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Abstract

Large Language Models (LLMs) have made
significant progress in open-ended dialogue,
yet their inability to retain and retrieve rele-
vant information from long-term interactions
limits their effectiveness in applications requir-
ing sustained personalization. External mem-
ory mechanisms have been proposed to ad-
dress this limitation, enabling LLMs to main-
tain conversational continuity. However, ex-
isting approaches struggle with two key chal-
lenges. First, rigid memory granularity fails
to capture the natural semantic structure of
conversations, leading to fragmented and in-
complete representations. Second, fixed re-
trieval mechanisms cannot adapt to diverse di-
alogue contexts and user interaction patterns.
In this work, we propose Reflective Memory
Management (RMM), a novel mechanism
for long-term dialogue agents, integrating
forward- and backward-looking reflections:
(1) Prospective Reflection, which dynami-
cally summarizes interactions across granular-
ities—utterances, turns, and sessions—into a
personalized memory bank for effective fu-
ture retrieval, and (2) Retrospective Reflec-
tion, which iteratively refines the retrieval in
an online reinforcement learning (RL) man-
ner based on LLMs’ cited evidence. Ex-
periments show that RMM demonstrates con-
sistent improvement across various metrics
and benchmarks. For example, RMM shows
more than 10% accuracy improvement over
the baseline without memory management on
the LongMemEval dataset.

1 Introduction

Large Language Models (LLMs) have demon-
strated remarkable capabilities in engaging in open-
ended dialogue (Lee et al., 2023; Mendonça et al.,
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I now have a headache, and the fever is gone.

So the fever subsided, the cough persists, 
and a headache started. Considering your 
allergy, let's explore …

Relevant History (Yesterday)

I have a persistent 
cough and a fever.

Sorry to hear that …

Current Dialogue Session (Today)

Agent

User

Relevant History (A Week Ago)

I am allergic to penicillin.

Noted: Penicillin allergy.

… …

User’s Full Dialogue History

Figure 1: An illustration of a personalized healthcare
dialog agent. Key information about a user’s allergy
and previous symptoms mentioned in the past sessions
is needed to provide a more informed response in the
current session.

2024), yet their inherent statelessness poses a sig-
nificant challenge for maintaining coherent, per-
sonalized conversations over time (Chen et al.,
2024; Li et al., 2024c; Tseng et al., 2024), which
are crucial across various real-world applications
(e.g., customer service (Kolasani, 2023), virtual
assistants (Guan et al., 2024), and education plat-
forms (Zhang et al., 2024d; Wen et al., 2024)).
As illustrated in Figure 1, effective personaliza-
tion requires not only understanding the immedi-
ate context but also recalling relevant information
from the user’s previous interactions (Williams and
Hollan, 1981; Whittaker et al., 2002; Dong et al.,
2024). The limitations with current LLMs to natu-
rally retain and recall information from past inter-
actions beyond their context windows sparked the
development of external memory mechanisms for
LLMs (Zhang et al., 2024c; Li et al., 2024a; Kim
et al., 2024). These memory systems serve as cru-
cial components in personalized dialogue agents,
enabling them to maintain consistent personality
traits, remember user preferences, and build upon
previous interactions.

While external memory mechanisms represent
a significant step towards enabling persistent dia-
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logue, current approaches suffer from two critical
limitations. Firstly, existing systems digest infor-
mation at a pre-defined granularity, such as turn,
session, or time interval boundaries, which may
not align with the inherent semantic structure of
the conversation (e.g., topic shifts). This rigid ap-
proach can lead to fragmented or incomplete mem-
ory representations, hindering the LLM’s ability to
retrieve, utilize, and update relevant information
effectively (Wu et al., 2024; Pan et al., 2025). Sec-
ondly, these systems rely on fixed retrievers (Zhong
et al., 2024; Li et al., 2024a), which struggle to
adapt to the diverse retrieval demands of varying
dialogue domains and individual user interaction
patterns. Moreover, the expense associated with
collecting labeled data for training personalized re-
trievers presents a substantial barrier to widespread
adoption and scalability.

To address these limitations, we propose a novel
Reflective Memory Management (RMM) mech-
anism to provide a more adaptable and granular ap-
proach to long-term dialogue memory. Our frame-
work incorporates two key innovations. Prospec-
tive Reflection tackles the issue of fixed granular-
ity by summarizing dialogue histories into decom-
posed topics, effectively integrating fragmented
conversational segments into cohesive memory
structures. This approach optimizes memory or-
ganization for future retrieval, allowing the LLM
to access relevant information more effectively re-
gardless of the original turn or session boundaries.
Complementing this, Retrospective Reflection ad-
dresses the challenge of fixed retrievers by lever-
aging unsupervised attribution signals generated
during the LLM’s response generation to reflect
on past retrieval. This allows for online refine-
ment of the retriever as the conversation progresses,
enabling the system to adapt to diverse dialogue
domains and individual user interaction patterns
without the need for costly labeled data.

By integrating these two reflective mechanisms,
our approach enables LLMs to maintain a more nu-
anced and adaptable memory, leading to more co-
herent, personalized, and engaging dialogues. Ex-
periments on MSC and LongMemEval benchmarks
show that RMM achieves more than 5% improve-
ment over the strongest baseline across memory
retrieval and response generation metrics.

Our contributions are as follows: (1) We propose
RMM as a novel memory management mechanism
that employs topic-based memory management op-
timized for future retrieval and leverages attribution

signal to reflect on past retrieval for unsupervised
online retrieval refinement. (2) We conduct exten-
sive experiments on two long-term personalized
dialogue benchmarks to demonstrate the effective-
ness of RMM over strong baselines. (3) We per-
form detailed analysis on the impact of various
design choices to pinpoint the limitations of exist-
ing memory management mechanisms with fixed
granularity and retrievers, shedding light on the
room for future improvement.

2 Related Work

Long-term Conversations for LLMs. LLMs
have demonstrated the ability to engage in ex-
tended, coherent dialogues, yet maintaining con-
text and consistency over long-term interactions
remains a challenge. Maharana et al. (2024) intro-
duced the LoCoMo dataset to assess LLMs’ perfor-
mance in sustained dialogues, showing their strug-
gles with long-range temporal and causal under-
standing. Existing solutions can be broadly cat-
egorized into two approaches: (1) Architectural
modifications, such as enhancing attention mecha-
nisms (Liu et al., 2024a; Zhang et al., 2024a), op-
timizing KV caches (Li et al., 2024d; Liu et al.,
2025), and refining position embeddings (Zhao
et al., 2024; Zheng et al., 2024). These methods
require white-box access to model internals, mak-
ing them infeasible for proprietary or API-based
LLMs. (2) Summarization-based methods, which
condense long contexts into structured events or
topics for direct conditioning or retrieval (Lu et al.,
2023; Wang et al., 2023; Jiang et al., 2024; Li et al.,
2024b). RMM falls into this category but explicitly
addresses the issue of fragmented topics arising
from fixed granularity and incorporates retrospec-
tive reflection to refine the retrieval process, encour-
aging more coherent and contextual responses.
Memory-based Personalized Dialogue Agents.
The development of memory-based personalized
dialogue agents has further enhanced long-term in-
teractions by enabling systems to retain and utilize
information from past conversations (Bae et al.,
2022). Traditional methods (Weizenbaum, 1966;
Walker et al., 1997) laid the groundwork for un-
derstanding how systems can model user prefer-
ences, intentions, and behaviors across sessions,
often using handcrafted rules, heuristics, or sym-
bolic representations. Early approaches, such as
CoMemNN (Pei et al., 2021), introduce mecha-
nisms to incrementally enrich user profiles dur-
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ing dialogues. However, collecting substantial an-
notations for training a personalized system for
long-term use is hard (Tseng et al., 2024). Re-
cent advancements focus on integrating LLMs with
memory modules (Packer et al., 2024; Chhikara
et al., 2025; Wang et al., 2024; Xu et al., 2025;
Rasmussen et al., 2025). For instance, the LD-
Agent framework (Li et al., 2024a) employs long-
, short-term memory banks to manage conversa-
tional history for retrieval. MemoryBank (Zhong
et al., 2024) incorporates a memory updating mech-
anism inspired by the Ebbinghaus Forgetting Curve,
enabling models to retrieve relevant memories con-
sidering recency. Theanine (Kim et al., 2024) in-
troduces timeline-based retrieval and utilizes an
additional LLM for refinement. These methods
typically deploy fixed retrievers with a pre-defined
granularity. In contrast, the proposed RMM ap-
proach facilitates adaptive retrieval with a revised
retrieval granularity.

