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Abstract

While recent research increasingly emphasizes
the value of human-LLM collaboration in com-
petitive programming and proposes numerous
empirical methods, a comprehensive under-
standing remains elusive due to the fragmented
nature of existing studies and their use of
diverse, application-specific human feedback.
Thus, our work serves a three-fold purpose:
First, we present the first taxonomy of hu-
man feedback consolidating the entire program-
ming process, which promotes fine-grained
evaluation. Second, we introduce ELABORA-
TIONSET, a novel programming dataset specifi-
cally designed for human-LLM collaboration,
meticulously annotated to enable large-scale
simulated human feedback and facilitate cost-
effective real human interaction studies. Third,
we introduce ELABORATION, a novel bench-
mark to facilitate a thorough assessment of
human-LLM competitive programming. With
ELABORATION, we pinpoint strengthes and
weaknesses of existing methods, thereby set-
ting the foundation for future improvement.
Our code and dataset are available at https:
//github.com/SCUNLP/ELABORATION.

1 Introduction

Competitive programming presents a formidable
challenge, as it requires mastery of four key stages:
1) the precise understanding of complex problems,
2) the strategic planning of efficient solutions, 3)
the generation of effective code within strict con-
straints, 4) and the rigorous debugging of their im-
plementations (Cormen et al., 2022; Huang et al.,
2023b; Dale and Weems, 2014). To mitigate this
challenge, there has been a growing interest in uti-
lizing large language models (LLMs) for automatic
competitive programming tasks (Nijkamp et al.,

∗ Corresponding author.

2022; Li et al., 2023a; Roziere et al., 2023; Guo
et al., 2024; Ridnik et al., 2024; Lozhkov et al.,
2024; Liu et al., 2024), assisting individuals in
CS education and technical interview preparation.
However, these models have not yet demonstrated
remarkable performance for practical utility (Yan
et al., 2023; Li et al., 2023b; Jain et al., 2024).

Driven by this concern, recent research has
shifted from relying solely on LLMs to explore
Human-LLM Competitive Programming, a human-
in-the-loop paradigm that leverages multi-turn hu-
man feedback to enhance LLM efficacy (Shi et al.,
2024; Chae et al., 2024; Zheng et al., 2024). How-
ever, existing research have been somewhat frag-
mented, with studies employing various, scattered
and application-specific human feedback. This
fragmentation hinders a comprehensive understand-
ing of effective Human-LLM collaboration in com-
petitive programming (Shi et al., 2024). For in-
stance, Mozannar et al. (2023) and Wang et al.
(2024) focus on suggesting solution strategies,
while Zheng et al. (2024) concentrate on conversa-
tional error identification. These approaches over-
look the potential advantages of human guidance
in areas such as problem comprehension, solution
planning. A comprehensive benchmark is therefore
needed to evaluate the effectiveness and charac-
teristics of human-LLM collaboration across the
entire competitive programming process.

To this end, we introduce ELABORATION, a
novel benchmark featuring a comprehensive evalu-
ation protocol to facilitate a thorough assessment.
This protocol incorporates a taxonomy of human
feedback spanning the entire competitive program-
ming process, and a new human-LLM program-
ming dataset to support the evaluation implementa-
tions. Specifically, our evaluation protocol builds
upon existing works (Gao et al., 2024; Huang
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Figure 1: Illustration of ELABORATION evaluation. A human feedback taxonomy, structuring the entire program-
ming process into four stages, enables stage-specific evaluation.

et al., 2024a; Chen et al., 2023), using a conversa-
tional human-LLM interaction where textual hu-
man feedback is integrated into each code gener-
ation turn. As illustrated in Figure 1, a novel tax-
onomy structures this human feedback, ensuring
coverage across the entire competitive program-
ming process: problem comprehension, solution
planning, code generation, and debugging. This
allows ELABORATION to incorporate human feed-
back at each stage and comprehensively assess its
effectiveness. Moreover, to facilitate the evaluation
implementation, we introduce ELABORATIONSET,
the first competitive programming dataset specifi-
cally designed for human-LLM collaboration. This
dataset comprises 8,320 problems from Codeforces
and AtCoder, meticulously annotated to enable
large-scale simulated human feedback and facil-
itate cost-effective real human interaction studies
(cf. Table 1). As such, ELABORATION provides a
robust and comprehensive framework for analyzing
human-LLM competitive programming, paving the
way for future advancements in this field.

Dataset Easy Middle Difficult

Basic Problem Information
Time Period Oct. 2011 ~ Nov. 2024
#Problems 3642 2098 2580
Avg. #Test Cases 14.4 14.5 14.2

Annotations for Human Interaction (per Problem)
Avg. #Statement Clarifications 8.1 10.9 12.1
Avg. #Algorithm Knowledge Summaries 2.4 3.0 3.8
Avg. #Ground Truth Solutions 4.8 4.9 4.8

Interaction Records with Real Humans
#Problems 100 100 100
Avg. #Turns (#Human Feedback) 3.4 5.1 6.9
Avg. #Human-Annotated LLM Code Errors 1.3 1.5 2.0

Table 1: ELABORATIONSET Dataset statistics. Further
details and examples are provided in Appendix A.

With ELABORATION, we evaluate strengths and
weaknesses of existing methods using both LLM-
based user simulators and real human participants.

Our findings demonstrate limited capacity of LLM
alone for solving competitive programming prob-
lems, particularly those of high difficulty or unseen
ones (-9.2%, on average). Notably, human-LLM
collaboration significantly improves task perfor-
mance (+7.0%, on average), particularly during the
coding stage, although this requires efficient re-
source management. Real human experiments fur-
ther highlight the complementary strengths of hu-
man and LLM bug identification, leading to a pow-
erful synergy. In this paper, ELABORATION stands
as a valuable resource to provide guidance and in-
sight into benchmarking human-LLM competitive
programming for future improvements. In conclu-
sion, our contributions are as follows:

• We introduce ELABORATION, a novel bench-
mark for Human-LLM competitive programming,
which features a comprehensive evaluation proto-
col to facilitate a thorough assessment.

• We present the first taxonomy of human feed-
back consolidating the entire programming pro-
cess into four stages, enabling ELABORATION to
evaluate task effectiveness at each stage.

• We introduce ELABORATIONSET, a novel pro-
gramming dataset specifically designed for
human-LLM collaboration. It comprises 8,320
problems, meticulously annotated to enable large-
scale simulated human feedback and facilitate
cost-effective real human interaction studies.

• With ELABORATION, we evaluate pros and cons
of existing methods using both LLM-based user
simulators and real human participants, providing
guidance and insight for future improvements.
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Competitive Programming
Benchmark Task Type

Basic Problem Information Annotations for Human Interaction Real Human Interaction
Contamination

Annotation
Stage

Annotation
Compile
Feedback

Clarify
Problem

Algorithmic
Knowledge

Ground Truth
Solutions

Bug
Annotation

Human-LLM
Multi-turn Records

APPS(Hendrycks et al., 2021a) Automatic ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗

CODE-CONTESTS(Li et al., 2022) Automatic ✗ ✗ ✗ ✗ ✗ ✓ ✓✗ ✗

XCODEEVAL(Khan et al., 2023) Automatic ✗ ✓✗ ✗ ✗ ✗ ✓ ✓✗ ✗

CODESCOPE(Yan et al., 2023) Automatic ✗ ✓✗ ✓ ✓ ✗ ✓✗ ✗ ✗

KareCoder(Huang et al., 2024c) Automatic ✓✗ ✗ ✗ ✗ ✓ ✓ ✗ ✗

TACO(Li et al., 2023b) Automatic ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

USCAOBENCH(Shi et al., 2024) Automatic ✗ ✓✗ ✗ ✗ ✗ ✓ ✗ ✗

LIVECODEBENCH(Jain et al., 2024) Automatic ✓ ✓✗ ✗ ✗ ✗ ✓ ✗ ✗

OpenCoderInterpreter(Zheng et al., 2024) Human-LLM ✗ ✗ ✓ ✗ ✗ ✓✗ ✓✗ ✗

ELABORATION (ours) Human-LLM ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Table 2: Difference between ELABORATION and existing benchmarks. Only OpenCoderInterpreter and ours are
specifically designed for human-LLM competitive programming. Here, ’✓✗’ indicates partial support.

2 Related Work

Our research focuses on human-LLM competitive
programming, offering a comprehensive literature
review and highlighting our novel contributions.
Competitive Programming. Competitive pro-
gramming challenges participants to solve complex
algorithmic problems under strict time and memory
constraints (Dale and Weems, 2014). Each problem
begins with a detailed statement outlining the re-
quirements and input/output specifications (Becker
et al., 2023). Unlike other programming tasks that
focus on real-world applications, maintainability,
readability, and collaboration (Passos et al., 2011;
Gallmeister, 1995; Martin, 2003), competitive pro-
gramming demands precise problem comprehen-
sion, efficient algorithmic design, accurate code
implementation, and thorough debugging to pro-
duce a solution that passes rigorous testing within
the specified time and memory limits (Huang et al.,
2023b; Dale and Weems, 2014; Jain et al., 2024).
Human-LLM Competitive Programming. While
the success of LLMs in other domains (Zhang et al.,
2025; Huang et al., 2025) has fueled the appli-
cation to automate competitive programming, re-
cent benchmarks reveal limitations in their ability
to solve expert-level problems (Hendrycks et al.,
2021b; Li et al., 2022; Zheng et al., 2023; Yan et al.,
2023; Jain et al., 2024), even with compiler feed-
back (e.g., an error message) (Yang et al., 2024;
Phung et al., 2023; Tian et al., 2024). This sug-
gests limited practical utility when relying solely
on LLMs for this complex task. Consequently,
research is increasingly focusing on human-LLM
competitive programming, which leverages multi-
turn human feedback to enhance LLM performance.
However, current methods often restrict human
feedback to providing (pseudo-)code (Mozannar
et al., 2023; Wang et al., 2024) or debugging as-
sistance (Zheng et al., 2024; Shi et al., 2024), ne-
glecting the broader potential of human guidance

across the entire programming process. This leads
to fragmented understanding of the effectiveness
and characteristics of human-LLM competitive pro-
gramming, and further motivates our work.
Human Feedback Simulation in Human-LLM
Competitive Programming. Evaluating any inter-
active systems is inherently labor-intensive (Huang
et al., 2023a). Therefore, human simulators are
commonly used in this field. While rule-based sim-
ulators have been employed (Mozannar et al., 2023;
Zheng et al., 2024), their limited realism and com-
prehensiveness fall short of capturing the nuanced
aspects of human feedback in competitive program-
ming, which requires deep problem understanding,
algorithmic knowledge, adaptive problem-solving,
and error correction skills (Robins et al., 2003;
Pless, 2011; Lee, 2018). The emergence of LLM-
based simulators offers a more realistic alternative,
enhancing both simulation and evaluation reliabil-
ity (Zheng et al., 2024; Mozannar et al., 2023). In
line with these studies, our evaluation protocol also
leverages LLM-based simulators to mimic human
feedback at each programming stage. Crucially, we
augment our benchmark with real human partici-
pants, providing a more grounded assessment.

3 ELABORATION Benchmark

Our ELABORATION benchmark evaluates human-
LLM competitive programming using a novel pro-
tocol that incorporates a comprehensive taxonomy
of human feedback, covering all stages of the pro-
cess, and a new human-LLM programming dataset.
Evaluation Protocol Overview. Our evaluation
protocol accommodates both real human program-
mers and user simulators to provide feedback at
each stage of the competitive programming pro-
cess, as illustrated in Figure 1. For simplicity, we
refer to both as "humans" unless otherwise noted.
In this human-LLM competitive programming pro-
cess, each LLM interacts iteratively with a human,
generating intermediate results and receiving feed-
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back until a correct solution is produced or a max-
imum number of iterations is reached. A correct
solution is defined as code that passes all test cases
within the specified time and memory limits.

3.1 Human Feedback Taxonomy
To support comprehensive benchmark, we estab-
lish a taxonomy of human feedback, informed by
analyses of real-world human interactions (Robins
et al., 2003; Fincher, 1999) and established compet-
itive programming practices (Cormen et al., 2022;
Huang et al., 2023b; Dale and Weems, 2014). This
taxonomy consolidates the entire programming pro-
cess into the following primary stages.

• Problem Comprehension. LLMs require a thor-
ough understanding of the problem statement. To
facilitate this, human feedback can provide cru-
cial requirements and specifications. For exam-
ple, specifying edge cases that need to be handled
(e.g., handling empty input arrays), summarizing
the functionalities that the code needs to imple-
ment (e.g., return the median value), or high-
lighting the key constraints and objectives (e.g.,
solution must run in O(nlogn) time).

• Solution Planning. LLMs engage in solution
planning by selecting appropriate algorithms. To
facilitate this, human feedback can suggest effec-
tive algorithms, provide justifications, and even
supply complete and accurate pseudocode. For
example, a human might suggest using Dijkstra
algorithm for a shortest path problem, explaining
its suitability for weighted graphs and providing
the pseudocode for its implementation.

• Code Generation. LLMs must generate com-
plete, compilable code. In this case, human feed-
back can suggest solution strategies to improve
the generated code by, for example, suggesting a
more efficient data structure (e.g., a stack) and ex-
plicitly coding algorithm implementation details
(e.g., using a binary heap-based priority queue
and a stack for Dijkstra algorithm).

• Code Debugging. LLMs must pass the complete
set of test cases1. In this case, humans assist in
identifying errors until all unseen test cases are
passed (e.g., pinpointing logic flaws leading to
infinite loops). Current, most exiting methods
limit their focus at this stage and provide conver-
sational feedback for error identification (Zheng
et al., 2024; Shi et al., 2024).

1It could use the compiler output to refine its code when
necessary.

3.2 ELABORATIONSET Dataset

To facilitate our evaluation, we created ELABO-
RATIONSET, a high-quality human-LLM program-
ming dataset. It comprises 8,320 problems from
Codeforces2 and AtCoder3 between October 2011
and November 2024, meticulously annotated to en-
able both large-scale simulated human feedback
and cost-effective studies using real human partici-
pants across all stages of the programming process.
See Table 1 and Figure 5 for illustration.

Problem Information Collection. Our dataset is
collected in a three-step process: First, our auto-
matic HTML scrapers4 extract all necessary infor-
mation from Codeforces and AtCoder, including
problem statements, input/output formats, test case
examples, dates, tags, and difficulty levels. Second,
because not all code problems provide test cases,
we utilize GPT-4o to generate them where needed,
following the approach of Li et al. (2023b); Jain
et al. (2024) and then manually check their valida-
tion. Third, the final dataset is split by date for our
later contamination-free evaluation (i.e., evaluating
the performance on unseen data).

Annotations for Human Interaction. To mitigate
the labor-intensive and expertise-dependent nature
of human problem-solving in competitive program-
ming, ELABORATIONSET incorporates fully accu-
rate, static annotations for each problem. This pro-
vides a reliable reference for humans and facilitates
cost-effective solutions for human-LLM collabo-
ration. Specifically, annotations include: problem
statement clarifications (requirements and specifi-
cations of each problem); algorithm-specific knowl-
edge summaries (required algorithms to solve each
problem and their definitions and pseudocodes);
and ground truth solutions (see Figure 5). This re-
source enables human reviewers to make informed
feedback decisions and allows for the simulation
of human participants with varying levels of exper-
tise by adjusting the granularity of the provided
feedback. Notably, all annotations, except ground
truth solutions, undergo a two-stage process: initial
LLM generation followed by manual review to en-
sure quality. Ground truth solutions are sourced di-
rectly from the respective programming platforms.
Refer to Appendix A.2.2 for details.

2https://codeforces.com/
3https://atcoder.jp/
4Scraper code will be released along with our dataset.
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Figure 2: LLM Performance trends over time.

4 Benchmark Experiments

4.1 Experiment Setup

Human Simulators. Our benchmark incorporates
LLM-based user simulators for large-scale evalua-
tion, employing O1-Mini to ensure realistic human
simulation. In particular, we include the follow-
ing two participant groups representing a range of
programming expertise. By this means, we assess
the effectiveness of the evaluated methods across a
range of programming abilities and to understand
how well the methods cater to different levels of
user expertise. Notably, novice programmers are
excluded due to their limited capacity to provide
valuable feedback for LLM improvement.

• Student Programmer (Intermediate Skill Level)
possess more than basic programming knowledge
but lack the deep expertise. Following estab-
lished practices in human programmer simulation
(Zheng et al., 2024), the O1-Mini is prompted to
provide feedback based on its internal knowledge.

