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Abstract

Recently, language models (LMs) have pro-
duced excellent results in many natural lan-
guage processing (NLP) tasks. However, their
effectiveness is highly dependent on available
pre-training resources, which is particularly
challenging for low-resource languages such
as Sinhala. Furthermore, the scarcity of bench-
marks to evaluate LMs is also a major concern
for low-resource languages. In this paper, we
address these two challenges for Sinhala by
(i) collecting the largest monolingual corpus
for Sinhala, (ii) training multiple LMs on this
corpus and (iii) compiling the first Sinhala NLP
benchmark (SINHALA-GLUE) and evaluating
LMs on it. We show that the Sinhala LMs
trained in this paper outperform the popular
multilingual LMs, such as XLM-R and existing
Sinhala LMs in downstream NLP tasks. All
the trained LMs are publicly available. We also
make SINHALA-GLUE publicly available as
a public leaderboard, and we hope that it will
enable further advancements in developing and
evaluating LMs for Sinhala.

1 Introduction

The recent developments of language models
(LMs) have shown significant advancements in the
field of natural language processing (NLP) (De-
vlin et al., 2019) as they have produced state-of-
the-art results in many NLP tasks, outperforming
previous machine learning models such as LSTMs
(Lin et al., 2022). Various language understanding
benchmarks like GLUE (Wang et al., 2018) and
SUPERGLUE (Wang et al., 2019) have been cre-
ated to evaluate and compare these LMs. Success-
ful LMs have been deployed widely in NLP appli-
cations such as machine translation (Haddow et al.,
2022; Xu et al., 2024), chatbots (Adamopoulou and
Moussiades, 2020; Zheng et al., 2023), and writing
assistants (Min et al., 2023; Kobayashi et al., 2024),
which have gained significant popularity among the
general public (Yao et al., 2024).

Although LMs have attained notable success and
widespread popularity, their effectiveness largely
depends on access to language resources for model
pre-training (Shikali and Mokhosi, 2020). Multi-
lingual language models such as mBERT (Devlin
et al., 2019) and XLM-RoBERTa (Conneau et al.,
2020) have tried to address the resource-scarcity
of low-resource languages through techniques like
cross-lingual transfer learning (Artetxe et al., 2020).
However, due to the small data sizes of low-
resource languages, subword tokenisers trained
jointly on multiple languages tend to over-split
the tokens of such languages, and LMs are not
able to learn good quality representations of them
(Hangya et al., 2022; Wu and Dredze, 2020; Rust
et al., 2021). As a result, models trained exclu-
sively on a single language have demonstrated su-
perior performance on downstream tasks in the
corresponding language compared to their multilin-
gual counterparts (Straka et al., 2021). In response
to this limitation, the NLP community has released
numerous monolingual LMs tailored to individual
languages (Koutsikakis et al., 2020; Nguyen and
Tuan Nguyen, 2020; Cañete et al., 2022).

Sinhala, an Indo-Aryan language, is spoken by
more than 17 million people in Sri Lanka and
is recognised as one of the nation’s two official
languages. Predominantly, the Sinhalese commu-
nity, the largest ethnic group in Sri Lanka, con-
stitutes the bulk of Sinhala speakers. Despite its
significant number of users, Sinhala is relatively
under-resourced compared to other languages in
the region (De Silva, 2019). According to Joshi
et al. (2020), Sinhala is classified in the group of

‘Left-Behinds’; a group of languages that has been
largely neglected in the development of language
technologies. The authors conclude that lifting
such languages up in the digital space will be a
monumental, probably impossible effort due to the
severe scarcity of linguistic resources (Joshi et al.,
2020).
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While several multilingual language models,
such as XLM-RoBERTa (Conneau et al., 2020) and
info-XLM (Chi et al., 2021), support Sinhala, the
multilingual datasets used to train these models al-
locate only a modest share to Sinhala compared to
other languages (Wang et al., 2020). For instance,
OSCAR 23.01 (Abadji et al., 2022), which is used
to train these multilingual models, comprises just
2.6GB of Sinhala text, contributing to less than 1%
of the total dataset. A dedicated Sinhala BERT
model has also been developed (Dhananjaya et al.,
2022), but its training is constrained by the rela-
tively small size of the available Sinhala corpus.
As a result, its performance does not consistently
surpass that of multilingual LMs across various
Sinhala NLP tasks, as demonstrated in previous
studies (Dhananjaya et al., 2022; Ranasinghe et al.,
2024a; Hettiarachchi et al., 2024). These limita-
tions stem primarily from the scarcity of large-scale
Sinhala corpora for training.