3 Problem Formulation

We consider the task of building a personalized
dialogue agent in a multi-session conversational
setting. In this setting, an agent interacts with a
user across multiple distinct sessions. A session
represents a distinct interaction period, often delim-
ited by user inactivity, explicit user confirmation
of conversation completion, or the initiation of a
new dialogue thread. Within each session, the con-
versation unfolds as a sequence of turns, where a
turn consists of a user query and the agent’s cor-
responding response. The agent is equipped with
an external memory, serving as the sole repository
for information gathered from previous sessions.
The agent’s objective is to generate contextually
relevant and personalized responses to user queries,
leveraging both the immediate conversational con-
text within the current session and the relevant in-
formation retrieved from the memory.

This task presents two key challenges: first, the
agent must proactively identify and store salient
information from each session, anticipating future
retrieval needs. Second, the agent must accurately
retrieve relevant past information from the mem-
ory, as incorporating irrelevant context can distract
the LLM and degrade response quality (Shi et al.,
2023; Liu et al., 2024b). Effectively managing this
balance between comprehensive storage and pre-
cise retrieval is critical for achieving personalized
and coherent multi-session dialogues.

Algorithm 1 Reflective Memory Management (RMM) for
Dialogue Agents
Input: query q, past messages in current session S, memory
bank B, retriever fθ , reranker gφ, LLM
Output: response a, updated S, gφ, B
1: Retrieve:MK ← fθ(q,B)
2: Rerank:MM ← gφ(q,MK), whereMM = {mi}Mi=1

3: // Retrospective Reflection
4: Generate: a,RM ← LLM(q, S,MM ) where RM =
{ri}Mi=1

5: gφ ← RL_Update(gφ, RM )
6: S.append((q, a))
7: // Prospective Reflection
8: if session S ends then
9: M← ExtractMemory(S)

10: for m ∈M do
11: B ← UpdateMemory(B,m)
12: end for
13: S ← []
14: end if

4 Framework Overview
To tackle the challenges, we introduce Reflective
Memory Management (RMM), a framework that
integrates two mechanisms. Prospective Reflec-
tion proactively decomposes dialogue history into
topic-based memory representations, optimized for
future retrieval, while Retrospective Reflection dy-
namically refines the retrieval mechanism through
online feedback signals generated during response
generation. They improve the quality of the re-
trieved memories, contributing to personalization.

Our framework comprises four key components.
The memory bank stores dialogue history as a
collection of memory entries, each represented as
a pair (topic summary, raw dialogue), where the
“topic summary” serves as the search key for re-
trieving the conversational segment. The retriever
identifies relevant memories based on the current
user query. To enable lightweight adaptation of
the retrieval process, we incorporate a reranker,
which refines the retriever’s initial output by pri-
oritizing the most pertinent memories. Finally, an
LLM synthesizes the relevant memories with the
current context to produce a personalized response.
Crucially, the LLM also provides feedback sig-
nals based on its utilization of retrieved memories,
which are used to refine the reranker through Ret-
rospective Reflection. Our complete workflow is
detailed in Algorithm 1.

5 Prospective Reflection: Topic-Based
Memory Organization

Traditional memory management systems often
rely on fixed boundaries, such as session or turn
delimiters, to structure dialogue history. However,
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…

Finished Dialogue Session

Topic Summary Raw
Dialogue

User likes running. …

User is allergic to eggs. …

Decompose &
Summarize

Topic Summary Raw
Dialogue

User is an undergrad. …

User enjoys hiking. …

User is 19 years old. …

Current Memory Bank

Updated Memory Bank
Topic Summary Raw

Dialogue

User is an undergrad. …

User likes hiking and running. …

User is 19 years old. …

User is allergic to eggs. …

Retrieve and update relevant 
memory (if exists)

Memory Merge Memory Addition

Figure 2: Illustration of Prospective Reflection. After
each session, the agent decomposes and summarizes
the session into specific topics. These newly generated
memories are compared with existing memories in the
memory bank. Relevant memories are merged , while

others are directly added . Prospective reflection en-
sures efficient organization of personal knowledge for
future retrieval.

these pre-defined boundaries may not align with
the underlying semantic units of conversation. As
a result, critical information may be fragmented
across multiple memory entries, hindering effective
retrieval. To address this, we introduce Prospective
Reflection, a mechanism for organizing memory
based on coherent topics, enabling more granular
and semantically relevant future retrieval. Here
“topic” refers to a semantically coherent unit of
discussion that may span across one or multiple
turns in a session. Each topic is associated with the
raw dialogue segment(s) in which it was discussed.
These topics can range from fine-grained user in-
tents (e.g., asking about vegan recipes) to broader
themes (e.g., travel planning). As illustrated in
Figure 2, this process occurs at the conclusion of
each session and consists of two key steps: memory
extraction and memory update.

First, memory extraction is achieved by us-
ing an LLM (prompt in Appendix D.1.1) to ex-
tract dialogue snippets from the session with their
corresponding summaries based on the distinct
mentioned topics. Second, memory update in-
volves integrating the extracted topic-based memo-
ries into the memory bank. Specifically, for each
extracted memory, we retrieve the Top-K most se-
mantically similar memories already present in the
memory bank. Subsequently, an LLM (prompt in
Appendix D.1.2) determines whether the extracted
memory should be directly added into the memory
bank (e.g., when the extracted memory discusses

a new topic) or merged with an existing memory
into an updated one (e.g., when the extracted mem-
ory provides updated information to a previously
discussed topic).

Through Prospective Reflection, the memory
bank maintains a coherent and consolidated rep-
resentation of the evolving dialogue history, orga-
nized around meaningful topic structures.

6 Retrospective Reflection: Retrieval
Refinement via LLM Attribution

6.1 Reranker Design
While an off-the-shelf retriever can identify
semantically-relevant memories, its performance
can degrade across diverse dialogue domains and
user interaction patterns. Instead of resorting to
computationally expensive fine-tuning of the re-
triever, which requires extensive labeled data, we
introduce a lightweight reranker to refine the re-
trieved memory list. This reranker allows for effi-
cient adaptation to the nuances of specific dialogue
domains and user preferences, enabling the system
to dynamically adjust its retrieval strategy.