• Teacher Programmer (Expert Level) possess a
high level of programming skill and experience.
Unlike student programmer, this simulator lever-
ages the complete ELABORATIONSET dataset to
ensure expert-level performance.

Human Participants. Our experiments also in-
corporate real human participants to gain practical
insights. Refer to Section 4.4 for details.
LLM Models. We benchmark thirteen LLMs, en-
compassing both closed-source and open-source
models of varying sizes. This include O1-Mini
(OpenAI, 2024b), GPT-4o (OpenAI, 2024a), GPT-
4-Turbo (OpenAI, 2023), Gemini-1.5-pro (Team
et al., 2024), Claude-3.5 (cla, 2024), CodeLlama
(Roziere et al., 2023), Deepseek-Coder (Guo et al.,
2024), Qwen2.5-Coder (Hui et al., 2024).
Evaluation Metrics. Following established prac-
tice (Belz et al., 2021; Yan et al., 2023; Shi et al.,
2024; Jain et al., 2024), we utilize the Pass@k

(k=1,3,5)5 metric (Chen et al., 2021) to evaluate
overall performance, with Pass@1 holding particu-
lar importance due to its relevance to real-world ap-
plications. To exclude the influence of potentially
memorized solutions from the training corpus, we
also employ a contamination-free evaluation, fo-
cusing on problems released after the LLMs’ re-
spective cutoff dates.
Implementation Details. Our evaluation imple-
mentation proceeds through the forementioned four
stages, with iterative human feedback provided un-
til the human is satisfied with the LLM’s response
or a maximum iteration limit is reached. Fine-
grained evaluation involves assessing LLM perfor-
mance at each stage by comparing their outputs
(e.g., summarized problem requirements and speci-
fications, algorithm selection with justification, and
pseudocode) against the annotated ground truth in
our dataset. Code generation and debugging are
evaluated based on final code performance, with
error analysis conducted using either human partic-
ipants or simulators. In our experiments, we utilize
nucleus sampling, with a maximum of 10 iterations
per stage. See Appendix B for more details.

4.2 Overall Performance (RQ1)

This section benchmarks the performance of
human-LLM competitive programming, assessing
both overall performance and performance within
specific problem categories. We report the results
in Table 3 and draw the following observations.
Are LLMs qualified competitive programmers?
– They demonstrate limited capacity for solv-
ing competitive programming problems, partic-
ularly those of high difficulty or unseen ones.
As shown in Table 3, model performance exhibits
a positive correlation with parameter size (larger
models generally perform better), with the recently
released O1-Mini achieving the best results, with
a pass@1 score of 59.3% on unseen problems.
However, this effectiveness is limited to simpler
programming problems. Performance across all
LLMs, including those specifically designed for
coding tasks, degrades significantly as problem dif-
ficulty increases, with the average pass@1 score is
merely 3.4% on unseen hard problems, rendering
them alone unsuitable for real-world applications.
Furthermore, performance deteriorates even further
in contamination-free evaluations, as illustrated in
Table 3 and Figure 2, with an average drop of 9.3%

5Given space limit, results with k=3,5 are in Appendix C.
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Model (Cut-off Date|Release Date) Contamination Evaluation (%) Contamination-free Evaluation (%)
Easy Middle Hard Overall Easy Middle Hard Overall

O1-Mini (2023-12 | 2024-09) 88.1 70.3 41.7 66.7 80.6 66.6 30.8 59.3

GPT-4o (2023-11 | 2024-05) 80.4 50.5 20.8 50.6 74.1 31.7 10.3 38.7
+ Student Programmer Feedback 83.1 53.1 24.3 53.5 76.2 34.8 15.1 42.0
+ Teacher Programmer Feedback 87.7 66.1 38.2 64.0 80.1 42.9 23.3 48.8

GPT-4-Turbo (2023-05 | 2023-11) 70.5 40.6 8.7 39.9 65.2 27.3 5.8 32.8
+ Student Programmer Feedback 75.5 46.1 12.1 44.6 70.8 33.2 8.8 37.6
+ Teacher Programmer Feedback 83.2 58.8 20.1 54.0 75.3 39.8 14.3 43.1

Gemini-1.5-pro (2023-11 | 2024-02) 81.2 48.2 22.0 50.5 73.2 32.8 9.3 38.4
+ Student Programmer Feedback 84.0 50.1 25.1 53.0 75.5 35.0 13.1 41.2
+ Teacher Programmer Feedback 89.1 65.6 36.6 63.8 81.0 40.2 24.2 48.5

Claude-3.5 (2024-03 | 2024-06) 78.0 51.3 16.2 48.5 74.5 34.3 5.4 38.1
+ Student Programmer Feedback 82.2 55.0 24.1 53.8 76.6 37.1 7.9 40.5
+ Teacher Programmer Feedback 87.0 66.7 33.4 62.4 83.1 44.2 16.5 47.9

Avg. 77.5 47.7 16.9 47.4 71.8 31.5 7.7 37.0
+ Student Programmer Feedback 81.2 (+3.7) 51.1 (+3.4) 21.4 (+4.5) 51.2 (+3.8) 74.8 (+3.0) 35.0 (+3.5) 11.2 (+3.5) 40.3 (+3.3)
+ Teacher Programmer Feedback 86.8 (+9.3) 64.3 (+16.6) 32.1 (+15.2) 61.1 (+13.7) 79.9 (+8.1) 41.8 (+10.3) 19.6 (+11.9) 47.1 (+10.1)

∼7B Scale

CodeLlama-7B (2023-01 | 2024-01) 30.3 5.9 0.5 12.2 15.2 2.1 0.3 5.9
+ Student Programmer Feedback 36.7 10.3 2.2 16.4 24.2 3.1 1.4 9.6
+ Teacher Programmer Feedback 48.6 17.8 6.9 24.4 35.9 8.4 4.7 16.3

Deepseek-Coder-6.7B (2023-09 | 2023-11) 40.6 15.4 1.8 19.3 21.4 7.0 0.7 9.7
+ Student Programmer Feedback 46.3 18.8 4.3 23.1 27.8 11.3 2.0 13.7
+ Teacher Programmer Feedback 58.6 27.8 8.2 31.5 39.2 24.2 6.1 23.2

Qwen2.5-Coder-7B (2024-06 | 2024-11) 61.2 22.4 4.9 29.5 48.6 9.3 0.5 19.5
+ Student Programmer Feedback 70.1 26.6 6.7 34.5 53.8 12.3 2.3 22.8
+ Teacher Programmer Feedback 76.3 35.5 11.3 41.0 57.8 21.6 5.9 28.4

Avg. 44.0 14.6 2.4 20.3 28.4 6.1 0.5 11.7
+ Student Programmer Feedback 51.0(+7.0) 18.6(+4.0) 4.4(+2.0) 24.7(+4.4) 35.3(+6.9) 8.9(+2.8) 1.9(+1.4) 15.4(+3.7)
+ Teacher Programmer Feedback 61.2(+17.2) 27.0(+12.4) 8.8(+6.4) 32.3(+12.0) 44.3(+15.9) 18.1(+12.0) 5.6(+5.1) 22.6(+10.9)

∼13B Scale

CodeLlama-13B (2023-01 | 2024-01) 35.8 7.3 1.7 14.9 23.5 3.0 0.3 8.9
+ Student Programmer Feedback 40.3 12.1 2.9 18.4 26.3 9.8 1.4 12.5
+ Teacher Programmer Feedback 44.2 19.9 5.8 23.3 29.8 14.6 3.1 15.8

Qwen2.5-Coder-14B (2024-06 | 2024-11) 70.8 28.7 7.7 35.7 58.3 15.1 2.2 25.2
+ Student Programmer Feedback 75.9 33.5 10.2 40.0 61.2 18.9 4.1 28.1
+ Teacher Programmer Feedback 80.1 41.5 14.2 45.3 66.3 24.3 6.8 32.5

Avg. 53.3 18.0 4.7 25.3 40.9 9.1 1.3 17.1
+ Student Programmer Feedback 58.1 (+4.8) 22.8 (+4.8) 6.6 (+1.9) 29.2 (+3.9) 43.8 (+2.9) 14.4 (+5.3) 2.8 (+1.5) 20.3 (+3.2)
+ Teacher Programmer Feedback 62.2 (+8.9) 30.7 (+12.7) 10.0 (+5.3) 34.3 (+9.0) 48.1 (+7.2) 19.5 (+10.4) 5.0 (+3.7) 24.2 (+7.1)

∼34B Scale

CodeLlama-34B (2023-01 | 2024-01) 38.1 7.9 3.1 16.4 25.0 5.1 1.0 10.4
+ Student Programmer Feedback 42.0 12.3 4.0 19.4 26.1 8.4 2.3 12.3
+ Teacher Programmer Feedback 49.2 18.8 6.2 24.7 32.2 13.0 4.4 16.5

Deepseek-Coder-33B (2023-09 | 2023-11) 63.9 23.7 4.2 30.6 50.6 10.4 1.2 20.7
+ Student Programmer Feedback 74.8 28.7 7.0 36.8 55.8 13.3 3.1 24.0
+ Teacher Programmer Feedback 78.9 40.1 12.3 43.8 68.8 20.4 5.5 31.6

Qwen2.5-Coder-32B (2024-06 | 2024-11) 77.3 41.3 9.0 42.5 70.1 20.3 3.2 31.2
+ Student Programmer Feedback 80.4 45.3 11.0 45.6 72.0 23.1 4.0 33.0
+ Teacher Programmer Feedback 85.1 53.4 15.8 51.4 76.8 30.1 7.6 38.0

Avg. 59.8 24.3 5.4 29.8 48.6 11.9 1.8 20.8
+ Student Programmer Feedback 65.7(+5.9) 28.8(+4.5) 7.3(+1.9) 33.9(+4.1) 51.3(+2.7) 14.9(+3.0) 3.1(+1.3) 23.1(+2.3)
+ Teacher Programmer Feedback 71.1(+11.3) 37.4(+13.1) 11.4(+6.0) 40.0(+10.2) 59.3(+10.7) 21.2(+9.3) 5.8(+4.0) 28.7(+7.9)

Average over All LLMs 60.7 28.6 8.4 32.6 50.0 16.5 3.4 23.3
+ Student Programmer Feedback 65.9(+5.2) 32.7(+4.1) 11.2(+2.8) 36.6(+4.0) 53.9(+3.9) 20.0(+3.5) 5.5(+2.1) 26.4(+3.1)
+ Teacher Programmer Feedback 72.3(+11.6) 42.7(+14.1) 17.4(+9.0) 44.1(+11.5) 60.5(+10.5) 27.0(+10.5) 10.2(+6.8) 32.6(+9.3)

Table 3: Pass@1 scores across various LLMs and varying levels of human feedback expertise. Since O1-Mini is
expensive and recently released, experiments with it have been deferred. Refer to Appendix C for more results.

on unseen problems compared to seen ones. This
suggests that a substantial portion of LLM perfor-
mance may stem from memorization of the training
dataset6, a issue warrants further investigation.
How effective can human feedback be in assisting
LLMs with competitive programming challenges?
– Human-LLM collaboration significantly en-
hances LLM performance, demonstrating the
crucial role of human feedback. As shown in
Table 3, the integration of human participation
throughout the programming process, creating a
human-LLM competitive programming framework,
resulted in significant performance gains across
various LLMs, problem difficulties, and levels of

6This memorization isn’t simply rote learning; LLMs still
produce some correct answers on unseen problems.

human expertise. Interestingly, such performance
gain is consistently observed regardless of data con-
tamination, definitively demonstrating the power
of human-LLM collaboration in solving complex
programming challenges. This human-LLM collab-
oration approach resulted in an average increase of
9.3% in the Pass@1 score when teacher program-
mers provided feedback on unseen problems, and
an average increase of 11.5% when they offered
feedback on seen problems. Similarly, student pro-
grammers contributed to an average improvement
of 3.1% in the Pass@1 score for unseen problems
and 4.0% for seen problems. However, the integra-
tion of human feedback necessitates a correspond-
ing investment of human effort, a topic explored
further in the following section.
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Figure 3: Stage-specific evaluation averaged over vari-
ous LLMs. While coding-stage feedback is most benefi-
cial, it also incurs higher token usage.

Stage Easy Middle Hard

Comprehension Stage 0.96 0.93 0.90
Planning Stage 0.72 0.53 0.41

Table 4: Fine-grained evalution at comprehension and
planning stages. We report averaged comprehension ac-
curacy of summarized requirements and specifications,
and average planning accuracy of algorithm selection.
Refer to Appendix C.3 for nuanced understanding.

4.3 Finer-grained Analysis (RQ2)

This section delves into the detailed characteristics
of human-LLM competitive programming, with
specical focus on the task performance and cost
efficiency across various stages.
At what stage of the programming process is hu-
man feedback most beneficial? – During the cod-
ing stage, even on problems with no data con-
tamination. Figures 3 illustrate the effectiveness of
human feedback at different stages of competitive
programming, both with and without data contami-
nation, as measured by the average improvement
in Pass@1. Regardless of data contamination, The
results indicate that human feedback is consistently
least effective during the comprehension stage and
most effective during the coding stage, indicating
that LLMs readily understand problem statements
(cf. Table 4, high performance at comprehension
stage) but struggle to generate correct code. Tak-
ing Table 5 for example, when tackling the clas-
sic 8-queens problem, the LLM frequently makes
initialization errors and omits checks for queen
conflicts. In this case, targeted human feedback
during the coding stage can effectively mitigate
these issues. Crucially, the minimal improvement
observed with debugging-stage feedback highlights
the importance of providing guidance throughout
the entire process, underscoring our contributions.
What are characteristics of different types of pro-
grammer feedback? – While detailed, expert
feedback yields greater benefits, its higher cost
necessitates efficient use of human resources. As

Teacher Programmer Feedback

To implement the 8-queens problem, start by initializing the
board representation, usually as a one-dimensional array of
length 8, with initial values set to a placeholder (like -1).
Prepare auxiliary functions to verify the legality of queen
placements and be ready to store potential solutions. When
placing a queen in each row i from 0 to row -1, return False
if there is a conflict with any previously placed queen in
the same column or on either diagonal (the main diagonal
from top-left to bottom-right or the secondary diagonal from
top-right to bottom-left). Then, ensure that you assign the
corresponding value in the array to the column number. Fi-
nally, if the row number equals the number of queens, return
the array.

Student Programmer Feedback

When implementing the 8-queens problem, initialize the
board representation, typically as a one-dimensional array of
length 8, set initial values to a placeholder, prepare auxiliary
functions to check the legality of queen placements, and be
ready to store potential solutions.

Table 5: Coding-stage feedback comparison on 8-
queens problem. Teacher feedback is more detailed with
specific placeholder value, iterative placement strategy,
and explicit backtracking, etc.

illustrated in Figures 3, teacher programmers gener-
ally achieve higher Pass@1 improvement than stu-
dent programmers, attributable to the more detailed
and nuanced nature of their feedback. However,
this improvement comes at a significant cognitive
cost. For example, given the classic 8-queens prob-
lem, the student programmer feedback might miss
several crucial details compared to teacher feed-
back (cf. Table 5), such as specific placeholder
value, iterative placement strategy, and explicit
backtracking. Following previous studies (Owoi-
cho et al., 2023; Wu et al., 2024), we further calcu-
late the average number of tokens in human feed-
back, identifying a substantial token overhead (indi-
cated by the dashed line in the figures), particularly
during the coding stage. While human participants
in collaborative programming may be willing to in-
vest time, the high cost necessitates more efficient
methods for LLM integration of human feedback.
Currently, a preliminary cost-benefit analysis (by
Pass@1/#token) suggests that planning-stage feed-
back might be more cost-effective than currently
implemented. Therefore, future research within
the community should prioritize the development
of cost-effective methods for integrating human
feedback to address this challenge.

