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Abstract

LLMs exhibit advanced reasoning capabili-
ties, offering the potential to transform natural
language questions into mathematical models.
However, existing open-source datasets in op-
erations research domain lack detailed anno-
tations of the modeling process, such as vari-
able definitions, focusing solely on objective
values, which hinders reinforcement learning
applications. To address this, we release the
StructuredOR dataset, annotated with com-
prehensive labels that capture the complete
mathematical modeling process. We further
propose BPP-Search, an algorithm that inte-
grates reinforcement learning into a tree-of-
thought structure using Beam search, a Process
reward model, and a pairwise Preference al-
gorithm. This approach enables efficient ex-
ploration of tree structures, avoiding exhaus-
tive search while improving accuracy. Exten-
sive experiments on StructuredOR, NL4OPT,
and MAMO-ComplexLP datasets show that
BPP-Search significantly outperforms state-of-
the-art methods. In tree-based reasoning, BPP-
Search excels in accuracy and efficiency, en-
abling faster retrieval of correct solutions. The
StructuredOR dataset is available on Hugging-
face1 and GitHub2.

1 INTRODUCTION

Mathematical modeling, particularly Linear Pro-
gramming (LP) and Mixed Integer Programming
(MIP), plays a critical role in industrial applications
such as logistics (Demirel and Gökçen, 2008), elec-
tricity scheduling and transmission (Zhang et al.,
2018), and supply chain management (Özceylan
and Paksoy, 2013). With the advent of Large Lan-
guage Models (LLMs), transforming natural lan-
guage questions into mathematical models has be-
come a promising approach for automating opera-

1https://huggingface.co/datasets/LLM4OR/
StructuredOR

2https://github.com/LLM4OR/StructuredOR

tions research tasks (Wang et al., 2025a; Xiao et al.,
2024; Tang et al., 2024a; Wang et al., 2025b).

Despite the increasing availability of open-
source operations research (OR) datasets designed
for question-to-model transformation (Huang et al.,
2024; Ramamonjison et al., 2022; Tang et al.,
2024b), these datasets primarily focus on objec-
tive values while lacking detailed annotations of
the underlying modeling processes. This gap limits
the application of Reinforcement Learning (RL), as
prior studies (Lightman et al., 2023; Uesato et al.,
2022; Cobbe et al., 2021) have shown that pro-
cess information can significantly enhance mathe-
matical reasoning performance. To address this
limitation, we design a rigorous framework for
dataset generation and introduce the Structure-
dOR dataset, which not only provides objective
values for evaluation but also includes comprehen-
sive annotations of the modeling process, enabling
broader applicability in RL-based methods.

Chain-of-Thought (CoT) (Wei et al., 2022), Self-
Consistency (SC) (Wang et al., 2023) and Tree-
of-Thought (ToT) (Yao et al., 2023) have demon-
strated substantial improvements in reasoning tasks.
However, these approaches have inherent limita-
tions. CoT heavily relies on the policy model and
generates only one reasoning path at a time, mak-
ing it likely to fail to find the correct answer when
the policy model is weak. SC, without a verifier,
struggles to validate the correctness of candidate
answers, allowing errors in intermediate steps to
propagate and mislead the reasoning process. Sim-
ilarly, ToT generates multiple leaf nodes as poten-
tial answers, but without a verifier, it is unclear
which leaf node should be selected as the final so-
lution. Nonetheless, ToT remains promising; with
sufficiently wide and deep trees and effective node
selection strategies, it has the potential to generate
optimal solutions.

To enhance the reasoning process within the
ToT framework, we propose BPP-Search, a novel

821

https://huggingface.co/datasets/LLM4OR/StructuredOR
https://huggingface.co/datasets/LLM4OR/StructuredOR
https://github.com/LLM4OR/StructuredOR


method that integrates Beam Search, a Process Re-
ward Model (PRM), and a pairwise Preference
algorithm. BPP-Search is designed to improve ac-
curacy and reduce unnecessary node exploration,
making it particularly effective for complex reason-
ing tasks in mathematical modeling.

Our contributions are threefold: (1) We intro-
duce the StructuredOR dataset, which bridges the
gap between existing datasets and the requirements
of RL-based methods by providing detailed mod-
eling annotations. (2) We propose BPP-Search
and explore heuristic algorithms combined with
PRM, including Beam Search (Lowerre and Reddy,
1976), Greedy (Prim, 1957), Epsilon Greedy (Sut-
ton, 2018), and Random Greedy we proposed in
Section 4.3. (3) We conduct extensive experiments
on the StructuredOR, NL4OPT (Ramamonjison
et al., 2022), and Mamo-ComplexLP (Huang et al.,
2024) datasets, demonstrating the superiority of
BPP-Search over baseline and current state-of-the-
art methods from the perspective of efficiency and
accuracy.

2 RELATED WORK

2.1 Mathematical Modeling Datasets

Mathematical modeling datasets can be broadly cat-
egorized into two types: abstract modeling and con-
crete instance modeling. Modeling tools such as
Pyomo (Hart et al., 2017) and AMPL (Gay, 2015),
and OPL (Van Hentenryck et al., 1999) provide sup-
port for both approaches, enabling users to work
with abstract models as well as concrete instances.

Abstract modeling focuses on capturing the es-
sential structural information of a mathematical
model. It typically involves two steps: defining
basic model declarations and applying data to cre-
ate concrete instances. This approach is particu-
larly suited for large-scale industrial applications
and research, as models can be defined once and
reused by importing different datasets. For in-
stance, MLPrompt (Wang et al., 2025a) leverages
abstract models to generate parameter distributions,
which are subsequently populated with specific val-
ues to construct concrete instances within indus-
trial pipelines. Additionally, several studies (Yang
et al., 2024c; Wang et al., 2024b) combine abstract
models with CoT and LLMs to address problems
such as Traveling Salesman Problem (Gavish and
Graves, 1978), bypassing the need for traditional
mathematical solvers or explicit concrete models.