Furthermore, as we mentioned before, there is a
significant research gap in the available benchmark-
ing datasets for Sinhala. Ranathunga and de Silva
(2022) report that only 1.14% of Sinhala NLP pa-
pers have released the relevant data sets in public
repositories. Therefore, a GLUE like benchmark is
crucial for Sinhala. This is also evident in Dhanan-
jaya et al. (2022), where the pre-trained Sinhala
BERT model is evaluated only on three text classi-
fication tasks.

In this paper, we address these research gaps in
Sinhala NLP with the following main contribu-
tions.

(i) We collect and release the largest monolin-
gual corpus for Sinhala, which can be used to train
Sinhala LMs.

(ii) We train three different monolingual pre-
trained transformer models on this corpus that
support Sinhala, amounting to the largest collection
of transformers available in Sinhala.

(iii) We compile the first language understand-
ing benchmark in Sinhala; SINHALA-GLUE
with nine NLP tasks. We evaluate the pre-
trained transformer models that we trained in (ii)
with the already available Sinhala transformer
models (SinBERT (Dhananjaya et al., 2022) and
multilingual LMs that support Sinhala, such
as XLM-RoBERTa (Conneau et al., 2020) and
Info-XLM (Chi et al., 2021). We show that the
models introduced in this paper outperform the
multilingual and previous Sinhala LMs.

2 Related Work

2.1 Sinhala Natural Language Processing

Sinhala is the native language of the Sinhalese peo-
ple, the largest ethnic group in Sri Lanka. It be-
longs to the vast Indo-European language family.
As we mentioned before, despite the large speaker
base, Sinhala remains a low-resource language in
the NLP world. The scarcity of annotated datasets
makes it particularly challenging to evaluate lan-
guage models effectively.

Addressing these gaps, multiple NLP datasets
have been released for Sinhala in the last few
years, including offensive language detection
(Ranasinghe et al., 2024a), sentiment analysis
(Ranathunga and Liyanage, 2021), headline gener-
ation (Hettiarachchi et al., 2024), machine transla-
tion (Pushpananda et al., 2024) and text summari-
sation (Hewapathirana et al., 2024). For a more
detailed survey, we refer the authors to De Silva
(2019), which has been updated frequently.

Several multilingual LMs, such as XLM-R, sup-
port Sinhala. However, due to Sinhala’s own
unique writing system derived from the Indian
Brahmi script (Bandara et al., 2012), the majority
of the subword tokenisers trained jointly in multi-
ple languages over-split Sinhala words (Velayuthan
and Sarveswaran, 2025). Therefore, multilingual
models provide sub-optimal results in some Sin-
hala NLP tasks (Shardlow et al., 2024). The lack of
an evaluation benchmark has made it challenging
to have broader conclusions.

As we mentioned before, a Sinhala BERT model
also exists (Dhananjaya et al., 2022), which has
been trained on a rather small corpus followed by a
limited evaluation. A few studies have highlighted
that multilingual models outperform the Sinhala
BERT model in several NLP tasks (Hettiarachchi
et al., 2024; Ranasinghe et al., 2024a).

2.2 NLU Benchmarks

The GLUE benchmark comprises 11 natural lan-
guage understanding (NLU) tasks, including se-
mantic textual similarity, natural language infer-
ence, and various classification challenges (Wang
et al., 2018). Subsequently, this benchmark was
expanded to include more advanced and complex
tasks in its SUPERGLUE version (Shavrina et al.,
2020). Both GLUE and SUPERGLUE are re-
stricted to English.

Several benchmarks have been introduced to sup-
port the development and evaluation of models in
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other languages. When they are categorised by the
language family, for the Sino-Tibetan family, both
CLUE (Xu et al., 2020) and CUGE (Yao et al.,
2021) focus on Chinese. In the Romance family,
benchmarks have been developed for French (Le
et al., 2020), Italian (Basile et al., 2023) and Cata-
lan (Armengol-Estapé et al., 2021). The Balto-
Slavic group, benchmarks includes Russian (Shav-
rina et al., 2020), Bulgarian (Hardalov et al., 2023)
and Slovenian (Žagar and Robnik-Šikonja, 2022).
The Altic language group includes Korean (Park
et al., 2021), while the Iranian family includes Per-
sian (Khashabi et al., 2021).