4.4 Collaborating with Real Humans (RQ3)

With ELABORATIONSET, we benchmark existing
methods using real human programmers to gain
practical insights into their characteristics.
Setup. Five computer science graduate students
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Debug

Type

Difficulty

Level

Error Identification Problem Resolution (P@1)

Precision Recall Original + Debug

Automatic

Debug

Easy 0.34 0.56 0.66 0.73

Middle 0.22 0.36 0.27 0.33

Hard 0.14 0.28 0.06 0.08

Overall 0.23 0.40 0.33 0.38

Human

Debug

Easy 0.92 0.78 0.73 0.92

Middle 0.80 0.72 0.33 0.65

Hard 0.72 0.64 0.08 0.29

Overall 0.81 0.71 0.38 0.62

Table 6: Analysis of GPT-4 Turbo error identification
and resolution with automatic and human debugging.

are employed in this study. Following Shi et al.
(2024); Tian et al. (2024), they only provide textual
feedback identifying syntactic and semantic errors
(cf. Table 7) rather than direct code editing. The
collaborative process continues until a correct so-
lution is found or a maximum of 10 iterations is
reached. Considering human labor, we focus hu-
mans on the debugging stage7 using a subset of 300
randomly selected unseen problems from ELAB-
ORATIONSET. For the LLM, we consider GPT-4-
Turbo (due to its balance of strong performance and
reasonable cost). we allows GPT-4-Turbo to refine
its solution based on both compiler feedback and
simulator feedback played by O1-Mini (We term
this process as Automatic Debug), which reduces
the human workload for bug identification. Fi-
nally, we conduct a post-experiment review, where
bugs within all generated codes are meticulously
annotated. This supplementary dataset will be
made publicly available along with our dataset.
Refer to Appendix B.1 for details.
How valuable is human-LLM collaboration from
a practical perspective? – Humans play a vital
role in identifying bugs and improving LLM
performance. Table 6 reveals that automatic de-
bug struggles to accurately identify bugs, achieving
only 23% precision and 40% recall, resulting in a
mere 5% improvement in Pass@1 performance. In
contrast, incorporating human bug identification
significantly improved results, yielding 81% preci-
sion and 71% recall, and a substantial 24% increase
in Pass@1 performance, demonstrating the critical
role of human intervention.
How do human and LLM bug detection differ? –
They have complementary strengths, creating
a powerful synergy. We conduct in-depth debug
analysis and report the results in Table 7. Our
experiments show that GPT-4 Turbo generates sig-
nificantly more semantic bugs than syntactic ones,

7Refer to Appendix C.4 for results on coding state.

Bug
Category

Bug Type Original
+ Automatic

Debug
+ Human

Debug

Syntactic
Bugs

Function Related Errors 11 4 1
Operation Errors 3 1 0
Structure Errors 4 1 0

Declaration Errors 8 2 0
Import Errors 7 2 0

Overall 33 10 1

Semantic
Bugs

Control Flow Errors 58 46 30
Reference Errors 17 16 3

Calculation Errors 23 25 4
Incomplete Errors 142 99 55

Logical Direction Error 87 33 12
Suboptimal Errors 23 20 19

Overall 350 239 123

Table 7: Bug statistics for GPT-4 Turbo: with and with-
out feedback. Bug description are in Table 17.

especially incomplete and logically flawed errors.
While automatic debugging effectively addresses
most syntactic errors (nearly all when combined
with human debugging), it struggles with semantic
errors. Human debugging significantly improves
the resolution of these semantic errors, particularly
those involving references, calculations, incom-
pleteness, and logical flaws. This highlights the
complementary strengths of humans and LLMs,
each identifying different types of errors (Rosen-
feld et al., 2018), and underscores the human-LLM
collaboration for more accurate outputs.

How effectively does LLM utilize different types of
feedback? – It demonstrates higher success rates
correcting bugs with accurate human feedback.
We analyze GPT-4 Turbo’s effectiveness in utiliz-
ing automatic and human feedback for bug correc-
tion. As illustrated in Figure 4, while LLMs strug-
gle with initial bug identification, they demonstrate
a strong capacity for correction when provided with
accurate bug information. With accurate automatic
bug identification, LLMs successfully resolve 75%
of bugs. This increases to 87% with accurate hu-
man feedback. Based on our analysis, when GPT-4
Turbo failed to correct errors despite receiving ac-
curate feedback, the errors are predominantly of
Control Flow Errors and Suboptimal Errors. This
indicates that direct human code modification may
be necessary to resolve these error types.

Correct → Solve Correct → Not Solve
Incorrect → Solve Incorrect → Not Solve

Figure 4: Bug correction success rates via correct and
incorrect automatic (left) and human feedback (right) .
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5 Conclustion

We study the effectiveness and characteristics of
human-LLM competitive programming by (1) in-
troducing a novel taxonomy of human feedback
for fine-grained evaluation; (2) providing ELAB-
ORATIONSET, a new dataset for human-LLM col-
laboration; and (3) developing ELABORATION, a
benchmark for evaluating off-the-shelf methods
and identifying their pros and cons. Thus, our work
stands out as a valuable resource to provide guid-
ance for future improvement in this field.

Limitations

Sensitive to Prompts. As with other LLM prompt-
ing studies(Zhang et al., 2024b; Huang et al.,
2024b; Zhang et al., 2024a; Chen et al., 2024),
our results may be sensitive to prompt. While our
prompts underwent rigorous review and testing,
and our main experiments report averages across
over 8,000 problems, optimizing prompts for this
specific task remains a significant challenge and
area for future research.
Generalizability to Other Programming Tasks.
In accordance with scientific rigor, this study de-
fines its scope as Human-LLM collaboration within
competitive programming, a domain chosen to ex-
amine the capabilities and limitations of both LLMs
and human performance. While acknowledging the
potential relevance to broader programming tasks,
we limit our evaluations and analyses to this spe-
cific context and defer extending the representa-
tiveness of our results to general software devel-
opment or other programming domains. Despite
this focus, elements of our work offer valuable in-
sights applicable to diverse programming scenarios.
The problem-solving process shares fundamental
similarities across programming contexts, and our
proposed human feedback taxonomy and methods
for improving problem comprehension in LLMs
may readily translate. Developers, for example, can
leverage clear and detailed feedback on specifica-
tions, as demonstrated in our benchmark, to guide
LLMs towards a better understanding of software
requirements. We believe this highlights pathways
for broader applicability and welcome further dis-
cussion.

Ethics Statement

The proposed dataset for this study is primarily
sourced from publicly available, reputable com-

petitive programming websites. Our data collec-
tion process strictly avoids any personally identi-
fiable information, such as user IDs, avatars, or
comments, ensuring maximum transparency and
accessibility. Furthermore, in our work, the dataset
is manually annotated, and human-LLM collabo-
rative programming is employed. During our ex-
periments, we provide human participants with a
full explanation of data usage and publication; at
no point are participants exposed to inappropriate
content. We ensure that the whole process adhered
to all ethical guidelines and ensured the respon-
sible and transparent use of human participants’
time and effort, thereby promoting the advance-
ment of research in the field. For all human-subject
studies, we strictly adhered to IRB approval. To
control the workload of the human annotators, we
used a two-stage annotation process, starting with
three LLMs(O1-mini) performing automatic anno-
tation, followed by human annotators to control
the quality. Specifically, human annotators would
further annotate issues where there was disagree-
ment in the automatic annotation by the LLMs.
Two human annotators individually annotated 244
and 318 items, respectively. Participants in the
human-subject study were compensated $150 for
their involvement, while human annotators were
each compensated $300 for their work.
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A Details of Dataset Description and
Construction

A.1 Dataset Description

Our dataset include the following threefold infor-
mation. This dataset will be openly released soon.
Static Dataset. As shown in Figure 5, ELABO-
RATIONSET is primarily composed of two parts:
Problem Information Collection and Annotations
for Human Interaction. The former includes prob-
lem statements, input/output formats, test cases,
examples, dates, tags, and difficulty levels. The

latter consists of carefully annotated problem state-
ment clarifications, as well as algorithm-specific
knowledge summaries, which include the required
algorithms to solve each problem along with their
definitions and pseudocodes.
Human Simulator-LLM Competitive Program-
ming Dataset. Our dataset also includes multi-
turn interaction data between 13 LLMs and two
human simulators (emulated by O1-Mini), encom-
passing multi-turn feedback from human simualtor
and LLM-generated codes. This data facilitates
future research into LLM behavior.
Real Human-LLM Competitive Programming
Dataset. Additionally, we also include multi-turn
interaction data between GPT-4 Turbo and five real
humans. This covers 300 problems of varying diffi-
culty. See Appendix B.1 for construction details.

Dataset Difficulty Difficulty Level Problem Number

Codeforces Easy (0,750] 2332
Middle (750,1000] 907
Hard (1000,1500] 1423

Atcoder Easy (0,350] 1310
Middle (350,550] 1191
Hard (550,900] 1157

Table 8: ELABORATIONSET: Difficulty Level

A.2 Static Dataset Construction

A.2.1 Problem Information Collection

Basic Problem Collection. Following Jain et al.
(2024), we collected problem statements, input/out-
put formats, example test cases, publication dates,
algorithmic tags, and difficulty levels from publicly
accessible sections of the AtCoder and Codeforces
websites, removing any duplicates. Notably, we
focus on scraping only the publicly accessible sec-
tions of these sites, steering clear of any data that
may be behind paywalls or require user login or
interaction. We will release our code along with
our dataset.
Problem Difficulty Level. Codeforces and At-
Coder assign difficulty scores to problems using
points-based systems, with higher scores indicating
greater difficulty. Codeforces categorizes problems
as Easy, Medium, and Hard based on score ranges
of (0, 750], (750, 1000], and (1000, 1500], respec-
tively (Table 8). AtCoder uses ranges of (0, 350],
(350, 550], and (550, 900]. We excluded the most
hard problems, as these are currently beyond the
capabilities of LLMs.
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Figure 5: Description of dataset

Generaing Test Case When Necessary. While we
collected test cases from both websites, we found
that some problems lacked them, specially for prob-
lems from Codeforces. In response, we used GPT-
4o to generate them, following the approach of Li
et al. (2023b); Jain et al. (2024). Using prompt
C.5.2, we generated 15 diverse test case inputs per
problem based on the corresponding problem state-
ments, and then generated corresponding outputs
using ground truth Python code. Three separate
ground truth codes and human programmers vali-
dated the accuracy of these test cases.

Fair Use and Academic Purpose. In accordance
with Hendrycks et al. (2021b); Jain et al. (2024), we
adhere to Fair Use §107, which states that “the fair
use of a copyrighted work, including such use by
... scholarship or research, is not an infringement
of copyright.” Fair use is assessed based on “the
purpose and character of the use, including whether
it is of a commercial nature or for nonprofit edu-
cational purposes,” “the amount and substantiality

of the portion used in relation to the copyrighted
work as a whole,” and “the effect of the use upon
the potential market for or value of the copyrighted
work.” We emphasize that the problems we have
collected are used solely for academic purposes,
and we do not train on these collected problems.

A.2.2 Annotations for Human Interaction
The annotation process aims to guarantee the preci-
sion and clarity of problem statements, algorithm-
specific knowledge, and ground truth solutions. To
accomplish this, we employ a multi-step approach.
Initially, O1-mini carries out automatic annotation,
followed by manual verification.
Problem Statement Clarifications. Initially, we
utilize O1-Mini following the structured prompt F
to generate clarifications of problem statements for
each issue. This includes refining ambiguous de-
scriptions and outlining clear and concise require-
ments and specifications to guide problem-solving.
We used three LLMs O1-Mini for annotation and
conducted discussions. After the automatic gen-
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eration step, we involved two master’s students
in computer science to perform a thorough man-
ual evaluation of the generated content for those
problems where there was no agreement in the re-
sults. These annotators verify the alignment of the
requirements and specifications with the problem
objectives and ensure that all critical aspects are
covered. Their expertise helps ensure the annota-
tions are precise, comprehensive, and aligned with
academic standards.
Knowledge Summaries Annotated. For the
algorithm-specific knowledge summaries, we com-
pile detailed descriptions and pseudocode for 33
distinct algorithms. Initially, three LLMs O1-Mini
are employed to generate drafts of these summaries,
including algorithm definitions, purposes, and step-
by-step pseudocode. Subsequently, for the results
where the LLMs could not reach consensus, the
generated outputs undergo meticulous manual re-
view to verify the correctness of both the descrip-
tions and the pseudocode. This verification process
includes cross-referencing with standard algorith-
mic literature to ensure consistency and accuracy.
Examples of these algorithm summaries are pre-
sented in Table C.5.2, showcasing both the variety
and depth of the annotations.
Ground Truth Solution Filtering Regarding
ground truth solutions, we collect five correct code
submissions for each problem from a reliable on-
line source. These submissions are subjected to a
cleaning process to eliminate any potentially con-
taminated or duplicate code. This ensures the final
ground truth solutions is robust and representative.

Overall, the annotation process emphasizes a bal-
ance between automation and expert evaluation. By
combining model-generated outputs with detailed
human review, we aim to produce high-quality an-
notations that serve as a solid foundation for subse-
quent analyses. The multi-step approach not only
ensures reliability but also promotes transparency
in our methodology.

B Implementation Details

We conduct all our experiments using a single
Nvidia RTX A100 GPU for the 7B size LLMs,
two A100 GPUs for the 13B size LLMs, and four
A100 GPUs for the 34B size LLMs. For these open-
source LLMs, we utilize the Xinference framework.
For all LLMs, we employ nucleus sampling with a
temperature of 0.7 and a top-p value of 0.95, allow-
ing for a maximum of 10 iterations per stage with

human programmers. For the pass@k metrics, we
calculate it using the macro average method.

B.1 Implementation of Real Human
Experiments

We involve five computer science graduate students
collaboratively solving competitive programming
problems with LLMs. Each human participant re-
ceives detailed instructions (cf. Appendix F) before
commencing the experiment, and is permitted to
utilize any resources, including our dataset and in-
ternet search, to cooperate with one LLM, ensuring
a realistic debugging process. Each participant in
the human-subject study received a compensation
of $150 for their participation. Following Shi et al.
(2024); Tian et al. (2024), human interaction is
limited to textual feedback identifying errors (syn-
tactic and semantic, see Table 17) rather than direct
code editing. This debugging process ends until a
correct solution is produced or a maximum number
of iterations 10 is reached. During this process,
the specific challenges LLM would encounter are
not known in advance, potentially leading to high
human labor. Thus, to mitigate this labor, we fo-
cus human participation on the debugging stage
using a subset of 300 randomly selected problems
of varying difficulty from ELABORATIONSET (100
for easy, 100 for middle and 100 for hard prob-
lems). For the LLM, we consider GPT-4-Turbo
(due to its balance of strong performance and rea-
sonable cost). It is allows to refine its solutions
based on both compiler feedback and simulator
feedback played by O1-Mini (We term this process
as Automatic Debug), which reduces the human
workload for bug identification.

To ensure a rigorous and comprehensive analy-
sis of the generated code, we conducted a detailed
post-experiment review process. In this stage, all
generated code was meticulously analyzed, and any
identified bugs were carefully annotated. The er-
ror annotation task focused on code generated by
GPT-4 Turbo, leveraging the expertise of a team
of five graduate students in computer science. All
members of the team possess substantial experi-
ence in Olympic-level competitive programming,
equipping them with the necessary skills to iden-
tify subtle and complex coding issues. For each
problem, at least two annotators independently re-
viewed the generated code to ensure accuracy and
consistency in error identification. The annotation
process was guided by a detailed set of instructions,
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outlined in Table E.2. These guidelines provided
step-by-step instructions on how to identify, cat-
egorize, and label errors. Specific categories of
errors included logical flaws, syntax issues, edge
case failures, inefficiencies, and implementation in-
consistencies. The standardized approach ensured
uniformity across the annotations, reducing subjec-
tivity and enhancing reliability. Once the annota-
tions were completed, any discrepancies between
annotators were resolved through consensus discus-
sions, ensuring that the final error labels accurately
reflected the issues present in the code. Exam-
ples of annotated bugs, including descriptions and
their corresponding fixes, are provided in Table
E.3, illustrating the depth and clarity of the anno-
tation process. The annotated error dataset forms
a crucial part of this study and serves as a valu-
able resource for understanding common pitfalls
in LLM-generated code. To promote transparency
and support future research, this supplementary
dataset will be publicly released alongside the pri-
mary dataset. By sharing this resource, we aim
to facilitate further investigation into the strengths
and limitations of code-generation models while
fostering advancements in the field of AI-assisted
programming.

B.2 LLM Implementation
We tested a total of 13 different large language
models. The details of the models considered in
our study are described in Table 9.