Concrete modeling requires all data to be avail-

able before model processing begins, making it a
straightforward and efficient approach. It is partic-
ularly suited for analytical projects. This approach
is especially advantageous when certain constraints
are difficult or time-consuming to generalize into
an abstract format, as it allows for more precise
and tailored solutions, significantly reducing pro-
cessing time. For smaller-scale mathematical mod-
els, tasks can be solved directly without treating
them as a combination of abstract modeling and
Named Entity Recognition (Grishman and Sund-
heim, 1996), which involves first building an ab-
stract model and then mapping numerical param-
eter values to it. This approach minimizes error
accumulation across tasks (Shen et al., 2023).

2.2 Process Reward Model
Several works (Cobbe et al., 2021; Lightman et al.,
2023; Uesato et al., 2022) introduce the concept
of the Process Reward Model (PRM), demonstrat-
ing its ability to significantly enhance the per-
formance of weak and small-scale policy mod-
els. Compared to the Outcome Reward Model
(ORM), PRM achieves better performance but in-
curs higher labeling costs (Uesato et al., 2022).
Initially, PRM training relied on manually labeled
data (Lightman et al., 2023). To address the grow-
ing demand for processing labels, Monte Carlo
Tree Search (MCTS)-based methods (Wang et al.,
2024c,a; Luo et al., 2024; Zhang et al., 2024; Setlur
et al., 2024; Wang et al., 2025b) were later devel-
oped to simulate and assign scores to reasoning pro-
cesses. While effective, MCTS-based approaches
require wide and deep trees to generate labeled
data through extensive rollouts for score conver-
gence at intermediate nodes, resulting in extremely
high computational resource demands. In contrast,
manually labeled data is deterministic and directly
reflects the intended reasoning process without re-
lying on approximations.

3 Dataset Generation

3.1 Preliminary
Greedy. The Greedy algorithm selects the candi-
date with the highest score at each step, focusing
entirely on exploitation without exploration. The
selection process can be formalized as:

a∗ = argmax
a∈A

P (a), (1)

where P (a) represents the score of candidate a,
and A denotes the set of candidates.
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Epsilon Greedy. The Epsilon Greedy algorithm
balances exploration and exploitation during can-
didate selection. At each step, with a probability
of ϵ, the algorithm selects a candidate randomly.
Otherwise, it selects the candidate with the highest
score. The selection process can be formalized as:

a∗ =

{
random choice, w.p. ϵ,

argmaxa∈A P (a), w.p. 1− ϵ,
(2)

where P (a) represents the score of candidate a,
and A denotes the set of candidates. The parameter
ϵ controls the probability of exploring randomly
versus exploiting the best-known option.

Beam Search. Beam Search is a heuristic search
algorithm that explores a fixed number (k) of the
most promising candidates (beam width) at each
step. Unlike Greedy, which selects only the best
candidate, Beam Search maintains a set of top k
candidates to balance exploration and exploitation.
The selection process can be formalized as:

Bt+1 = Top-k

( ⋃

a∈Bt

Expand(a)

)
, (3)

where Bt represents the set of beam candidates at
step t, Expand(a) denotes the set of all possible
successors of candidate a, and Top-k selects the k
candidates with the highest scores. The parameter
k controls the trade-off between computational cost
and search completeness.

Tree of Thought. Compared with CoT and SC,
ToT has the potential to generate many accurate
results, but it faces challenges in selecting a single
answer from numerous leaf nodes. Our objective
is to accelerate this process and efficiently retrieve
a satisfactory solution. In the mathematical mod-
eling task, Fig. 1 illustrates the reasoning process,
following a structured path through the question,
sets, parameters, variables, objectives, and con-
straints (see Appendix A.3 for an example). Con-
structing a six-layer tree for each example across
all datasets incurs high computational costs. To
address this, we group nodes based on property
similarities and limit each node to a maximum of
three child nodes. The resulting tree structure is
as follows: the first layer represents the question,
the second combines sets and parameters, the third
includes variables, and the fourth integrates ob-
jectives and constraints, as shown in Fig. 2. This
approach balances tree width and computational
efficiency for experiments.

Figure 1: Reasoning steps. The process follows the path
Q → S → P → V → O → C, where Q, S, P , V , O
and C represent the question, set, parameter, variable,
objective, and constraint respectively.

Q

SP1 SP2 SP3

V1 V2 V3 V7 V8 V9......

OC1 OC2 OC3 OC25 OC26 OC27......

Figure 2: The structure of the Tree of Thought. Here, Q
represents the question, SP represents set and parameter,
V represents variable, and OC represents objective and
constraint.

3.2 StructuredOR Dataset Framework

Existing operations research datasets predomi-
nantly focus on objective values and the annota-
tions of the underlying modeling process appear
to be missing. To bridge the gap, we introduce
StructuredOR a new dataset explicitly designed
to provide the objective value for evaluation and
capture the complete mathematical modeling pro-
cess.

