview.net/forum?id=RJZRhMzZzH
https://arxiv.org/abs/2206.04301
https://arxiv.org/abs/2206.04301
https://arxiv.org/abs/2206.04301
https://arxiv.org/abs/2310.07064

dc ec po tpp ntpp tppi ntppi

dc R8
dc, ec, po,
tpp, ntpp

dc, ec, po,
tpp, ntpp

dc, ec, po,
tpp, ntpp

dc, ec, po, tpp,
ntpp

dc dc

ec
dc, ec, po,
tppi, ntppi

dc, ec, po,
tpp, tppi, eq

dc, ec, po,
tpp, ntpp

ec, po, tpp,
ntpp

po, tpp, ntpp dc, ec dc

po
dc, ec, po,
tppi, ntppi

dc, ec, po,
tppi, ntppi R8 po, tpp, ntpp po, tpp, ntpp dc, ec, po,

tppi, ntppi
dc, ec, po,
tppi, ntppi

tpp dc dc, ec dc, ec, po,
tpp, ntpp tpp, ntpp ntpp

dc, ec, po,
tpp, tppi, eq

dc, ec, po,
tppi, ntppi

ntpp dc dc
dc, ec, po,
tpp, ntpp ntpp ntpp

dc, ec, po,
tpp, ntpp R8

tppi
dc, ec, po,
tppi, ntppi

ec, po, tppi,
ntppi

po, tppi,
ntppi

po, eq, tpp,
tppi

po, tpp, ntpp tppi, ntppi ntppi

ntppi
dc, ec, po,
tppi, ntppi

po, tppi,
ntppi

po, tppi,
ntppi

po, tppi,
ntppi

po, tppi, tpp,
ntpp, ntppi, eq ntppi ntppi

Table 5: RCC-8 composition table (Randell et al., 1992), excluding the trivial composition with eq. We writeR8

for the trivial case, where the composition consists of all eight relations.

team, 2023) for fine-tuning all models with 4-bit
quantization and the transformers library for down-
loading the weights and running all the open-source
models locally (Wolf, 2020).

B.2 Hyper Parameters

We use the 8-bit quantized AdamW opti-
mizer (Dettmers et al., 2021; Kingma and Ba,
2017) for fine-tuning the models. We use the same
fine-tuning strategy and hyperparameters for all
the models that are trained locally. For inference,
the maximum output tokens for the non-reasoning
models is set to 256. For fine-tuning we use a learn-
ing rate of 2× 10−4 with a maximum step size of
60 and weight decay with a linear scheduler for all
the models. We use gradient accumulation with
steps 4 and only fine-tune for 1 epoch since further
training did not meaningfully improve the valida-
tion loss. To maximize GPU memory utilization
with respect to model size, we make use of Flash
attention (Dao et al., 2022) and quantized low rank
adaptors (Dettmers et al., 2024). The adaptors are
applied as Q, K, V, O, Gate, Up and Down projec-
tors with hidden dimension size of 128 for all small
and medium models and 64 for large models (the
latter only because 128 could not fit in memory on
the RTX 6000 Ada).

For the reasoning Qwen models in Table 2, we
set the maximum output tokens to 8192, and for
o3-mini this is set to 15000.

B.3 Data Statistics

The dataset statistics for the STaR benchmark for
the training and test sets are summarized in the
Table 7. These are respectively subsampled for
the experimental evaluations in the main text. All
random sampling is done with a global seed of 0
for reproducibility. Some example graphs gener-

ated via this procedure for the RCC-8 dataset are
displayed in Figure 14.

B.4 Prompts
The prompts used for non-fine tuning experiments
for RCC-8 are shown in Fig. 9 with mutatis mutan-
dis changes for IA and for IA for the instruction-
tuning setting in Fig. 10 with similar changes for
RCC-8. We experimented with textual graph la-
bels as opposed to integers in the prompt and the
requested output format but found the accuracy and
the adherence of the small models to be extremely
poor in this setting with very low accuracies.

C Additional Analysis

C.1 Fine-grained breakdowns
Conducting a fine-grained classification level anal-
ysis of o3-mini for the instances where it thought
for longer than 15000 tokens and responded with
nothing over all the reasoning datasets is shown in
figure 11. We find that o3-mini took unexpectedly
longer for the trivial relations such as =, and for
and fi for IA and po for RCC-8.