B.3 Implementation of Evaluation
In the comprehension stage, after the LLM has
developed an understanding of the problem state-
ment, O1-Mini is used for automatic fact-checking
against the annotations of the clarifications and re-
quirements specified in the dataset, the detailed re-
sults are presented in Table 10. During the planning
stage, the LLM selects a suitable algorithm, gener-
ates reasoning, and provides pseudocode. O1-Mini
is then utilized for automatic fact-checking against
the annotated summaries of the algorithms in the
dataset. Since a single problem may correspond
to multiple algorithm options, it is sufficient for
the LLM to accurately select one of the algorithms
(drawing on established fact-checking metrics (Das
et al., 2023)), the detailed results are presented in
Table 11. In the coding stage, the LLM produces
the complete code, which is subsequently tested us-
ing the test case examples provided in the problem
statement through a compiler. In the debugging

stage, all test cases are re-evaluated through a com-
piler based on the modified code from the LLM.

C Additional Results

C.1 Results of Pass@K
Tables 15 and Table 16 present additional results
for human-LLM competitive programming using
Pass@3 and Pass@5 metrics, respectively. Key
observations we can draw from these tables are in
line with ones in the main body of this paper.

C.2 Case Studies
For better understanding, Appendix D provides a
case study illustrating how human feedback from
simulator improves LLM performance in competi-
tive programming. Additionally, Appendix E pro-
vides a case of LLM incorparating real human feed-
back to solve the coding problem. More examples
are available in our dataset.

C.3 Nuanced Understanding of Each Stage
Our evaluation approach provides a reliable and ob-
jective framework for assessing LLMs in competi-
tive programming by leveraging an expert-verified
dataset to quantify understanding (accuracy of
problem comprehension), planning (correct algo-
rithm selection), ensure consistency (eliminating
subjective human evaluation), and provide scala-
bility (enabling rapid evaluation across numerous
problems). Beyond this, to enable a more nuanced
analysis of different LLMs at the comprehension
and planning stages, we conducted detailed manual
evaluations with the goal of gaining a deeper un-
derstanding of their performance. For each stage,
we randomly selected 20 algorithmic problems(10
easy, 10 middle) for testing. Two computer sci-
ence master’s students participated in this manual
evaluation. All procedures were conducted under
Institutional Review Board (IRB) approval.

C.3.1 Analysis on Comprehension Stage
We design four dimensions for in-depth evaluation:

• Understanding of Problem Requirements:
Measures whether the model accurately iden-
tifies and interprets the core requirements of
the problem, ensuring that the comprehension
of the task aligns with the given problem state-
ments.

• Correctness of Identified Specifications: As-
sesses whether the model accurately identi-
fies any constraints or specifications inherent
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Model Name Cutoff Date Link
Deepseek-coder-6.7b-instruct 09/2023 deepseek-coder-6.7b-instruct
Deepseek-coder-33b-instruct 09/2023 deepseek-coder-33b-instruct
CodeLlama-7b-Instruct 01/2023 CodeLlama-7b-Instruct
CodeLlama-13b-Instruct 01/2023 CodeLlama-13b-Instruct
CodeLlama-34b-Instruct 01/2023 CodeLlama-34b-Instruct
Qwen2.5-Coder-7B 06/2024 Qwen2.5-Coder-7B
Qwen2.5-Coder-14B 06/2024 Qwen2.5-Coder-14B
Qwen2.5-Coder-32B 06/2024 Qwen2.5-Coder-32B
GPT-4-Turbo 05/2023 GPT-4-Turbo
GPT-4o 11/2023 GPT-4o
Claude-3.5-Sonnet 03/2024 Claude-3.5-Sonnet
Gemini-1.5-Pro 11/2023 Gemini-1.5-Pro
O1-Mini 12/2023 O1-Mini

Table 9: LLMs Overview

Comprehension Stage Easy Middle Hard
O1-Mini 0.99 0.99 0.99
GPT-4o 0.99 0.96 0.96

GPT-4-Turbo 0.98 0.93 0.91
Gemini-1.5-Pro 0.98 0.96 0.95

Claude-3.5-Sonnet 0.99 0.96 0.95
Deepseek-coder-6.7b-instruct 0.95 0.89 0.84

CodeLlama-7b-Instruct 0.93 0.87 0.82
Qwen2.5-Coder-7B 0.94 0.89 0.85

CodeLlama-13b-Instruct 0.94 0.91 0.86
Qwen2.5-Coder-14B 0.95 0.93 0.87

Deepseek-coder-33b-instruct 0.96 0.94 0.90
CodeLlama-34b-Instruct 0.94 0.93 0.88

Qwen2.5-Coder-32B 0.97 0.95 0.92

Table 10: Different LLMs’ performance at comprehen-
sion stage

in the problem (e.g., time, space, or other
domain-specific constraints).

• Clarity of Functionality: evaluates how
clearly the model defines the purpose and be-
havior of the proposed solution. It measures
whether the model communicates the solu-
tion’s functionality in a concise and under-
standable way.

As Table 13 shown, the results from the man-
ual evaluation provide a more comprehensive dis-
play of different LLMs’ performance at compre-
hension stage. The experimental results reveal that
while all models exhibit high accuracy in require-
ments understanding and specification identifica-
tion, small-scale open-source models show notable
deficiencies in problem breakdown and functional-
ity clarification compared to other models. These
shortcomings are aspects that cannot be captured

Planning Stage Easy Middle Hard
O1-Mini 0.97 0.93 0.90
GPT-4o 0.91 0.77 0.66

GPT-4-Turbo 0.82 0.65 0.48
Gemini-1.5-Pro 0.91 0.78 0.64

Claude-3.5-Sonnet 0.92 0.75 0.62
Deepseek-coder-6.7b-instruct 0.51 0.29 0.17

CodeLlama-7b-Instruct 0.48 0.25 0.14
Qwen2.5-Coder-7B 0.54 0.33 0.19

CodeLlama-13b-Instruct 0.53 0.31 0.18
Qwen2.5-Coder-14B 0.66 0.49 0.24

Deepseek-coder-33b-instruct 0.72 0.50 0.39
CodeLlama-34b-Instruct 0.64 0.37 0.28

Qwen2.5-Coder-32B 0.78 0.57 0.43

Table 11: Different LLMs’ performance at planning
stage

through automatic evaluation.

C.3.2 Analysis on Planning Stage
We designed four dimensions for in-depth evalua-
tion:

• Algorithm Selection Accuracy: Whether the
algorithm chosen by the model aligns with the
problem’s requirements.

• Pseudocode Generation Quality: The cor-
rectness and completeness of the generated
algorithm pseudocode.

• Algorithm Justification Reasonableness:
Whether the rationale behind choosing the al-
gorithm is sufficient and logical.

As Table 14 shown, the results from the manual
evaluation provide a more comprehensive display
of different LLMs’ performance at planning stage.
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They further highlight that closed-source models
(especially O1-mini) outperform open-source mod-
els in the planning stage, particularly in complexity
analysis and algorithm justification —areas that
cannot be assessed through automatic evaluation.

Coding Stage Original Automatic Feedback Human Feedback

Easy 13 15 16
Middle 5 6 8
Hard 2 4 5

Total 20 25 29

Table 12: Performance in collaborating with real hu-
mans on coding tasks

C.4 Collaborating with Real Human on
Coding Stage

To further investigate Human-LLM collaboration,
we conducted experiments incorporating real hu-
man participants during the coding stage, utilizing
the GPT-4-turbo model. Consistent with our human
experiments in the debugging stage, five computer
science master’s students participated, and all pro-
cedures were conducted under Institutional Review
Board (IRB) approval. And We employ O1-mini
as the teacher programmer to provide automatic
feedback. Due to time constraints, we employed a
randomly selected set of 60 problems from an un-
seen dataset, with 20 problems each from the easy,
middle, and hard categories. This dataset was used
to evaluate the performance of the GPT-4-turbo
model. Furthermore, to facilitate Human-LLM col-
laboration, we augmented the automatic feedback
generated by our teacher-programmer simulator
with additional human feedback.

Experimental Results. As shown in Table 12,
GPT-4-turbo initially solved 13 easy problems, 5
medium problems, and 2 hard problems. After re-
ceiving automatic feedback, the model was able
to solve 15 easy problems, 6 medium problems,
and 4 hard problems. With the addition of human
feedback, it solved 16 easy problems, 8 medium
problems, and 5 hard problems. These results
highlight the effectiveness of Human-LLM col-
laboration in solution provision during the cod-
ing stage. However, compared to collaboration
during the debugging stage, the improvement is
relatively modest. This can be attributed to the
teacher-programmer simulator, which, by already
referencing the ground truth solution, offers the
correct approach. Consequently, adding human
feedback to an already accurate solution provides
limited additional benefit.

C.5 Analysis of Feedback from Human
Simulators and Real Humans

C.5.1 Analysis on Human Simulators
In this paper, we include two participant groups
representing a range of programming expertise: stu-
dent programmers and teacher programmers. The
differences between these groups are as follows:
Resource Utilization. In the benchmark experi-
ments, the O1-Mini model serves as the student
programmer, offering feedback based on its in-
ternal knowledge. In contrast, the teacher pro-
grammer simulator leverages the full ELABORA-
TIONSET dataset to guide the O1-Mini model, en-
suring expert-level performance. This difference in
resource utilization directly impacts the effective-
ness of the feedback provided.
Feedback Quality. As shown in Table 5, the ef-
fectiveness of feedback is directly correlated to its
specificity, detail, and strategic insights. Teacher
feedback, by providing these elements, promotes
a deeper and more effective learning experience
for the LLM. Student feedback, lacking these fea-
tures, is often less impactful, resulting in slower or
less significant improvements in LLM performance.
The key is that more precise and insightful feedback
leads to better understanding and problem-solving
capabilities in the LLM.

C.5.2 Analysis on Real Humans
As shown in table 6 and 7, human debugging
demonstrates superior effectiveness compared to
automatic debugging. In this module, we will dis-
cuss the difference between real human feedback
and human simulator feedback at debugging stage.
We illustrate an example of human-LLM collab-
oration during the debugging stage in Appendix
E.2. The effectiveness of feedback is directly tied
to the accuracy of error identification and the level
of detail in modification suggestions. Real human
debugging excels in these aspects, providing more
precise bug identification and more detailed mod-
ification suggestions compared to automatic de-
bugging. In contrast, automatic feedback, lacking
these critical features, often proves less impactful,
resulting in slower or less substantial debugging im-
provements in LLM performance. Ultimately, the
key to enhancing the LLM’s bug-fixing capabilities
lies in the ability to deliver accurate bug identifica-
tion and detailed modification suggestions.
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Problem Requirements Specifications Identification Problem Breakdown Functionality All
Understanding Correctness Correctness Clarification Correct

O1-Mini 20 20 20 20 20
GPT-4o 20 20 19 19 19

GPT-4-Turbo 20 19 18 18 18
Gemini-1.5-Pro 20 20 19 19 19

Claude-3.5-Sonnet 20 20 19 19 19
Deepseek-coder-6.7b-instruct 19 17 16 18 16

CodeLlama-7b-Instruct 17 17 15 17 15
Qwen2.5-Coder-7B 19 19 18 18 18

CodeLlama-13b-Instruct 19 19 17 17 17
Qwen2.5-Coder-14B 20 19 18 19 18

Deepseek-coder-33b-instruct 20 20 19 19 19
CodeLlama-34b-Instruct 20 20 18 18 18

Qwen2.5-Coder-32B 20 20 20 20 20

Average Performance 19.5 19.2 18.2 18.5 18.2

Table 13: Nuanced evaluation for different LLMs’ performance at comprehension stage

Algorithm Selection Pseudocode Generation Complexity Analysis Algorithm Justification All
Accuracy Quality Accuracy Reasonableness Correct

O1-Mini 20 20 19 19 19
GPT-4o 19 18 17 18 17

GPT-4-Turbo 18 17 16 15 15
Gemini-1.5-Pro 19 18 18 17 17

Claude-3.5-Sonnet 19 18 17 18 17
Deepseek-coder-6.7b-instruct 10 10 8 7 7

CodeLlama-7b-Instruct 7 6 5 5 5
Qwen2.5-Coder-7B 10 10 9 8 8

CodeLlama-13b-Instruct 11 9 9 8 8
Qwen2.5-Coder-14B 13 12 12 13 12

Deepseek-coder-33b-instruct 16 14 13 14 13
CodeLlama-34b-Instruct 13 11 10 11 10

Qwen2.5-Coder-32B 17 16 15 14 14

Average Performance 14.8 13.8 12.9 12.8 12.5

Table 14: Nuanced evaluation for different LLMs’ performance at planning stage
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Model (Cut-off Date|Release Date) Contamination Evaluation Contamination-free Evaluation
Easy Middle Hard Overall Easy Middle Hard Overall

O1-Mini (2023-12 | 2024-09) 93.5 78.0 50.7 74.1 86.2 73.2 34.8 64.7

GPT-4o (2023-11 | 2024-05) 84.4 54.5 23.2 54.0 79.0 34.8 11.5 41.8
+ Student Programmer Feedback 87.7 57.5 27.2 57.5 82.3 38.5 16.4 45.7
+ Teacher Programmer Feedback 92.8 72.1 42.8 69.2 86.5 47.5 26.1 53.4

GPT-4-Turbo (2023-05 | 2023-11) 74.0 44.1 9.7 42.6 70.3 30.2 6.5 35.7
+ Student Programmer Feedback 80.2 50.6 13.5 48.1 76.4 36.5 9.8 40.9
+ Teacher Programmer Feedback 89.9 64.7 22.5 59.0 81.3 43.8 16.0 47.0

Gemini-1.5-pro (2023-11 | 2024-02) 85.3 52.2 24.6 54.0 79.1 36.5 10.4 42.0
+ Student Programmer Feedback 88.7 54.6 28.1 57.1 81.6 38.9 14.7 45.1
+ Teacher Programmer Feedback 96.0 71.5 41.0 69.5 87.5 44.5 27.1 53.0

Claude-3.5 (2024-03 | 2024-06) 82.1 55.9 18.3 52.1 80.5 37.8 6.1 41.5
+ Student Programmer Feedback 86.8 60.5 27.0 58.1 82.7 40.8 8.8 44.1
+ Teacher Programmer Feedback 93.9 73.3 37.4 68.2 89.8 48.6 18.5 52.3

Avg. 81.5 51.7 19.0 50.7 77.2 34.8 8.6 40.3
+ Student Programmer Feedback 85.9 (+4.4) 55.8 (+4.1) 24.0 (+5.0) 55.2 (+4.5) 80.8 (+3.6) 38.7 (+3.9) 12.4 (+3.8) 44.0 (+3.7)
+ Teacher Programmer Feedback 93.2 (+11.7) 70.4 (+18.7) 35.9 (+16.9) 66.5 (+15.8) 86.3 (+9.1) 46.1 (+11.3) 21.9 (+13.3) 51.4 (+11.1)

∼7B Scale

CodeLlama-7B (2023-01 | 2024-01) 32.8 6.5 0.6 13.3 16.2 2.3 0.3 6.3
+ Student Programmer Feedback 39.6 11.2 2.5 17.8 26.1 3.4 1.6 10.4
+ Teacher Programmer Feedback 52.4 19.3 7.7 26.5 38.8 9.3 5.3 17.8

Deepseek-Coder-6.7B (2023-09 | 2023-11) 43.8 16.9 2.0 20.9 23.1 7.7 0.8 10.5
+ Student Programmer Feedback 50.0 20.5 4.8 25.1 30.2 12.3 2.3 14.9
+ Teacher Programmer Feedback 63.1 30.6 9.1 34.3 42.6 26.4 6.9 25.3

Qwen2.5-Coder-7B (2024-06 | 2024-11) 65.7 24.6 5.4 31.9 52.5 10.3 0.6 21.1
+ Student Programmer Feedback 75.7 29.3 7.5 37.5 58.3 13.5 2.6 24.8
+ Teacher Programmer Feedback 82.4 39.1 12.3 44.6 62.5 23.8 6.6 31.0

Avg. 47.4 16.0 2.7 22.0 30.6 6.8 0.6 12.6
+ Student Programmer Feedback 55.1 (+7.7) 20.3 (+4.3) 4.9 (+2.2) 26.8 (+4.8) 38.2 (+7.6) 9.7 (+2.9) 2.2 (+1.6) 16.7 (+4.1)
+ Teacher Programmer Feedback 66.0 (+18.6) 29.7 (+13.7) 9.7 (+7.0) 35.1 (+13.1) 48.0 (+17.4) 19.8 (+13.0) 6.3 (+5.7) 24.7 (+12.1)

∼13B Scale

CodeLlama-13B (2023-01 | 2024-01) 38.5 8.0 1.9 16.1 25.0 3.3 0.3 9.5
+ Student Programmer Feedback 44.3 13.1 3.2 20.2 28.1 10.7 1.6 13.5
+ Teacher Programmer Feedback 47.7 21.9 6.5 25.4 32.3 16.1 3.5 17.3

