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Abstract

Cross-lingual aspect-based sentiment analysis
(ABSA) involves detailed sentiment analysis
in a target language by transferring knowl-
edge from a source language with available
annotated data. Most existing methods de-
pend heavily on often unreliable translation
tools to bridge the language gap. In this pa-
per, we propose a new approach that leverages
a large language model (LLM) to generate high-
quality pseudo-labelled data in the target lan-
guage without the need for translation tools.
First, the framework trains an ABSA model
to obtain predictions for unlabelled target lan-
guage data. Next, LLM is prompted to gener-
ate natural sentences that better represent these
noisy predictions than the original text. The
ABSA model is then further fine-tuned on the
resulting pseudo-labelled dataset. We demon-
strate the effectiveness of this method across six
languages and five backbone models, surpass-
ing previous state-of-the-art translation-based
approaches. The proposed framework also sup-
ports generative models, and we show that fine-
tuned LLMs outperform smaller multilingual
models.

1 Introduction

Aspect-based sentiment analysis (ABSA) is a natu-
ral language processing (NLP) task that identifies
sentiments linked to specific aspects within a sen-
tence (Liu, 2010), often used to evaluate products
or services. For example, in the sentence “Great
tea but terrible service”, the aspect terms are “tea”
with positive sentiment and “service” with negative
sentiment. E2E-ABSA aims to extract aspect terms
and their associated sentiment polarities together.
The wide-ranging applications of ABSA have gar-
nered substantial interest in recent years (Zhang
et al., 2022). Nevertheless, research has primar-
ily focused on English, leaving other languages
largely unexplored due to the lack of annotated data.
However, manual labelling is and time-consuming

and costly, especially for low-resource languages,
making cross-lingual ABSA a valuable research
area. This work explores zero-shot cross-language
ABSA, which leverages annotated source language
data to transfer knowledge to target languages with-
out labelled data.

Early cross-lingual ABSA research used ma-
chine translation with alignment algorithms (Lam-
bert, 2015; Zhou et al., 2015) and cross-lingual
word embeddings (Barnes et al., 2016; Akhtar
et al., 2018) to transfer knowledge between lan-
guages. Multilingual pre-trained language models
(mPLMs) like mBERT (Devlin et al., 2019) and
XLM-R (Conneau et al., 2020) have become stan-
dard in capturing cross-lingual syntactic and seman-
tic patterns, forming the basis for recent advance-
ments (Zhang et al., 2021; Lin et al., 2023, 2024),
though challenges persist in zero-shot transfer due
to language-specific aspect terms, slang, and abbre-
viations in real-world texts (Li et al., 2020).

Cross-lingual ABSA faces challenges, especially
in zero-shot settings, as models fine-tuned on
source language data can struggle with language-
specific aspect terms and informal language (Šmíd
and Kral, 2025). Additionally, many low-resource
languages are underrepresented in mPLMs’ pre-
training corpora (Conneau et al., 2020), and man-
ual annotation for ABSA is time and resource-
intensive. While translation-based methods offer a
solution, they often introduce noise by misaligning
aspect terms, leading to partial or missing terms
in the target language (Li et al., 2020). This mis-
alignment disrupts the model’s ability to correctly
identify aspect terms in the target language, reduc-
ing cross-lingual ABSA accuracy.

Recent advances in large language models
(LLMs) open new possibilities for cross-lingual
ABSA. LLM-based data augmentation, which gen-
erates diverse examples in the target language with-
out translation, is a promising yet underexplored
alternative to machine translation for cross-lingual
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ABSA. Similarly, fine-tuning LLMs for cross-
lingual ABSA remains largely unexplored, despite
their success in English (Šmíd et al., 2024). This
paper addresses these gaps by proposing a novel
LLM-based data augmentation approach leverag-
ing unlabelled target language data as an alternative
to machine translation and exploring LLM fine-
tuning for cross-lingual ABSA.

To this end, we propose the LLM Augmented
Cross-lingual ABSA (LACA) framework, which
leverages unlabelled target language data to im-
prove cross-lingual ABSA performance. The
framework begins by fine-tuning an ABSA model
on labelled source language data DS . The model
then predicts a label ŷT for each unlabelled sen-
tence xT from the target language dataset DT . To
reduce prediction noise caused by language dif-
ferences, we prompt an LLM with each predicted
label ŷT to generate a corresponding target lan-
guage sentence x̂T . This step ensures the gener-
ated data better aligns with the predicted labels
than the original unlabelled data, thereby reducing
prediction noise. Next, we pair each generated tar-
get language sentence x̂T with its corresponding
predicted label ŷT to form a new pseudo-labelled
dataset DG . Finally, this dataset is combined with
the source language dataset DS to train a final
model. Our proposed approach provides a power-
ful alternative to traditional translation-based meth-
ods, fully utilizes unlabelled target language data,
and effectively addresses the language gap issue
by transforming noisy predictions into more accu-
rate text-label pairs. By generating target language
sentences that explicitly align with predicted la-
bels, our framework reduces inconsistencies caused
by direct cross-lingual prediction, ensuring better
adaptation to linguistic nuances. LACA boosts
cross-lingual ABSA performance, achieving 1.50%
and 2.62% average improvements over previous
state-of-the-art methods across two models.

Our key contributions are: 1) We introduce a
novel LACA framework, which enhances cross-
lingual ABSA by generating high-quality pseudo-
labelled target language data using LLMs, effec-
tively avoiding the language gap problems by gen-
erating coherent natural sentences given noisy pre-
dicted labels. 2) We demonstrate the effectiveness
and robustness of the proposed approach across
six languages and five backbone models, achiev-
ing new state-of-the-art results. 3) We show that
the proposed framework is adaptable to generative
models, highlighting its versatility. 4) We find that

fine-tuned LLMs outperform smaller multilingual
models, being the first to underscore the advantages
of LLMs for cross-lingual ABSA.

2 Related Work

Early cross-lingual ABSA research primarily tar-
gets simple tasks, focusing on a single sentiment el-
ement. Common approaches to cross-lingual trans-
fer include machine translation (Lambert, 2015;
Klinger and Cimiano, 2015; Zhou et al., 2015) and
cross-lingual word embeddings (Wang and Pan,
2018; Jebbara and Cimiano, 2019; Akhtar et al.,
2018; Barnes et al., 2016).

Recent research mainly targets E2E-ABSA and
utilizes mPLMs such as mBERT (Devlin et al.,
2019) and XLM-R (Conneau et al., 2020), often in
combination with machine translation. Techniques
to further improve performance include parameter
warm-up (Li et al., 2020), alignment-free label pro-
jection with distillation on unlabelled data (Zhang
et al., 2021), contrastive learning for semantic align-
ment (Lin et al., 2023), and dynamic weighted loss
to address class imbalances (Lin et al., 2024).