Recently, several multilingual benchmarks have
also been developed. Liang et al. (2020) proposed
XGLUE, a benchmark for 19 languages that covers
NLP tasks such as named entity recognition, news
classification and headline generation. Hu et al.
(2020) collected a cross-lingual evaluation dataset
in 40 languages, later extended with 10 additional
(Ruder et al., 2021), including tasks similar to the
SUPERGLUE setup including token classification,
question answering and textual similarity. How-
ever, none of these benchmarks include Sinhala and
therefore, it has been challenging to evaluate lan-
guage models in Sinhala. In this paper, we address
this challenge by introducing SINHALA-GLUE.

3 SINHALA-Corpus1.5B: Sinhala
Monolingual Corpus

We gathered Sinhala textual data from diverse
sources, including web articles, news media, social
media, books and government documents, utilising
six openly available datasets to create the Sinhala
monolingual corpus. As summarised in Table 1, it
contains over 1.5 billion tokens across more than
3.5 million documents.

HPLT 2.0 (de Gibert et al., 2024) is a multilin-
gual corpus extracted from the Internet Archive and
Common Crawl, covering 75 languages, including
Sinhala. (License: CC0)

FineWeb2 (Penedo et al., 2024) is the upgraded
version of the FineWeb dataset, including text data
for over 1,000 languages, collected from 96 Com-
monCrawl snapshots from 2013 to 2024. It in-
cludes a Sinhala subset, ranking among the top 80
languages by data size. (License: ODC-By 1.0)

NSina (Hettiarachchi et al., 2024) is a compre-
hensive collection of news articles from ten Sinhala
news websites popular in Sri Lanka. These sources

encompass both pro- and anti-government news
outlets, ensuring a balanced representation. (Li-
cense: CC BY-NC-SA 4.0)

FacebookDecadeCorpora (FDC) (Wijeratne and
de Silva, 2020) is a social media corpus extracted
from Sri Lankan Facebook pages, spanning 2010
to 2020. It covers data from diverse categories,
including politics, media and celebrities. (License:
CC BY 4.0)

SinMin (Upeksha et al., 2015) is an extensive
Sinhala corpus composed of modern and old texts
of different genres and styles. Its primary sources
include online newspapers and magazines, school
textbooks, Mahawansa (the historical chronicle of
Sri Lanka), Sinhala Wikipedia, Sri Lankan gazette
and Sinhala subtitles. (License: CC BY)

SemiSOLD (Ranasinghe et al., 2024a) is a large
collection of Sinhala tweets, initially extracted to
create an offensive language detection dataset for
Sinhala. The tweets were labelled for offensive
content, and only the non-offensive ones were in-
cluded in the Sinhala corpus. (License: CC BY
4.0)

Dataset #Tokens #Documents Disk Size

HPLT 2.0 934,236,876 1,152,703 11.71GB
FineWeb2 434,560,077 1,077,501 1.74GB
NSina 94,394,362 486,932 1.87GB
FDC 5,402,768 364,402 142MB
SinMin 104,428,504 313,910 1.85GB
SemiSOLD 1,938,756 107,210 48.5MB

Table 1: Statistics of SINHALA-Corpus1.5B. Any con-
tinuous sequence of non-whitespace characters is con-
sidered as a token.

4 Sinhala Encoder-only Language Models

Since the introduction of BERT (Devlin et al.,
2019), encoder-only transformer-based LMs have
dominated most applications in NLP. Despite the
rise of large language models (LLMs) such as
GPT, encoder-only LMs remain widely used and
continue to outperform LLMs in various non-
generative NLP tasks, such as text classification
(Zampieri et al., 2023; Krugmann and Hartmann,
2024) and sequence labelling (Zaratiana et al.,
2024). Therefore, in this research, we focus on
building Sinhala encoder-only transformer models.

We train three popular transformer architectures
on the corpus we compiled in §3; BERT (Devlin
et al., 2019) (Raja), RoBERTa (Liu, 2019) (Koliya)
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# Task |Train| |Test| Splits Reference Metric Domain

Text Classification

1 SA 7320 1820  Ranathunga and Liyanage (2021) Macro F1 News comments
2 OLD 7500 2500 Ranasinghe et al. (2024a) Macro F1 Twitter
3 NHP 7870 1970 New Macro F1 News