Building on Xiao et al. (2024)’s work, which in-
troduces a framework for generating abstract math-
ematical models, we refine and expand this ap-
proach to cover a wider spectrum of abstract mod-
els. We leverage LLM such as GPT-4o (Achiam
et al., 2023) in conjunction with mathematical
solvers to instantiate abstract models into concrete
examples. Furthermore, we implement a series of
validation mechanisms to construct and verify the
accuracy of these concrete problems, thereby ensur-
ing the dataset’s quality and reliability. In summary,
the StructuredOR dataset provides pairs of concrete
questions and corresponding model data, accom-
panied by comprehensive annotations detailing the
entire modeling process. Fig. 3 illustrates the con-
struction pipeline, with each step distinguished by
a color-coded arrow: blue for Step 1, orange for
Step 2, red for Step 3, and green for Step 4. The
whole process is delineated as follows:

Firstly, we leverage LLMs such as GPT-4o to
generate distributions for sets and parameters in ab-
stract models, inspired by prior work (Wang et al.,
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Figure 3: Pipeline of the construction process of our proposed StructuredOR dataset.

Set Parameter Variable Constraint

Average 2.22 3.95 1.40 2.38
Max 4 7 4 4
Standard Deviation 0.66 1.07 0.70 0.85

Table 1: Descriptive statistics for the abstract model-
ing components in the StructuredOR dataset. The table
reports the number of sets, parameters, variables, and
constraints in the abstract model (note that these num-
bers will expand after the model is instantiated into a
concrete form).

2025a) demonstrating that LLMs, such as GPT-
4o, are capable of producing realistic distributions
for such applications. This is followed by a simula-
tion process to generate instance-specific parameter
data. Subsequently, these parameters are converted
into concrete models in LP format using a parser
and a modeling tool. The resulting models are then
validated for solvability and correctness using the
Gurobi solver (Achterberg, 2019). Solvable prob-
lems from the solver are then selected as labeled
instances, encompassing both the modeling process
and the associated objective values. Details about
standardizing the mathematical modeling data for-
mat are provided in Appendix A.1.

Next, based on the descriptions of sets and pa-
rameters in abstract models, we construct templates
to generate markdown-formatted lists via string in-
sertion to describe the information of sets and pa-
rameters. We subsequentially employ GPT-4o to
develop a concrete problem description in natural
language, which does not involve specific values
for sets or parameters but provides a contextual-

Concrete Variables per Abstract Variable Frequency

1 70
2 214
3 36
4 143
6 5
8 22

Table 2: Distribution of the number of instantiated vari-
ables derived from each abstract variable in the concrete
model.

ized description of the problem. By concatenating
this description with the numerical details of sets
and parameters, a complete problem statement is
produced. This string-based insertion ensures con-
sistency and accuracy in the generated problem
descriptions.

We further utilize GPT-4o to rephrase each gen-
erated question into three semantically equivalent
versions to enhance fluency and naturalness. This
process is supported by a rigorous review frame-
work, comprising manual filtering, GPT-based scor-
ing, and rule-based evaluation, to ensure semantic
consistency between the rephrased texts and their
corresponding labels.

Finally, we introduce an iterative strategy for
data augmentation by changing parameter data dis-
tributions during the initial generation phase. This
yields a dataset comprising 124 concrete questions
and their corresponding models, spanning domains
including logistics, scheduling, and networks, of
which 77 examples are from the original frame-
work, and 47 are generated through data augmenta-
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Category Agriculture Logistics Education Sports Military Energy Telecommunications Manufacturing Health Services Finance
Count 24 20 15 12 12 12 11 9 5 4

Table 3: Instance category distribution in the StructuredOR dataset, demonstrating broad applicability across
industries.

tion. Table 1 presents the statistical distribution of
the key components—sets, parameters, variables,
and constraints—in the abstract model of the Struc-
turedOR dataset. Table 2 summarizes the number
of concrete variables instantiated from each ab-
stract variable, while table 3 shows the industry
distribution. Together, these tables illustrate the
dataset’s structural diversity and comprehensive
domain coverage.

Appendix A.2 provides an example of a concrete
question along with its structured modeling process
as the label. It also discusses the limitations of other
datasets, such as Mamo-ComplexLP (Huang et al.,
2024), NL4OPT (Ramamonjison et al., 2022), and
IndustryOR (Tang et al., 2024b), highlighting their
challenges in addressing the complete modeling
process. Since most datasets, apart from Struc-
turedOR, are incompatible with the schema de-
fined in Appendix A.1, some questions in these
datasets cannot be successfully parsed, rendering
some examples unusable. Given the small size of
the IndustryOR (Tang et al., 2024b) dataset, our
experiments focus on the StructuredOR, Mamo-
ComplexLP, and NL4OPT datasets.

3.3 PRM Dataset Preparation

To implement process supervision within the tree
structure, we introduce the PRM (Uesato et al.,
2022; Lightman et al., 2023), which assigns a score
to each intermediate step in the reasoning process.
There are two main approaches to generating train-
ing data for PRMs. Uesato et al. (2022); Lightman
et al. (2023) rely on manually labeling each inter-
mediate step while Wang et al. (2024c,a); Luo et al.
(2024); Zhang et al. (2024); Setlur et al. (2024)
leverage MCTS to assign scores to intermediate
steps.

MCTS-based methods rely on wide and deep
trees to generate labeled process data through ex-
tensive rollouts, ensuring score convergence for
intermediate nodes but demanding significant com-
putational resources and incurring Reward Hack-
ing (Weng, 2024). In contrast, manually labeled
data is deterministic and directly captures the in-
tended reasoning process without relying on ap-
proximations.

We first utilize the CoT and ToT frame-
works across various policy models, including
GPT (Achiam et al., 2023), LLama (Dubey et al.,
2024), and Qwen series (Yang et al., 2024b), ap-
plied to the NL4Opt (Ramamonjison et al., 2022)
and MAMO-ComplexLP (Huang et al., 2024) train-
ing datasets. Examples with consistent objective
values are assumed to have correct modeling pro-
cesses and therefore do not require manual label-
ing. Although the StructuredOR dataset already
includes detailed modeling process annotations and
serves as a source of high-quality positive exam-
ples, we adopt the same procedures to further aug-
ment its training data.