Qwen2.5-Coder-14B (2024-06 | 2024-11) 75.4 31.5 8.6 38.5 62.3 16.6 2.5 27.1
+ Student Programmer Feedback 81.0 36.9 11.4 43.1 66.4 20.8 4.6 30.6
+ Teacher Programmer Feedback 86.5 45.6 15.9 49.3 71.6 26.7 7.6 35.3

Avg. 57.0 19.8 5.3 27.3 43.7 10.0 1.4 18.3
+ Student Programmer Feedback 62.7 (+5.7) 25.0 (+5.2) 7.3 (+2.0) 31.7 (+4.4) 47.3 (+3.6) 15.8 (+5.8) 3.1 (+1.7) 22.1 (+3.8)
+ Teacher Programmer Feedback 67.1 (+10.1) 33.8 (+14.0) 11.2 (+5.9) 37.4 (+10.1) 52.0 (+8.3) 21.4 (+11.4) 5.6 (+4.2) 26.3 (+8.0)

∼34B Scale

CodeLlama-34B (2023-01 | 2024-01) 40.3 8.6 3.5 17.5 26.7 5.6 1.1 11.1
+ Student Programmer Feedback 45.4 13.5 4.5 21.1 28.2 9.2 2.6 13.3
+ Teacher Programmer Feedback 52.7 20.7 6.9 26.8 34.7 14.2 5.0 18.0

Deepseek-Coder-33B (2023-09 | 2023-11) 68.3 25.8 4.8 33.0 54.0 11.4 1.4 22.3
+ Student Programmer Feedback 80.1 31.6 7.8 39.8 59.9 14.5 3.5 26.0
+ Teacher Programmer Feedback 85.2 44.1 13.8 47.7 73.4 22.4 6.2 34.0

Qwen2.5-Coder-32B (2024-06 | 2024-11) 82.0 45.2 10.1 45.8 74.6 22.3 3.6 33.5
+ Student Programmer Feedback 86.1 49.3 12.3 49.2 77.1 25.4 4.5 35.7
+ Teacher Programmer Feedback 91.4 58.7 17.7 55.9 82.0 33.1 8.5 41.2

Avg. 63.5 26.5 6.1 32.1 51.8 13.1 2.0 22.3
+ Student Programmer Feedback 70.5 (+7.0) 31.5 (+5.0) 8.2 (+2.1) 36.7 (+4.6) 55.1 (+3.3) 16.4 (+3.3) 3.5 (+1.5) 25.0 (+2.7)
+ Teacher Programmer Feedback 76.4 (+12.9) 41.2 (+14.7) 12.8 (+6.7) 43.5 (+11.4) 63.4 (+11.6) 23.2 (+10.1) 6.6 (+4.6) 31.1 (+8.8)

Average over All LLMs 64.4 31.2 9.4 35.0 53.6 18.2 3.8 25.2
+ Student Programmer Feedback 70.5 (+6.1) 35.7 (+4.5) 12.5 (+3.1) 39.6 (+4.6) 58.1 (+4.5) 22.0 (+3.8) 6.1 (+2.3) 28.8 (+3.6)
+ Teacher Programmer Feedback 77.8 (+13.4) 46.8 (+15.6) 19.5 (+10.1) 48.0 (+13.0) 65.3 (+11.7) 29.7 (+11.5) 11.4 (+7.6) 35.5 (+10.3)

Table 15: ELABORATION benchmark analysis of human-LLM competitive programming across different LLM
backbones and varying levels of human feedback expertise. Because O1-Mini was recently released, our experiments
with this model have been deferred. Here, we report Pass@3 scores (%).
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Model (Cut-off Date|Release Date) Contamination Evaluation Contamination-free Evaluation
Easy Middle Hard Overall Easy Middle Hard Overall

O1-Mini (2023-12 | 2024-09) 95.3 81.4 52.8 76.5 89.0 76.4 37.5 67.6

GPT-4o (2023-11 | 2024-05) 86.7 57.8 24.9 56.5 82.2 36.8 12.8 43.9
+ Student Programmer Feedback 89.0 61.0 29.0 59.7 85.6 40.4 18.0 48.0
+ Teacher Programmer Feedback 95.0 76.3 45.1 72.1 89.1 50.3 28.1 55.8

GPT-4-Turbo (2023-05 | 2023-11) 75.7 46.8 10.6 44.4 72.0 32.4 7.2 37.2
+ Student Programmer Feedback 82.0 53.5 14.6 50.0 78.5 38.5 10.7 42.6
+ Teacher Programmer Feedback 92.1 68.6 24.0 61.6 84.2 46.3 17.3 49.3

Gemini-1.5-pro (2023-11 | 2024-02) 87.0 55.5 26.1 56.2 82.2 39.3 11.7 44.4
+ Student Programmer Feedback 91.0 58.5 30.1 59.9 85.2 42.7 16.0 48.0
+ Teacher Programmer Feedback 99.8 75.7 44.7 73.4 91.0 47.8 29.3 56.0

Claude-3.5 (2024-03 | 2024-06) 84.0 59.3 19.7 54.3 83.7 40.5 6.9 43.7
+ Student Programmer Feedback 89.3 64.2 29.4 61.0 86.2 43.8 9.6 46.5
+ Teacher Programmer Feedback 97.2 77.7 40.3 71.7 93.3 51.5 20.2 55.0

Avg. 83.4 54.9 20.3 52.9 80.0 37.3 9.7 42.3
+ Student Programmer Feedback 87.8 (+4.4) 59.3 (+4.4) 25.8 (+5.5) 57.7 (+4.8) 83.9 (+3.9) 41.4 (+4.1) 13.6 (+3.9) 46.3 (+4.0)
+ Teacher Programmer Feedback 96.0 (+12.6) 74.6 (+19.7) 38.5 (+18.2) 69.7 (+16.8) 89.4 (+9.4) 49.0 (+11.7) 23.7 (+14.0) 54.0 (+11.7)

∼7B Scale

CodeLlama-7B (2023-01 | 2024-01) 33.9 6.8 0.6 13.8 16.7 2.4 0.3 6.5
+ Student Programmer Feedback 40.9 11.6 2.7 18.4 26.9 3.6 1.7 10.7
+ Teacher Programmer Feedback 54.2 20.4 8.2 27.6 40.3 9.8 5.7 18.6

Deepseek-Coder-6.7B (2023-09 | 2023-11) 45.0 17.7 2.1 21.6 24.0 8.1 0.8 11.0
+ Student Programmer Feedback 52.0 21.5 5.1 26.2 31.3 13.0 2.5 15.6
+ Teacher Programmer Feedback 65.5 32.3 9.7 35.8 44.0 27.9 7.4 26.4

Qwen2.5-Coder-7B (2024-06 | 2024-11) 67.9 25.8 5.8 33.2 54.6 10.9 0.7 22.1
+ Student Programmer Feedback 78.3 30.8 8.1 39.1 60.1 14.3 2.8 25.7
+ Teacher Programmer Feedback 85.1 41.4 13.4 46.6 64.9 25.2 7.1 32.4

Avg. 48.9 16.8 2.8 22.9 31.8 7.1 0.6 13.2
+ Student Programmer Feedback 57.1 (+8.2) 21.3 (+4.5) 5.3 (+2.5) 27.9 (+5.0) 39.4 (+7.6) 10.3 (+3.2) 2.3 (+1.7) 17.3 (+4.1)
+ Teacher Programmer Feedback 68.3 (+19.4) 31.4 (+14.6) 10.4 (+7.6) 36.7 (+13.8) 49.7 (+17.9) 21.0 (+13.9) 6.7 (+6.1) 25.8 (+12.6)

∼13B Scale

CodeLlama-13B (2023-01 | 2024-01) 39.8 8.5 2.0 16.8 26.0 3.5 0.3 9.9
+ Student Programmer Feedback 46.1 13.9 3.4 21.1 29.2 11.3 1.7 14.1
+ Teacher Programmer Feedback 49.6 23.2 6.9 26.6 33.4 17.0 3.8 18.1

Qwen2.5-Coder-14B (2024-06 | 2024-11) 78.0 33.4 9.1 40.2 64.2 17.6 2.7 28.2
+ Student Programmer Feedback 83.5 39.2 12.1 44.9 68.3 22.0 4.9 31.7
+ Teacher Programmer Feedback 89.1 48.3 16.8 51.4 73.1 28.3 8.2 36.5

Avg. 58.9 21.0 5.6 28.5 45.1 10.6 1.5 19.1
+ Student Programmer Feedback 64.8 (+5.9) 26.6 (+5.6) 7.8 (+2.2) 33.0 (+4.5) 48.8 (+3.7) 16.7 (+6.1) 3.3 (+1.8) 22.9 (+3.8)
+ Teacher Programmer Feedback 69.4 (+10.5) 35.8 (+14.8) 11.9 (+6.3) 39.0 (+10.5) 53.3 (+8.2) 22.7 (+12.1) 6.0 (+4.5) 27.3 (+8.2)

∼34B Scale

CodeLlama-34B (2023-01 | 2024-01) 41.5 9.0 3.8 18.1 27.6 5.9 1.2 11.6
+ Student Programmer Feedback 46.8 14.2 4.9 22.0 29.3 9.7 2.8 13.9
+ Teacher Programmer Feedback 54.1 21.8 7.4 27.8 36.0 15.1 5.4 18.8

Deepseek-Coder-33B (2023-09 | 2023-11) 70.1 27.2 5.2 34.2 55.9 12.0 1.6 23.2
+ Student Programmer Feedback 83.2 33.4 8.4 41.7 62.1 15.4 3.8 27.1
+ Teacher Programmer Feedback 88.7 46.7 15.0 50.1 75.8 23.7 6.8 35.4

Qwen2.5-Coder-32B (2024-06 | 2024-11) 84.5 47.1 11.0 47.5 76.9 23.6 3.9 34.8
+ Student Programmer Feedback 89.0 51.5 13.3 51.3 79.2 26.9 4.8 37.0
+ Teacher Programmer Feedback 94.3 61.6 19.0 58.3 84.6 35.1 9.2 43.0

Avg. 65.4 27.8 6.7 33.3 53.5 13.8 2.2 23.2
+ Student Programmer Feedback 73.0 (+7.6) 33.0 (+5.2) 8.9 (+2.2) 38.3 (+5.0) 56.9 (+3.4) 17.3 (+3.5) 3.8 (+1.6) 26.0 (+2.8)
+ Teacher Programmer Feedback 79.0 (+13.6) 43.4 (+15.6) 13.8 (+7.1) 45.4 (+12.1) 65.5 (+12.0) 24.6 (+10.8) 7.1 (+4.9) 32.4 (+9.2)

Average over All LLMs 66.2 32.9 10.1 36.4 55.5 19.4 4.2 26.4
+ Student Programmer Feedback 72.6 (+6.4) 37.8 (+4.9) 13.4 (+3.3) 41.3 (+4.9) 60.2 (+4.7) 23.5 (+4.1) 6.6 (+2.4) 30.1 (+3.7)
+ Teacher Programmer Feedback 80.4 (+14.2) 49.5 (+16.6) 20.9 (+10.8) 50.3 (+13.9) 67.5 (+12.0) 31.5 (+12.1) 12.4 (+8.2) 37.1 (+10.7)

Table 16: ELABORATION benchmark analysis of human-LLM competitive programming across different LLM
backbones and varying levels of human feedback expertise. Because O1-Mini was recently released, our experiments
with this model have been deferred. Here, we report Pass@5 scores (%)
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Random Input Generator Prompt

You are an expert programmer and your goal is to generate test case input based based on the problem statement
{PROBLEM_STATEMENT}, input format {INPUT_FORMAT}, output format {OUTPUT_FORMAT}, test case
example {TEST_CASE_EXAMPLE}, the input number lower boundary input_min{INPUT_MIN}, the input number
upper_boundaryINPUT_MAX. You will create appropriate generators and ultimately develop a test_case_inputs function
that returns a list of varied inputs sampled from the generator. Be sure to adhere closely to the instructions and constraints
outlined in the problem statement.

import numpy as np

def random_input_generator(weight_min, weight_max, size_min, size_max):
weights_size = np.random.randint(size_min, size_max + 1)
weights = np.random.randint(weight_min, weight_max, size=weights_size).tolist()
k = np.random.randint(1, len(weights) + 1)
return weights, k

def construct_inputs():
inputs_list = []

for _ in range(15):
inputs_list.append(random_input_generator(input\_min, input\_max ,1))

return inputs_list

Construct a random input generator. Return a single function named test_case_input that creates diverse inputs, following
the format used in the example above.
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Algorithm konwledge summaries examples

Greedy:
A greedy algorithm is an approach for solving optimization problems by making a sequence of choices, each of which
looks best at the moment. The idea is to choose the option that seems the most advantageous at each stage with the hope
that these local optimal choices will lead to a global optimal solution. Greedy algorithms are typically used in problems
like finding the minimum spanning tree, shortest paths in graphs, and various resource allocation problems.

The key characteristics of greedy algorithms are:

1. Locally Optimal Choice: At each step, the algorithm chooses the best option available without considering the global
context.
2. Feasibility: The choice made must satisfy the problem’s constraints.
3. Irrevocability: Once a choice is made, it cannot be undone.

Pseudocode for a Greedy Algorithm:

Function GreedyFractionalKnapsack(capacity, items):
// items is a list of tuples (value, weight)
// Calculate value-to-weight ratio for each item
for each item in items:

item.ratio = item.value / item.weight

// Sort items by their value-to-weight ratio in descending order
Sort items by item.ratio in descending order

total_value = 0
for each item in items:

if capacity == 0:
break

// Check if the item can be added fully
if item.weight <= capacity:

capacity -= item.weight
total_value += item.value

else:
// Add the fraction of the remaining item
total_value += item.value * (capacity / item.weight)
capacity = 0 // Knapsack is full

return total_value

Depth-First Search:
Depth-First Search (DFS) is an algorithm for traversing or searching tree or graph data structures. The algorithm starts
at the root (or an arbitrary node in a graph) and explores as far as possible along each branch before backtracking. This
method is particularly useful for exploring all possible paths in a graph or tree, finding connected components, and
solving puzzles with a single solution.

Key Characteristics of DFS:
1. Exploration Depth: DFS explores the deepest nodes first before backtracking.
2. Stack-Based: It can be implemented using recursion or an explicit stack data structure.
3. Complete: In finite graphs, DFS will visit all reachable nodes. Space Complexity: The space complexity can be high
due to the depth of recursion or the size of the stack.

Function DFS(graph, start_node):
Initialize an empty set called visited
Call DFS_Visit(graph, start_node, visited)

Function DFS_Visit(graph, node, visited):
// Mark the current node as visited
visited.add(node)
Process the node (e.g., print or store the node value)

// Recursively visit each adjacent node
for each neighbor in graph[node]:

if neighbor not in visited:
DFS_Visit(graph, neighbor, visited)
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D Human Feeback Case Study

We provided a detailed example showing how
teacher programmer help Deepseek-Coder-33B
solve competitive programming problems.

Codeforces Problem 1994 C

Problem Statement:
Yaroslav is playing a computer game, and at one of the levels, he encountered n mushrooms arranged in a row. Each
mushroom has its own level of toxicity; the i-th mushroom from the beginning has a toxicity level of ai. Yaroslav can
choose two integers 1 ≤ l ≤ r ≤ n, and then his character will take turns from left to right to eat mushrooms from this
subsegment one by one, i.e., the mushrooms with numbers l, l + 1, l + 2, . . . , r.
The character has a toxicity level g, initially equal to 0. The computer game is defined by the number x — the maximum
toxicity level at any given time. When eating a mushroom with toxicity level k, the following happens: - The toxicity
level of the character is increased by k. - If g ≤ x, the process continues; otherwise, g becomes zero and the process
continues.
Yaroslav became interested in how many ways there are to choose the values of l and r such that the final value of g is
not zero. Help Yaroslav find this number!

Input Format:
Each test consists of multiple test cases. The first line contains an integer t (1 ≤ t ≤ 104) — the number of test
cases. Then follows the description of the test cases. - The first line of each test case contains two integers n, x
(1 ≤ n ≤ 2 · 105, 1 ≤ x ≤ 109) — the number of mushrooms and the maximum toxicity level. - The second line of
each test case contains n numbers a1, a2, . . . , an (1 ≤ ai ≤ 109).
It is guaranteed that the sum of n over all test cases does not exceed 2 · 105.