To be specific, the reranker processes the Top-
K memory embeddings retrieved by the retriever,
refining their relevance with respect to the user
query and selecting the Top-M candidates. The
whole process includes the following steps.
Embedding Adaptation. Let q represent the em-
bedding of the query and mi represent the embed-
ding of the i-th memory entry retrieved by retriever.
The embeddings are fed into the reranker to be re-
fined via a linear layer with residual connections:

q′ = q + Wqq, m′i = mi + Wmmi, (1)

where Wq and Wm are linear transformation ma-
trices for the query and memory, respectively.
Stochastic Sampling with Gumbel Trick. The
adapted query embedding q′ and memory embed-
dings m′i are adopted to compute relevance scores
via dot product: si = q′>m′i. To select mem-
ory entries based on relevance scores, we employ
the Gumbel Trick (Gumbel, 1954), which enables
stochastic sampling from a discrete probability dis-
tribution while preserving gradients, making it par-
ticularly useful in reinforcement learning and dif-
ferentiable ranking tasks (Jang et al., 2017). We
add Gumbel noise gi (Maddison et al., 2014) to the
relevance scores si for each memory entry:

s̃i = si + gi, gi = − log(− log(ui)), (2)
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where ui ∼ Uniform(0, 1). The perturbed scores
s̃i are then normalized using the softmax func-
tion to compute sampling probabilities: pi =

exp(s̃i/τ)∑K
j=1 exp(s̃j/τ)

, where τ > 0 is the temperature

parameter controlling the sharpness of the distribu-
tion. Lower τ results in more deterministic sam-
pling (approaching the maximum of si), while
higher τ increases stochasticity, encouraging ex-
ploration.

By introducing a reranker, RMM ensures effi-
cient retrieval refinement without modifying the re-
triever itself, making it adaptable to any pre-trained
retrieval model while allowing task-specific opti-
mizations through Reinforcement Learning (RL).

6.2 LLM Attribution as Rewards

Obtaining high-quality user-specific labeled data
for refining the retrieval process is prohibitively
expensive. To overcome this challenge, we propose
leveraging the inherent capabilities of the LLM
generator itself to provide automated feedback on
the quality of retrieved memories. Given the user
query with context in the current session, and the
retrieved memories, we prompt the LLM (prompt
in Appendix D.2) to generate both the response and
the associated citations to each individual memory
in the context (Kenthapadi et al., 2024). This design
uses a single LLM call for generating response and
LLM attribution, reducing computational overhead.
Moreover, the citations are generated conditioned
on the response, which has been shown to be more
effective compared to prior or post-hoc citations
(Buchmann et al., 2024).
Rewards. As shown in Figure 3, each retrieved
memory entry receives either a positive or nega-
tive reward based on its citation in the generated
response. Specifically, we assign a reward of +1
(Useful) if the generator cites the memory in the fi-
nal response, and−1 (Not Useful) otherwise. This
reward assignment reflects the utility of each mem-
ory entry and allows the reranker to learn better
retrieval strategies over time, aligning future se-
lections with the generator’s actual usage of re-
trieved evidence. We validate its effectiveness in
Section 8.3.

6.3 Reranker Update

The reranker is fine-tuned using the REINFORCE
algorithm (Williams, 1992) to optimize its rele-
vance predictions based on these binary rewards

RerankerRetriever

Query

Response

⨁

Memory 
Bank

LLMFrozen module

Learnable module RL Update

Citation
Scores

Top-K
Memory Entries

Top-M
Memory Entries

+1
+1

-1

Figure 3: Illustration of Retrospective Reflection. The
Retriever fetches Top-K memory entries from the
memory bank, which are refined by the learnable
Reranker to select the Top-M most relevant entries.
These entries are passed to the LLM along with the
query to generate the final response. The LLM assigns
binary citation scores (+1 for useful and −1 for not
useful) to the retrieved memory entries based on their
utility in the response. These scores are used as reward
signals to update the reranker via an RL update, adapt-
ing the selection of relevant memory over time.

with the following formulation:

∆φ = η·(R−b)·∇φ logP (MM |q,MK ;φ), (3)

where R is the reward (+1 or −1), b is a baseline
value set as a hyperparameter, and φ denotes the
weights of the reranker.

7 Experimental Setup

7.1 Implementation Details

In our experiments, we use Gemini-1.5-Flash as
the generator and evaluate Gemini-1.5-Pro in Sec-
tion 8.4. We equip RMM with the following dense
retrievers with strong semantic representation ca-
pabilities and widespread adoption in personalized
dialogue systems (Wu et al., 2024).

• Contriever (facebook/contriever) (Izacard
et al., 2022): A dense retriever optimized for
semantic search leveraging contrastive learning.

• Stella (dunzhang/stella_en_1.5B_v5) (Zhang
et al., 2024b): A large embedding-based retriever,
which is developed based on language models.

• GTE (Alibaba-NLP/gte-Qwen2-7B-instruct)
(Li et al., 2023): A retriever designed for
instruction-following queries, which is trained
across a vast, multilingual text corpus spanning
diverse domains.

Contriever is used as the default retriever. Fol-
lowing Wu et al. (2024), for experiments without
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a reranker, the Top-K is 5. Otherwise, the de-
fault Top-K is 20 and Top-M is 5. We explore
the impact of retrieval parameters in Appendix 8.7.
For LongMemEval, we also consider the results
of using an “Oracle” retriver which retrieves the
ground-truth turns annotated in the dataset with the
necessary personal knowledge to respond to a ques-
tion. More implementation and training details are
elaborated in Appendix A.

7.2 Datasets and Evaluation Metrics

We experiment on two publicly available bench-
mark datasets commonly used for personalized
dialogue evaluation: MSC (Xu et al., 2022) and
LongMemEval (Wu et al., 2024). Additional details
about datasets can be found in Appendix B.

For MSC, the evaluation measures if the gener-
ated response matches the human-provided ground
truth. We follow Li et al. (2024a) to use ME-
TEOR (Banerjee and Lavie, 2005) for measuring
lexical similarity and BERTScore (Zhang et al.,
2020) for measuring semantic similarity. We also
provide LLM judge results in Appendix 8.8.

For LongMemEval, we follow the original paper
to use Recall@K to evaluate the model’s ability
to retrieve relevant information for the query from
conversation histories and use an LLM judge to
measure the Accuracy of the generated answer by
comparing it to the human-provided ground truth
using Gemini-1.5-Pro. The prompt is presented in
Appendix D.3.

7.3 Compared Methods

To benchmark the performance of RMM, we com-
pare it against the following baselines which repre-
sent different strategies for managing and retrieving
long-term conversational memories, allowing for a
comprehensive comparison with RMM.

• No History: No history session is used.

• Long Context: This method directly incorporate
as much conversation history as possible into the
context window. Older turns are truncated.

• RAG: These models retrieve relevant turns or
sessions for a given user query, concatenate them
with the query, and feed the resulting input to the
LLM for response generation. We use turns as
the default granularity for better performance.

• Personalized Dialogue Agents: We consider
two agent systems: (1) MemoryBank (Zhong
et al., 2024) treats conversation history as a fixed

database and modulates retrieval using heuris-
tics based on the forgetting curve. (2) LD-
Agent (Li et al., 2024a) employs fixed conver-
sation databases with additional retrieval modula-
tion using strategies such as keywords matching.