LLMs tend to underperform compared to smaller
models fine-tuned for ABSA (Gou et al., 2023;
Zhang et al., 2024), though fine-tuned LLaMA
models achieve state-of-the-art results in mono-
lingual ABSA (Šmíd et al., 2024, 2025). Several
studies leverage LLMs for data augmentation (Li
et al., 2022; Møller et al., 2024; Ding et al., 2024),
including for English ABSA (Zhong et al., 2024).

3 Methodology

This section describes our LLM Augmented Cross-
lingual ABSA (LACA) framework. Figure 1 il-
lustrates its two main stages: first, fine-tuning the
ABSA model on labelled source language data to
make predictions on unlabelled target language
data (top part); second, using an LLM to gener-
ate high quality data to match these predictions to
create pseudo-labelled target language dataset (bot-
tom part), which is then used for further training of
the ABSA model.

3.1 Problem Formulation

ABSA involves analyzing a sentence x = (xi)
n
i=1

containing n tokens. This task can be framed as
a sequence labelling problem. The model pre-
dicts a sequence of labels y = (yi)

n
i=1, where

yi ∈ Y is selected from the label space Y =
{B, I}-{POS, NEG, NEU} ∪ {O}. These labels cap-
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Labelled
Source Language

Dataset 

Unlabelled
Target Language

Dataset 

Delicious [tea]POS but pricey [soup]NEG

ABSA
Model

[(tea, POS), (soup, NEG)]

[Cocina]POS inmejorable

Train Predict Source Target

[Servicio]NEG demasiado rapido ,
 demasiada [gente]NEG

[(Cocina, POS)]

[(Servicio, POS), (gente, NEG)]

(tea, POS) 
(soup, NEG)

(Cocina, POS) ✅ 

(Servicio, NEG) ❌
(gente, NEG) ✅

LLM

[(Cocina, POS)]

[(Servicio, POS), (gente, NEG)]

[(Cocina, NEG)]
Generated

Target Language
Dataset 

La [Cocina]POS es increíble

No me gustaba la [cocina]NEG

Gran [servicio]POS, pero la [gente]NEG de
gestión son terribles

Generate Predicted Generated

Figure 1: The proposed LACA framework integrates fine-tuning and predictions with the ABSA model and
pseudo-labelled data generated by an LLM. Square brackets denote gold aspect terms and their polarities. Gold
labels for the target language (Spanish) are included for illustration purposes only. The generated dataset is later
merged with the labelled source dataset for the final ABSA model training.

ture the boundaries and sentiment of aspect terms
in the sentence, such as yi = B-NEU for the begin-
ning of a neutral aspect term.

Alternatively, the ABSA task can be formulated
as a text generation problem, where the model pre-
dicts a set of sentiment tuples y = {(ai, pi)}Ti=1,
where each tuple consists of an aspect term ai and
its corresponding sentiment polarity pi. The num-
ber of tuples T depends on the input sentence.

In cross-lingual settings, the goal is to predict a
label yT for a sentence xT in the target language T ,
using only sentence-label pairs (xS ,yS) from the
source language S in the dataset DS , without ac-
cess to labelled data from the target language. How-
ever, unlabelled target language sentences from the
dataset DT = {xi}|DT |

i=1 can assist the task.

3.2 ABSA Models
We use pre-trained multilingual models as the back-
bone of our ABSA model, denoting the parameters
as Θ, which includes task-specific parameters W
and b, all fine-tuned during training.

For sequence labelling, we employ encoder-
based models that convert the input sequence
x = (xi)

n
i=1 into hidden vectors h = (hi)

n
i=1. A

linear classification layer produces token-level pre-
dictions from hidden vectors using BIO tagging for
aspect boundaries and sentiment polarities. The
label distribution for each token xi is computed as

PΘ(yi|xi) = softmax(Whi + b). (1)

We minimize the cross-entropy loss L between the
predicted and true labels as

L =
1

|D|
∑

(x,y)∈D

[
− 1

n

n∑

i=1

yi logPΘ(yi|xi)

]
. (2)

We also explore the ABSA task as a text-
generation problem, using sequence-to-sequence
(encoder-decoder) and decoder-only models. In
sequence-to-sequence models, the encoder pro-
cesses the input sequence x into a contextualized
representation e. The decoder generates the output
sequence y token by token, with each token yi pre-
dicted based on the previous tokens yi−1

1 and the
encoded input e. We format the output as “[A] a
[P] p”, where a represents the aspect term and p
its corresponding sentiment polarity, concatenating
multiple outputs with [;]. During fine-tuning, we
minimize the cross-entropy as

L =
1

|D|
∑

(x,y)∈D

[
− 1

n

n∑

i=1

logPΘ(yi|e, yi−1
1 )

]
. (3)

Decoder-only models function similarly, except
they generate tokens solely based on previously
generated tokens, without relying on encoded input
sequences.

3.3 Pseudo-Labelled Data Generation

While the ABSA model can make predictions di-
rectly in the target language, research has shown
that pseudo-labelled target language data improves
cross-lingual ABSA performance (Zhang et al.,
2021). A straightforward method for generating
pseudo-labels without machine translation is to pair
each target language sentence xT with its corre-
sponding model prediction ŷT . However, this self-
training approach can be hindered by noise in the
predictions. To address this, we propose employing
LLMs for data augmentation, generating sentences
that align better with the predicted labels.
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Specifically, we input the predicted label ŷT into
the LLM, prompting it to generate a sentence x̂T

that matches the label. As a result, the LLM gen-
erates a pseudo-labelled dataset DG consisting of
(x̂T

i , ŷ
T
i ) pairs. As discussed, the gap between the

source and target languages introduces noise into
the ABSA model’s predictions on unlabelled tar-
get language data. Instead of refining the ABSA
model, our LLM-based augmentation creates more
reliable pseudo-labelled training samples, where
each sentence x̂T accurately reflects the predicted
label ŷT , thereby minimizing the impact of the
noise in the predictions.

Pseudo-labels are crucial for exposing the model
to language-specific elements like slang and aspect
terms in the target language, which pre-training
alone cannot fully address. They help bridge the
gap between source and target languages by en-
couraging the model to learn and adapt to the target
language’s nuances.

We improve the LLM’s understanding by pro-
viding ten few-shot examples from the source lan-
guage training data, rotating these examples ran-
domly to ensure the diversity of the output. Due
to the limited number of sentiment polarities and
the natural diversity of aspect terms, this random
selection is sufficient to produce varied and repre-
sentative examples. Additionally, we can modify
the input examples as needed to address imbalances
in the source language training set. For instance, if
certain sentiment polarities are underrepresented,
we can create new inputs that reflect different sen-
timent polarities while preserving the aspect term.
This strategy helps generate more diverse examples
and also aids in mitigating class imbalances within
the dataset.