The process of modeling labels for both correct
and incorrect reasoning paths is structured in align-
ment with the layers of the ToT framework. This
follows a cumulative approach, where each layer
is constructed sequentially, building upon the out-
comes of the preceding layer. If the generated label
represents a correct reasoning path, all segmented
labels derived from it are also correct, as the cor-
rectness of each segment ensures the validity of the
entire path. Conversely, if the overall reasoning
path is determined to be incorrect and a specific
intermediate step can be definitively identified as in-
correct, all subsequent steps from that point onward
are also labeled as incorrect, as errors propagate
forward in the reasoning process. If no specific
intermediate step can be identified as incorrect, the
entire reasoning path is simply labeled as incorrect
without making assumptions about the correctness
or incorrectness of individual intermediate steps.

To diversify the PRM dataset, manual perturba-
tions are applied to enrich it with diverse examples
in both categories. Detailed descriptions of the
PRM training dataset preparation are provided in
Appendix A.4.

4 Methodology

4.1 Training PRM
Previous works (Cobbe et al., 2021; Uesato et al.,
2022; Lightman et al., 2023; Luo et al., 2024) have
shown that small-scale LLMs equipped with veri-
fiers evaluating intermediate processes are capable
of outperforming foundational large-scale LLMs in
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Figure 4: A real demonstration of the BPP-Search pro-
cess with a beam search width of 2. Yellow nodes rep-
resent pruned nodes that are not explored, while light
blue nodes indicate nodes that have been visited.

mathematical reasoning tasks. In this work, we fine-
tune Qwen2.5-Math-1.5B (Yang et al., 2024b) for
a binary classification task. Details on constructing
prompts for the PRM are provided in Appendix A.5.
After full-parameter supervised fine-tuning, we ex-
tract the logits corresponding to the correct label
and apply the sigmoid function to compute the
score:

SPRM =
1

1 + e−lprm
, (4)

where lprm denotes the logit value for the correct
label, and SPRM represents the PRM score.

4.2 BPP-Search

We integrate the PRM with Greedy (Prim, 1957)
and Beam Search (Lowerre and Reddy, 1976) al-
gorithms, where the PRM provides scores to guide
node selection. However, as shown in Section 5.3,
increasing the Beam Search width does not con-
sistently improve performance and, in some cases,
leads to degradation. This limitation stems from
the PRM, which is trained for classification tasks
but required to assign continuous scores during
inference, resulting in output discrepancies. Man-
ual analysis of the tree generation process reveals
that the final layer of Beam Search frequently con-
tains both correct and incorrect candidates that are
highly similar, with only subtle distinctions. These
minor differences yield comparable scores, making
it challenging to determine the optimal solution
effectively.

To address this challenge, we propose BPP-
Search, an algorithm that integrates Beam search,
PRM, and a Pairwise Preference model. The core
idea is to enhance decision-making in the final layer
by leveraging a newly trained Preference Model,

fine-tuned from Qwen2.5-Math-1.5B, to generate
pairwise preference scores for ranking candidates.

Preference Model Data Preparation. To train
the preference model for pairwise preferences, we
first use the ToT framework to generate a large set
of unlabeled reasoning paths and classify them as
correct or incorrect based on objective values. For
each problem, one correct reasoning path (A) and
one incorrect reasoning path (B) are extracted, and
all pairwise combinations of correct and incorrect
paths are generated. Prompts are constructed by
arranging the problem with A and B in two differ-
ent orders. If A appears first, the prompt is labeled
as 1; otherwise, it is labeled as 0. The resulting
labeled data is then used to fine-tune the Preference
Model as a binary classifier. Details on construct-
ing prompts for the Preference Model are provided
in Appendix A.5.

Pairwise Scoring and Candidate Ranking. Dur-
ing inference, the preference model evaluates pair-
wise preference scores for any two candidates
(A,B). The preference score SPM (A ≻ B) is
calculated as:

SPM (A ≻ B) =
1

1 + e−lpm
, (5)

where lpm is the logit value for class 1 and A ≻ B
denotes the preference for A over B.

To compute a comprehensive score for each can-
didate (A) in the candidate set, pairwise preference
scores are aggregated across all other candidates:

SPM (A) =
1

n− 1

j=1,...,n∑

j ̸=i

S(A ≻ Xj), (6)

where n is the total number of candidates, i is the
index corresponding to A, and Xi represents A,
while Xj represents other candidates.

Selection of the Optimal Candidate. Using the
computed scores SPM (A), candidates are ranked,
and the one with the highest score is selected as the
optimal answer. This robust ranking mechanism
addresses the limitations of the PRM, which strug-
gles to differentiate between similar candidates and
accurately identify the correct answer.