C.2 Shallow ACA simulation
We show the fraction of s-t paths recovered from
the CoT for the RCC-8 dataset in Figure 12. The
variation of o3-mini’s performance with respect to
the number of union operations is shown in Fig-
ure 13. We measure union indirectly by computing
the average over s-t paths of the cardinality (size)
of the final set of multiple possible relations after
all the chained relational compositions per path for
a single problem instance.

8856

Figure 9: The given prompt is for the inference RCC-8 dataset, while the Interval prompt for inference has a similar
structure but different base elements and composition table.

Input B.1: RCC8 Inference Prompt

System: You are a helpful assistant. Just answer the question as a single integer.

User: You are a qualitative spatial and temporal reasoning expert specializing in
RCC-8

The following are the base elements of RCC-8:

DC = 1
EC = 2
PO = 4
TPP = 8
NTPP = 16
TPPI = 32
NTPPI = 64
EQ = 128

The following is the composition table of RCC-8 as a JSON dictionary:
{(1, 1): [], (1, 2): [1, 2, 4, 8, 16], ..., (128, 64): [64], (128, 128):
[128]}

Now the question is: Given a consistent graph with edges comprising the 8
base relations, predict the label of the target edge. More specifically,
Given a data row delimited by a comma with the following columns:
`graph_edge_index`, `edge_labels`, `query_edge`, predict the label of the
`query_edge` as one of the 8 base relations as a power of 2 as defined above.

(The optional few-shot examples:
Example 1:
[(0, 1), (1, 2)], ['EQ', 'NTPPI'], (0, 2)
64

...

Example 5:
[(0, 1), (1, 2), (2, 3)], ['EQ', 'EQ', 'EC'], (0, 3)
2
Examples end here.
)

[(0, 1), (1, 4), (0, 2), (2, 4), (0, 3), (3, 4)],
['EQ', 'NTPPI', 'EQ', 'NTPPI', 'TPPI', 'NTPPI'], (0, 4)

8857

Figure 10: The given prompt is for the finetuining interval dataset, while the RCC-8 prompt for finetuning has a
similar structure but different base elements and composition table.

Input B.2: Interval Finetuning Prompt

Below is an instruction that describes a task, paired with an input that provides
further context. Write a response that appropriately completes the request.

Instruction:
You are a qualitative spatial and temporal reasoning expert specializing in
Interval Algebra.

The following are the base elements of Interval Algebra:

'=': 1
'<': 2
'>': 4
'd': 8
'di': 16
'o': 32
'oi': 64
'm': 128
'mi': 256
's': 512
'si': 1028
'f': 2048
'fi': 4096

The following is the composition table of RCC-8 as a JSON dictionary:
(eq, eq): [eq], (eq, lt): [lt],, ..., (fi, gt): [gt, oi, di, mi, si]}

Now the question is: Given a consistent graph with edges comprising the 8
base relations, predict the label of the target edge. More specifically,
Given a data row delimited by a comma with the following columns:
`graph_edge_index`, `edge_labels`, `query_edge`, predict the label of the
`query_edge` as one of the 8 base relations as a power of 2 as defined above.

Input:
[(0, 1), (1, 4), (0, 2), (2, 4), (0, 3), (3, 4)],
['m', '>', 'di', 'fi', 'di', 'oi'], (0, 4)

Response:
16

8858

= > d di o oi m mi s si f fi
0
2
4
6
8

10

In
te

rv
al

 W
ro

ng
s

DC EC PO TPP NTPP TPPI NTPPI EQ
Elements

0

5

10

15
RC

C-
8

W
ro

ng
s

Figure 11: Non-responses from o3 where it took longer than the maximum allotted number of tokens. Certain
classes are overrrepresented and for IA coincide with those that can easily predicted by leveraging heuristics based
on dataset construction constraints.

0.0 0.2 0.4 0.6 0.8 1.0
Fraction of s-t paths recovered from CoT

0

50

100

150

200

250

300

Nu
m

be
r o

f P
ro

bl
em

 in
st

an
ce

s Qwen-7B
Qwen-14B

Figure 12: Fraction of source-to-tail paths recovered from the model’s CoT for IA.

2 4 6 8 10 12
Union cardinality per s-t path

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

IA RCC-8

Figure 13: o3-mini performance as a function of union operations required per problem instance.