8 Experimental Results

8.1 Main Results

We present the main results shown in Table 1 and
analyze each method’s performance as follow.
History matters: Without any history, the LLM
performs poorly, achieving a METEOR score of
5.2% on MSC and 0.0% accuracy on LongMemEval,
showing the necessity of historical context.
Long context is not enough: Long-context mod-
els struggle due to fixed context windows and the
inclusion of noisy context. On MSC, scores remain
low (e.g., METEOR below 20%, BERT score un-
der 40%), and on LongMemEval, accuracy is lower
than 58%. This limitation highlights their inability
to retain and utilize long-term knowledge.
RAG Models: RAG models outperform Long-
Context LLMs by only incorporating relevant his-
tories. With strong retrievers like GTE, RAG
achieves 27.5% METEOR and 52.1% BERT
Scores on MSC and 62.4% recall and 63.6% accu-
racy on LongMemEval. We also observe that the
performance is retriever-dependent, where stronger
retrievers boost the performance.
Personalized Dialogue Agents: MemoryBank
and LD-Agent show more moderate improvements
over Long-Context LLMs. For instance, LD-Agent
achieves 25.4% METEOR and 51.5% BERT score
on MSC, but these models fall short of RAG and
RMM. Their reliance on heuristic-based retrieval
potentially limits adaptability to complex tasks.
Proposed RMM Framework: RMM consistently
achieves the best results across datasets and metrics.
With GTE, RMM achieves 33.4% METEOR and
57.1% BERT on MSC, and 69.8% recall and 70.4%
accuracy on LongMemEval. Even with weaker re-
trievers like Contriever, RMM maintains competi-
tive performance, demonstrating robustness. The
improvements stem from RMM’s ability to inte-
grate dynamic memory management with adaptive
retrieval optimization enables it to retrieve and uti-
lize relevant knowledge effectively, outperforming
all baselines.

To further assess the impact of memory integra-
tion, we calculate the proportion of test examples
where memory improves response quality. On MSC,
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Method Retriever MSC LongMemEval

METEOR (%) ↑ BERT (%) ↑ Recall@5 (%) ↑ Acc. (%) ↑
No History - 5.2 10.6 - 0.0
Long Context - 14.8 31.9 - 57.4

RAG
Contriever 24.8 50.8 54.3 58.8

Stella 26.2 51.6 59.2 61.4
GTE 27.5 52.1 62.4 63.6

MemoryBank Specific1 20.1 40.3 58.6 59.6
LD-Agent Specific2 25.4 51.5 56.8 59.2

RMM (Ours)
Contriever 30.8 55.4 60.4 61.2

Stella 31.9 56.3 65.9 64.8
GTE 33.4 57.1 69.8 70.4

RAG Oracle - - 100.0 90.2

Table 1: Performance comparison of RMM with baseline methods on the MSC and LongMemEval datasets. Metrics
include METEOR and BERT Scores for MSC, and Recall@5 and Accuracy (Acc.) scores for LongMemEval. RMM
demonstrates superior performance across all metrics, highlighting its effectiveness in retrieval relevance and per-
sonalized response generation. No oracle retrieval is available for the MSC dataset. MemoryBank and LD-Agent
utilize their specific methods for retrieval. Scores are averaged over 3 runs and are reported in percentage (%).

Variant MSC LongMemEval

METEOR BERT Recall@5 Acc.

RAG 24.8 50.8 54.3 58.8

+ PR 28.6 53.3 57.4 59.6
+ RR (W/O reranker) 20.3 31.8 34.2 31.0
+ RR 27.5 52.2 58.8 60.2

RMM 30.8 55.4 60.4 61.2

Table 2: Ablation study on the datasets. Variants evalu-
ate the impact of key components in RMM: Prospective
Reflection (PR), Retrospective Reflection (RR), and the
reranker. RR (W/O reranker) means the retriever is fine-
tuned instead. Scores are obtained with Contriever and
Gemini-1.5-Flash and in percentage (%).

memory improves on 86% of responses, as the
dataset frequently requires recalling prior discus-
sion topics. On LongMemEval, where questions are
deliberately designed to test historical recall, mem-
ory contributes to quality improvements in 100% of
cases. These results show the necessity of memory
mechanisms in maintaining long-term coherence.
We provide case studies of the memory usage in
Appendix C.

8.2 Ablation Study

We conduct ablation study to evaluate the contribu-
tions of key components in the RMM framework.
we present the results in Table 2 and list our obser-
vations as below.

(i) Adding Prospective Reflection boosts perfor-
mance by organizing the memory into structured

topics, which reduces redundancy and improves rel-
evance. (ii) Retrospective Reflection alone without
a reranker misaligns retrieved content, leading to
suboptimal results. Directly updating the retriever
using RL rewards requires extensive amounts of
training data for effective full fine-tuning, which
is often difficult to obtain in real-world scenar-
ios. Without sufficient data, it can lead to issues
like catastrophic forgetting (McCloskey and Cohen,
1989). (iii) The addition of the reranker alongside
RR significantly enhances alignment, achieving
27.5% METEOR and 58.8% Recall@5, demon-
strating its effectiveness in refining retrieval quality.
(iv) Finally, the complete RMM framework, which
integrates Prospective Reflection, Retrospective Re-
flection, and the reranker, achieves the best results
across all metrics, with a METEOR score of 30.8%
on MSC and 60.4% Recall@5 on LongMemEval.
This confirms that RMM enables more accurate
and efficient future retrieval.

8.3 Validation of Citation Scores

Our framework leverages LLM-generated citations
to determine reward scores, guiding the retrieval
refinement process. To assess the validity of
the citation scores, we conduct evaluation on the
LongMemEval dataset, using the Gemini-1.5-Pro
model as the judge. The experiment tasks the LLM
with determining whether cited memories were use-
ful for response generation. The results, presented
in Table 3, demonstrate high precision, recall, and
F1, confirming the effectiveness of citation-based
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Metric Precision Recall F1

Useful memory 89.4 91.1 90.2
Not useful memory 87.2 84.6 85.9

Overall 87.6 85.8 86.7

Table 3: Evaluation of citation-based scoring in RR for
useful memory identification on LongMemEval (results
in %).

Method LLM MSC LongMemEval
METEOR BERT Acc.

Long
Context

Gemini-1.5-Flash 14.8 31.9 57.4
Gemini-1.5-Pro 17.4 36.1 56.6

RMM Gemini-1.5-Flash 30.8 55.4 61.2
Gemini-1.5-Pro 24.6 50.6 58.6

Table 4: Effect of different LLMs on MSC and
LongMemEval. Results (in %) compare Long-Context
LLMs and RMM using the Contriever retriever with
Gemini models as generators.

scoring in our framework.

8.4 Effect of Different LLMs

To examine the effect of different LLMs as gen-
erators, we evaluate both Gemini-1.5-Flash and
Gemini-1.5-Pro in Long-Context LLMs and RMM.
As shown in Table 4, for Long-Context mod-
els, Gemini-1.5-Pro achieves slightly better per-
formance than Gemini-1.5-Flash across all metrics,
suggesting that a stronger model improves response
quality when relying solely on extended context
windows. However, for RMM, Gemini-1.5-Flash
outperforms Gemini-1.5-Pro, achieving higher ME-
TEOR and BERT scores on MSC and better accu-
racy on LongMemEval. Similar observations are
reported by Wu et al. (2024), where GPT-4o-mini
performs better than GPT-4o in personal knowl-
edge QA. This trend can be attributed to stronger
LLMs, such as Gemini-1.5-Pro, being more likely
to abstain from answering queries involving per-
sonal information, possibly due to stronger align-
ment tuning aimed at enhancing privacy protection.