Text Regression

4 STS 5000 100 Kadupitiya et al. (2016) Spear. Corr. SICK

Token Classification

5 NER 4000 1000  Manamini et al. (2016) Macro F1 News
6 OTD 7500 2500 Ranasinghe et al. (2024a) Macro F1 Twitter

Table 2: Summary of the tasks included in SINHALA-GLUE. The numbers in the |Train| and |Test| columns are in
terms of examples. The Metric column shows the primary metric used for evaluation. The Domain is based on the
source of the texts.  in Splits column shows new splits created as the splits are not available.  is a redefined task.
NHP task is a new task introduced in this paper.

and Electra (Clark et al., 2020) (Mahasen), with
the following configurations.
• We select a vocabulary of 64,000 to train the
tokeniser. For each model, we train its associated
tokeniser from scratch, available through the Hug-
gingFace transformers package.
• We use a maximum sequence length of 512 and
a batch size of 64. For the remaining hyperpa-
rameters, we used the same given in their English
models.
• We train our models on a single NVidia L40 48G
GPU. The training took approximately 18 days for
each model.

5 Constructing SINHALA-GLUE:
Sinhala NLU Benchmark

5.1 SINHALA-GLUE

Table 2 shows the six datasets that are included in
SINHALA-GLUE. Table 3 shows examples from
each dataset and their corresponding labels. We
also show the translations by a native Sinhala
speaker in the same table.

5.1.1 Sentiment Analysis (SA)
This dataset released by Ranathunga and Liyanage
(2021) focuses on fine-grained sentiment analysis
of news comments. The comments were extracted
from the online version of Lankadeepa, a local
newspaper. All the comments are manually anno-
tated for three classes: ‘positive’, ‘negative’ and

‘neutral’.
Ranathunga and Liyanage (2021) originally de-

fined the task as predicting sentiment based on both
the news comment and its associated article; how-

ever, they used the comment itself as the only input
to their machine learning models. After reviewing
the dataset, we observed that many comments are
highly contextual and closely related to the corre-
sponding news articles. Therefore, we redefined
the models to predict sentiment based on both the
news comment and its associated article.

5.1.2 Offensive Language Detection (OLD)
This dataset released by Ranasinghe et al. (2024a),
also known as SOLD, contains 10,000 Tweets an-
notated as ‘offensive’ or ‘not offensive’. SOLD
was part of HASOC 2023 - Hate Speech and Of-
fensive Content Identification in English and Indo-
Aryan Languages shared task (Ranasinghe et al.,
2024b; Satapara et al., 2023), which was the first
ever shared task organised for Sinhala. While sev-
eral offensive language detection datasets are avail-
able for Sinhala, such as Sandaruwan et al. (2019),
SOLD is the only publicly available dataset.

5.1.3 News Headline Prediction (NHP)
This is a new dataset constructed for the task of
predicting the correct headline for a news article.
We construct the dataset using news articles and
their headlines from Hettiarachchi et al. (2024), the
largest and most recent news corpus released for
Sinhala. We created data samples combining news
articles with their actual headlines and some incor-
rect ones. To ensure the incorrect titles are not en-
tirely unrelated to the article, we select them based
on a significant word overlap with the original ar-
ticle. Similar tasks have been proposed in NLU
benchmarks in other languages (Kakwani et al.,
2020).
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SA
news_content: 149 වැනි ෙපාලිස් විරැ සමරැ දිනෙය් එහි ප �ධාන සැමරැම ෙපාලිස්පති එන්.ෙක්.
ඉලංගෙකෝන් මහතාෙග් ප �ධානත්වෙයන් බම්බලපිටිය ෙපාලිස් ෙäත � බළකා මූලස්ථාන පරිශ §ෙය්දී
පැවැත්විණ. ෙසසු සැමරැම් රට පුරා පැවැත්විණි. ... (The main celebration of the 149th Police Heros Com-
memoration Day was held at Bambalapitiya Police Field Force Headquarters under the chairmanship of the Inspector
General of Police, N. K. Illangakoon. Other celebrations were held across the country. ...)
comment: සියළුම ෙපාලිස් නිළ දරැවන්ට අපෙග් ප�ණාමය! (Congratulations to all the police officers!)
sentiment: POSITIVE

O
L

D tweet: @USER අෙපායි ෙමෙහමත් ෙමාඩෙයක්. ජනදිපති අෙපක්ශකෙයක් මීටවඩා බුද්දිමත් විදිහට
කතාකලයුතුයි. (@USER what a fool, a presidential candidate should speak intelligently than this.)
label: OFF