Fig. 4 illustrates the BPP-Search process, where
nodes are pruned based on PRM scores during
beam search (Width = 2), and the Pairwise Prefer-
ence Algorithm ranks the final candidates to select
the optimal solution, ensuring robustness and accu-
racy. Appendix A.6 analyses computational cost of
BPP-Search.
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Model/Methods CoT-BMLD CoT-SPVOC SC ToT-Randomly-Chosen ToT-Rethink ToT-Fully-Traverse
GPT-4o 19 19 21 21 23 30
GPT-4o-mini 13 14 19 12 19 21
Llama-3-70B 10 17 19 17 17 22
Llama-3.1-70B 18 10 21 5 14 17
Llama-3.2-11B 2 0 1 0 0 8
Qwen-2-72B-Instruct 2 2 4 3 1 5
Qwen-2.5-MATH-72B-Instruct 2 2 0 0 0 4
Qwen-2.5-72B-Instruct 6 5 9 2 2 2
Mixtral-8×7B-v0.1 0 0 0 0 1 1

Table 4: Performance evaluation (number of correctly solved examples) of various LLMs on the StructuredOR test
dataset (38 examples) under different methods: CoT (Wei et al., 2022) (including CoT-BMLD, where modeling is
performed first and then data is imported, and CoT-SPVOC, which follows the sequence of set, parameter, variable,
objective, and constraint for CoT), ToT (Yao et al., 2023), SC (Wang et al., 2023), ToT-randomly-chosen (where
the final result is obtained randomly from the leaf nodes), ToT-rethink (providing all leaf nodes to the LLM and
obtaining a revised result), and ToT-fully-traverse (where every leaf node is thoroughly checked).

Dataset Number of Problems Resolved
StructuredOR 30/38
NL4OPT 143/289
ComplexLP 72/211

Table 5: Number of problems resolved using ToT-Fully-
Traverse. The numerator represents the number of ex-
amples with at least one correct answer, and the denom-
inator indicates the total number of examples in the test
dataset. Results are shown for GPT-4o on the Struc-
turedOR, NL4OPT (Ramamonjison et al., 2022), and
ComplexLP (Huang et al., 2024) datasets.

4.3 Random Greedy Algorithm

To address the limitations of PRM’s scoring preci-
sion, we employ the Random Greedy algorithm.
Since PRM provides a rough preference ranking
rather than precise scores, randomness is intro-
duced to mitigate the impact of PRM’s scoring
variability.

The Random Greedy algorithm prioritizes can-
didates with scores close to the maximum while
incorporating randomness to mitigate PRM’s im-
precision. Candidates are filtered based on the
condition:

P (amax)− P (ai) ≤ threshold, (7)

where P (amax) is the highest score, P (ai) is the
score of candidate ai, and threshold is a predefined
margin. From the filtered candidates, one is ran-
domly selected to continue the search process.

5 EXPERIMENT

5.1 Baseline

Given the varying performance levels of policy
models across different scales, our objective is to
maximize the accuracy of correct results by fully

exploring every leaf node in the ToT structure, with-
out requiring fine-tuning of the policy model. Be-
cause this approach ensures greater stability and
a larger pool of experimental data for subsequent
analyses. To achieve this, we design a set of base-
line experiments on the StructuredOR, providing
more reliable and consistent evaluations.

We first evaluate the CoT (Wei et al., 2022)
approach, including two variations: CoT-BMLD,
where the modeling process is performed first and
data is imported later, and CoT-SPVOC, which ad-
heres to the sequence of set, parameter, variable,
objective, and constraint in the modeling process.
Next, since the ToT (Yao et al., 2023) framework
lacks a mechanism to select a final answer from
all leaf nodes, we introduce the following config-
urations to address this limitation: ToT-randomly-
chosen, where the final result is randomly selected
from the leaf nodes; ToT-rethink, where all leaf
nodes are provided to the LLM for reevaluation
to produce a revised result; and ToT-fully-traverse,
where every leaf node is thoroughly evaluated to
ensure that at least one correct result can be gen-
erated. The detailed tree structure is shown in the
Fig. 2. Additionally, we include SC (Wang et al.,
2023) as a baseline, which aims to obtain consistent
results by sampling multiple reasoning paths.

The evaluated policy models include GPT-
4o (Achiam et al., 2023), GPT-4o-mini (Achiam
et al., 2023), Llama-3-70B (Dubey et al., 2024),
Llama-3.1-70B (Dubey et al., 2024), Llama-3.2-
11B (Dubey et al., 2024), Qwen-2-72B (Yang
et al., 2024a), Qwen-2.5-72B (Team, 2024), Qwen-
2.5-Math-72B (Yang et al., 2024b), and Mixtral-
7×8B (Jiang et al., 2024). Table 4 shows the perfor-
mance of baseline methods across these models in
StructuredOR dataset. The results highlight signifi-
cant variations in performance, demonstrating how
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Method StructuredOR Mamo-ComplexLP NL4OPT
Correct Rate Steps Correct Rate Steps Correct Rate Steps

CoT (Wei et al., 2022) 0.633 1 0.486 1 0.566 1
SC (Wang et al., 2023) 0.700 4 0.625 4 0.713 4
ToT-Randomly-Chosen (Yao et al., 2023) 0.700 39 0.444 39 0.629 39
ToT-Rethink (Yao et al., 2023) 0.766 40 0.583 40 0.622 40
Greedy Search Variant (Our Method) 0.833 9 0.555 9 0.713 9
Beam Search Variant (Our Method) 0.800 15 0.666 21 0.783 15
BPP-Search Variant (Our Method) 0.933 15 0.722 21 0.804 15

Table 6: Accuracy and reasoning steps for BPP-Search and baselines with a fixed policy model (GPT-4o) on the
StructuredOR, Mamo-ComplexLP (Huang et al., 2024), and NL4OPT (Ramamonjison et al., 2022) test datasets.
The results are based on 30 problems from StructuredOR, 72 from Mamo-ComplexLP, and 143 from NL4OPT that
are confirmed solvable by the policy model in prior experiments.