8.5 Effect of Different Granularities

We conduct experiments to show the advantage
of the flexible granularity resulting from the pro-
posed Prospective Reflection (PR) over pre-defined
fixed granularities as baselines. Results in Fig-
ure 4 show that fixed granularities, such as “turn”
and “session”, achieve moderate performance, with
session-level retrieval outperforming turn-level due
to richer contexts. The “mixed” granularity un-
derperforms, likely due to increased noise from
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Figure 4: Granularity analysis on randomly sampled
100 instances from LongMemEval with the GTE re-
triever and Gemini-1.5-Flash generator. “Turn” and
“Session” indicate retrieval at a fixed granularity. “Mix”
represents retrieving from a pool combining both turns
and sessions. “PR” refers to the granularity resulting
from the proposed Prospective Reflection, while “Best”
corresponds to selecting the optimal granularity (either
turn or session) for each instance.
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Figure 5: Impact of offline pretraining on retriever per-
formance for LongMemEval dataset with the same 100
random samples as Figure 4. Results without offline
pretraining are shown in blue, while results with offline
pretraining are shown in orange. Offline pretraining im-
proves recall and accuracy across all settings.

a larger search space. The best configuration,
which selects the optimal granularity per instance,
achieves the highest scores, demonstrating the im-
portance of adaptive memory organization. In
contrast, PR improves performance by integrating
fragmented conversational segments into cohesive
memory structure, exhibiting an approaching per-
formance with the best oracle granularity.

8.6 Offline Supervised Training
We further investigate the applicability of RMM
in scenarios where a handful of labelled retrieval
data is available, allowing for offline supervised
pretraining (based on the off-the-shelf retriever)
before online refinement. Figure 5 illustrates the
impact of offline pretraining on retriever perfor-
mance on the LongMemEval dataset. We randomly
select 100 samples as test data with the rest as
training and validation sets and apply vanilla super-
vised contrastive learning for the GTE retriever (Li
et al., 2023). As the results show, across all settings,
RMM consistently benefits from offline pretraining
(orange bars) by outperforming retrievers without
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pretraining (blue bars). These results show that of-
fline pretraining can enhance the retriever’s ability
to identify relevant information, providing a robust
foundation for subsequent fine-tuning via RL.

8.7 The Impact of Top-K and Top-M for
RMM

The results in Table 6 evaluate the impact of
the number of retrieved memories (Top-K) and
the number of reranked memories used for re-
sponse generation (Top-M ) in the RMM frame-
work. Specifically, we analyze the performance on
LongMemEval using Recall@5 (Top-K = 20, Top-
M = 5), Recall@10 (Top-K = 50, Top-M = 10),
and their corresponding QA accuracy scores.

The results demonstrate two key findings. First,
increasing the number of memories (M) from 5 to
10 consistently improves both retrieval and accu-
racy metrics across all retrievers. For example, with
the GTE retriever, Recall improves from 69.8%
to 74.4%, and Accuracy increases from 70.4% to
73.8%. Second, the performance gain is most sig-
nificant for stronger retrievers like GTE and Stella,
highlighting the importance of retrieval quality.
RMM with GTE achieves the best results of 70.4%
Accuracy with Top-K = 20, Top-M = 5 and 73.8%
Accuracy with Top-K = 50, Top-M = 10.

These observations emphasize that careful se-
lection of Top-K and Top-M values can enhance
both retrieval relevance and downstream QA per-
formance. The combination of effective retrieval
and reranking ensures that RMM efficiently lever-
ages the most relevant information for long-term
dialogue tasks.

8.8 Results for MSC with LLM-as-a-judge
For fair comparison, we follow prior work (Xu
et al., 2022; Wu et al., 2024) and use METEOR
and BERTScore. Here we include additional re-
sults using LLM-as-a-judge. Following Wu et al.
(2024), we use Gemini-1.5-Pro to decide whether
the generated answer matches the ground-truth as a
binary annotation. The prompt we used in given in
Appendix D.3. LLM-as-a-judge results also show
the effectiveness of the proposed RMM.

Furthermore, we conducted a human evaluation
on 100 randomly sampled instances from the MSC
dataset. For each instance, annotators were shown
the user query, the ground-truth response, and the
model-generated response—mirroring the setup
used for the LLM-based evaluations. We adopted
the same instruction used in our LLM judge prompt,

Method LLM METEOR BERT LLM-as-a-Judge
(Yes%)

Long
Context

Gemini-1.5-Flash 14.8 31.9 25.4
Gemini-1.5-Pro 17.4 36.1 22.8

RMM
Gemini-1.5-Flash 30.8 55.4 69.7
Gemini-1.5-Pro 24.6 50.6 65.4

Table 5: Results for MSC with LLM-as-a-judge. RMM
shows consistent advantages with more fine-grained
evaluation.

Model Retriever LongMemEval

Recall@5 Acc. Recall@10 Acc.

RMM
Contriever 60.4 61.2 67.2 66.8

Stella 65.9 64.8 70.6 71.0
GTE 69.8 70.4 74.4 73.8

Table 6: Impact of Top-K (retrieved memories) and
Top-M (reranked memories) on LongMemEval perfor-
mance. Results include Recall@5 (Top-K = 20, Top-
M = 5) and Recall@10 (Top-K = 50, Top-M = 10),
and corresponding Accuracy across different retrievers.
Results show that increasing the number of retrieved
and reranked memories improves retrieval and QA per-
formance on the LongMemEval dataset.

Pair Cohen’s Kappa (κ) Interpretation

Human A vs. Human B 0.82 Substantial agreement
LLM vs. Human A 0.71 Substantial agreement
LLM vs. Human B 0.69 Substantial agreement

Table 7: Cohen’s Kappa Agreement Between Annota-
tors and LLM

and asked human annotators to answer Yes/No to
evaluate each instance. The annotation was in-
dependently performed by two NLP researchers.
Both are PhD students working in NLP and not on
the author list. We report inter-annotator agreement
and agreement between human judgments and the
LLM judge in Table 7.

9 Conclusion

We present RMM, a framework that integrates
Prospective Reflection for structured, topic-based
memory organization and Retrospective Reflec-
tion for dynamic memory reranking via reinforce-
ment learning. Experimental results on benchmark
datasets demonstrate that RMM outperforms state-
of-the-art baselines in retrieval relevance and re-
sponse quality for personalized dialogue tasks. By
identifying limitations in existing memory man-
agement approaches—particularly those relying on
fixed granularity and static retrievers, we highlight
key challenges and avenues for future research in
long-term dialogue memory modeling.
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Limitations

While the proposed RMM framework demonstrates
significant improvements in retrieval relevance and
response quality, it is not without limitations. First,
RMM relies on reinforcement learning for memory
reranking, which can be computationally expensive,
especially for large-scale datasets or real-time appli-
cations. Second, the current framework primarily
focuses on textual data, limiting its applicability
to multi-modal dialogue systems that incorporate
images, audio, or video. Additionally, the memory
updating mechanism may require further optimiza-
tion to handle dynamically evolving long-term user
interactions efficiently.

For future work, we plan to address these
limitations by exploring more efficient reinforce-
ment learning techniques and lightweight memory
reranking strategies. We also aim to extend RMM
to multi-modal dialogue systems to accommodate
diverse user interactions. Furthermore, we will in-
vestigate privacy-preserving techniques to ensure
safe deployment of RMM in real-world personal-
ized dialogue applications where sensitive user data
is involved.