Output Format:
For each test case, output a single number — the number of subsegments such that the final value of g will not be zero.

Input
5
4 2
1 1 1 1
3 2
1 2 3
1 6
10
6 3
1 2 1 4 3 8
5 999999999
999999999 999999998 1000000000 1000000000 500000000

Output
8
2
0
10
7

81



Deepseek-Coder-33B generation at comprehension stage

"Problem Requirements":

1. "Input:" - The first line contains an integer t (number of test cases). - Each test case consists of: - A line containing two
integers n (the number of mushrooms) and x (the maximum toxicity level). - A line containing n integers a1, a2, . . . , an

(the toxicity levels of the mushrooms).
2. "Output:" - For each test case, output a single integer representing the number of valid subsegments for which the
final toxicity level g is not zero after consuming the mushrooms in that segment.
3. "Functionality:" - The program should efficiently handle multiple test cases with constraints on the total number of
mushrooms across all test cases.
"Problem Specification": - Constraints: - 1 ≤ t ≤ 104 - 1 ≤ n ≤ 2 · 105 - 1 ≤ x ≤ 109 - 1 ≤ ai ≤ 109 - The sum
of n across all test cases does not exceed 2 · 105.
- Each subsegment is defined by two indices l and r (1-based indexing) such that 1 ≤ l ≤ r ≤ n.

Teacher programmer feedback at comprehension stage

Teacher Programmer Generation:
"Unsatisfied": "You have not understood the problem statement, missing the requirements and specifications. Let me
clarify the problem statement for you. Please modify your answer accordingly."

**Problem Requirements**:
1. **Input**: - The first line contains an integer t (1 ≤ t ≤ 104) — the number of test cases. - For each test case: -
The first line contains two integers n and x (1 ≤ n ≤ 2× 105, 1 ≤ x ≤ 109) — the number of mushrooms and the
maximum toxicity level. - The second line contains n integers a1, a2, . . . , an (1 ≤ ai ≤ 109) — the toxicity levels of
the mushrooms.
2. **Output**: - For each test case, output a single integer — the number of subsegments [l, r] (1 ≤ l ≤ r ≤ n) such
that after processing the subsegment, the final value of toxicity level g is not zero.
3. **Functionality**: - For each subsegment [l, r], simulate the process where the character starts with toxicity level
g = 0. - The character eats mushrooms from left to right within the subsegment: - Upon eating the i-th mushroom
(l ≤ i ≤ r): - Increase g by ai. - If g ≤ x, continue to the next mushroom. - If g > x, reset g to zero and continue. -
After eating all mushrooms in the subsegment, check if g is not zero. - Count all such subsegments where g ̸= 0 after
processing.
**Problem Specification**:
- **Constraints**: - 1 ≤ t ≤ 104 - 1 ≤ n ≤ 2× 105 - 1 ≤ x ≤ 109 - 1 ≤ ai ≤ 109 for all i from 1 to n. - The total
sum of n across all test cases does not exceed 2× 105.
- **Additional Notes**: - A subsegment is defined by two indices l and r such that 1 ≤ l ≤ r ≤ n. - The goal is to
efficiently compute the number of valid subsegments for each test case, adhering to the given constraints. - Optimal
algorithms may be required to handle the large input size within reasonable time limits.

Deepseek-Coder-33B:
"Problem Requirements":
1. "Input Format": Each test consists of multiple test cases. The first line contains an integer t (1 ≤ t ≤ 104) — the
number of test cases. Then follows the description of the test cases. - The first line of each test case contains two integers
n, x (1 ≤ n ≤ 2 · 105, 1 ≤ x ≤ 109) — the number of mushrooms and the maximum toxicity level. - The second line
of each test case contains n numbers a1, a2, . . . , an (1 ≤ ai ≤ 109).
It is guaranteed that the sum of n over all test cases does not exceed 2 · 105.
2. "Output Format": For each test case, output a single number — the number of subsegments such that the final value
of g will not be zero.
3. "Functionality": Yaroslav is playing a computer game where he encounters n mushrooms with varying toxicity levels
arranged in a row. The task is to find the number of subsegments such that the character’s final toxicity level is not
zero after consuming mushrooms within that subsegment. The character’s toxicity level increases as mushrooms are
consumed, but if it exceeds the maximum toxicity level, it resets to zero.
"Problem Specification": Yaroslav faces a challenge in determining the count of subsegments where the character’s
toxicity level remains non-zero. The input includes the number of test cases, the number of mushrooms, the maximum
toxicity level, and the toxicity levels of each mushroom. The output should provide the count of such subsegments
for each test case. The algorithm should consider the sequential consumption of mushrooms and the toxicity level
constraints to calculate the desired outcome accurately.

Teacher Programmer:
You have understood the problem statement, including the requirements and specifications.
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Deepseek-Coder-33B generation at planning stage

"Algorithm": Sliding Window Technique.

"Reasons for the algorithm choice":
The Sliding Window Technique is suitable for this problem as it involves maintaining a window of variable size while
iterating through the mushrooms. This method allows us to efficiently calculate the toxicity level and keep track of
subsegments where the final toxicity level is non-zero. By adjusting the window boundaries based on toxicity levels and
constraints, we can accurately count the desired subsegments within the given limits.
"Algorithm Pseudocode":
1. Initialize variables count = 0, g = 0, start = 0.
2. Iterate through the mushrooms from 0 to n-1 using a loop:
- Increment g by the toxicity level of the current mushroom.
- While g is greater than x, reduce g by the toxicity level of the mushroom at the start index and increment start.
- If g is not equal to 0, update count by adding the size of the current window.
3. Output count as the number of subsegments where the final value of g is not zero.

Teacher programmer feedback at planning stage

Teacher Programmer :
"Unsatisfied": "I think you have choosen the wrong algorithm. Please modify your answer accordingly."

**"Algorithm":** Two-Pointer Sliding Window
**"Reasons for the algorithm choice":**
1. **Efficiency**: The two-pointer sliding window technique operates in linear time O(n), which is optimal given the
constraints (n ≤ 2× 105 per test case and t ≤ 104).
2. **Simplicity**: This method is straightforward to implement and understand, reducing the likelihood of errors during
coding.
3. **Applicability**: The problem essentially reduces to counting the number of subarrays with a sum ≤ x. The sliding
window approach is well-suited for such range-based sum queries, especially when dealing with only positive integers
(as toxicity levels ai are ≥ 1).
4. **Optimal for Constraints**: Given that the sum of n across all test cases does not exceed 2× 105, an O(n) per test
case algorithm ensures that the solution will run efficiently within the time limits.

Deepseek-Coder-33B:
"Algorithm": Two-Pointer Sliding Window

"Reasons for the algorithm choice":
The decision to utilize the sliding window algorithm was based on a thorough analysis of various factors. Firstly, the
algorithm’s linear time complexity of O(n) aligns well with the constraints of the problem, ensuring optimal efficiency
given the input size limitations (n ≤ 2× 105 per test case and t ≤ 104). Secondly, its straightforward implementation
and intuitive nature simplify the coding process, reducing the chances of errors. Additionally, the problem’s nature of
counting subarrays with a sum less than or equal to a given threshold x makes the sliding window technique particularly
well-suited, especially when dealing with non-negative integers (as indicated by the toxicity levels ai ≥ 1). Lastly,
considering the cumulative sum of n across all test cases does not exceed 2 × 105, an O(n) per test case approach
ensures that the solution remains efficient and within the specified time limits.

"Algorithm Pseudocode":
function slidingWindow(arr, target):

left = 0
result = some initial value
for right from 0 to length(arr) - 1:

windowValue = arr[right]

while some condition on the window (e.g., sum > target, size of window exceeds limit):

windowValue += arr[left]
left -= 1 # Move the left pointer to the right

result = updateResult(result, windowValue)
return result
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Teacher programmer feedback at planning stage

Teacher Programmer Generation:
"Unsatisfied": "I think the your pseudocode has some errors, please modify it accordingly"

Pseudocode:

for each test case:
# Step 1: Read inputs
read n and x # n is the size of the array, x is the sum constraint
read array a of size n # Array of size n

# Step 2: Initialize variables
left = 0 # Left pointer of the sliding window
current_sum = 0 # The sum of elements in the current window
total_subsegments = 0 # To store the count of subarrays with sum <= x

# Step 3: Traverse the array using the right pointer
for right from 0 to n-1:

# Add the current element to the window
current_sum += a[right]

# Step 4: Shrink the window if the sum exceeds x
while current_sum > x and left <= right:

# Remove the leftmost element from the window
current_sum -= a[left]
# Move the left pointer to the right
left += 1

# Step 5: Count all valid subarrays ending at 'right'
# All subarrays starting from 'left' to 'right' have sum <= x
total_subsegments += (right - left + 1)

# Step 6: Output the result for this test case
output total_subsegments

Deepseek-Coder-33B:
OK, here is my new answer:

for each test case:
read n and x # n is the size of the array, x is the sum constraint

read array a of size n

left = 0 # left pointer of the sliding window
current_sum = 0 # the sum of elements in the current window
total_subsegments = 0 # count of valid subarrays with sum <= x

for right from 0 to n-1:
# Add the current element to the current sum
current_sum += a[right]

while current_sum > x and left <= right:
# Remove the leftmost element from the current sum
current_sum -= a[left]
# Move the left pointer to the right
left += 1

# All subarrays starting from left to right have sum <= x
total_subsegments += (right - left + 1)

output total_subsegments

Teacher Programmer:
"Satisfied": You have chosen the correct algorithm and generated the corresponding accurate pseudocode."
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Deepseek-Coder-33B generation at coding stage

# Function to solve the problem for each test case
def solve_test_case(n, x, a):

left = 0
current_sum = 0
total_subsegments = 0

for right in range(n):
current_sum += a[right]

while current_sum > x and left <= right:
current_sum -= a[left]
left += 1

total_subsegments += (right - left + 1)

return total_subsegments

# Main function to read input and process test cases
def main():

t = int(input())

for _ in range(t):
n, x = map(int, input().split())
a = list(map(int, input().split()))

result = solve_test_case(n, x, a)
print(result)

# Run the main function
if __name__ == "__main__":

main()
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Deepseek-Coder-33B generation at coding stage

Teacher Programmer:

"Unsatisfied" : "The solution provided has some errors and misunderstandings that need to be addressed for it to correctly
solve the problem. Let’s break down the issues and provide suggestions for modifications."
Suggestions for the Solution
1. **Understand the reset condition**: - For each subsegment ‘[l, r]‘, we need to track whether the cumulative sum
exceeds ‘x‘. If it does, we reset ‘g‘ to zero and stop counting subsegments starting from that index. - We need to count
the number of valid subsegments where the cumulative sum never exceeds ‘x‘.
2. **Sliding window for subsegments**: - Instead of just moving the left pointer whenever the sum exceeds ‘x‘, we
need to adjust the window and ensure that the sum never exceeds ‘x‘ at any point during the traversal of the subsegment.
- Specifically, if the sum goes above ‘x‘, the subsegment is invalid, and we should break out of the loop.
3. **Efficiently count valid subsegments**: - For each test case, we should compute all possible subsegments efficiently,
taking into account the maximum possible sum ‘x‘. For a subsegment to be valid, the cumulative sum should not exceed
‘x‘ at any time.
4. **Optimization with prefix sums**: - One approach would be to maintain a prefix sum and calculate the sum for
each subsegment ‘[l, r]‘. This allows for fast sum calculation without needing to sum over each range repeatedly. - The
sliding window can be adjusted dynamically by checking whether the sum exceeds ‘x‘ as we move through the array.
General Steps for the New Solution:
1. **Iterate through each test case**. 2. For each test case: - Initialize ‘left‘ pointer and set ‘current_sum‘ to 0. - Use
the ‘right‘ pointer to iterate through the array. - For each ‘right‘, add ‘a[right]‘ to ‘current_sum‘. - While ‘current_sum‘
exceeds ‘x‘, move the ‘left‘ pointer right to shrink the window. - For each valid window (where ‘current_sum <= x‘),
count all subarrays that end at ‘right‘ and start from any index between ‘left‘ and ‘right‘. 3. Print the result for each test
case.
This approach ensures that the problem is solved in an efficient manner, using sliding window techniques, and counting
the valid subsegments in a way that satisfies the problem’s constraints.
Complexity Considerations: - The sliding window approach ensures that both the ‘left‘ and ‘right‘ pointers move from 0
to ‘n-1‘, making the solution efficient with a time complexity of ‘O(n)‘ for each test case. - Given that the total sum of
‘n‘ across all test cases is constrained to 2× 105, the approach is efficient enough for the input limits.

Deepseek-Coder-33B: Here is my revision code.

def solve_test_case(n, x, a):
left = 0
current_sum = 0
total_subsegments = 0

# Use sliding window to count valid subsegments
for right in range(n):

current_sum += a[right] # Expand the window by adding the current element
# Shrink the window if the current_sum exceeds x
while current_sum > x:

current_sum -= a[left]
left += 1

# Count all valid subsegments ending at 'right'
total_subsegments += (right - left + 1)

return total_subsegments

def main():
# Read the number of test cases
t = int(input())
results = []
for _ in range(t):

# Read n and x
n, x = map(int, input().split())
# Read array a
a = list(map(int, input().split()))

# Solve for the current test case and store the result
result = solve_test_case(n, x, a)
results.append(result)

# Print all results
print("\n".join(map(str, results)))

if __name__ == "__main__":
main()

"Satisfied:" "You have chosen the correct solution."
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Deepseek-Coder-33B generation at debugging stage

"Based on the compiler output, I modify my code."
"Bug Identification"
Reset condition handling: If the cumulative sum exceeds x, not only should the left pointer adjust, but we also need to
ensure the sum resets properly so invalid subsegments are not included.
Valid subsegment count: When toxicity resets (g becomes zero), all subsegments involving the invalid segment should
be discarded.
"problem Resolution:"

# Function to solve the problem for each test case
def solve_test_case(n, x, a):

left = 0
current_sum = 0
total_subsegments = 0

for right in range(n):
current_sum += a[right]

# If toxicity exceeds x, reset and adjust the left pointer
while current_sum > x and left <= right:

current_sum -= a[left]
left += 1

# Only count valid subsegments where the current_sum never exceeds x
total_subsegments += (right - left + 1)

return total_subsegments

def main():
# Read number of test cases
t = int(input())
results = []

for _ in range(t):
n, x = map(int, input().split())
a = list(map(int, input().split()))
# Solve and collect results
results.append(solve_test_case(n, x, a))

# Output all results
print("\n".join(map(str, results)))

if __name__ == "__main__":
main()
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Teacher programmer feedback at debugging stage

Teacher Programmer: **"unsatisfied":** "There are some syntactic(semantic) errors in your code. Here are my
suggestions for modifications:
- **Syntactic errors**:
1. **Function related errors**: Your code has function-related errors in the ‘solve_test_case‘ function, where it
incorrectly calculates the total number of subsegments. This results in a wrong value being returned when reset
conditions are not handled correctly.
2. **Operation errors**: Your code uses the ‘+‘ operation in a context where the cumulative sum logic does not account
for invalid subsegments, leading to an overcount of subsegments in certain cases.
- **Semantic errors**:
1. **Control flow errors**: Your code has control flow errors in the while-loop condition within ‘solve_test_case‘,
which fails to efficiently handle the reset condition. As a result, the toxicity reset logic does not properly skip over
invalid ranges.
2. **Logical direction errors**: Your code counts all subsegments ending at ‘right‘ even after a reset occurs, which is
incorrect. Valid subsegments should only include those where the cumulative sum is within the limit.
Please rewrite your code accordingly."

Deepseek-Coder-33B:

def solve(n, x, a):
nextlex = [0] * n
i = 0
j = 1
while i < n - 1:

if j == n - 1:
nextlex[i] = j
i += 1

elif j == i:
j += 1

else:
if a[j] <= x:

nextlex[i] = j
i += 1

else:
j += 1

pointto = {}
count = [0] * n
i, j, sumi = 0, 0, 0
while i < n:

if j == n:
count[i] = j - i
sumi -= a[i]
i += 1

elif sumi + a[j] <= x:
sumi += a[j]
j += 1

else:
count[i] = j - i
if j < n - 1:

pointto[i] = nextlex[j]
sumi -= a[i]
i += 1

for i in range(n - 1, -1, -1):
if i in pointto:

count[i] += count[pointto[i]]
return sum(count)

def main():
t = int(input())
results = []
for _ in range(t):

n, x = map(int, input().split())
a = list(map(int, input().split()))
results.append(solve(n, x, a))

print("\n".join(map(str, results)))
if __name__ == "__main__":

main()

Teache Programmer: "Satisfied": "You’ve fixed all the bugs in your code."
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E Error Analysis

E.1 Error Classification

Error Category Error Type Error Explanation

Syntactic Errors

Function Related Errors
1. Return Error: Returns a wrong value in an unexpected format.