Unlike machine translation methods that trans-
late source language data directly into the target
language – often resulting in semantically similar
examples – our LLM-based approach is designed
to generate a more diverse set of target language
examples. While translation methods yield two
linguistically distinct datasets, the underlying se-
mantics remain largely unchanged. In contrast, the
proposed LLM augmentation introduces a wide
range of semantically distinct examples, enhanc-
ing the model’s generalization and robustness by
exposing it to a broader spectrum of meanings. Fur-
thermore, we can adjust the LLM inputs to address
label imbalances, generating data for less frequent
sentiment polarities as needed.

3.4 Training

To ensure the quality of the generated dataset DG ,
it should meet several key criteria: generated sen-
tences should accurately reflect all sentiment el-
ements in the tuples, include only the specified
sentiment elements, and be in the target language.

You will be given an array with any number of tuples in the format
‘[(“aspect term”, “sentiment polarity”)]’. Your task is to generate a
restaurant review for an aspect-based sentiment analysis dataset in
Spanish. The following guidelines define the sentiment elements:

Input: [(“dinner”, “NEG”)]
Review: The dinner was ok , nothing I would have again .

Generate only the review text in the format ‘Review: <review>’, with no
code or extra content. Ensure the <review> is written in Spanish.

Please carefully follow these instructions:
1. The aspect terms in the review must exactly match the input aspect
terms.
2. Do not include any additional aspect terms.
3. The sentiment toward each aspect term must match the given polarity.
4. Ensure the generated review is in Spanish, even though the examples
may be in English.

- “Sentiment polarity” reflects the degree of positivity, negativity, or
neutrality expressed toward a given aspect term. “Neutral” refers to a
mild opinion, either slightly positive or slightly negative.

- “Aspect term” refers to a specific feature or attribute of a product or
service that a user expresses an opinion about. The generated review
must include the aspect term exactly as provided in the input. Do not add
any additional aspect terms to the generated review.

Input: [(“Wait staff”, “NEG”), (“pie”, “POS”)]
Review: Wait staff is blantently unappreciative of your business but its
the best pie on the UWS !

Input: [[(“croquetas”, “POS”), (“hamburguesas”, “POS”)]]

Output: Review: Las croquetas y las hamburguesas son deliciosas.

Figure 2: LLM prompt illustration for review generation,
with two few-shot demonstrations in the dashed box and
the expected output in the green box. The example uses
Spanish but is adaptable to other languages.

To achieve the quality of DG , we pre-process
the predicted labels ŷT to guarantee that at least
one sentiment element is present. We also craft the
generation prompt to specify that the text must be
in the target language and not introduce additional
sentiment elements, as shown in Figure 2. After
generating pairs (x̂T , ŷT ), we post-process them
by filtering out instances where x̂T lacks aspect
terms from ŷT . We also discard pairs where the
ABSA model’s prediction on x̂T differs from ŷT .

Finally, we combine the source language dataset
DS with the generated dataset DG to form the final
training set, continuing the training of the same
model as described in Section 3.2.

4 Experimental Setup

We conduct experiments on the E2E-ABSA task.

4.1 Dataset

We evaluate the proposed framework on the
SemEval-2016 dataset (Pontiki et al., 2016), which
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includes real user restaurant reviews in English
(en), Spanish (es), French (fr), Dutch (nl), Russian
(ru), and Turkish (tr). We use the data splits pro-
vided by Zhang et al. (2021) for a fair comparison.
Table 1 shows the dataset statistics.

En Es Fr Nl Ru Tr

Train
No. sentences 1,600 1,656 1,332 1,378 2,924 986
No. aspects 1,377 1,500 1,294 956 2,439 1,083

Dev
No. sentences 400 414 322 344 731 246
No. aspects 365 353 345 274 629 271

Test
No. sentences 676 881 668 575 1,209 144
No. aspects 612 713 649 373 945 148

Table 1: Data statistics for each language.

In all experiments, we use the source language
validation set for model selection to ensure true
unsupervised settings (Jebbara and Cimiano, 2019).

4.2 Implementation Details
We employ base mBERT (Devlin et al., 2019) and
XLM-R (Conneau et al., 2020) for the encoder mod-
els based on related work (Li et al., 2020; Zhang
et al., 2021; Lin et al., 2023, 2024), base mT5 (Xue
et al., 2021) for sequence-to-sequence models, and
Orca 2 13B (Mitra et al., 2023) and LLaMA 3.1
8B (Dubey et al., 2024) for decoder-only models.

For the LLMs generating the pseudo-labelled ex-
amples, we employ Orca 2 13B and LLaMA 3.1 8B
and 70B. To diversify the dataset and reduce
sentiment imbalance, we modify 20% of over-
represented positive sentiment examples by gen-
erating new instances, with a 60% chance of neu-
tral and 40% of negative sentiment. Appendix A
presents the detailed experimental details.

4.3 Evaluation Metrics
We employ micro-F1 as the evaluation metric, con-
sistent with related work (Zhang et al., 2021; Lin
et al., 2023, 2024), where a prediction is deemed
correct only if both its boundary and sentiment po-
larity are accurate. We report average F1 scores
across five runs with different random seeds.

4.4 Compared Methods
We compare our approach against the ZERO-SHOT

method, which fine-tunes the model using only
labelled source language data, a strong baseline
for cross-lingual tasks (Conneau et al., 2020;
Wu and Dredze, 2019), and several translation-
based approaches. TRANSLATION-TA employs
the Translate-then-Align paradigm (Li et al.,
2020) for fine-tuning using translated data, while

BILINGUAL-TA combines this translated data with
the original source data. ACS (Zhang et al., 2021)
uses an alignment-free projection method and as-
pect code-switching to interchange aspect terms be-
tween languages. ACS-DISTILL enhances this by
applying distillation on unlabelled target language
data. CL-XABSA (Lin et al., 2023) incorporates
contrastive learning at both the sentiment (SL) and
token levels (TL). EQUI-XABSA (Lin et al., 2024)
employs a dynamically weighted loss to address
class imbalances and anti-decoupling to enhance
semantic information utilization.

5 Results

Table 2 presents the cross-lingual ABSA results
using mBERT and XLM-R as backbone models.
Key observations include:

1) XLM-R is a strong baseline in ZERO-SHOT

settings, while mBERT underperforms.
2) TRANSLATION-TA and BILINGUAL-TA

perform similarly or worse than ZERO-SHOT.
3) The leading translation-based approaches

are ACS-DISTILL, which uses distillation on
unlabelled target data, and EQUI-XABSA, which
addresses class imbalances.

