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Abstract

Ensuring the reliability of Large Language
Models (LLMs) in complex reasoning tasks
remains a formidable challenge, particularly
in scenarios that demand precise mathemati-
cal calculations and knowledge-intensive open-
domain generation. In this work, we introduce
an uncertainty-aware framework designed to
enhance the accuracy of LLM responses by
systematically incorporating model confidence
at critical decision points. We propose an ap-
proach that encourages multi-step reasoning
in LLMs and quantify the confidence of in-
termediate answers such as numerical results
in mathematical reasoning and proper nouns
in open-domain generation. Then, the overall
confidence of each reasoning chain is evalu-
ated based on confidence of these critical in-
termediate steps. Finally, we aggregate the an-
swer of generated response paths in a way that
reflects the reliability of each generated con-
tent (as opposed to self-consistency in which
each generated chain contributes equally to
majority voting). We conducted extensive ex-
periments in five datasets, three mathemati-
cal datasets and two open-domain datasets, us-
ing four LLMs. The results consistently vali-
date the effectiveness of our novel confidence-
aggregation method, leading to an accuracy im-
provement of up to 7.4% and 5.8% over base-
line approaches in math and open-domain gen-
eration tasks, respectively.1

1 Introduction

Recently, Large Language Models (LLMs) (Dubey
et al., 2024; Guo et al., 2025; Jiang et al., 2023;
Groeneveld et al., 2024; Achiam et al., 2023) have
garnered significant attention for their strong per-
formance across diverse reasoning tasks, including
arithmetic reasoning and open-domain question an-
swering (Wei et al., 2022; Marasovic et al., 2022;

* Equal contribution.
1Code is publicly available at https://github.com/

sharif-ml-lab/CER.

Zelikman et al., 2022; Kojima et al., 2022; Yang
et al., 2024b). Approaches such as self-consistency
(Wang et al., 2022) and few-shot prompting (Brown
et al., 2020) have also been introduced to enhance
the reasoning process of these models. However,
these approaches have notable limitations. For in-
stance, few-shot prompting relies on carefully cu-
rated demonstrations to perform well, and poorly
chosen ones can have a reverse effect on perfor-
mance (Halawi et al., 2023). In addition, the self-
consistency method faces challenges in scenarios
where generated paths either (1) produce inconsis-
tent answers that do not include the correct solution
or (2) predominantly converge on incorrect results
(Zhang et al., 2023; Wang and Zhou, 2024).

Besides that, human intelligence is uniquely
characterized by its ability to express and communi-
cate uncertainty, a critical skill for sound decision-
making and effective collaboration (Cosmides and
Tooby, 1996). Similarly, in artificial intelligence,
accurate uncertainty estimation is essential for risk
assessment, error mitigation, and reliable decision-
making (Blundell et al., 2015; Guo et al., 2017;
Tomani and Buettner, 2021; Fadeeva et al., 2024).
To improve the reasoning capabilities of LLMs,
it is essential to equip them with mechanisms for
effectively quantifying and leveraging uncertainty.

In this work, we aim to improve reasoning by in-
corporating uncertainty estimation within a Chain-
of-Thought (CoT) process, which consists of a se-
quence of steps that generate intermediate outputs
or answers and ultimately leading to the final an-
swer. At the end of each step, the model is expected
to arrive at a certain level of confidence in its out-
put, while some degree of uncertainty is natural
throughout a thought due to an incomplete or evolv-
ing reasoning step. As a result, we hypothesize that
the overall undesired uncertainty of the reasoning
chain can be inferred by analyzing the confidence
of the tokens that make up the intermediate and
final answers. Additionally, these intermediate out-
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Carefully work through the problem step
by step. For each step, ... 

Q: a cube of side one meter length is cut
into small cubes of side 20 cm each. how
many such small cubes can be obtained?

Step 1: First, we need to understand ...  Answer: 20. 
Step 2: We need to convert ...  Answer: 100. 

Step 3: We will calculate the number of ...  Answer: 5. 
Step 4: To find the total number of ...  Answer: 125.  

The final answer is 125.

Step 1: To find the number of ...  Answer: 100 / 20 = 5.  
Step 2: Since the small cubes will be ...  Answer: 5 * 5 = 25.  

Step 3: Now we need to consider ...  Answer: 25. 
The final answer is 25.

Step 1: First, we need to determine ... Answer: 1,000,000.   
Step 2: Next, we calculate the volume of ...  Answer: 8,000. 

Step 3: To find out how many ... Answer: 125.  
The final answer is 125. 

LLM

Step 1: First, we need to understand ...  Answer: 20. 
Step 2: We need to convert ...  Answer: 100. 

Step 3: We will calculate the number of ...  Answer: 5. 
Step 4: To find the total number of ...  Answer: 125.  

The final answer is 125.