Method StructuredOR Correct Rate Mamo-ComplexLP Correct Rate NL4OPT Correct Rate Reasoning Step
Greedy Search + PRM 0.733 0.555 0.699 9
Random Greedy Search + PRM 0.833 0.513 0.692 9
Epsilon Greedy Search + PRM 0.733 0.500 0.713 9
Beam Search (Width=2) + PRM 0.800 0.652 0.783 15
Beam Search (Width=3) + PRM 0.766 0.666 0.755 21
BPP-Search (Width=2) 0.933 0.652 0.804 15
BPP-Search (Width=3) 0.866 0.722 0.797 21

Table 7: Accuracy and reasoning steps for ablation study of our methods with a fixed policy model (GPT-4o) on
the StructuredOR, Mamo-ComplexLP (Huang et al., 2024), and NL4OPT (Ramamonjison et al., 2022) test datasets.
The results are based on the same 30 problems from StructuredOR, 72 from Mamo-ComplexLP, and 143 from
NL4OPT, confirmed solvable by the policy model in prior experiments.

model size and architecture impact their effective-
ness in solving problems within the StructuredOR
dataset.

To ensure stable performance in subsequent
search algorithm experiments across different
datasets, we select GPT-4o as the policy model. We
first evaluate its ability to solve questions by finding
at least one correct answer within the ToT fully-
traverse framework on the test datasets from Struc-
turedOR, MAMO-ComplexLP (Huang et al.,
2024), and NL4OPT (Ramamonjison et al., 2022).
Table 5 presents the results of this evaluation. For
subsequent tree search algorithm experiments, only
successful cases—where the policy model identi-
fies at least one valid result—are considered. This
ensures that the policy model can generate solu-
tions for these questions within the ToT framework.

5.2 Evaluation of BPP-Search

We evaluate our methods on the solvable prob-
lems identified in the datasets, as described in Sec-
tion 5.1. We perform supervised fine-tuning of the
PRM and Preference Model on their correspond-
ing training datasets, as described in Sec.3.3 and
Sec.4.2, respectively. Detailed evaluation results
are provided in Appendix A.7. Table 6 presents
a comparison between our methods and baseline
approaches, focusing on correct rate and reasoning
steps. The results show that, under the condition

where none of the methods fine-tune the policy
model, our methods achieve superior performance
with fewer reasoning steps, significantly outper-
forming baselines.

These experiments validate the feasibility of uti-
lizing PRM to assist inference within the tree-of-
thought structure in the domain of Operations Re-
search. BPP-Search effectively addresses the lim-
itations of traditional ToT methods, which strug-
gle to reliably select a final result. As shown in
Table 6, Greedy Search, Beam Search, and BPP-
Search generate better results in significantly fewer
steps, exponentially reducing computational costs.

5.3 Ablation Study

Table 7 presents the performance of our methods
under different configurations. It is evident that
the PRM struggles to assign precise scores for re-
gression tasks. For instance, as the beam search
width increases, the accuracy tends to decrease,
and in some cases, the performance of beam search
becomes comparable to that of greedy search. Man-
ual analysis of the beam search results in the final
layer reveals that the candidate queue sometimes
contains both correct and incorrect answers that are
highly similar in structure, with only subtle differ-
ences. This similarity leads to comparable scores,
making it challenging for the PRM to reliably dis-
tinguish between them.
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To address this limitation, we introduce BPP-
Search, which incorporates a pairwise preference
algorithm. Instead of scoring candidates individu-
ally, BPP-Search evaluates all pairwise combina-
tions of candidates within the final queue, compar-
ing each pair and averaging the pairwise preference
scores for each candidate. This approach ensures a
more robust evaluation by reducing the bias inher-
ent in relying solely on individual scores. The ex-
perimental results in Table 7 demonstrate that this
method effectively mitigates the risks associated
with the imprecise scoring of the PRM, resulting
in improved accuracy and robustness. Additionally,
based on the performance of PRM, our random
greedy search algorithms can at least guarantee per-
formance comparable to standard greedy search,
and in some cases, achieve even better results.

6 Conclusion

In this work, we introduce a new operations re-
search dataset that integrates natural language ques-
tions with their corresponding detailed modeling
processes, addressing the limitations of existing
open-source datasets that lack comprehensive anno-
tations of the modeling process. We further propose
BPP-Search, an advanced algorithm that combines
Beam Search, PRM, and a Pairwise Preference
mechanism to enhance the ToT framework. BPP-
Search effectively accelerates the reasoning pro-
cess, improves accuracy, and alleviates the scoring
imprecision of PRM, thereby ensuring robust and
reliable decision-making. Comprehensive experi-
ments conducted on StructuredOR, NL4OPT, and
MAMO-ComplexLP datasets highlight the superi-
ority of BPP-Search. Compared to state-of-the-art
approaches, such as CoT, SC, and PRM integrated
with Greedy or Beam Search, BPP-Search con-
sistently achieves higher accuracy while requiring
fewer reasoning steps, demonstrating its efficacy in
addressing complex reasoning tasks in operations
research.

7 Limitations

7.1 Trade-offs in ToT Structure: Performance
and Computational Cost

In the ToT framework, both increasing tree width
and deepening the tree can enhance performance.
A wider tree, achieved by increasing the number
of child nodes at each layer, provides more explo-
ration paths, thereby improving the likelihood of
finding optimal solutions. Similarly, greater depth,

achieved by dividing tasks into finer-grained nodes
(e.g., separating "set" and "parameter" into distinct
layers), not only facilitates more structured and
detailed reasoning but also offers additional explo-
ration paths, further increasing the likelihood of
identifying optimal solutions.