4) Our framework with LLaMA 3.1 8B
(LACALLAMA8 ) surpasses the best results of
translation-based methods by around 0.5% with
mBERT and over 1% with XLM-R on average.

5) The proposed method using Orca 2 13B
(LACAORCA13 ) outperforms prior methods in all
languages except Russian with mBERT, showing a
1.28% improvement over the best translation-based
methods with mBERT and 2.45% with XLM-R,
while enhancing ZERO-SHOT by 11.39% and
5.83% on average, respectively. It sets new
state-of-the-art results for Dutch with both models
and Russian with XLM-R. Despite being English-
centric1, Orca 2 13B for LACA outperforms the
smaller multilingual LLaMA 3.1 8B and nearly
matches the larger LLaMA 3.1 70B, surpassing
it on Russian and Dutch, languages not officially
supported by LLaMA 3.1. This ability to rival the
larger multilingual model may stem from Orca 2’s
advanced reasoning capabilities. Additionally,
Orca 2 tends to generate shorter reviews, poten-
tially reducing errors such as introducing aspect
terms not present in predicted labels, which can
harm the ABSA model performance.

1The official paper (Mitra et al., 2023) does not specify sup-
ported languages, but since Orca 2 is built on LLaMA 2 (Tou-
vron et al., 2023), it probably primarily targets English.
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Method mBERT XLM-R

Es Fr Nl Ru Avg Es Fr Nl Ru Avg

SUPERVISED (Zhang et al., 2021) 67.88 61.80 56.80 58.87 61.34 71.93 67.44 64.28 64.93 67.15

ZERO-SHOT 56.90 45.80 45.97 34.06 45.68 67.48 58.87 58.95 56.10 60.35
TRANSLATION-TA (Li et al., 2020) 50.71 40.76 47.13 41.67 45.08 58.10 47.00 56.19 50.34 52.91
BILINGUAL-TA (Li et al., 2020) 51.23 41.00 49.72 43.67 46.41 61.87 49.34 58.64 52.89 55.69
ACS (Zhang et al., 2021) 59.99 49.65 51.19 52.09 53.23 67.32 59.39 62.83 60.81 62.59
ACS-DISTILL (Zhang et al., 2021) 62.91 52.25 53.40 54.58 55.79 69.24 59.90 63.74 62.02 63.73
CL-XABSA (TL) (Lin et al., 2023) 60.64 48.53 50.96 50.77 52.73 64.85 58.10 59.75 58.84 60.39
CL-XABSA (SL) (Lin et al., 2023) 61.62 49.50 50.64 50.65 53.10 64.63 59.47 59.40 61.13 61.16
EQUI-XABSA (Lin et al., 2024) 63.08 50.08 51.85 52.59 54.40 69.56 60.68 61.31 62.34 63.47

LACALLAMA70 65.23 54.90 55.29 53.72 57.29 71.89 64.97 65.35 63.20 66.35
LACAORCA13 64.80 54.21 55.41 53.86 57.07 71.61 64.25 65.41 63.46 66.18
LACALLAMA8 64.33 53.74 54.56 52.36 56.25 71.17 63.81 64.29 61.46 65.18

Table 2: Average F1 scores over five runs with different random seeds for cross-lingual E2E-ABSA using English as
the source language, compared with supervised (monolingual) results in the “SUPERVISED” row and cross-lingual
results from other studies. The best scores are highlighted in bold, and the second-best scores are underlined.

6) LACA with LLaMA 3.1 70B
(LACALLAMA70 ) achieves new state-of-the-
art results with mBERT and XLM-R in Spanish,
French, and on average. It surpasses the previous
best methods by 1.50% with mBERT and 2.62%
with XLM-R while improving the ZERO-SHOT

baseline by 11.61% with mBERT and 6% with
XLM-R. The 70B version of LLaMA 3.1 out-
performs the 8B version by more than 1% on
average, demonstrating that larger models offer
better performance but at the expense of slower
inference and higher memory usage.

7) Notably, XLM-R with LACAORCA13 and
LACALLAMA70 matches the performance of
supervised settings in Spanish and exceeds it in
Dutch, while being less than 1% below average
performance across all languages. Crucially,
our approach achieves this without the need for
external translation tools.

8) Spanish performs best as the target language,
likely due to its similarity to English, which leads
to better-aligned embeddings in pre-trained models.
The LLMs also tend to generate higher-quality
examples in Spanish due to their stronger represen-
tation in that language.

9) Though strong, our performance in Russian is
slightly lower than in other languages, likely due
to its greater dissimilarity to English and the lack
of official LLaMA 3.1 support, which may reduce
the quality of generated examples. In contrast,
Dutch benefits from its similarity to supported
languages like English and German, despite not
being officially supported by LLaMA 3.1.

Table 3 shows the results of our approach with

Es Fr Nl Ru Avg

mBERT 56.90 45.80 45.97 34.06 45.68
+LACALLAMA70 65.23 54.90 55.29 53.72 57.29
+LACAORCA13 64.80 54.21 55.41 53.86 57.07
+LACALLAMA8 64.33 53.74 54.56 52.36 56.25

XLM-R 67.48 58.87 58.95 56.10 60.35
+LACALLAMA70 71.89 64.97 65.35 63.20 66.35
+LACAORCA13 71.61 64.25 65.41 63.46 66.18
+LACALLAMA8 71.17 63.81 64.29 61.46 65.18

mT5 66.85 58.12 58.47 55.65 59.77
+LACALLAMA70 72.03 63.92 64.95 62.71 65.90
+LACAORCA13 71.56 63.49 65.70 62.92 65.92
+LACALLAMA8 70.56 62.99 63.70 60.92 64.54

LLaMA 3.1 69.24 66.02 64.74 55.14 63.79
+LACALLAMA70 73.74 70.73 68.04 62.49 68.75
+LACAORCA13 73.75 70.39 67.95 62.68 68.69
+LACALLAMA8 73.20 69.89 67.95 60.92 67.81

Orca 2 69.35 65.93 64.85 55.21 63.84
+LACALLAMA70 74.27 70.13 68.25 62.38 68.76
+LACAORCA13 73.80 69.89 68.47 62.49 68.66
+LACALLAMA8 73.21 69.30 67.48 60.09 67.52

Table 3: Results for different fine-tuned models in zero-
shot settings and with LACA. The best results for each
model are underlined, and the best overall are in bold.

five different backbone models. The mT5 model
performs similarly to XLM-R, indicating that the
sequence-to-sequence approach can effectively
serve as an alternative to sequence labelling meth-
ods. LLaMA 3.1 and Orca 2 consistently yield
the best results across languages, except for Rus-
sian, likely due to the lower support for Russian in
these LLMs. The LACA framework improves the
performance of LLaMA 3.1 and Orca 2 by nearly
5% compared to the zero-shot approach. On aver-
age, LACA with LLMs as backbone models out-
performs XLM-R by more than 2%, highlighting
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the potential of fine-tuned LLMs for cross-lingual
ABSA tasks. However, the larger parameter count
of LLaMA 3.1 (about 30 times larger than XLM-R)
and Orca 2 (about 50 times larger than XLM-R)
results in slower inference times and higher GPU
memory requirements, presenting a trade-off when
opting for LLMs over smaller models.