2. Function Call Error: Incorrect function name, wrong argu-
ments, or incorrect method call target.

Operation Errors Operation is applied to an inappropriate data type.

Structure Errors

1. Code Block Error: Incorrectly generated or omitted state-
ments, leading to task failure.

2. Punctuation Error: Errors in punctuation, such as missing
semicolons, commas, or brackets.

Declaration Errors
Declaration Error: Incorrect or duplicate declaration of variables
or functions.

Import Errors
Library/Module Import Error: Failure to import external libraries
or nonexistent library/module.

Semantic Errors

Control Flow Errors
1. Condition Error: Logical error in a conditional statement
causing unexpected execution. (if, else)

2. Loop Error: Error leading to infinite loops or incorrect loop
exits. (while, for)

Reference Errors
1. Wrong Function: Calling the wrong function.

2. Wrong Variable: Calling the wrong variable.

Calculation Errors
1. Incorrect Arithmetic Operation.

2. Incorrect Comparison Operation.

Incomplete Errors
Missing essential logical steps: The code generation is incom-
plete.

Logical Direction Error
The code significantly deviates from intended logic and expected
outcomes.

Suboptimal Errors Suboptimal solutions lead to exceeding time or memory limits.

Table 17: Taxonomy of syntactic/semantic characteris-
tics of code errors made by LLMs
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E.2 Real Human Debug

Guidelines for human programmers to identify code errors and provide suggestions for
problem resolution.

You need to help identify code errors and provide suggestions based on the problem statement {PROB-
LEM_STATEMENT}, input format {INPUT_FORMAT}, output format {OUTPUT_FORMAT}, test case example
{TEST_CASE_EXAMPLE}, the python code {CODE} LLM programmer generated, the compiler output {COM-
PILER_OUTPUT}, all the test cases TEST_CASE}.

Your feedback needs to focus on the following content:

**Code Syntactic Correctness**: You should concentrate on errors such as those related to functions, operations,
structure, declarations, and external dependencies. Here are the detailed classification:

1. Function Related Errors: Return Error: Returns a wrong value in an unexpected format. Function Call Error: Incorrect
function name, wrong arguments, or incorrect method call target.

2. Operation Errors: Operation is applied to an inappropriate data type.

3. Structure Errors: Code Block Error: Incorrectly generated or omitted statements, leading to task failure. Punctuation
Error: Errors in punctuation, such as missing semicolons, commas, or brackets.

4. Declaration Errors: Declaration Error: Incorrect or duplicate declaration of variables or functions.

5. Import Errors: Library/Module Import Error: Failure to import external libraries or nonexistent library/module.

**Code Semantic Correctness**: You should concentrate on issues related to control flow, references, calculations,
incompleteness, logical direction and suboptimal errors.

1. Control Flow Errors: Condition Error: Logical error in a conditional statement causing unexpected execution. Loop
Error: Error leading to infinite loops or incorrect loop exits. (while, for).

2. Wrong Function: Calling the wrong function. Wrong Variable: Calling the wrong variable.

3. Calculation Errors: Incorrect Arithmetic Operation. Incorrect Comparison Operation.

4. Incomplete Errors: Missing essential logical steps: The code generation is incomplete.

5. Logical Direction Error: The code significantly deviates from intended logic and expected outcomes.

6. Suboptimal Errors: Suboptimal solutions lead to exceeding time or memory limits.

Please provide your feedback in the following format.

"Code Error Identifications:"
"Syntactic Errors:" ...
"Semantic Errors:" ...

"Resolution Suggestions:" ...
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AtCoder Regular Contest 183 Problem C

GPT-4-Turbo generated code:

MOD = 998244353
def solve(N, M, conditions):

dp = [[0] * (N + 1) for _ in range(N + 1)]
dp[0][0] = 1

for L, R, X in conditions:
for i in range(N, 0, -1):

for j in range(N, -1, -1):
if j < L - 1 or j > R:

dp[i][j] = (dp[i][j] + dp[i-1][j]) % MOD
elif j < X - 1 or j > R:

dp[i][j] = (dp[i][j] + dp[i-1][j-1]) % MOD
elif X - 1 <= j <= R:

dp[i][j] = (dp[i][j] + dp[i-1][R]) % MOD

return sum(dp[N]) % MOD
N, M = map(int, input().split())
conditions = []
for _ in range(M):

L, R, X = map(int, input().split())
conditions.append((L - 1, R - 1, X - 1))

result = solve(N, M, conditions)
print(result)

Automatic Debug:

Error Type: Logical Direction Errors
Resolution Suggestions:
Off-by-One Error: The input uses 1-based indexing, but the code uses 0-based indexing. The conditions (L, R, X)
should be adjusted properly.
Incorrect Dynamic Programming Transitions: The transitions in the dp table are not correctly defined based on the
ranges (L, R, X), leading to incorrect updates.
Inefficient Looping: The dp table is updated from the wrong direction, which may overwrite needed values during the
same iteration.
Adjust Indexing: Convert the input conditions (L, R, X) to 0-based indexing by subtracting 1 when reading input.
Correct Transitions in dp Table: Update dp[i][j] based on the range conditions, correctly handling: Values outside [L, R]
inherit directly from dp[i-1][j]. Values within [L, X-1] inherit from dp[i-1][j-1]. Values within [X, R] inherit from
dp[i-1][R].
Use Backward Looping: Process the dp table backwards (from N to 1 and j from N to 0) to avoid overwriting values that
are still needed in the same iteration.

GPT-4-Turbo Correction:
MOD = 998244353
def solve(N, M, conditions):

dp = [[0] * (N + 1) for _ in range(N + 1)]
dp[0][0] = 1 # Base case

for L, R, X in conditions:
for i in range(N, 0, -1):

for j in range(N, -1, -1):
if j < L or j > R:

dp[i][j] = (dp[i][j] + dp[i-1][j]) % MOD
elif L <= j < X:

dp[i][j] = (dp[i][j] + dp[i-1][j-1]) % MOD
elif X <= j <= R:

dp[i][j] = (dp[i][j] + dp[i-1][R]) % MOD

return sum(dp[N]) % MOD
# Reading input
N, M = map(int, input().split())
conditions = [tuple(map(lambda x: int(x)-1, input().split())) for _ in range(M)]
# Output the result
print(solve(N, M, conditions))
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AtCoder Regular Contest 183 Problem C

Human Debug
Semantic Errors:
Control Flow Errors:

Your code still remain some control flow errors.
for length from 1 to n: Traverse the subsequence lengths, from 1 to n.
for i from 1 to n - length + 1: Traverse the starting positions i of the subsequences, ensuring the subsequence length does
not exceed n.
j = i + length - 1: Calculate the ending position j of the subsequence based on the starting position i and the subsequence
length.
for k from i to j: Traverse all possible split points k, dividing the subsequence [i, j] into two subranges: [i, k-1] and [k+1,
j].
if g[i][j][k] is true then continue: If there is a constraint at position k within the range [i, j], skip that split point.
dp[i][j] = dp[i][j] + dp[i][k - 1] * dp[k + 1][j] * C[j - i][k - i]: Calculate the number of valid ways for the current
subsequence [i, j], using the valid counts of the left subrange [i, k-1] and the right subrange [k+1, j], along with the
combination count C[j - i][k - i].
dp[i][j] = dp[i][j] % MOD: Take the result modulo MOD to prevent overflow.

GPT-4-Turbo Correction
MOD = 998244353
N = 510
n, m = map(int, input().split())
dp = [[0] * N for _ in range(N)]
for i in range(1, n + 2):

dp[i][i - 1] = 1 # Initialize dp[i][i-1] as 1 (empty subsequence)
for length in range(1, n + 1):

for i in range(1, n - length + 2):
j = i + length - 1
for k in range(i, j + 1):

if g[i][j][k]:
continue

dp[i][j] = (dp[i][j] + dp[i][k - 1] * dp[k + 1][j] * C[j - i][k - i]) % MOD
print(dp[1][n])
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AtCoder Regular Contest 183 Problem C

Human Debug
Incomplete Errors
Your code has some incomplete errors, you need to complete the array g iteration.
Iterate over subinterval lengths: It loops through all possible subinterval lengths, starting from 2 up to n. The length
represents the current length of the subinterval.
Iterate over starting positions: For each subinterval length, it loops through all valid starting positions i such that the
subinterval does not exceed the array bounds. The loop runs from 1 to n - length + 1.
Calculate ending position: The ending position j of the current subinterval is calculated using the formula j = i + length -
1.
Iterate over possible split points: For each subinterval [i, j], it loops through all possible positions k (from i to j) within
the subinterval.
Update constraint information: For each position k, it updates the value of g[i][j][k]. This represents whether position k
in the subinterval [i, j] is affected by constraints. Specifically, the value is updated by checking if the position k is
constrained in either the subinterval [i+1, j] or [i, j-1]. If either of these neighboring subintervals has a constraint at
position k, the current subinterval [i, j] will also have a constraint at position k.

GPT-4-Turbo Correction

MOD = 998244353
N = 510

n, m = map(int, input().split())

C = [[0] * N for _ in range(N)]
for i in range(N):

C[i][0] = C[i][i] = 1
for j in range(1, i):

C[i][j] = (C[i - 1][j] + C[i - 1][j - 1]) % MOD

g = [[[False] * N for _ in range(N)] for _ in range(N)]
for _ in range(m):

l, r, x = map(int, input().split())
g[l][r][x] = True

for length in range(2, n + 1):
for i in range(1, n - length + 2):

j = i + length - 1
for k in range(i, j + 1):

g[i][j][k] = g[i][j][k] or g[i + 1][j][k] or g[i][j - 1][k]

dp = [[0] * N for _ in range(N)]
for i in range(1, n + 2):

dp[i][i - 1] = 1

for length in range(1, n + 1):
for i in range(1, n - length + 2):

j = i + length - 1
for k in range(i, j + 1):

if g[i][j][k]:
continue

dp[i][j] = (dp[i][j] + dp[i][k - 1] * dp[k + 1][j] * C[j - i][k - i]) % MOD
print(dp[1][n])
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E.3 Code Bug Annotation Example

AtCoder Regular Contest 183 Problem C

GPT-4-Turbo generated code:

MOD = 998244353

def solve(N, M, conditions):
dp = [[0] * (N + 1) for _ in range(N + 1)]
dp[0][0] = 1

for L, R, X in conditions:
for i in range(N, 0, -1):

for j in range(N, -1, -1):
if j < L - 1 or j > R:

dp[i][j] = (dp[i][j] + dp[i-1][j]) % MOD
elif j < X - 1 or j > R:

dp[i][j] = (dp[i][j] + dp[i-1][j-1]) % MOD
elif X - 1 <= j <= R:

dp[i][j] = (dp[i][j] + dp[i-1][R]) % MOD

return sum(dp[N]) % MOD

N, M = map(int, input().split())
conditions = []
for _ in range(M):

L, R, X = map(int, input().split())
conditions.append((L - 1, R - 1, X - 1))

result = solve(N, M, conditions)
print(result)
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AtCoder Regular Contest 183 Problem C

Human Programmer Annotation:
Semantic erros:
Control Flow Errors and Incomplete Errors:
This code has control flow errors and incomplete errors in the following section:

[language=Python]
if j < L - 1 or j > R:

dp[i][j] = (dp[i][j] + dp[i-1][j]) % MOD
elif j < X - 1 or j > R:

dp[i][j] = (dp[i][j] + dp[i-1][j-1]) % MOD
elif X - 1 <= j <= R:

dp[i][j] = (dp[i][j] + dp[i-1][R]) % MOD

Correction Suggestions:
[language=Python]
# Loop through each possible subsequence length w
for w in range(2, n + 1):

# Initialize an array y to keep track of constraints for length w
y = [0] * n

# Preprocess constraints that end before the current range
for r in range(w - 1):

for ll, x in pr[r]:
# Increment the constraint count for y[x]
y[x] += 1

# Iterate over all valid starting indices l for a subsequence of length w
for l in range(n - w + 1):

r = l + w - 1 # Calculate the end index of the current subsequence

# Consider constraints ending at r
for ll, x in pr[r]:

if l <= ll:
y[x] += 1

# Calculate number of valid sequences for the current subsequence l to r
for x in range(l, r + 1):

if y[x] == 0: # Check if there are no active constraints at x
if x == l:

q[l][r] += q[x + 1][r]
elif x == r:

q[l][r] += q[l][x - 1]
else:

# Calculate the number of ways to split the sequence at x
q[l][r] += (q[l][x - 1] * q[x + 1][r] * fa[r - l] * fb[x - l] * fb[r - x]) % M

# Take modulo to prevent overflow
q[l][r] %= M

# Adjust constraints as we move the starting index l
for rr, x in pl[l]:

if rr <= r:
y[x] -= 1
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AtCoder Regular Contest 180 Problem D

GPT-4-Turbo Generated Code:

[language=Python]
def min_partition_sum(A, L, R):

if R - L + 1 < 3:
return float('inf')

max_left = max(A[L:L + 2])
max_right = max(A[R-2:R+1])
max_middle = float('-inf')
min_sum = float('inf')

for i in range(L + 2, R - 1):
max_middle = max(max_middle, A[i])
current_sum = max_left + max_middle + max_right
min_sum = min(min_sum, current_sum)

if A[i - 1] == max_left:
max_left = max(A[L + 2:i])

else:
max_left = max(max_left, A[L + 2:i - 1])

max_middle = max(max_middle, A[R - 1])
current_sum = max_left + max_middle + max_right
min_sum = min(min_sum, current_sum)

max_middle = max(max(A[L + 1:R - 1]), A[R - 1])
current_sum = max_left + max_middle + max(A[R - 2:R])
min_sum = min(min_sum, current_sum)

return min_sum

def main():
N, Q = map(int, input().split())
A = list(map(int, input().split()))

results = []

for _ in range(Q):
L, R = map(int, input().split())
results.append(min_partition_sum(A, L - 1, R - 1))

for result in results:
print(result)

if __name__ == "__main__":
main()
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AtCoder Regular Contest 180 Problem D

Human Annotation:
Syntactic Errors:
Operation Errors:
This code has control flow errors in the following section: max_left = max(max_left, A[L + 2:i - 1]), ’>’ not supported
between instances of ’list’ and ’int’ .

Correction Suggestions:
[language=Python]
# Find the minimum sum of max values by trying different partitions

for i in range(L + 2, R): # Ensure we don't go out of bounds
max_middle = max(max_middle, A[i])
current_sum = max_left + max_middle + max_right
min_sum = min(min_sum, current_sum)

# Update max_left based on the current position
if A[i - 1] == max_left:

# Only recalculate if max_left needs updating
if i - 2 >= L + 2: # Ensure we don't go out of bounds

max_left = max(A[L + 2:i - 1])
else:

max_left = max(max_left, A[L + 2:i - 1])

Ensure max_left is Always an Integer:
When updating the position of max_left, ensure that the parameters used in the max function are valid numeric values
and avoid passing a list to the max function.
Boundary Condition Checks:
When calculating max_left, add boundary condition checks to ensure that accessing the list does not go out of bounds.
Clarification of Logic:
In the logic for updating max_left, clarify the conditions and the updating method to ensure that max_left consistently
receives the correct value.
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F Prompt

System prompt for LLMs at comprehension stage

You are a competitive programming programmer who gives the problem comprehension based on the problem statement
{PROBLEM_STATEMENT}, input format {INPUT_FORMAT}, output format {OUTPUT_FORMAT}, test case
example {TEST_CASE_EXAMPLE}.

Your comprehension needs to focus on the following content:

1. **Problem Requirements**: Problem Requirements refer to the necessary input and output formats that must be
followed, as well as the specific functionalities that the program is required to implement.
2. **Problem Specifications**: Problem Specifications refer to the specific conditions and constraints that must be met
for a solution to a problem to be considered valid and effective.

Your output must follow the format below.

"Problem Requirements": ...
1. "Input:" ...
2. "Output" ...
3. "Functionality..."

"Problem Specification": ...