However, both approaches entail significant com-
putational costs. For example, a tree with a height
of 4 and a branching factor of 3 requires 39 LLM
queries, whereas increasing the branching factor to
4 raises this to 84 LLM queries, thereby exacerbat-
ing computational demands, particularly for long
prompts (e.g., 4000 tokens). This creates a trade-
off between computational cost and performance.
In our study, due to limitations in computational
resources, we were unable to construct a tree that
is both sufficiently deep and wide to fully explore
the solution space.

7.2 Dilemma between LLM Capability and
OR Problem Complexity

In operations research, most problems can be cate-
gorized into a limited number of canonical types,
which we treat as the "seed" problems. We de-
liberately avoid indiscriminate expansion of the
StructuredOR dataset because simply modifying
parameter values results in highly similar instances.
This introduces risks such as test set leakage and
model overfitting, reducing the robustness of exper-
imental evaluations.

On the other hand, if we were to diversify the
dataset by significantly increasing the size and di-
mensionality of the problem instances, the result-
ing questions would contain a large number of nu-
merical values. Current LLMs face fundamental
limitations in this regard, as they struggle to memo-
rize and accurately reproduce numerous numerical
inputs in a structured and orderly fashion.

For instance, a single parameter such as
Cost[X][A][t] with three dimensions—each con-
taining 3 elements—already results in 33 = 27 val-
ues. As the number of elements in each dimension
increases, the parameter space grows exponentially.
While this level of complexity is trivial for math-
ematical solvers, it poses a significant challenge
for LLMs, which are not yet capable of accurately
reproducing large-scale numerical values in a com-
plete and orderly manner.
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A Appendix

A.1 Modeling Data Format Specification

Tables 8, 9, 10, 11, 12, 13, 14, 15, 16 define the
standardized data format for representing mathe-
matical models. This convention provides a struc-
tured and consistent way to label and organize mod-
eling data, ensuring clarity and usability across
different tasks and datasets.

A.2 Operations Research Dataset
Comparison

The StructuredOR dataset, as illustrated in Fig-
ure 5, provides not only the objective value but
also the complete modeling process, offering a
structured and transparent view of optimization
problems. In contrast, as shown in Figure 6, the
Mamo-ComplexLP (Huang et al., 2024) and Indus-
tryOR (Tang et al., 2024b) datasets include only the
objective value as the label, without detailing the
modeling process. This limitation makes it difficult
to verify the correctness of the data and prevents the
application of reinforcement learning to intermedi-
ate steps. Similarly, the NL4OPT (Ramamonjison
et al., 2022) dataset lacks both a structured mod-
eling process and clear objective values, further
complicating the interpretation and validation of
results.

A.3 An Example to Illustrate Reasoning in
Mathematical Modeling

Figure 7 illustrates the reasoning steps in the X-
of-Thought (XoT) framework under the modeling
structure defined in Appendix A.1. The process
follows a structured sequence, starting with the
question (Q), then progressing through sets (S),
parameters (P ), variables (V ), objectives (O), and
constraints (C). Each step builds upon the pre-
vious one, progressively transforming the natural
language question into a fully defined mathematical
model.

A.4 PRM Training Data Collection

To augment positive data for Process Reward
Model training, we adopt the following four strate-
gies:

1. Utilizing ground truth: Segment the ground
truth data into accumulative chunks corre-
sponding to different layers of the reasoning
process. This ensures that the hierarchical
structure of the data is preserved.

2. Leveraging LLM-generated data: Identify
correctly generated data from LLMs operating
under ToT, CoT, and SC frameworks, and ap-
ply the same segmentation operations used for
correct generated data. This approach expands
the dataset with additional examples while
ensuring consistency and alignment with the
hierarchical structure.

3. Swapping indices in summation con-
straints: Exchange indices within summation
functions in constraints derived from ground
truth data. This operation does not alter the fi-
nal result, thereby introducing diversity while
preserving correctness.

4. Modifying inequalities: Swap the left-hand
and right-hand sides of inequalities derived
from ground truth data, and adjust the in-
equality signs accordingly (e.g., ‘>=‘ becomes
‘<=‘). This operation creates valid variations
of the data while maintaining correctness.

To augment incorrect data for Process Reward
Model training, we apply the following strategies:

1. Mismatch instance data: Replace the correct
instance data with mismatched values. For
example:

• Modify the value of a parameter so that
it no longer corresponds to the data of
the set.

• Delete or add random data to a ‘set‘.
• Delete a column from a random dimen-

sion of a parameter.
• Reshuffle the data of a random parame-

ter.

2. Incorrect format: Generate data using LLMs
based on the training dataset, then select exam-
ples that cannot be used for modeling due to
structural inconsistencies or formatting issues.

3. Constraint modifications: Introduce errors
in constraints or objectives by:

• Changing a greater-than sign into a less-
than sign.

• Swapping the indices within a constraint.
• Altering the summation domain of a con-

straint.
• Randomly deleting a constraint.
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Name Type Required Description
set list No Collection definitions needed for abstract modeling
parameter list No Constants needed for abstract modeling
variable list Yes Variables required for modeling
objective list Yes Objective function definition required for modeling
constraint list No Constraints needed for modeling

Table 8: Summary of components for abstract modeling

Name Type Description
name str Collection name, must meet programming naming conventions,

no spaces allowed
description str Description of the collection
data list Use a list starting from 1 and ending at the size of the set to

represent the number of elements in the set.

Table 9: Details of the Set Component

Name Type Description
name str Parameter name, must meet programming naming conventions, no

spaces allowed
description str Parameter description
domain str The index dimension of the parameter, e.g., “a <in>Aircraft”. If

this parameter is a constant, the domain is an empty string. If
this parameter is multi-dimensional, please list the corresponding
index.

data list Use a list or a number depending on whether the domain is an
empty string. If the domain is an empty string, the data is a number.
Otherwise, it is a list that can be either one-dimensional or multi-
dimensional, representing the values of each parameter across
different sets. There is a one-to-one correspondence between the
dimensions of data and the domain.