5.1 Results for Turkish

Table 4 presents the results for Turkish as the target
language. Most prior research (Zhang et al., 2021;
Lin et al., 2023, 2024) has excluded Turkish due to
the very small test set, containing fewer than 150
examples. Despite this limitation, the proposed
LACA framework demonstrates significant im-
provements for both mBERT and XLM-R models
compared to ZERO-SHOT and translation-based ap-
proaches. These results highlight the framework’s
adaptability and effectiveness for languages outside
the Indo-European family.

Method mBERT XLM-R

SUPERVISED 47.74 60.93

ZERO-SHOT 27.04 46.53
TRANSLATION-TA (Li et al., 2020) 22.04 40.24
BILINGUAL-TA (Li et al., 2020) 22.64 41.44

LACALLAMA70 31.98 50.02
LACAORCA13 33.16 51.15
LACALLAMA8 31.13 49.71

Table 4: Results for Turkish as the target language with
English as the source language. The best results for
each model are in bold; the second best are underlined.

5.2 Additional Results

Appendix B shows additional results with smaller
LLMs (LLaMA 3.2 1B and 3B) and different
source-target language combinations, further show-
casing the effectiveness of the proposed method.

5.3 Ablation Study

Table 5 shows an ablation study of LACA, high-
lighting the impact of its key components.

Effect of additional examples creation To in-
vestigate the effectiveness of creating additional ex-
amples by replacing sentiment polarity, we remove
this step and denote it as “w/o extra example cre-
ation”. The results indicate a small improvement
(0.5–1.2% on average) when additional examples
are included, suggesting further gains might be pos-
sible with more example creation. In preliminary

Es Fr Nl Ru Avg

mBERT
LACALLAMA70 65.23 54.90 55.29 53.72 57.29
– w/o extra example creation 64.73 54.32 53.76 51.50 56.08
– w/o dynamic few-shot 63.87 52.46 52.29 49.01 54.41

LLaMA 70B text & label gen. 57.32 43.62 46.08 39.15 46.54
LLaMA 70B translation gen. 63.02 52.15 52.68 51.54 54.85
LACAORCA13 64.80 54.21 55.41 53.86 57.07
– w/o extra example creation 63.72 53.28 53.74 51.98 55.68
– w/o dynamic few-shot 62.77 52.08 52.97 49.46 54.32

Orca 13B text & label gen. 56.87 42.12 46.31 39.94 46.31
Orca 13B translation gen. 62.83 52.17 52.99 51.81 54.95
LACALLAMA8 64.33 53.74 54.56 52.36 56.25
– w/o extra example creation 63.72 53.28 53.74 52.60 55.84
– w/o dynamic few-shot 62.77 52.08 52.97 49.46 54.32

LLaMA 8B text & label gen. 56.17 40.23 44.64 35.27 44.07
LLaMA 8B translation gen. 62.43 51.91 52.29 51.12 54.44
Continue (MLM pre-train) 57.26 46.02 47.21 37.56 47.01
Self-training 53.84 38.97 36.77 25.04 38.66

XLM-R
LACALLAMA70 71.89 64.97 65.35 63.20 66.35
– w/o extra example creation 71.35 64.18 64.25 62.07 65.46
– w/o dynamic few-shot 70.12 62.98 63.34 59.52 63.99

LLaMA 70B text & label gen. 66.50 59.12 58.29 57.01 60.23
LLaMA 70B translation gen. 70.09 61.69 62.88 61.20 63.97
LACAORCA13 71.61 64.25 65.41 63.46 66.18
– w/o extra example creation 70.48 63.09 64.48 62.63 65.17
– w/o dynamic few-shot 69.81 63.34 62.27 60.36 63.63

Orca 13B text & label gen. 64.28 58.12 58.99 58.28 59.92
Orca 13B translation gen. 69.69 61.21 62.84 61.45 63.80
LACALLAMA8 71.17 63.81 64.29 61.46 65.18
– w/o extra example creation 70.48 63.09 63.48 60.63 64.42
– w/o dynamic few-shot 69.81 62.34 62.27 59.11 63.38

LLaMA 8B text & label gen. 64.28 58.12 58.99 54.28 58.92
LLaMA 8B translation gen. 69.71 61.03 61.91 60.97 63.41
Continue (MLM pre-train) 68.95 59.12 58.94 58.74 61.44
Self-training 65.67 53.63 57.57 51.48 57.09

Table 5: Ablation study of the LACA framework, with
the best results in bold and the second best underlined.

experiments, increasing the sentiment polarity mod-
ification ratio from 20% to 50% did not improve
performance but significantly increased generation
time. Researchers should carefully consider the
trade-offs between computational cost, practicality,
and potential performance gains when modifying
sentiment combinations.

Effect of few-shot examples switching We also
evaluate the impact of maintaining static few-shot
examples instead of switching them for each gen-
erated sample (“w/o dynamic few-shot”). Results
show a clear performance drop of about 2% with-
out dynamic examples, confirming that variety in
few-shot samples improves generation quality.

Effect of label generation To examine the im-
pact of utilizing predicted labels, we replace the
pseudo-labelling process with LLMs prompted to
generate both text and labels rather than generat-
ing text based on provided labels (“text & label
gen.”). This approach, which does not leverage
unlabelled target data, leads to a significant per-
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formance drop of around 11% for mBERT and
6% for XLM-R. Several factors contribute to this
decline. First, the generated labels often have in-
correct formats, such as producing B-NEUT instead
of the correct B-NEU, leading to discarded exam-
ples. Second, while the ABSA model in LACA
provides diverse aspect terms for the LLM to gen-
erate text, prompting the LLM to generate both text
and labels leads to repetitive, single-word aspects,
reducing accuracy and diversity. Additionally, the
LLM sometimes assigns incorrect sentiments or
mislabels aspects, compounding noise in predic-
tions. Research indicates that LLaMA-based mod-
els tend to underperform in ABSA in zero-shot
and few-shot scenarios (Šmíd et al., 2024), suggest-
ing that they are ill-suited for generating coherent
examples that include both text and labels.