8859

< > d di o oi m mi s si f fi

< <
<, o,
m, d,
s

< <
<, o,
m, d,
s

<
<, o,
m, d,
s

< <
<, o,
m, d,
s

<

> >
>, oi,
mi, d,
f

>
>, oi,
mi, d,
f

>
>, oi,
mi, d,
f

>
>, oi,
mi, d,
f

> > >

d < > d
<, o,
m, d,
s

>, oi,
mi, d,
f

< > d
>, oi,
mi, d,
f

d
<, o,
m, d,
s

di
<, o,
m, di,
fi

>, oi,
di, mi,
si

o, oi,
d, s, f,
di, si,
fi, =

di
o, di,
fi

oi, di,
si

o, di,
fi

oi, di,
si

o, di,
fi

di
oi, di,
si

di

o <
>, oi,
di, mi,
si

o, d, s
<, o,
m, di,
fi

<, o,
m

o, oi,
d, s, f,
di, si,
fi, =

<
oi, di,
si

o
o, di,
fi

o, d, s <, o,
m

oi
<, o,
m, di,
fi

>
oi, d,
f

>, oi,
mi, di,
si

o, oi,
d, di,
s, si, f ,
fi, =

>, oi,
mi

o, di,
fi

>
oi, d,
f

oi, >,
mi

oi
oi, di,
si

m <
>, oi,
di, mi,
si

o, d, s < < o, d, s <
f, fi,
=

m m d, s, o <

mi
<, o,
m, di,
fi

>
oi, d,
f

>
oi, d,
f

>
s, si,
=

>
d, f,
oi

> mi mi

s < > d
<, o,
m, di,
fi

<, o,
m

oi, d,
f

< mi s
s, si,
=

d
<, m,
o

si
<, o,
m, di,
fi

>
oi, d,
f

di
o, di,
fi

oi
o, di,
fi

mi
s, si,
=

si oi di

f < > d
>, oi,
mi, di,
si

o, d, s >, oi,
mi

m > d
>, oi,
mi

f
f, fi,
=

fi <
>, oi,
di, mi,
si

o, d, s di o
oi, di,
si

m
si, oi,
di

o di
f, fi,
=

fi

Table 6: Allen’s interval algebra composition table (Allen, 1983), excluding the trivial composition with =.

Table 7: Data statistics of the STaR reasoning datasets. These are respectively subsampled for the experimental
valuations in the main text.

Dataset Training regime No. of relations # Train # Test per config. Test regime

RCC-8 b ∈ {1, 2, 3}, k ∈ {2, 3} 8 57,600 6,400 b ∈ {1, . . . , 4}, k ∈ {2, . . . , 10}
IA b ∈ {1, 2, 3}, k ∈ {2, 3} 13 93,400 9,300 b ∈ {1, . . . , 4}, k ∈ {2, . . . , 10}

8860

0

1

EQ

2

EC

EC

(a) k = 2, b = 1

0

1

EQ

3

TPPI 2

TPPI

TPPI PO

(b) k = 2, b = 2

0

1

EQ

4

TPP 2

TPP

3

TPP

TPP TPPI EQ

(c) k = 2, b = 3

0

1

EQ

4

NTPP2

EQ

3

EQ

NTPP

(d) k = 4, b = 1

0

1

EQ

7

TPP

4

EQ

2

EQ

3

EQ

TPP

5

EQ

6

TPP

EQ

(e) k = 4, b = 2

0

1

PO

10

EC

4

EQ

7

TPPI

2

EQ

3

EC

EQ

5

EC

6

EQ

EQ

8

EQ

9

EQ

DC

(f) k = 4, b = 3

0

1

EQ

2

EC

9

TPP

3

EQ

4

TPPI

5

EQ

6

TPPI

EC

7

TPP

8

TPP

EQ TPP

EQ

(g) k = 6, b = 1

0

1

NTPP

31

EC

10

EQ

22

EQ

2

DC

3

EC

4

TPPI

5

EQ

6

EC

7

PO

8

EQ

9

PO

TPP EQ

EC EC EC

11

EQ

12

TPPI

13

EQ

14

NTPPI

15

EQ

16

TPP

17

TPPI

18

TPP

19

EQ

20

TPP

21

EC

EQ NTPP EQ

EC NTPPI EC EC PO

23

EQ

24

EC

25

EQ

27

TPPI

29

TPPI

26

TPPI

EQ

28

EQ

PO

30

EQ

TPP

(h) k = 6, b = 3

Figure 14: Some graph instances for the RCC-8 dataset generated using the procedure described in (Khalid and
Schockaert, 2025). The target edge label between the source node and the tail node that needs to be predicted by the
model is indicated by the dotted line.