Ethical Statement

This work focuses on developing a framework for
long-term personalized dialogue systems to im-
prove user experiences. However, we acknowledge
the potential ethical implications of handling per-
sonal data in such systems. The RMM framework
relies on historical conversations, which may con-
tain sensitive or private information. To mitigate
privacy risks, we recommend adopting robust en-
cryption and privacy-preserving methods, such as
differential privacy or federated learning, during
data collection and model training.

Additionally, we emphasize the importance of
transparent data usage policies and obtaining user
consent when deploying personalized dialogue sys-
tems. Efforts should also be made to minimize
biases in memory retrieval and response generation
to ensure fairness and inclusivity across diverse
user groups. Future work will continue to prioritize
ethical considerations to promote the responsible
development and deployment of personalized dia-
logue technologies.
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A Implementation and Training Details

A.1 Parameter Setup
We use the following hyper-parameters for all ex-
periments:

• Reranker: The reranker is an MLP with a resid-
ual connection. The training setup is:

– Batch size: 4
– Top-M : 5
– Top-K: 20

• Reinforcement Learning: Retrospective Re-
flection uses REINFORCE with:

– Batch size: 4
– Gumbel temperature (τ ): 0.5
– Reward (R): +1 for cited entries, −1 for non-

cited entries
– Baseline value (b): 0.5
– Learning rate for policy gradient updates (η):

1× 10−3

• LLM: Gemini-1.5-Flash/-Pro is used for re-
sponse generation with:

– Context window size: 128k tokens
– Temperature: 0.0

• Retriever: GTE for experiments in Section 8.6
is pretrained with supervised contrastive learning
using the following configuration:

– Learning rate: 1× 10−4

– Training epochs: 10
– Batch size: 32
– Top-K: 5

A.2 Dependencies
Our implementation relies on the following tools
and libraries:

• Programming Language: Python 3.10.13

• Core Libraries: PyTorch 2.4.1+cu121, Hugging
Face Transformers 4.44.2

• Utilities: NumPy, Pandas, Sklearn and Mat-
plotlib for data processing and visualization

A.3 Hardware and Reproducibility
All experiments are conducted on a server with the
following hardware configuration:

• GPUs: 16 NVIDIA A100 GPUs

• RAM: 40 GB

• CUDA Version: 12.2
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Figure 6: Convergence of usefulness scores (ratio of
useful memories cited) over RL training steps. The
score improves as the reranker is updated based on Ret-
rospective Reflection, indicating enhanced alignment
between retrieved memory and generated responses.

A.4 Details for MemoryBank and LD-Agent
Baselines

We integrate MemoryBank and LD-Agent as base-
lines, with key features implemented using the
LongMemEval codebase1. We use Contriever as
the default retriever. Particularly, they differ in the
way for structuring and accessing stored informa-
tion.

MemoryBank (Zhong et al., 2024) retrieves his-
torical context by maintaining a structured memory
where both conversational summaries and round-
level utterances are stored as key-value pairs. The
retrieval process involves directly matching user
queries to the most relevant stored information, en-
suring efficient context retrieval for response gen-
eration.

LD-Agent (Li et al., 2024a), on the other hand,
enhances retrieval by incorporating keyphrase-
based queries. In addition to storing factual and
summarized information, its retrieval is based on
queries with key phrases extracted from past in-
teractions. This enables the model to adapt more
effectively to diverse query formulations, retrieving
context that aligns with the underlying semantic
meaning of the user input.

For both methods, retrieval operates in a non-
hierarchical manner, meaning that all stored data
is accessed through a uniform search mechanism
without additional interaction-based refinement.
The retrieved content is then used to provide histor-
ical grounding for response generation.

1https://github.com/xiaowu0162/LongMemEval
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A.5 The Convergence of Citation Scores in
RL

Figure 6 illustrates the convergence of citation
scores (usefulness scores) during reinforcement
learning. The x-axis represents the RL training
steps, while the y-axis measures the ratio of useful
memories cited by the LLM generator. Initially,
the usefulness score starts at a low value around
0.2, reflecting the misalignment between retrieved
memories and response generation. As training
progresses, the score steadily increases, converging
to approximately 0.4 by step 1000. This trend high-
lights the effectiveness of Retrospective Reflection
in updating the reranker, allowing the retrieval pro-
cess to better align with the generator’s citation
behavior. The gradual convergence indicates stable
learning and suggests that RL fine-tuning improves
retrieval quality without overfitting.

B Dataset Description

We conduct experiments on two publicly avail-
able datasets: MSC (Xu et al., 2022) and
LongMemEval (Wu et al., 2024). MSC is a bench-
mark dataset for multi-session conversations, pro-
viding turn-level and session-level conversational
data with annotations for relevance and response
quality. On this dataset, following Li et al. (2024a),
we evaluate the ability of an LLM agent to produce
human-like personalized responses. Each response
can be grounded in historical context across multi-
ple previous sessions. The focus is on accurately
generating personalized responses by leveraging
relevant user preferences and conversation patterns.
We followed the methodology outlined by Li et al.
(2024a) to construct the data for our experiments.
Specifically, we use the first 1000 sessions as chat
history and the rest for evaluation.
LongMemEval is designed for long-term conver-

sational evaluation. It includes extended histories
across turn, session, and mixed granularities. For
experiments in Section 8.6, we randomly sample
100 test instances and use the remaining data for
training and validation. On this dataset, follow-
ing Li et al. (2024a), we evaluate the system’s
ability to answer human-designed questions about
specific personal knowledge described in the his-
torical sessions. For example, given a query like,
“What car did Mary buy last summer?”, the system
must retrieve and synthesize information scattered
across multiple sessions. The task emphasizes ac-
curately identifying and leveraging relevant details

from long-term memory.
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C Case Studies

We present case studies to illustrate how RMM effectively integrates relevant memory fragments to
enhance response quality. The following examples highlight scenarios where historical context is essential
for maintaining coherence and accuracy in long-term dialogue.

C.1 Case 1: Revisiting Fitness Choices (MSC)
Tracking personal preferences and habits across multiple conversations is essential for maintaining
coherent and personalized dialogue. In this case, the user initially considers purchasing a treadmill
(Session A), later expresses a preference for using the gym treadmill due to weather constraints (Session
B), and finally confirms their gym-going routine (Session C). An effective memory mechanism should
correctly track this evolving decision and retrieve the most up-to-date preference.

Case 1: Revisiting Fitness Choices (MSC)

Session A, Turn 3:

• Speaker_1: Ah, got it. Well, maybe one of the older gyms will work out better for you – or
I guess you could get that treadmill you were talking about before.

• Speaker_2: I’m leaning towards the treadmill. I think it will work better for my lifestyle.

Session B, Turn 2:

• Speaker_1: I go to the gym at least five times a week, and I lift weights at least three
of those days. When I need to give my arms a break, I work on my leg muscles. I run around
the track or just ride the stationary exercise bicycle.

• Speaker_2: That sounds like a good plan. I definitely need to add some weights to my routine.
I will be on the treadmills a lot, especially since it is hard for me to run outdoors daily
due to the weather.

Session C, Turn 2:

• [Question] Speaker_1: They are great also, thanks for asking. Are you still going to the
gym?

• [Answer] Speaker_2:

– Ground-truth: Yes, every night. I run on a treadmill.