N
H

P

news_content උතුරැ, උතුරැමැද, නැෙගනහිර සහ ඌව පළාත්වලට ද හම්බන්ෙතාට දිස්ති�ක්කයට ද
විටින් විට වැසි ඇති වන බව කාලගුණ විද්යා ෙදපාර්තෙම්න්තුව කියයි.'අපරභාගෙය්දී ෙහෝ සන්ධ්යා
කාලෙය් දි ෙසසු ප�ෙද්ශවල ද තැනින් තැන ගිගුරැම් සහිත වැසි වර්ධනය ෙව්‘.‘කන්කසන්තුෙර් සිට
ති�කුණාමලය සහ ෙපාතුවිල් හරහා හම්බන්ෙතාට දක්වා වන මුහුදු ප�ෙද්ශවල තැනින් තැන වැසි
ඇතිවන අතර දිවයින වටා වන ෙසසු මුහුදු ප�ෙද්ශ වල අපරභාගෙය්දී ෙහෝ රාතී� කාලෙය්දී තැනින්
තැන ගිගුරැම් සහිත වැසි ඇති ෙව්‘. ... (The Department of Meteorology says occasional rains will occur
in North, North Central, East and Uva provinces and Hambantota district. ‘In the afternoon or evening, scattered
thunderstorms will develop in other areas too.’ ‘Scattered rains will occur in the coastal areas from Kankasanthura
to Trincomalee and Pottuvil to Hambantota, and there will be scattered thunderstorms in the rest of the coastal areas
around the island in the afternoon or at night.’ ...)
headline: ඉදිරි 24 පැෙය් කාලගුණය (Weather for the next 24 hours)
is_headline: 1

ST
S sentence1: මිනිසුන් තිෙදෙනක් හිම කී�ඩාෙව් ෙයෙදයි (Three people are playing snow sports)

sentence2: මිනිසුන් හිම මත ලිස්සා යයි ( People are skiing)
similarity: 0.8

N
E

R

tokens: [පිලිපීන, ජනාධිපතිවරණෙයන්, ෙබනිග්ෙනෝ, අකීෙනෝ, ජය, ලබා, ඇති, බවට, වාර්තා, පළ,
ෙව්, .] ([It, is, reported, that, Benigno, Aquino, has, won, the, Philippine, presidential, election, .])
ner_tags: [පිලිපීනLOC, ජනාධිපතිවරණෙයන්, ෙබනිග්ෙනෝPER, අකීෙනෝPER, ජය, ලබා, ඇති, බවට, වාර්තා,
පළ, ෙව්, .] ([It, is, reported, that, BenignoPER, AquinoPER, has, won, the, PhilippineLOC, presidential, election, .])

O
T

D

tweet: @USER අෙපායි ෙමෙහමත් ෙමාඩෙයක් . ජනදිපති අෙපක්ශකෙයක් මීටවඩා බුද්දිමත් විදිහට
කතාකලයුතුයි . (@USER what a fool , a presidential candidate should speak intelligently than this .)

rationales: @USER අෙපායි ෙමෙහමත් ෙමාඩෙයක් . ජනදිපති අෙපක්ශකෙයක් මීටවඩා බුද්දිමත්
විදිහට කතාකලයුතුයි . (@USER what a fool , a presidential candidate should speak intelligently than this .)

Table 3: Examples from SINHALA-GLUE benchmark. For each task, the last item indicates the label(s) of the given
example, and the other items indicate the inputs. English translations by a native speaker are given in brackets.

5.1.4 Semantic Textual Similarity (STS)
The goal of semantic textual similarity is to predict
the extent to which two sentences convey the same
meaning (Cer et al., 2017) on a scale of 0-1. STS is
a popular task in NLU benchmarks such as GLUE
(Wang et al., 2018). Kadupitiya et al. (2016) con-
structed this Sinhala STS dataset with the sentences
translated and post-edited from the English SICK
dataset (Marelli et al., 2014). This dataset has also
been included in the recently released multilingual
semantic textual similarity benchmark (MUSTS)
(Ranasinghe et al., 2025).

5.1.5 Named Entity Recognition (NER)
This dataset released by Manamini et al. (2016) has
named entity recognition annotations for persons
(PER), organisations (ORG), and locations (LOC).

The sentences are sourced from Sinhala news ar-
ticles. This is the only Sinhala publicly available
dataset for named entity recognition.

5.1.6 Offensive Token Detection (OTD)
This is the second task of the SOLD dataset (Ranas-
inghe et al., 2024a), where the goal is to predict
whether a particular token contributes to the of-
fensiveness of the sentence level if a sentence is
offensive. Following this, each token has been an-
notated as ‘offensive’ or ‘not offensive’. This is the
only such dataset available for Sinhala.