8861

D An example CoT for an RCC-8 problem instance from R1 distilled Qwen-14B

Chain-of-Thought

Okay , so I’m trying to figure out the label for the query edge (0, 20) in the
given graph. The graph has several edges with known labels , and I need to
use the RCC -8 composition table to determine the possible label for the
target edge.

First , let me list out the edges and their labels as provided:

1. (0,1) - EQ (128)
2. (1,4) - EQ (128)
3. (0,2) - NTPPI (64)
4. (2,4) - NTPP (16)
5. (0,3) - TPPI (32)
6. (3,4) - TPP (8)
7. (4,5) - EC (4)
8. (5 ,10) - EC (4)
9. (4,6) - EC (4)
10. (6,10) - TPP (8)
11. (4,7) - TPPI (32)
12. (7,10) - TPP (8)
13. (4,8) - EQ (128)
14. (8,10) - EQ (128)
15. (4,9) - NTPPI (64)
16. (9,10) - NTPP (16)
17. (10 ,11) - DC (1)
18. (11 ,16) - PO (2)
19. (10 ,12) - DC (1)
20. (12 ,16) - PO (2)
21. (10 ,13) - TPP (8)
22. (13 ,16) - EQ (128)
23. (10 ,14) - EQ (128)
24. (14 ,16) - DC (1)
25. (10 ,15) - NTPP (16)
26. (15 ,16) - NTPPI (64)
27. (16 ,17) - DC (1)
28. (17 ,18) - EQ (128)
29. (18 ,20) - EQ (128)
30. (17 ,19) - EQ (128)
31. (19 ,20) - EQ (128)

I need to find the label for edge (0,20). Let ’s see how 0 and 20 are connected
.

Looking at the graph , node 0 is connected to 1, 2, 3, and so on. Node 20 is
connected to 18 and 19, which are both connected to 17. Node 17 is
connected to 16 and 18. Node 16 is connected to 11, 12, 13, 14, 15, and
17.

So, the path from 0 to 20 could go through several nodes. Let ’s try to find
the shortest path or the most direct path.

One possible path is 0 -> 1 -> 4 -> 5 -> 10 -> 11 -> 16 -> 17 -> 18 -> 20.

Another path is 0 -> 2 -> 4 -> 5 -> 10 -> 11 -> 16 -> 17 -> 18 -> 20.

Alternatively , 0 -> 3 -> 4 -> 5 -> 10 -> 11 -> 16 -> 17 -> 18 -> 20.

I think the key is to find the composition of relations along a path from 0 to
20 and see what possible labels can result from the composition.

Let ’s take the path 0 -> 1 -> 4 -> 5 -> 10 -> 11 -> 16 -> 17 -> 18 -> 20.

Each edge has a label , and we can compose these labels step by step using the
composition table.

8862

Starting with the edge (0,1): EQ (128)
Then (1,4): EQ (128)
So, EQ composed with EQ. Looking at the composition table , (128 ,128) isn ’t

directly given , but I can check the entries. Wait , the composition table
is given as a dictionary where each key is a tuple (a, b), and the value
is a list of possible results.

Wait , no, actually , the composition table is for the base relations. Each
entry is (x, y) mapping to a list of possible z where x R y and y S z
implies x T z.

But maybe I’m overcomplicating. Alternatively , since each edge ’s label is a
base relation , we can compose them step by step.

Let me think of the composition as follows: each step , we take the current
relation and compose it with the next edge ’s relation.

Starting from 0 to 1: EQ (128)
Then 1 to 4: EQ (128)
So, EQ composed with EQ. Looking at the composition table , for (EQ, EQ), which

is (128 ,128), but the table is structured as (a, b) where a and b are the
labels. Wait , no, the composition table is for the base elements , not the
powers. Wait , the base elements are DC=1, EC=2, PO=4, etc. So, the labels
are powers of 2, and the composition table is for the base relations , not
the labels directly.

Wait , perhaps I should convert the labels to their base relation numbers first
.