System prompt for LLMs at planning stage

You are a competitive programming programmer who chooses algorithm to solve this problem based on the problem
statement {PROBLEM_STATEMENT}, input format {INPUT_FORMAT}, output format {OUTPUT_FORMAT}, test
case example {TEST_CASE_EXAMPLE}, and problem requirements {PROBLEM_REQUIREMENTS}, problem
specification {PROBLEM_SPECIFICATION} you generated in comprehension stage.

The algorithm you choose needs to focus on the following content:

1. **Algorithm Correctness**: Algorithm you choose should be effective for this problem, your goal is to pass all the
test cases.
Your output must follow the format below.

"Algorithm": ...
"Reasons for the algorithm choice": ...
"Algorithm psedocode:"...

System prompt for LLMs at coding stage

You are a competitive programming programmer who generates python code to solve this problem based on the problem
statement {PROBLEM_STATEMENT}, input format {INPUT_FORMAT}, output format {OUTPUT_FORMAT},
test case example {TEST_CASE_EXAMPLE}, problem requirements {PROBLEM_REQUIREMENTS}, problem
specification {PROBLEM_SPECIFICATION} you generated in comprehension stage, algorithm {ALGORITHM} you
choose in the planning stage.

note you must not return anything except for the python code.
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System prompt for LLMs at debugging stage

You are a competitive programming programmer who corrects python code errors based on the problem statement
{PROBLEM_STATEMENT}, input format {INPUT_FORMAT}, output format {OUTPUT_FORMAT}, test case
example {TEST_CASE_EXAMPLE}, problem requirements {PROBLEM_REQUIREMENTS}, problem specification
{PROBLEM_SPECIFICATION} you generated in comprehension stage, algorithm {ALGORITHM} you chose in the
planning stage, python code {CODE} you generated in coding stage and the compiler output {COMPILER_OUTPUT}.

You need to follow these steps to debug.

1. **Bug Identification**: Bug identification involves locating and diagnosing errors within your Python code.
2. **Problem Resolution**: Problem Resolution refers to making modifications to the code based on the identified bugs.

Your output must follow the format below. You must not return anything except for the python code for problem
resolution.

"Bug Identification": ...
"Problem Resolution": ...
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System prompt for student programmer gives feedback at comprehension stage

You are a competitive programming programmer who gives feedback to clarify the problem statement for the LLM
programmer based on the problem statement {PROBLEM_STATEMENT}, input format {INPUT_FORMAT},
output format {OUTPUT_FORMAT}, test case example {TEST_CASE_EXAMPLE} , the problem requirements
{PROBLEM_REQUIREMENTS} and problem specifications {PROBLEM_SPECIFICATION} the LLM programmer
generated.

Your feedback needs to focus on the following content:

1. **Problem Requirements**: Problem Requirements refer to the necessary input and output formats that must be
followed, as well as the specific functionalities that the program is required to implement.
2. **Problem Specifications**: Problem Specifications refer to the specific conditions and constraints that must be met
for a solution to a problem to be considered valid and effective.

Your feedback must follow the one of the format below.
"satisfied": "You have understood the problem statement, including the requirements and specifications.",

"unsatisfied": "You have not understood the problem statement, missing the requirements and specifications. Let me
clarify the problem statement for you ..., please modify your answer"

System prompt for student programmer gives feedback at planning stage

You are a competitive programming programmer who gives feedback to provide effective algorithms for the LLM
programmer based on the problem statement {PROBLEM_STATEMENT}, input format {INPUT_FORMAT}, output
format {OUTPUT_FORMAT}, test case example {TEST_CASE_EXAMPLE}, the algorithm {ALGORITHM} LLM
chose ,the reason why LLM choose this algorithm {REASONS}, the algorithm pseducode {PSEDOCODE} LLM
programmer generated.

Your feedback needs to focus on the following content:

1. **Algorithm Correctness**: Algorithm Correctness refers to whether the LLM programmer has chosen an appropriate
algorithm for the current problem, including whether the rationale behind the LLM’s choice of algorithm is reasonable.
2. **Pseudocode Correctness**: Pseudocode Correctness refers to whether the LLM programmer can generate accurate
pseudocode code for the chosen algorithm, testing whether the LLM truly understands the selected algorithm.
Your feedback must follow the one of the format below. Note: You can provide the relevant algorithm and details to the
LLM. You cannot directly provide pseudocode; you can only point out the incorrect parts of the pseudocode.
"satisfied": "You have chosen the correct algorithm and generated the corresponding accurate pseudocode.",

"unsatisfied": "I think you have choosen the wrong algorithm... or the reason why you choose this algorithm is not
correct... or the pseudocode you generated has some errors..., please modify your answer"

System prompt for student programmer gives feedback at coding stage

You are a competitive programming programmer who gives feedback to provide problem solutions for the LLM
programmer based on the problem statement {PROBLEM_STATEMENT}, input format {INPUT_FORMAT}, output
format {OUTPUT_FORMAT}, test case example {TEST_CASE_EXAMPLE}, the python code {CODE} LLM
programmer generated.

Your feedback needs to focus on the following content:

1. **Solution Correctness**: Evaluate the correctness of the code logic generated by the LLM programmer to determine
if it follows the correct approach.
Your feedback must follow the one of the format below. Note: You cannot directly provide or modify code; you can only
offer some guidance.
"satisfied": "You have chosen the correct solution",

"unsatisfied": "There are some errors in your solution. Here are my suggestions for modifications... Please rewrite your
code accordingly."
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System prompt for student programmer gives feedback at debug stage

You are a competitive programming programmer who gives feedback to help debug the code errors based on the problem
statement {PROBLEM_STATEMENT}, input format {INPUT_FORMAT}, output format {OUTPUT_FORMAT}, test
case example {TEST_CASE_EXAMPLE}, the python code {CODE} LLM programmer generated, the compiler output
{COMPILER_OUTPUT}

Your feedback needs to focus on the following content:

**Code Syntactic Correctness**: You should concentrate on errors such as those related to functions, operations,
structure, declarations, and external dependencies. Here are the detailed classification:

1. Function Related Errors: Return Error: Returns a wrong value in an unexpected format. Function Call Error: Incorrect
function name, wrong arguments, or incorrect method call target.

2. Operation Errors: Operation is applied to an inappropriate data type.

3. Structure Errors: Code Block Error: Incorrectly generated or omitted statements, leading to task failure. Punctuation
Error: Errors in punctuation, such as missing semicolons, commas, or brackets.

4. Declaration Errors: Declaration Error: Incorrect or duplicate declaration of variables or functions.

5. Import Errors: Library/Module Import Error: Failure to import external libraries or nonexistent library/module.

**Code Semantic Correctness**: You should concentrate on issues related to control flow, references, calculations,
incompleteness, logical direction and suboptimal errors.

1. Control Flow Errors: Condition Error: Logical error in a conditional statement causing unexpected execution. Loop
Error: Error leading to infinite loops or incorrect loop exits. (while, for).

2. Wrong Function: Calling the wrong function. Wrong Variable: Calling the wrong variable.

3. Calculation Errors: Incorrect Arithmetic Operation. Incorrect Comparison Operation.

4. Incomplete Errors: Missing essential logical steps: The code generation is incomplete.

5. Logical Direction Error: The code significantly deviates from intended logic and expected outcomes.

6. Suboptimal Errors: Suboptimal solutions lead to exceeding time or memory limits.

Note: You cannot directly provide or modify code; you can only offer some guidance. You need to classify the errors
you found into one of the categories mentioned above. Your feedback must follow the one of the format below.
"satisfied": "You’ve fixed all the bugs in your code. ",

"unsatisfied": "There are some syntactic(semantic) errors in your code. Here are my suggestions for modifications...
syntactic errors: 1. function related errors: your code has function related errors in ..., which return a wrong value ... 2.
operation errors: your code has function related errors in ... ..., which "+" operation can not add string type and int type.
semantic errors: 1. control flow errors: your code has control flow errors in..., which leads to incorrect if condition...
Please rewrite your code accordingly."
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System prompt for teacher programmer gives feedback at comprehension stage

You are a competitive programming programmer who gives feedback to clarify the problem statement for the LLM
programmer based on the problem statement {PROBLEM_STATEMENT}, input format {INPUT_FORMAT},
output format {OUTPUT_FORMAT}, test case example {TEST_CASE_EXAMPLE} , the problem requirements
{PROBLEM_REQUIREMENTS} and problem specifications {PROBLEM_SPECIFICATION} the LLM programmer
generated, the correct requirements and specifications in ELABORATIONSETAnnotated_Statement.

Your feedback needs to focus on the following content:

1. **Problem Requirements**: Problem Requirements refer to the necessary input and output formats that must be
followed, as well as the specific functionalities that the program is required to implement.
2. **Problem Specifications**: Problem Specifications refer to the specific conditions and constraints that must be met
for a solution to a problem to be considered valid and effective.

Your feedback must follow the one of the format below.
"satisfied": "You have understood the problem statement, including the requirements and specifications.",

"unsatisfied": "You have not understood the problem statement, missing the requirements and specifications. Let me
clarify the problem statement for you ..."

System prompt for teacher programmer gives feedback at planning stage

You are a competitive programming programmer who gives feedback to provide effective algorithms for the LLM
programmer based on the problem statement {PROBLEM_STATEMENT}, input format {INPUT_FORMAT}, output
format {OUTPUT_FORMAT}, test case example {TEST_CASE_EXAMPLE}, the algorithm {ALGORITHM}
LLM chose ,the reason why LLM choose this algorithm {REASONS}, the algorithm pseducode {PSEDOCODE}
LLM programmer generated, the correct algorithm {ANNOTATED_ALGORITHM} and psedocode {ANNO-
TATED_PSEDOCODE} in ELABORATIONSET.

Your feedback needs to focus on the following content:

1. **Algorithm Correctness**: Algorithm Correctness refers to whether the LLM programmer has chosen an appropriate
algorithm for the current problem, including whether the rationale behind the LLM’s choice of algorithm is reasonable.
2. **Pseudocode Correctness**: Pseudocode Correctness refers to whether the LLM programmer can generate accurate
pseudocode code for the chosen algorithm, testing whether the LLM truly understands the selected algorithm.
Your feedback must follow the one of the format below. Note: You can provide the relevant algorithm and details to the
LLM. You cannot directly provide pseudocode; you can only point out the incorrect parts of the pseudocode.
"satisfied": "You have chosen the correct algorithm and generated the corresponding accurate pseudocode.",

"unsatisfied": "I think you have choosen the wrong algorithm... or the reason why you choose this algorithm is not
correct... or the pseudocode you generated has some errors..."

System prompt for teacher programmer gives feedback at coding stage

You are a competitive programming programmer who gives feedback to provide problem solutions for the LLM
programmer based on the problem statement {PROBLEM_STATEMENT}, input format {INPUT_FORMAT}, output
format {OUTPUT_FORMAT}, test case example {TEST_CASE_EXAMPLE}, the python code {CODE} LLM
programmer generated, the ground_truth solutions {GROUND_TRUTH_SOLUTION} in ELABORATIONSET.

Your feedback needs to focus on the following content:

1. **Solution Correctness**: Evaluate the correctness of the code logic generated by the LLM programmer to determine
if it follows the correct approach.
Your feedback must follow the one of the format below. Note: You cannot directly provide or modify code; you can only
offer some guidance.
"satisfied": "You have chosen the correct solution",

"unsatisfied": "There are some errors in your solution. Here are my suggestions for modifications... Please rewrite your
code accordingly."
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System prompt for teacher programmer gives feedback at debugging stage

You are a competitive programming programmer who gives feedback to help debug the code errors based on the problem
statement {PROBLEM_STATEMENT}, input format {INPUT_FORMAT}, output format {OUTPUT_FORMAT}, test
case example {TEST_CASE_EXAMPLE}, the python code {CODE} LLM programmer generated, the compiler output
{COMPILER_OUTPUT}, all the test cases {TEST_CASE}.

Your feedback needs to focus on the following content:

**Code Syntactic Correctness**: You should concentrate on errors such as those related to functions, operations,
structure, declarations, and external dependencies. Here are the detailed classification:

1. Function Related Errors: Return Error: Returns a wrong value in an unexpected format. Function Call Error: Incorrect
function name, wrong arguments, or incorrect method call target.

2. Operation Errors: Operation is applied to an inappropriate data type.

3. Structure Errors: Code Block Error: Incorrectly generated or omitted statements, leading to task failure. Punctuation
Error: Errors in punctuation, such as missing semicolons, commas, or brackets.

4. Declaration Errors: Declaration Error: Incorrect or duplicate declaration of variables or functions.

5. Import Errors: Library/Module Import Error: Failure to import external libraries or nonexistent library/module.

**Code Semantic Correctness**: You should concentrate on issues related to control flow, references, calculations,
incompleteness, logical direction and suboptimal errors.

1. Control Flow Errors: Condition Error: Logical error in a conditional statement causing unexpected execution. Loop
Error: Error leading to infinite loops or incorrect loop exits. (while, for).

2. Wrong Function: Calling the wrong function. Wrong Variable: Calling the wrong variable.

3. Calculation Errors: Incorrect Arithmetic Operation. Incorrect Comparison Operation.

4. Incomplete Errors: Missing essential logical steps: The code generation is incomplete.

5. Logical Direction Error: The code significantly deviates from intended logic and expected outcomes.

6. Suboptimal Errors: Suboptimal solutions lead to exceeding time or memory limits.

Note: You cannot directly provide or modify code; you can only offer some guidance. You need to classify the errors
you found into one of the categories mentioned above. Your feedback must follow the one of the format below.
"satisfied": "You’ve fixed all the bugs in your code. ",

"unsatisfied": "There are some syntactic(semantic) errors in your code. Here are my suggestions for modifications...
syntactic errors: 1. function related errors: your code has function related errors in ..., which return a wrong value ... 2.
operation errors: your code has function related errors in ... ..., which "+" operation can not add string type and int type.
semantic errors: 1. control flow errors: your code has control flow errors in..., which leads to incorrect if condition...
Please rewrite your code accordingly."
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Instructions for human programmer gives feedback to help debug

You need to give feedback to help debug the code errors based on the problem statement {PROBLEM_STATEMENT}, in-
put format {INPUT_FORMAT}, output format {OUTPUT_FORMAT}, test case example {TEST_CASE_EXAMPLE},
the python code {CODE} LLM programmer generated, the compiler output {COMPILER_OUTPUT}, all the test cases
{TEST_CASE}. In addition to these, you can also access the content of ELABORATIONSET and conduct web searches.

Your feedback needs to focus on the following content:

**Code Syntactic Correctness**: You should concentrate on errors such as those related to functions, operations,
structure, declarations, and external dependencies. Here are the detailed classification:

1. Function Related Errors: Return Error: Returns a wrong value in an unexpected format. Function Call Error: Incorrect
function name, wrong arguments, or incorrect method call target.

2. Operation Errors: Operation is applied to an inappropriate data type.

3. Structure Errors: Code Block Error: Incorrectly generated or omitted statements, leading to task failure. Punctuation
Error: Errors in punctuation, such as missing semicolons, commas, or brackets.

4. Declaration Errors: Declaration Error: Incorrect or duplicate declaration of variables or functions.

5. Import Errors: Library/Module Import Error: Failure to import external libraries or nonexistent library/module.

**Code Semantic Correctness**: You should concentrate on issues related to control flow, references, calculations,
incompleteness, logical direction and suboptimal errors.

1. Control Flow Errors: Condition Error: Logical error in a conditional statement causing unexpected execution. Loop
Error: Error leading to infinite loops or incorrect loop exits. (while, for).

2. Wrong Function: Calling the wrong function. Wrong Variable: Calling the wrong variable.

3. Calculation Errors: Incorrect Arithmetic Operation. Incorrect Comparison Operation.

4. Incomplete Errors: Missing essential logical steps: The code generation is incomplete.

5. Logical Direction Error: The code significantly deviates from intended logic and expected outcomes.

6. Suboptimal Errors: Suboptimal solutions lead to exceeding time or memory limits.

Note: You cannot directly provide or modify code; you can only offer some guidance. You need to classify the errors
you found into one of the categories mentioned above. Your feedback must follow the one of the format below.
"satisfied": "You’ve fixed all the bugs in your code. ",

"unsatisfied": "There are some syntactic(semantic) errors in your code. Here are my suggestions for modifications...
syntactic errors: 1. function related errors: your code has function related errors in ..., which return a wrong value ... 2.
operation errors: your code has function related errors in ... ..., which "+" operation can not add string type and int type.
semantic errors: 1. control flow errors: your code has control flow errors in..., which leads to incorrect if condition...
Please rewrite your code accordingly."
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