5.2 Discussion

Machine Translated Datasets - We excluded
datasets that were automatically translated from
another language. The only exception is the STS
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dataset (§5.1.4), which originates from translations;
however, Kadupitiya et al. (2016) post-edited and
re-annotated it. Automatically translated datasets
can introduce translation errors and stylistic bi-
ases that impact model training and evaluation
(Mager et al., 2018), particularly for low-resource
languages like Sinhala, where machine translation
systems are still evolving (Mahfuz et al., 2025).
Consequently, SINHALA-GLUE does not include
any automatically translated datasets.

Undocumented Datasets - Several Sinhala
datasets have been released on platforms like Kag-
gle and HuggingFace (Lhoest et al., 2021) without
an accompanying published paper. We excluded
these datasets from SINHALA-GLUE, as proper
documentation is necessary to assess their quality.
Only datasets published in peer-reviewed papers
were considered.

Code-mixed Datasets - Recently, several Sin-
hala code-mixed and code-switched datasets, such
as Sinhala-CMCS (Rathnayake et al., 2022), have
been released. However, we excluded these from
the benchmark, as its primary goal is to evaluate
the performance of language models on NLP tasks
written in the Sinhala script.

Omitted Tasks - We also eliminated two tasks
that had datasets satisfying the above requirements;
(i) News media identification, and (ii) News cate-
gory prediction. Both are text classification tasks
that have been included in benchmarks in other
languages (Liang et al., 2020). However, Het-
tiarachchi et al. (2024) demonstrated that language
models achieve exceptionally high performance on
these tasks for Sinhala, with F1 scores around 0.95.
Further analysis of the released Sinhala datasets
in these two tasks (Hettiarachchi et al., 2024) re-
vealed that the text contains explicit hints about the
news media source and category, making classifi-
cation trivial for language models. As a result, we
excluded these tasks from the benchmark.

Dataset Licenses - We maintain the original li-
censes assigned by the authors for all datasets in-
cluded in the SINHALA-GLUE benchmark. All
datasets are accessible for research purposes.

Limitations and Comparisons - The SINHALA-
GLUE benchmark consists of six NLU tasks, in-
cluding two token classification tasks, one regres-
sion task, and three text classification tasks. While
the benchmark encompasses three distinct task

types, its scope is limited by the available re-
sources for Sinhala. As a result, certain NLU
tasks, such as Question Answering, which are pop-
ular in benchmarks in other languages like GLUE
(Wang et al., 2018) could not be included. How-
ever, we observe similar limitations with other pop-
ular benchmarks. For instance, the Bulgarian NLU
benchmark (Hardalov et al., 2023) also includes
three task types, while the Italian NLU benchmark
(Basile et al., 2023) features only two, despite both
languages having significantly more resources than
Sinhala.

We also acknowledge that some datasets in
SINHALA-GLUE can contain bias. For example,
in the sentiment analysis task, which is also a highly
subjective task, the majority of the instances were
annotated by a single annotator (Ranathunga and
Liyanage, 2021). While the authors report a high
inter-annotator agreement, only a small subset of
the dataset has been annotated by both annotators,
leaving the rest of the annotations highly biased.
However, given the scarcity of publicly available
Sinhala datasets, we included it in the benchmark
despite these limitations.

Public Leaderboard - Finally, we release
SINHALA-GLUE as a public leaderboard follow-
ing the structure of the existing ones, such as
GLUE (Wang et al., 2018). Participants receive
access to all training and test examples, but without
the gold labels for the test set. They submit a file
containing their predictions for each task, which
our system then evaluates automatically.

The primary goal of our leaderboard is to provide
a standardised framework for comparing model per-
formance on specific Sinhala NLP tasks. This en-
ables researchers and practitioners to assess the cur-
rent state of the art and identify areas for improve-
ment for Sinhala. However, we caution against
drawing broad conclusions about general language
understanding solely based on leaderboard perfor-
mance, whether on our platform or other NLP
leaderboards (Ethayarajh and Jurafsky, 2020).

6 Experiments

In this section, we first describe the models we
experimented with and then present the evaluation
results.