EQ is 128, which is NTPPI (since NTPPI is 64, wait no, the base elements are:

DC = 1

EC = 2

PO = 4

TPP = 8

NTPP = 16

TPPI = 32

NTPPI = 64

EQ = 128

So, each label is one of these numbers. The composition table is given as a
dictionary where each key is (a, b), and the value is the list of possible
c such that a R b and b S c implies a T c.

But I’m not sure if I should compose the relations step by step or consider
the entire path.

Alternatively , perhaps I can find the relations between 0 and 20 through other
nodes.

Looking at the graph , 0 is connected to 1, 2, 3, and others. Let ’s see:

From 0 to 2: NTPPI (64)
From 2 to 4: NTPP (16)
From 4 to 5: EC (4)
From 5 to 10: EC (4)
From 10 to 11: DC (1)
From 11 to 16: PO (2)
From 16 to 17: DC (1)
From 17 to 18: EQ (128)

8863

From 18 to 20: EQ (128)

So, the path from 0 to 20 via 2 is:

0-2: 64 (NTPPI)
2-4: 16 (NTPP)
4-5:4 (EC)
5 -10:4 (EC)
10 -11:1 (DC)
11 -16:2 (PO)
16 -17:1 (DC)
17 -18:128 (EQ)
18 -20:128 (EQ)

Now , let ’s compose these step by step.

Start with 64 (NTPPI).

Then , compose with 16 (NTPP). So, (64 ,16). Looking at the composition table , I
need to find the entry for (NTPPI , NTPP). Wait , the table is given as a

dictionary with tuples of the label numbers. So , NTPPI is 64, NTPP is 16.

Looking at the composition table , the key (64 ,16) would be (64 ,16). But in the
given composition table , I don ’t see an entry for (64 ,16). Wait , let me

check the table:

Looking through the composition table entries , I see:

(64, 16): Not directly listed , but perhaps I can find it by checking the
entries.

Wait , the composition table is a dictionary where each key is (a, b), and the
value is the list of possible c’s.

Looking through the provided composition table , I don ’t see an entry for
(64 ,16). Hmm , that might be an issue. Alternatively , perhaps I should
consider that the composition of NTPPI (64) and NTPP (16) would result in
some relation.

Wait , maybe I should look for the entry (64 ,16). Let me scan the table:

Looking at the list , I see entries like (64 ,16): not present. Wait , perhaps I
should check all the entries.

Wait , the composition table is provided as a JSON dictionary , but in the user ’
s message , it’s a long list of tuples. Let me check if (64 ,16) is present.

Looking through the list:

Looking for (64 ,16). Scanning the list:

I see entries like (64 ,16) is not directly listed , but perhaps I can infer it
from other entries.

Alternatively , perhaps I should think in terms of the base relations and their
composition.

Wait , maybe I’m approaching this wrong. Let me try to compose the relations
step by step.

Starting with 0-2: 64 (NTPPI)

Then 2 -4:16 (NTPP)

So, NTPPI composed with NTPP. Let ’s look at the composition table for (64 ,16).
Wait , the table doesn ’t have this entry. Hmm.

8864

Alternatively , perhaps I should consider that NTPPI is 64, and NTPP is 16. The
composition of NTPPI and NTPP would be the result of 64 R 16, where R is

the relation between 64 and 16.

Wait , but in the composition table , each entry is (x, y) mapping to possible z
’s. So, to find what 64 R 16 can result in , I need to see if (64 ,16) is a
key in the composition table.

Looking through the provided composition table , I don ’t see (64 ,16) as a key.
The closest is (64 ,16) is not present. Hmm , that ’s a problem.

Wait , perhaps I should consider that the composition of NTPPI (64) and NTPP
(16) would result in some relation. Let me think about the possible
results.

Wait , perhaps I should look for the entry (64 ,16) in the composition table.
Since it’s not present , maybe the composition is empty , which would mean
that the path 0-2-4 is not possible. But that can ’t be right because the
graph is consistent.

Alternatively , maybe I’m misunderstanding the composition table. Let me check
the table again.

Looking at the composition table , the entries are:

For example , (1,1): [], (1,2): [1,2,4,8,16], etc.

So, each entry is (a, b) mapping to a list of possible c’s where a R b implies
a T c via b.

So, for (64 ,16), I need to find if there ’s an entry in the composition table
for (64 ,16). If not , perhaps it’s not directly composable , but maybe
through other steps.