Effect of prediction-based label generation To
assess the importance of the initial training and
prediction phase, we replaced it with directly trans-
lating aspect terms from the English dataset using
the Google Translate API and generating pseudo-
labelled data with LLMs (“translation gen.”) from
the translations. This approach performed approx-
imately 2% worse than our method. We attribute
this to the prediction phase’s ability to identify
language-specific aspect terms in the unlabelled
target dataset, which may lack direct equivalents in
the source dataset. By generating sentences based
on these unique terms, our method produces more
diverse, target-language-specific data, capturing
nuances that simple translation overlooks and en-
hancing the quality of pseudo-labelled data.

Effect of unlabelled data utilization Additional
(continued) pre-training on domain-specific cor-
pora has proven effective for leveraging unlabelled
data (Xu et al., 2019). We compare this approach
– labelled as “Continue” – with our method to an-
alyze the use of unlabelled data for cross-lingual
ABSA. In this setup, we replace the LLM-based
generation with masked language model (MLM)
pre-training on unlabelled target language data,
following the original pre-training objectives of
mBERT and XLM-R. Results show that continued
pre-training performs 10% worse with mBERT and
5% worse with XLM-R than our method. This per-
formance gap is likely attributed to the substantial
amount of data required for effective continued pre-
training, which is often impractical in cross-lingual
ABSA scenarios.

Spanish Dataset Sentence Prediction LACA Generation

el [servicio]POS impecable. (servicio, POS)
El [servicio]POS fue
excelente, rápido y
agradable.

(impeccable service.) (The service was excellent,
fast and friendly.)

Magnifíca [atención]POS,
buena [carta de vinos]POS,
muy buen [paella]POS.

(carta, POS),
(paella, POS)

Buen [carta]POS,
[paella]POS deliciosa.

(Great service, good wine
list, very good paella.) (Good menu, delicious paella.)

El [servicio]NEU era
eficiente pero no
especialmente amable.

(servicio, NEG) El [servicio]NEG era terrible

(The service was efficient
but not particularly friendly.) (The service was terrible)

Table 6: Examples of data generation for Spanish, with
gold aspect terms marked with square brackets.

Effect of pseudo-labelled data generation Fi-
nally, we replace the proposed method with self-
training, fine-tuning the model on pseudo-labelled
data generated directly by the ABSA model. This
approach leads to significant performance drops
(up to 20% for mBERT and 9% for XLM-R), pri-
marily due to the noisy predictions in zero-shot
settings. Our method, which employs LLM-based
generation, successfully mitigates this issue by re-
ducing noise in pseudo-labelled data. We manually
reviewed several generated samples across differ-
ent languages, with a few examples in Spanish pre-
sented in Table 6. The gold data for the target lan-
guage is provided solely for investigation purposes
and is not available during training. The second
example is missing one aspect term and has one in-
complete aspect term, while the third example has
incorrectly assigned sentiment polarity. Neverthe-
less, the LLM can generate accurate sentences that
effectively describe the predictions, even if they do
not match the original input. These instances illus-
trate how this stage can address noisy predictions
and produce high-quality target language data.

5.4 Analysis of the Generated Samples

We analyzed 50 randomly generated examples from
the LLaMA 3.1 model with 70B parameters for
each target language. To streamline the process, we
focused on one model and a limited number of sam-
ples, as this analysis is time-intensive. Since we are
not native speakers of any of the target languages,
we utilized the Google Translate API2 to translate
the generated examples (except for English) and in-
put aspect terms into English, acknowledging that
this might introduce some noise. Notably, the au-

2https://translate.google.com/
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thors have prior experience annotating datasets for
ABSA, which enhances their understanding of the
task. For all target languages, English served as the
source language. However, for English itself, we
used Spanish as the source language.

From the reviewed examples, none were missing
the requested aspect term (verified in the original
language before translation), except for Turkish,
where one instance contained a slightly modified
version of the requested term rather than an exact
match. We focused on two potential error types:

1. Introduction of new aspect terms: Instances
where the model generated additional aspect
terms that were not requested.

2. Incorrect sentiment polarity: Cases where
the sentiment polarity of the generated text
did not align with the expected polarity.

additional aspect wrong polarity
0

1
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3

4

5

Error type

N
um

be
ro
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rr

or
s

En
Es
Fr
Nl
Ru
Tr

Figure 3: Number of error types in 50 samples generated
by LLaMA 3.1 70B for different languages.

Figure 3 summarizes the results of this analysis.
New aspect term errors were minimal across all
languages, while errors related to incorrect senti-
ment polarity occurred slightly more often but re-
mained rare overall. Most polarity errors involved
the neutral sentiment class, where neutral polarity
is expected to indicate slightly positive or slightly
negative sentiment. However, some samples that
should have been positive or negative were misclas-
sified as neutral, and vice versa. Since the neutral
sentiment class accounts for only about 5% of the
samples in each test set, these errors have a negligi-
ble impact on the overall performance. The highest
number of errors occurred in Turkish, followed
by Russian – both languages that are not officially
supported by the model.

During the analysis, we have noticed that the
model do not tend to produce similar sentences for
same sentiment elements and similar aspect terms,
likely due to the use of sampling and different few-
shot examples for each generated sample.

5.5 Further Analysis

Figure 4 illustrates the results using XLM-R with
varying numbers of generated samples. By exclud-
ing source training data and relying solely on gen-
erated samples for final training, we observe a clear
trend: performance improves as the number of gen-
erated samples increases, highlighting their effec-
tiveness in enhancing cross-lingual capabilities.
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Figure 4: Impact of the number of target language sam-
ples generated by our method on XLM-R performance.

5.6 Error Analysis

Appendix C provides an error analysis, offering
additional insights into potential improvements and
identifying limitations.