– Output (RMM): Yes, I go to the gym and run on the treadmill. It has become a key part
of my routine.

– Output (Long Context): I have been considering getting a treadmill for home, but I am
still unsure. I haven’t decided yet.

Analysis: The user’s decision about treadmill usage shifts across sessions. Initially, in Session A, they
express interest in buying a treadmill. By Session B, they reconsider and decide that using the gym
treadmill would be sufficient and confirm that they run on the treadmill at the gym. Without memory
management, the model generates an outdated response, assuming the user is still undecided about
purchasing a treadmill.

C.2 Case 2: Tracking Chronological Order of Events (LongMemEval)
In long-term interactions, correctly recalling the sequence of past events is essential for maintaining
factual consistency. This case examines whether the model can track the order in which the user attended
two different events.

Case 2: Tracking Chronological Order of Events (LongMemEval)

Session A, Turn 1:

• Speaker_1: I recently attended a workshop on Effective Time Management at the local
community center. It was incredibly insightful and gave me some strategies for managing
tasks efficiently. What are your thoughts on time management workshops?
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• Speaker_2: They’re quite helpful for understanding basic techniques, but it also depends
on how you apply the strategies in daily life.

Session B, Turn 3:

• Speaker_1: I also attended a webinar on Data Analysis using Python two months ago. The
instructor shared some incredible resources for data visualization. Have you explored
advanced visualization techniques?

• Speaker_2: Yes, they can greatly enhance how you present your data. Libraries like Matplotlib
and Seaborn are good starting points for creating professional visuals.

[Question] Which event did I attend first, the “Effective Time Management” workshop or the “Data
Analysis using Python” webinar?

[Answer]

• Ground-truth: “Data Analysis using Python” webinar.

• Output (RMM): You attended the Data Analysis using Python webinar two months ago. The
Effective Time Management workshop happened later at the local community center.

• Output (Long Context): I’m not sure, but you mentioned both events in previous conversations.

Analysis: The correct response requires linking the time reference (“two months ago”) with the cor-
responding event. Without RMM, the model fails to retrieve this detail, resulting in an uncertain and
incomplete answer. With RMM, the model correctly recalls the chronological order, demonstrating the
advantage of structured memory retrieval in tracking event sequences.

D Prompts

D.1 Prospective Reflection
D.1.1 Memory Extraction
Function: Memory extraction for SPEAKER_1

Task Description: Given a session of dialogue between SPEAKER_1 and SPEAKER_2, extract the
personal summaries of SPEAKER_1, with references to the corresponding turn IDs. Ensure the
output adheres to the following rules:

• Output results in JSON format. The top-level key is “extracted_memories”. The value should
be a list of dictionaries, where each dictionary has the keys “summary” and “reference”:

– summary: A concise personal summary, which captures relevant information about
SPEAKER_1’s experiences, preferences, and background, across multiple turns.

– reference: A list of references, each in the format of [turn_id] indicating where the
information appears.

• If no personal summary can be extracted, return NO_TRAIT.

Example:
INPUT:

• Turn 0:

– SPEAKER_1: Did you check out that new gym in town?

– SPEAKER_2: Yeah, I did. I’m not sure I like the vibe there, though.

• Turn 1:

– SPEAKER_1: What was wrong with it?

– SPEAKER_2: The folks there seemed to care more about how they looked than working out.
It was a little too trendy for me. I’m pretty plain.

• Turn 2:

– SPEAKER_1: Ah, got it. Well, maybe one of the older gyms will work out better for
you—or I guess you could get that treadmill you were talking about before. Are you
leaning one way or the other yet?
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– SPEAKER_2: I’m leaning towards the treadmill. I think it will work better for my
lifestyle. I just don’t know which type to get. There are so many choices out there.
Do you use a treadmill at your gym? Do you have a suggestion for a home one?

• Turn 3:

– SPEAKER_1: I usually just lift weights there, to be honest. But I think I’ve heard
good things about the NordicTrack?

– SPEAKER_2: Yeah, I’ve heard good things about that, too. I like the idea of a
multi-exercise piece of equipment. As long as the weather isn’t too bad, then I prefer
to go for a run. But since it rains quite a bit here, I like the idea of an inside
option. How is the weather in New England?

• Turn 4:

– SPEAKER_1: Oh, it can get pretty foggy and rainy here too, I’m afraid. But as I’m
sure you’ve heard, it’s really beautiful in the fall! Are there four distinct seasons
where you are, too?

– SPEAKER_2: Yes, I’ve heard about the fall colors. I may get there one day. Yes, we
have seasons—rain, lighter rain, summer, and more rain! Ha!

• Turn 5:

– SPEAKER_1: Haha! I lived overseas in the tropics once. Sounds just like it!

– SPEAKER_2: The tropics sound great. It’s not as warm as the tropics, but I like it.
I’m from Alaska, so I’m pretty weather-tough.

OUTPUT:

{
"extracted_memories ": [

{
"summary ": "SPEAKER_1 asked about a new gym in town and suggested

older gyms or a treadmill as alternatives .",
"reference ": [0, 2]

},
{

"summary ": "SPEAKER_1 usually lifts weights at the gym rather than
using a treadmill.",

"reference ": [3]
},
{

"summary ": "SPEAKER_1 has heard good things about the NordicTrack
treadmill.",

"reference ": [3]
},
{

"summary ": "SPEAKER_1 lives in New England and experiences foggy
and rainy weather but enjoys the fall season.",

"reference ": [4]
},
{

"summary ": "SPEAKER_1 has lived overseas in the tropics before.",
"reference ": [5]

}
]

}

Task: Follow the JSON format demonstrated in the example above and extract the personal summaries
for SPEAKER_1 from the following dialogue session.
Input: {}
Output:

Function: Memory extraction for SPEAKER_2

Task Description: Given a session of dialogue between SPEAKER_1 and SPEAKER_2, extract the
personal summaries of SPEAKER_2, with references to the corresponding turn IDs. Ensure the
output adheres to the following rules:

• Output results in JSON format. The top-level key is “extracted_memories”. The value should
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be a list of dictionaries, where each dictionary has the keys “summary” and “reference”:

– summary: A concise personal summary, which captures relevant information about
SPEAKER_2’s experiences, preferences, and background, across multiple turns.

– reference: A list of references, each in the format of [turn_id] indicating where the
information appears.

• If no personal summary can be extracted, return NO_TRAIT.

Example:
INPUT:

• Turn 0:

– SPEAKER_1: Did you manage to go out on a run today?

– SPEAKER_2: Yes, I actually was able to. I am considering joining the local gym. Do
you prefer going to the gym?

• Turn 1:

– SPEAKER_1: I do actually. I like the controlled environment. I don’t want to have to
depend on the weather considering where I live.

– SPEAKER_2: That’s why I am thinking about it. I hate to have to run when it’s raining,
and I feel like it rains here all the time.

• Turn 2:

– SPEAKER_1: A lot of gyms have tracks so that you can run indoors. Hey, have you thought
about maybe buying a treadmill and using that at home?

– SPEAKER_2: I am definitely considering getting one. I’m just trying to figure out what
I would do more—go to the gym and actually do more than just running, or stick to what
I know and get a treadmill.

• Turn 3:

– SPEAKER_1: Oh, that’s true. I hadn’t thought about all of that. You’re right. With a
gym, there are a whole lot of options for what you can do. Do you have some good gyms
near you?