Alternatively , perhaps I should consider that the composition of 64 (NTPPI)
and 16 (NTPP) would result in some relation , but since it’s not in the
table , maybe the only possible result is 64 (NTPPI) composed with 16 (NTPP
) would be NTPPI , but I’m not sure.

Alternatively , perhaps I should take a different path.

Another path from 0 to 20 is through node 3.

0 -3:32 (TPPI)
3-4:8 (TPP)
4-5:4 (EC)
5 -10:4 (EC)
10 -11:1 (DC)
11 -16:2 (PO)
16 -17:1 (DC)
17 -18:128 (EQ)
18 -20:128 (EQ)

So, composing these:

32 (TPPI) composed with 8 (TPP). Let ’s see (32 ,8) in the composition table.

Looking at the composition table , I see (32,8) is not directly listed , but
perhaps I can find it.

Wait , looking through the entries , I see (32,8) is not present. Hmm.

Alternatively , perhaps I should look for the entry (32,8). Since it’s not
present , maybe the composition is not possible , but that can ’t be right.

Alternatively , perhaps I should consider that the composition of TPPI (32) and
TPP (8) would result in something.

8865

Wait , in the composition table , I see (32 ,8) is not present , but perhaps I can
infer it from other entries.

Alternatively , maybe I should take another path.

Another path: 0 -1:128 (EQ)
1 -4:128 (EQ)
4-5:4 (EC)
5 -10:4 (EC)
10 -11:1 (DC)
11 -16:2 (PO)
16 -17:1 (DC)
17 -18:128 (EQ)
18 -20:128 (EQ)

So, starting with 0 -1:128 (EQ)
Then 1 -4:128 (EQ)
So, EQ composed with EQ. Looking at the composition table , (128 ,128) is not

directly listed , but perhaps I can find the result.

Wait , the composition table doesn ’t have (128 ,128) as a key. Hmm.

Alternatively , perhaps I should consider that EQ composed with EQ is EQ, so
128.

Then , 4-5:4 (EC)
So, EQ (128) composed with EC (4). Let ’s look for (128 ,4) in the composition

table.

Looking through the entries , I see (128 ,4) is not present. Hmm.

Alternatively , perhaps I should think that EQ composed with EC would result in
EC , but I’m not sure.

Alternatively , maybe I should consider that the composition of EQ and EC is EC
, so 4.

But I’m not sure. This is getting complicated.

Alternatively , perhaps I should consider that the query edge (0,20) is
connected through multiple paths , and I need to find a relation that is
consistent across all possible paths.

But this might take a lot of time. Alternatively , perhaps I can look for the
relations that are common in the paths.

Wait , another approach: since the graph is consistent , the label for (0,20)
must be such that all paths from 0 to 20 agree on the same label.

Alternatively , perhaps I can find the relations along the path and see what
the composition would be.

Let me take the path 0-1-4-5-10-11-16-17-18-20.

The relations are:

0 -1:128 (EQ)
1 -4:128 (EQ)
4-5:4 (EC)
5 -10:4 (EC)
10 -11:1 (DC)
11 -16:2 (PO)
16 -17:1 (DC)
17 -18:128 (EQ)
18 -20:128 (EQ)

Now , let ’s compose these step by step.

8866

Start with 128 (EQ).

Then , compose with 128 (EQ). Let ’s see what (128 ,128) gives. Since it’s not in
the table , perhaps the result is 128.

Then , compose with 4 (EC). So, (128 ,4). Looking for (128 ,4) in the composition
table. Not present. Hmm.

Alternatively , perhaps the composition of EQ (128) and EC (4) would result in
EC (4).

Then , compose with 4 (EC). So, 4 composed with 4 is (4,4). Looking at the
composition table , (4,4) is not present , but perhaps the result is 4.

Then , compose with 1 (DC). So, (4,1). Looking at the composition table , (4,1)
is present and the result is [1,2,4,32,64].

So, possible results are 1,2,4,32,64.

Then , compose with 2 (PO). So, for each possible result from the previous step
, we need to compose with 2.

Wait , this is getting too complicated. Maybe I should try a different approach
.

Alternatively , perhaps the query edge (0,20) is connected through multiple
paths , and the only consistent label is one that is possible in all paths.

Looking at the possible paths , the relations along the way include EQ, EC, DC,
PO , etc.

But I’m not making progress. Maybe I should look for the relations that are
common in the paths.