6 Conclusion

In this paper, we introduce the LACA framework
to enhance cross-lingual ABSA. The proposed ap-
proach utilizes a large language model to gener-
ate high-quality pseudo-labelled data for the tar-
get language based on the predictions provided by
the ABSA model. We establish new state-of-the-
art results, surpassing translation-based methods,
and demonstrate the effectiveness of the proposed
framework across six languages and five backbone
models. Additionally, we show that sequence-to-
sequence approaches, supported by our framework,
can serve as a viable alternative to traditional se-
quence labelling methods. Furthermore, we demon-
strate that fine-tuned LLMs consistently outper-
form smaller multilingual models.
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Limitations

Despite achieving state-of-the-art performance in
cross-lingual ABSA, the proposed framework has
some limitations. First, while the experiments con-
firmed its effectiveness for cross-lingual ABSA, it
could be extended to tasks like named entity recog-
nition. Second, the performance of our method
improves with larger LLMs, but this also increases
training time and demands more computational
resources, although it does not affect inference.
Smaller LLMs can perform significantly worse
than larger ones, especially for unsupported lan-
guages. Additionally, performance may be influ-
enced by the target language support of the em-
ployed LLM, as unsupported languages may result
in lower-quality pseudo-labelled data. This issue
can be mitigated by selecting an LLM that explic-
itly supports the target language, making model
choice a crucial factor in achieving strong perfor-
mance. Another potential issue is that the models
may struggle to generate neutral polarity reliably,
which could be problematic for datasets where neu-
tral sentiment is more prevalent. Next, budget con-
straints prevented evaluation with closed-source
LLMs. Finally, limited annotated datasets in vari-
ous languages restrict our evaluation to the restau-
rant domain.
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A Experiments Details

For all experiments, we use models from the Hug-
gingFace Transformers library3 (Wolf et al., 2020),
the AdamW optimizer (Loshchilov and Hutter,
2019), a batch size of 16, and a single NVIDIA
L40 GPU with 48 GB memory.

For encoder-based models, we use base versions
of mBERT (Devlin et al., 2019) and XLM-R (Con-
neau et al., 2020), following prior works (Li et al.,
2020; Zhang et al., 2021; Lin et al., 2023, 2024).
The learning rates are set to 5e-5 for mBERT and
2e-5 for XLM-R, with optimal epochs searched
within {10, 15, 20, 25, 30}.

For sequence-to-sequence models, we use base
mT5 (Xue et al., 2021) with a learning rate of 3e-4,
epochs searched within {15, 20, 25}, employing
greedy search as the decoding algorithm.

For decoder-only models, we fine-tune the 8B
version of LLaMA 3.1 (Dubey et al., 2024) and
the 13B version of Orca 2 (Mitra et al., 2023)
using QLoRA (Dettmers et al., 2023) with 4-bit
NormalFloat quantization. Following recommen-
dations, we use a constant learning rate of 2e-4 and
apply LoRA adapters (Hu et al., 2022) on all linear
transformer block layers, with LoRA parameters
r = 64 and α = 16. We fine-tune the model for
up to 5 epochs with the greedy search for decoding.
Figure 5 shows the prompt for fine-tuning.

We employ 4-bit quantized 70B and 8B versions
of LLaMA 3.1 and the 13B version of Orca 2 as

3https://github.com/huggingface/transformers
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According to the following sentiment elements definition:

- The “aspect term” refers to a specific feature, attribute, or aspect
of a product or service on which a user can express an opinion.
Aspect terms appear explicitly as a substring of the given text.

- The “sentiment polarity” refers to the degree of positivity,
negativity or neutrality expressed in the opinion towards a
particular aspect or feature of a product or service, and the
available polarities include: “POS”, “NEG” and “NEU”. “NEU”
means mildly positive or mildly negative. Tuples with objective
sentiment polarity should be ignored.

Please carefully follow the instructions. Ensure that aspect terms
are recognized as exact matches in the review  Ensure that
sentiment polarities are from the available polarities.

Recognize all sentiment elements with their corresponding aspect
terms and sentiment polarity in the given input text (review).
Provide your response in the format of a Python list of tuples:
‘Sentiment elements: [(“aspect term”, “sentiment polarity”), ...]’.
Note that “, ...” indicates that there might be more tuples in the list
if applicable and must not occur in the answer. Ensure there is no
additional text in the response.

Input: “““La comida divina .”””
Output: Sentiment elements: [(“comida”, “POS”)]

Figure 5: Illustration of the classification LLM prompt,
including the expected output in the green box.

LLMs for generating pseudo-labelled data. For
additional analysis, we also employ 1B and 3B
versions of LLaMA 3.2. We use top-p sam-
pling (Holtzman et al., 2020) with p = 0.8 and
a temperature of 0.8 to encourage more diverse
outputs. When generating new input tuples, we
specifically target over-represented positive senti-
ment examples, modifying 20% by generating new
instances, assigning neutral sentiment with a 60%
chance and negative sentiment with a 40% chance.
This strategy diversifies the dataset and partly ad-
dresses sentiment distribution imbalances.

B Additional Results

This section provides additional results using
smaller LLMs for generation and for different
source–target language combinations.

B.1 Result with Smaller LLMs

Table 7 presents additional results with smaller
LLMs, specifically, the 1B and 3B versions of
LLaMA 3.2 (LACALLAMA1 and LACALLAMA3 ),
compared to the main results with larger models.
While smaller models still improve over ZERO-
SHOT results in all cases, they exhibit performance
drops compared to larger LLMs.

For instance, relative to LACA with the 8B
LLaMA 3.1 model, LACALLAMA3 shows an av-
erage performance drop of approximately 4%
for mBERT and approximately 1% for XLM-

Method Es Fr Nl Ru Tr Avg

mBERT
ZERO-SHOT 56.90 45.80 45.97 34.06 27.04 41.95
LACALLAMA70 65.23 54.90 55.29 53.72 31.98 52.22
LACAORCA13 64.80 54.21 55.41 53.86 33.16 52.29
LACALLAMA8 64.33 53.74 54.56 52.36 31.13 51.22
LACALLAMA3 59.15 48.83 49.94 49.99 27.59 47.10
LACALLAMA1 58.37 47.02 48.29 45.52 27.09 45.26

XLM-R
ZERO-SHOT 67.48 58.87 58.95 56.10 46.53 57.59
LACALLAMA70 71.89 64.97 65.35 63.20 50.02 63.09
LACAORCA13 71.61 64.25 65.41 63.46 51.15 63.18
LACALLAMA8 71.17 63.81 64.29 61.46 49.71 62.09
LACALLAMA3 69.19 62.32 62.23 58.93 47.02 59.94
LACALLAMA1 69.00 60.72 61.79 56.79 46.61 58.98

Table 7: Results with different LLMs for generation
with English as the source language and other languages
as the target ones compared to ZERO-SHOT results. The
best result for each model and target language is in bold;
the second best is underlined.

R. LACALLAMA1 performs about 6% worse for
mBERT and 3% worse for XLM-R. The largest
declines occur for Russian and Turkish – languages
not officially supported by LLaMA or closely re-
lated to those supported – highlighting the impor-
tance of LLM size for underrepresented languages.

Interestingly, the gap between the 8B and 70B
LLaMA models is smaller than the gap between the
3B and 8B models, suggesting diminishing returns
with larger sizes. For resource-constrained scenar-
ios, smaller models remain a viable option, though
their limitations should be considered. Balancing
size, computational requirements, and language
coverage is crucial for optimal performance when
selecting an LLM.