6.1 Models

Baselines - Our baselines include three widely
used multilingual encoder-only pre-trained trans-
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Task Input Output Loss

SA [CLS] news_content [SEP] comment Positive / Negative / Neutral Binary Cross Entropy
OLD [CLS] Tweet Offensive / Not offensive Binary Cross Entropy
NHP [CLS] news_content [SEP] headline 1 / 0 Binary Cross Entropy
STS [CLS] sentence1 [SEP] sentence2 Similarity (0–5) Mean Squared Error
NER [CLS] news_content LOC / ORG / PER / O Per Token Cross Entropy
OTD [CLS] Tweet Offensive / not Offensive Per Token Cross Entropy

Table 4: Input format for each task, the special tokens are replaced with the corresponding ones from the baseline
model. Expected Output, e.g., tag name, class, rating, etc. and the optimisation Loss used for training.

former models; XLM-R (Conneau et al., 2020),
info-XLM (Rathnayake et al., 2022) and RemBERT
(Chung et al., 2021). We did not use the popular
mBERT as it does not support Sinhala. Addition-
ally, we used SinBERT (Dhananjaya et al., 2022), a
previously trained transformer model for Sinhala,
albeit trained on a relatively small corpus, as a base-
line. These models were compared with the three
transformer models trained in this paper.

Architecture and Configurations - For all tasks,
we introduce a projection layer on top of the repre-
sentations of the pre-trained language model. For
classification tasks (SA, OLD, NHP), the output of
the CLS token maps to the number of classes. For
regression (STS), we project it to a single continu-
ous value. Finally, for token classification tasks, we
apply the classification head on top of each token’s
representation, which is the first sub-token.

In the following list, we describe the values of
the hyperparameters.
• All our models use the AdamW (Loshchilov
and Hutter, 2019) optimiser with a weight decay
of 1e-8, learning rate of 2e-5, a warmup ratio of
0.06 from the training data and are trained for five
epochs with a batch size of 32 (gradient accumu-
lation is applied when needed), and a maximum
length of 512 tokens. The values of the hyperpa-
rameters (including the number of training epochs)
were set to fixed values to ensure consistency across
all models.
• All the models were evaluated during training
using a development set that consisted of one-fifth
of the rows, which were separated from the training
set before the start of the training process.
• The best checkpoints were selected on the de-
velopment set. We use the target metric for each
task as a checkpoint selection criterion.
• We trained our models on an NVidia L40 48G
GPU. Depending on the dataset size, the exper-
iments took between 20 minutes for the smaller
datasets and models and up to 2 hours for the larger

datasets.
• All models were trained with half precision
(fp16) using the default PyTorch implementation.
• When evaluating the Token Classification Tasks
if the predicted sequence was shorter than the target
one (i.e., not all inputs fit into 512 tokens), we
added empty tags (‘O’ or ‘not offensive’) until the
target length was reached.

The input, output and loss functions used for
each task are shown in Table 4.

6.2 Results
Table 5 shows the results for the experimented mod-
els fine-tuned on the SINHALA-GLUE tasks. We
describe key observations below.

Language models introduced in this paper pro-
vide the best results in all the tasks in SINHALA-
GLUE

As can be seen in Table 5, Sinhala-BERTLarge
(Raja) trained in this paper provided the best re-
sults for all the tasks. The results are closely fol-
lowed by the other two models trained in this pa-
per as well; Sinhala-RoBERTaLarge (Koliya) and
Sinhala-ElectraLarge (Mahasen).

The models trained in this paper largely outper-
form the previously trained Sinhala transformer
models in all the tasks. Notably, we observe ap-
proximately 20% improvements in sentiment analy-
sis (SA) and semantic textual similarity (STS) tasks
and approximately 10% improvements in news
headline prediction (NHP), named entity recog-
nition (NER) and offensive token detection (OTD).

We attribute this to the fact that we trained the
Sinhala LMs in a larger and more diverse corpus
compared to SinBERT, which resulted in superior
LMs.

Multilingual LMs provide comparable results for
Sinhala NLP tasks.

As can be seen in the results, all experimented
multilingual models consistently provided good
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Model Name SA OLD NHP STS NER OTD
Avg. −→ F1macro F1macro F1macro S Corr. F1macro F1macro

Multilingual LMs

XLM-RLarge 79.99 75.27 83.16 77.16 78.28 93.47 72.57
XLM-RBase 77.53 72.14 81.28 75.19 73.29 92.46 70.79
info-XLMLarge 81.59 77.56 83.89 79.12 79.16 94.03 73.78
info-XLMBase 79.35 73.64 81.67 76.89 78.89 93.85 71.15
RemBERT 80.69 73.45 83.85 78.88 81.06 93.91 72.98