Alternatively , perhaps the label for (0,20) is EQ (128), as many edges along
the path are EQ.

But I’m not sure. Alternatively , perhaps I should consider that the
composition of all the relations along the path would result in EQ.

Wait , another idea: the path from 0 to 20 through 17-18-20 has EQ relations.
So , maybe the final composition would be EQ.

Alternatively , perhaps the label is EQ (128).

But I’m not certain. Alternatively , maybe it ’s DC (1), but that seems less
likely.

Wait , considering the path 0-1-4-5-10-11-16-17-18-20, the last few steps are
DC , PO, DC, EQ, EQ.

So, composing DC (1) with PO (2) gives (1,2) which from the composition table
is [1,2,4,8,16].

Then , compose with DC (1): So, for each possible result from (1,2), which is
[1,2,4,8,16], we compose with 1.

Looking at (x,1) where x is in [1,2,4,8,16], the results would be:

From the composition table:

(1,1): []
(2,1): [1,2,4,32,64]
(4,1): [1,2,4,32,64]
(8,1): [1]
(16 ,1): [1]

So, for each x in [1,2,4,8,16], (x,1) gives:

8867

1: []
2: [1,2,4,32,64]
4: [1,2,4,32,64]
8: [1]
16: [1]

So, the possible results are 1,2,4,32,64.

Then , compose with EQ (128) at 17 -18: So, for each possible result from the
previous step , we compose with 128.

Wait , but 17-18 is 128 (EQ). So, the previous step ’s result is composed with
128.

But I’m getting lost here.

Alternatively , perhaps the final composition would be EQ (128), as the last
step is EQ.

But I’m not sure. Alternatively , perhaps the label is EQ (128).

But I’m not certain. Maybe I should look for another approach.

Wait , considering that node 20 is connected to 18 and 19, which are both
connected to 17. 17 is connected to 16 and 18. 16 is connected to
11 ,12,13,14,15,17.

Looking at the edges from 16 to 17: DC (1).

From 17 to 18: EQ (128)
From 17 to 19: EQ (128)
From 18 to 20: EQ (128)
From 19 to 20: EQ (128)

So, the path from 16 to 20 is through 17-18 or 17-19, both with EQ.

So, the edge from 16 to 20 is through 17, which is DC (1) to 17, then EQ (128)
to 18 or 19, and then EQ (128) to 20.

So, the composition from 16 to 20 would be DC (1) composed with EQ (128)
composed with EQ (128).

So, first , (1 ,128): Looking at the composition table , (1 ,128) is not present ,
but perhaps the result is 1, as DC composed with EQ might be EQ.

Wait , but I’m not sure. Alternatively , perhaps the composition of DC (1) and
EQ (128) would result in EQ (128) , since DC is "disjoint" and EQ is "equal
", which might not make sense , but perhaps it’s possible.

Alternatively , perhaps the composition is 128.

Then , composing with another EQ (128) would give 128.

So, the result from 16 to 20 would be 128 (EQ).

Then , going back to 10 -11: DC (1)
11-16: PO (2)
So, DC (1) composed with PO (2). Looking at (1,2), which is [1,2,4,8,16].

Then , compose with the result from 16 to 20, which is 128.

Wait , but 16 to 20 is 128, so the path from 10 to 20 would be DC (1) composed
with PO (2) composed with 128.

So, first , (1,2) gives [1,2,4,8,16].

Then , each of these composed with 128.

8868

For each x in [1,2,4,8,16], (x,128) would be:

Looking at the composition table:

(1 ,128): Not present , but perhaps the result is 128.
(2 ,128): [2]
(4 ,128): [4]
(8 ,128): [8]
(16 ,128): [16]

So, the possible results would be 128, 2, 4, 8, 16.

Then , the next step is from 10 to 20, which would be the composition of DC (1)
, PO (2), and 128.

But I’m getting stuck here.

Alternatively , perhaps I should consider that the query edge (0,20) is
connected through multiple paths , and the only consistent label is EQ
(128), as many edges along the path are EQ.

Therefore , I think the label for the query edge (0 ,20) is EQ , which is 128.
</think >

The query edge (0,20) is determined by composing the relations along the path
from 0 to 20. After considering multiple paths and their compositions , the
most consistent result is EQ (128).

‘‘‘json
{"label": 128}
‘‘‘

8869