– SPEAKER_2: They just built one in the small town really close to me, and it looks
pretty decent. Before that, it was like an hour drive.

• Turn 4:

– SPEAKER_1: With you not owning a car, going to any others would probably be difficult.
Well, do you have any good parks and running trails nearby?

– SPEAKER_2: Yeah, exactly. There is a super nice little running trail that is pretty
decent.

• Turn 5:

– SPEAKER_1: Hey, do you run with anyone? I mean, have you joined a club, or will you
if you haven’t?

– SPEAKER_2: There isn’t any around here; maybe I could start one. Thank you for that
idea.

OUTPUT:

{
"extracted_memories ": [

{
"summary ": "SPEAKER_2 is considering joining a local gym due to

frequent rain affecting outdoor runs.",
"reference ": [0, 1]

},
{

"summary ": "SPEAKER_2 is debating between buying a treadmill for
home use or going to the gym for more workout variety.",

"reference ": [2]
},
{
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"summary ": "A new gym was recently built nearby SPEAKER_2 ,
replacing a previous one that was an hour away.",

"reference ": [3]
},
{

"summary ": "SPEAKER_2 has access to a nice local running trail.",
"reference ": [4]

},
{

"summary ": "SPEAKER_2 notices there is no local running club but
is considering starting one.",

"reference ": [5]
}

]
}

Task: Follow the JSON format demonstrated in the example above and extract the personal summaries
for SPEAKER_2 from the following dialogue session.
Input: {}
Output:
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D.1.2 Memory Update

Task Description: Given a list of history personal summaries for a specific user and a new and
similar personal summary from the same user, update the personal history summaries following
the instructions below:

• Input format: Both the history personal summaries and the new personal summary are provided
in JSON format, with the top-level keys of “history_summaries” and “new_summary”.

• Possible update actions:

– Add: If the new personal summary is not relevant to any history personal summary, add
it.
Format: Add()

– Merge: If the new personal summary is relevant to a history personal summary, merge
them as an updated summary.
Format: Merge(index, merged_summary)
Note: index is the position of the relevant history summary in the list. merged_summary
is the merged summary of the new summary and the relevant history summary. Two
summaries are considered relevant if they discuss the same aspect of the user’s
personal information or experiences.

• If multiple actions need to be executed, output each action in a single line, and separate
them with a newline character ("\n").

• Do not include additional explanations or examples in the output—only return the required
action functions.

Example:
INPUT:

• History Personal Summaries:

– {"history_summaries": ["SPEAKER_1 works out although he doesn’t particularly enjoy
it."]}

• New Personal Summary:

– {"new_summary": "SPEAKER_1 exercises every Monday and Thursday."}

OUTPUT ACTION:
Merge(0, SPEAKER_1 exercises every Monday and Thursday, although he doesn’t particularly enjoy
it.)

Task: Follow the example format above to update the personal history for the given case.
INPUT:

• History Personal Summaries: {}

• New Personal Summary: {}

OUTPUT ACTION:
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D.2 Retrospective Reflection

Task Description: Given a user query and a list of memories consisting of personal summaries
with their corresponding original turns, generate a natural and fluent response while adhering
to the following guidelines:

• Cite useful memories using [i], where i corresponds to the index of the cited memory.

• Do not cite memories that are not useful. If no useful memory exist, output [NO_CITE].

• Each memory is independent and may repeat or contradict others. The response must be
directly supported by cited memories.

• If the response relies on multiple memories, list all corresponding indices, e.g., [i, j, k].

• The citation is evaluated based on whether the response references the original turns, not
the summaries.

Examples:
Case 1: Useful Memories Found
INPUT:

• User Query: SPEAKER_1: What hobbies do I enjoy?

• Memories:

– Memory [0]: SPEAKER_1 enjoys hiking and often goes on weekend trips.

* Speaker 1: I love spending my weekends hiking in the mountains.
Speaker 2: That sounds amazing! Do you go alone or with friends?

* Speaker 1: Last month, I hiked a new trail and it was amazing.
Speaker 2: Nice! Which trail was it?

– Memory [1]: SPEAKER_1 plays the guitar and occasionally performs at open mics.

* Speaker 1: I’ve been practicing guitar for years and love playing at open mics.
Speaker 2: That’s awesome! What songs do you usually play?

* Speaker 1: I performed at a local cafe last week and had a great time.
Speaker 2: That must have been fun! Were there a lot of people?

– Memory [2]: SPEAKER_1 is interested in astronomy and enjoys stargazing.

* Speaker 1: I recently bought a telescope to get a closer look at planets.
Speaker 2: That’s so cool! What have you seen so far?

* Speaker 1: I love stargazing, especially when there’s a meteor shower.
Speaker 2: I’d love to do that sometime. When’s the next one?

Output: You enjoy hiking, playing the guitar, and stargazing. [0, 1, 2]

Case 2: No Useful Memories
INPUT:

• User Query: SPEAKER_1: What countries did I go to last summer?

• Memories:

– Memory [0]: SPEAKER_1 enjoys hiking and often goes on weekend trips.

* Speaker 1: I love spending my weekends hiking in the mountains.
Speaker 2: That sounds amazing! Do you go alone or with friends?

* Speaker 1: Last month, I hiked a new trail and it was amazing.
Speaker 2: Nice! Which trail was it?

– Memory [1]: SPEAKER_1 plays the guitar and occasionally performs at open mics.

* Speaker 1: I’ve been practicing guitar for years and love playing at open mics.
Speaker 2: That’s awesome! What songs do you usually play?

* Speaker 1: I performed at a local cafe last week and had a great time.
Speaker 2: That must have been fun! Were there a lot of people?

– Memory [2]: SPEAKER_1 is interested in astronomy and enjoys stargazing.

* Speaker 1: I recently bought a telescope to get a closer look at planets.
Speaker 2: That’s so cool! What have you seen so far?

* Speaker 1: I love stargazing, especially when there’s a meteor shower.
Speaker 2: I’d love to do that sometime. When’s the next one?

Output: I don’t have enough information to answer that. [NO_CITE]

Additional Instructions:
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• Ensure the response is fluent and directly answers the user’s query.

• Always cite the useful memory indices explicitly.

• The citation is evaluated based on whether the response references the original turns, not
the summaries.

• Follow the format of the examples provided above.

Input:

• User Query: {}

• Memories: {}

Output:
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D.3 LLM-as-a-Judge

You are an expert language model evaluator. I will provide you with a question, a ground-truth
answer, and a model-generated response. Your task is to determine whether the response correctly
answers the question by following these evaluation rules:

• Answer Yes if the response contains or directly matches the correct answer.

• Answer Yes if the response includes all necessary intermediate steps leading to the correct
answer.

• Answer No if the response provides only a partial answer or omits essential information.

• Answer No if the response does not sufficiently address the question.

Examples:
Example 1: Correct Response

• Question: What is the capital of France?

• Ground-truth Answer: Paris

• Response: The capital of France is Paris.

Evaluation:

• Output: Yes

Example 2: Incorrect Response

• Question: What is the capital of France?

• Ground-truth Answer: Paris

• Response: France is a country in Europe.

Evaluation:

• Output: No

Additional Instructions:

• Apply the evaluation criteria consistently.

• Base your decision strictly on the information in the response.

• Avoid subjective interpretations and adhere to the provided examples.

Input:

• Question: {}

• Ground-truth Answer: {}

• Response: {}

Output:
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