Previous Sinhala LMs

SinBERTLarge 69.81 61.63 81.12 71.56 59.13 81.08 62.31
SinBERTSmall 66.98 59.11 80.86 69.87 53.55 77.89 60.58

Models from this Paper

Sinhala-BERTLarge (Raja) 82.24 79.06 84.01 80.32 82.34 94.56 75.16
Sinhala-RoBERTaLarge (Koliya) 81.75 78.23 83.89 80.16 81.18 94.32 74.67
Sinhala-ElectraLarge (Mahasen) 80.97 78.86 83.78 80.11 81.89 94.15 75.04

Table 5: Model results on the SINHALA-GLUE benchmark. We show the best result for each task in bold. We also
underline the best result for each task from the multilingual models. The scores for each model are the highest ones
achieved by selecting the best model checkpoint on each task’s development set. The given scores are percentages
following the same notation of previous benchmarks.

results in SINHALA-GLUE. Aligning with the pre-
vious research (Hettiarachchi et al., 2024), multi-
lingual models outperformed SinBERT models in
all the tasks.

Similar to previous research (Devlin et al., 2019),
we notice that larger variants of multilingual LMs
produce better results in all the tasks.

Construction of SINHALA-GLUE also revealed
that info-XLM outperforms XLM-R in Sinhala NLP
tasks, despite the latter’s widespread use. We high-
light the importance of a well-designed evaluation
benchmark in uncovering valuable insights for pro-
cessing the Sinhala language.

Models achieve the best performance on NER,
while OTD shows the weakest results.

Among the various tasks in SINHALA-GLUE,
all models achieved the best results for named en-
tity recognition (NER). In contrast, they struggle
the most with offensive token detection (OTD), de-
spite both tasks falling under the same category,
token classification. The contextual ambiguities
associated with offensive tokens can be considered
the main reason, making it a more challenging task
for the models.

The text classification task, offensive language
detection (OLD), achieved the second-best results
across all models. Meanwhile, news headline pre-
diction (NHP) and the text regression task, seman-
tic textual similarity (STS), performed comparably
across most models. However, sentiment analysis
(SA) also proved to be a challenging task, particu-

larly due to its contextual nuances.
Overall, we highlight that SINHALA-GLUE con-

sists of several challenging NLU tasks. We sug-
gest exploring more advanced techniques like con-
trastive learning (Liang et al., 2024) to tackle these
tasks.

7 Conclusions

In this paper, we collected a large Sinhala cor-
pus containing more than 1.5B tokens and trained
three popular transformer models on it. We
also compiled the first NLU benchmark for Sin-
hala; SINHALA-GLUE, comprising six tasks. We
showed that transformer models trained in this pa-
per, using a large Sinhala corpus, outperform the
popular multilingual LMs, and existing Sinhala
LMs.

The SINHALA-Corpus1.5B, alongside the three
pretrained transformer models, is publicly re-
leased1. Furthermore, we have open-sourced the
datasets in SINHALA-GLUE, incorporating new
and redesigned tasks, along with the source code
for training and evaluation. Additionally, we re-
leased 60 fine-tuned models, one for each task and
model combination, all of which are integrated into
the HuggingFace Hub. It is the most extensive col-
lection of NLP models for Sinhala. We believe
that our paper will foster future advancements in
Sinhala natural language processing.

1Available at https://github.com/Sinhala-NLP/
Sinhala-GLUE
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In future, we plan to add more tasks for Sinhala
with different task types. We also plan to construct
a text generation benchmark for Sinhala that could
evaluate the performance of large language models.

Limitations

The limitation in SINHALA-GLUE is discussed
in Section §5. Additionally, none of the tasks in-
cluded in SINHALA-GLUE does not belong to a
specialised domain such as legal or biomedical. We
plan to address this limitation in future work.

As previously discussed, this study focuses on
relatively small encoder-only transformer architec-
tures. For future work, we aim to explore alterna-
tive modelling approaches and techniques known
to enhance efficiency and reduce computational de-
mands, such as few-shot and zero-shot in-context
learning, instruction-based evaluation, and multi-
task learning.

In this work, we did not investigate whether the
datasets contain potential biases, which could con-
tribute to undesirable behaviours in the models
trained during our experiments.

Ethical Considerations

All the datasets explored in this paper are publicly
available. Furthermore, all the models that we ex-
perimented with in this paper are publicly available
in HuggingFace (Lhoest et al., 2021). Any new
models that we created in this paper, will be made
publicly available.
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