B.2 Results by Source-Target Language
Combinations

Table 8 presents the results for different combi-
nations of source and target languages, highlight-
ing the effectiveness of the proposed LACA ap-
proach. Across all language combinations, LACA
significantly improves upon the ZERO-SHOT re-
sults, demonstrating its robust performance. The
results confirm the strong potential of all three em-
ployed LLMs for generating pseudo-labelled data,
further enhancing the cross-lingual performance.

The results reveal that English is the most ef-
fective source language in most cases. Addition-
ally, selecting source languages from the same lan-
guage branch appears advantageous. For example,
the combination of French and Spanish, both Ro-
mance (Latin) languages, yields excellent results.
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Source
Language Method mBERT XLM-R

En Es Fr Nl Ru Tr En Es Fr Nl Ru Tr

SUPERVISED 65.39 67.88 61.80 56.80 58.87 47.74 73.81 71.93 67.44 64.28 64.93 60.93

En

ZERO-SHOT – 56.90 45.80 45.97 34.06 27.04 – 67.48 58.87 58.95 56.10 46.53

LACALLAMA70 – 65.23 54.90 55.29 53.72 31.98 – 71.89 64.97 65.35 63.20 50.02
LACAORCA13 – 64.80 54.21 55.41 53.86 33.16 – 71.61 64.25 65.41 63.46 51.15
LACALLAMA8 – 64.33 53.74 54.56 52.36 31.13 – 71.17 63.81 64.29 61.46 49.71

Es

ZERO-SHOT 45.76 – 42.70 38.29 25.25 16.24 56.86 – 56.10 59.41 56.43 41.20

LACALLAMA70 56.12 – 53.79 48.25 41.28 21.15 69.71 – 59.99 63.52 58.00 45.31
LACAORCA13 57.45 – 51.71 52.17 40.52 23.29 68.77 – 60.46 65.47 58.36 45.47
LACALLAMA8 55.84 – 50.83 47.20 40.52 21.54 70.17 – 59.73 62.57 57.29 45.08

Fr

ZERO-SHOT 44.10 54.46 – 37.79 29.95 19.42 51.62 67.43 – 59.60 52.82 36.60

LACALLAMA70 53.82 63.32 – 49.32 37.85 22.32 59.14 73.09 – 63.71 55.60 39.85
LACAORCA13 53.88 63.97 – 50.11 38.89 22.38 57.82 74.54 – 64.62 56.43 40.02
LACALLAMA8 52.96 63.49 – 49.11 38.27 21.78 57.50 72.99 – 64.62 55.27 39.41

Nl

ZERO-SHOT 45.68 45.53 36.20 – 27.62 28.32 62.30 65.69 54.43 – 56.19 43.90

LACALLAMA70 53.77 57.83 47.81 – 38.52 31.44 66.07 70.16 62.04 – 59.00 48.31
LACAORCA13 53.06 58.72 47.56 – 39.10 31.28 67.39 69.49 63.62 – 60.62 48.27
LACALLAMA8 53.36 58.14 48.16 – 38.03 31.00 66.73 68.07 60.42 – 58.58 47.74

Ru

ZERO-SHOT 37.42 49.62 33.00 35.77 – 24.24 65.09 63.20 57.60 59.39 – 44.62

LACALLAMA70 53.36 57.43 44.25 46.29 – 29.14 70.45 69.02 62.71 65.53 – 48.99
LACAORCA13 55.75 57.18 43.06 46.68 – 29.57 71.18 67.41 63.39 65.17 – 49.21
LACALLAMA8 52.65 58.12 41.63 45.25 – 28.97 70.25 68.93 61.79 65.12 – 49.02

Tr

ZERO-SHOT 38.67 41.54 29.01 28.53 34.19 – 56.33 49.84 48.08 49.90 46.26 –

LACALLAMA70 49.42 51.94 40.77 40.47 40.98 – 62.45 54.17 54.94 54.58 53.26 –
LACAORCA13 49.11 50.02 39.64 41.08 41.29 – 61.43 53.82 55.34 53.50 53.47 –
LACALLAMA8 49.20 49.53 39.81 40.92 40.59 – 60.34 54.50 53.89 52.92 52.89 –

Table 8: Results for different combinations of source and target languages. The best result for each target language
is in bold; the second best is underlined.

Conversely, Turkish performs the worst, both as
a source and a target language. This poor perfor-
mance could be attributed to Turkish’s status as
the only language from the Turkic family, mak-
ing it distinct from the Indo-European languages,
and its limited proximity to the languages officially
supported by LLaMA 3.1.

Interestingly, especially for XLM-R, Russian is
an effective source language despite its use of the
Cyrillic alphabet, in contrast to the Latin alpha-
bet used by most other languages. Furthermore,
Russian does not belong to the same branch of the
Indo-European language family as any of the other
languages used. We speculate that this effective-
ness might stem from the larger size of its train-
ing dataset compared to other languages, as even
ZERO-SHOT results are often better with Russian
as the source language.

C Error Analysis

We performed a detailed error analysis to gain in-
sight into the most common errors made by the
models. We manually examined 100 samples
from the test sets of four languages using the best-
performing model trained on English, with XLM-R
as the backbone. The analysis focused on four main
types of errors:

1. Boundary aspect errors: These occur when
the model either misses part of an aspect term
or includes extra words.

2. Missing aspects: These errors arise when the
model entirely fails to detect an aspect term
present in the gold labels.

3. Extra aspects: These occur when the model
predicts an aspect term that is not present in
the gold labels.

4. Sentiment polarity errors: These involve
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(d) Russian

Figure 6: Number of error types in 100 samples for different languages with English as the source language and
XLM-R as the backbone model.

incorrect sentiment classification for correctly
identified aspects or boundary aspect errors.

The results, shown in Figure 6, indicate that
boundary aspect errors and sentiment polarity er-
rors are relatively less frequent. Interestingly, error
distribution varies across languages. For instance,
extra aspect errors are significantly more common
in Dutch than other error types. In contrast, for
other languages, errors are more balanced. These
differences may be influenced by the distribution of
labels in the datasets; in the Dutch test set, there are
fewer aspects per sentence than in other languages.

The proposed LACA framework reduces the to-
tal number of errors by decreasing missing and ex-
tra aspect errors. However, for Spanish, it slightly
increased boundary aspect errors. This minor in-
crease may not be entirely negative, as boundary
aspect errors often indicate predictions closer to
the gold labels than missing or extra aspect errors.

An interesting observation was made for
LACALLAMA8 in Dutch. This model notably in-

creased the number of missing aspect errors but
significantly reduced extra aspect errors, highlight-
ing a trade-off in its error patterns.
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