Table 10: Details of the Parameter Component

Name Type Description
name str Variable name, must meet programming naming conventions, no

spaces allowed
description str Variable description
domain str Index dimension of the variable, e.g., “a <in>Aircraft"
type str Variable type: CONTINUOUS, INTEGER, BINARY. Default is

CONTINUOUS. Case insensitive

Table 11: Details of the Variable Component

• Modifying the function in either the con-
straint or the objective.

4. Objective reversals: Convert a minimization
objective into its maximization counterpart, or
vice versa.

5. Generated incorrect models: Utilize LLM-
generated data that is structurally valid and
adheres to modeling conventions but produces
incorrect results, where the objective value
from the modeling solution deviates from the
expected outcome. This approach ensures the
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Name Type Description
name str Objective function name, must meet programming naming con-

ventions, no spaces allowed
description str Objective function description
sense str Optimization direction of the objective function: min, max, mini-

mize, maximize
function str Formula of the objective function, details below

Table 12: Details of the Objective Component

Name Type Description
name str Constraint name, must meet programming naming conventions,

no spaces allowed
description str Constraint description
domain str Index dimension of the constraint. Without filter: “a <in>Aircraft".
function str Formula of the constraint, details below

Table 13: Details of the Constraint Component

Type Expression Description
Formula with
sum symbol

∑
i∈I xi {i ∈ I} is the summation dimension

Table 14: Details of Formula Expressions

Type Expression Description
Sum dimension
with subscript
parameter

∑
i∈Successorsk Does not support Successorsk forms

Nested parenthe-
ses in index di-
mension

{i ∈ P{k ∈ A{l ∈
A}} ∈ NOEi}

Nested parentheses in index dimension are not sup-
ported

Subscript re-
striction

xi,j where i, j cannot be a
number

Numeric subscripts like xi,1, x1,j are not supported

Table 15: Unsupported Formulas and Their Limitations

Type Expression Description
Continuous ex-
pression

a < b < c Continuous expressions are supported.

Expression sep-
arated by com-
mas

x+ y < 0, y + z < 1 Must be separated by English commas; will be split
into two constraints.

Two consecutive
sums

∑
i∈I
∑

j∈J xij Will be merged into:
∑

i∈I,j∈J xij .

Missing * mul-
tiplication sym-
bol

∑
i∈I(aixi + biyi) Multiplication symbol will be automatically filled.

Table 16: Supported Special Formulas

data aligns with modeling principles while
intentionally introducing errors in reasoning

or optimization outcomes.
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Metric Accuracy Precision Recall F1-Score
Value 0.9823 0.9772 0.9868 0.9820

Table 17: Performance metrics of the PRM on the PRM
test dataset (Section 3.3).

Metric Accuracy Precision Recall F1-Score
Value 0.7560 0.7761 0.7196 0.7468

Table 18: Performance metrics of the Preference Model
on the Preference Model test dataset (Section 4.2)

A.5 PRM and Preference Model Prompt
Figure 8 shows two functions illustrating how PRM
and Preference Model construct prompts.

A.6 BPP Search Complexity Analysis
The computational complexity of BPP-Search is
determined by the number of invocations of the pol-
icy model, the pairwise preference model, and the
PRM. Specifically, the overall complexity can be
decomposed into the following three components:

Here, h denotes the height of the search tree, b
represents the beam width, and n is the number of
child nodes per parent node.

Policy Model Invocations: O(n · b · (h−1)+n).
This term quantifies the cost incurred by the policy
model during the node expansion process across
the tree levels.

Pairwise Preference Model Invocations: O(b2 ·
n2). This cost arises from ranking and selecting
candidates in the final layer, where each candidate
is compared pairwise with the others.

PRM Invocations: O(n · b · (h−2) + n). This
component reflects the number of calls to the PRM
for evaluating the intermediate steps throughout the
search.

Since the reward model and the pairwise pref-
erence model, typically implemented with 1.5B
or 3B parameters, are relatively small compared
to the policy model (usually a 70B, 405B parame-
ter model), the primary concern is the time spent
calling the policy model.

A.7 PRM, PM Training
Table 17 and Table 18 report the performance of
the PRM and the Preference Model on their corre-
sponding test sets after supervised fine-tuning.
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Figure 5: An example showcasing a concrete question and its structured modeling process as the label in the
StructuredOR dataset.

Figure 6: Comparison highlighting the limitations of the Mamo-ComplexLP and IndustryOR datasets.
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Figure 7: An example illustrating the reasoning process in mathematical modeling.
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def build_prm_training_data_template(question, label):
    convention = get_the_convention()

    template = f"""As an expert in mathematical modeling, you are provided with the 
conventions for generating instances from concrete problems. The conventions are as follows:

{convention}

Please review the following question:
{question}

And evaluate the following mathematical model (or part of it):
{label}
"""
    return template

def build_dpo_training_data_template(question, model1, model2):
    convention = get_the_convention()

    template = f"""As an expert in mathematical modeling, you are provided with conventions 
for generating instances from concrete problems. The conventions are as follows:

{convention}

Please review the following question:
Question: {question}

Evaluate the following two mathematical models:

Model 1 Answer:
{model1}

Model 2 Answer:
{model2}

Instructions:
If Model 1 is correct and Model 2 is incorrect, please consider this example as positive.
If Model 2 is correct and Model 1 is incorrect, please consider this example as negative.
"""
    return template

Figure 8: How PRM and the Preference Model construct prompts.
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