Figure 1: Illustration of Confidence-Enhanced Reasoning (CER) in LLMs. On the left, we demonstrate the CER
framework. Given an input query, the LLM generates three independent outputs using temperature sampling (T = 1).
Intermediate answers are bolded, and final answers are highlighted. The confidence of each output is computed, and
the most weighted-confident answer—125—is selected. On the right, we illustrate the confidence calculation for the
first output. We use multiplication as the step-wise aggregator function (f ) and weighted averaging (wa) as the
path-wise aggregator function (g). Since the answer 125 appears in both step 4 and the final answer, we mark its
first occurrence with * for clarity. The full question and responses from the LLM are provided in Appendix G.

puts often exhibit specific characteristics, such as
numerical values or proper nouns, that can be read-
ily identified. In fact, we consider these critical
tokens in our uncertainty estimation process to en-
hance the overall accuracy of the reasoning. For
mathematical tasks (e.g., GSM8K (Cobbe et al.,
2021) ), we prioritize confidence in numerical to-
kens, while for open-domain generation reasoning
(e.g., TriviaQA (Joshi et al., 2017)), we focus on
the model’s confidence in proper nouns (entities,
names, locations).

Based on the above idea, our method comprises
three key components: (1) a confidence estimation
technique that focuses on evaluating confidence in
specific tokens, where a high degree of certainty is
crucial, (2) an aggregation strategy for integrating
confidence scores across a reasoning chain, and
(3) a function that ensembles answers by harness-
ing the uncertainty within each reasoning chain,
resulting in enhanced performance compared to en-
semble reasoning methods such as self-consistency.

We evaluated our framework on four LLMs
(Llama 3.1, Llama 3.2 (Dubey et al., 2024), OLMo
2 (Groeneveld et al., 2024), and Mistral 7B v0.3
(Jiang et al., 2023)) across five datasets, three math-
ematical and two open-domain generation bench-
marks. Our experiments demonstrate that explicitly
incorporating uncertainty in reasoning can enhance
accuracy by up to 7.4% in mathematical tasks and
5.8% in open-domain question answering. Our
contributions are as follows:

• By considering the confidence of LLMs in

critical points of their responses, we easily
compute the uncertainty of an LLM on a gen-
erated response that can be useful in aggre-
gating responses generated in multiple chains
based on their confidences.

• We analyze various functions for each com-
ponent of our method and identify the best
choice to enhance reasoning accuracy.

• Empirical validation across various LLMs
and benchmarks, showing significant improve-
ments in accuracy without model fine-tuning.

2 Related Work

2.1 Reasoning in LLMs
Recent research has explored various techniques to
enhance the reasoning capabilities of LLMs. CoT
prompting (Brown et al., 2020; Kojima et al., 2022)
improves multi-step reasoning by generating struc-
tured intermediate steps, leading to more transpar-
ent and interpretable solutions. Self-consistency
(Wang et al., 2022) further enhances accuracy by
sampling multiple reasoning paths and selecting
the most consistent answer. In parallel, question
decomposition methods (Zhou et al., 2022; Dua
et al., 2022; Khot et al., 2022; Ling et al., 2023;
Weng et al., 2023) improve coherence by break-
ing complex queries into simpler sub-questions,
though it introduces additional computational over-
head. Another promising direction involves search
and planning-based methods (Wang et al., 2023,
2024a; Yao et al., 2023a; Besta et al., 2024; Xue
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et al., 2025; Yang et al., 2024a), which system-
atically explore multiple reasoning trajectories to
improve problem-solving. Lastly, integrating exter-
nal tools—such as web search engines and Python
interpreters—extends the model’s capabilities, en-
abling more precise and efficient task execution
across diverse domains (Lu et al., 2023; Yao et al.,
2023b; Kim et al., 2024; Chen et al., 2023). As
our approach is grounded in uncertainty estima-
tion, we begin by reviewing existing uncertainty
estimation methods, followed by an introduction to
uncertainty-aware reasoning techniques, which are
the most pertinent to our research.

2.2 Uncertainty Estimation

Uncertainty estimation methods can be broadly
classified into two categories: black-box (Zhang
et al., 2023; Xiong et al., 2024; Lin et al., 2023;
Manakul et al., 2023; Chen and Mueller, 2024)
and white-box (Kuhn et al., 2023; Duan et al.,
2024; Fadeeva et al., 2024; Huang et al., 2023)
approaches. One approach to uncertainty estima-
tion is training-based confidence estimation (Cohen
et al., 2024; Lin et al., 2022; Azaria and Mitchell,
2023), which improves calibration by incorporating
uncertainty estimation directly into the training pro-
cess. These methods modify the training objective,
introduce auxiliary loss functions, or leverage addi-
tional supervision to produce more reliable confi-
dence estimates. Another approach is verbal-based
confidence estimation (Tian et al., 2023; Kadavath
et al., 2022), which prompts the model to explic-
itly express its confidence through natural language
statements. Finally, semantic-based uncertainty es-
timation methods (Nikitin et al., 2024; Kuhn et al.,
2023; Qiu and Miikkulainen, 2024; Wang et al.,
2024b) cluster outputs or reasoning chains that are
semantically equivalent, quantifying uncertainty
based on the variability of responses within these
clusters.

2.3 Uncertainty-aware reasoning

An emerging trend leverages uncertainty estima-
tion as a tool to enhance various components of
reasoning. One application is in improving few-
shot prompting, where uncertainty estimation helps
automate the selection of demonstrations (Gonen
et al., 2023; Huang et al., 2024; Margatina et al.,
2023), reducing the need for manually intensive
prompt engineering. Another key contribution of
uncertainty estimation in reasoning is its role in
selecting the most reliable reasoning chain based

on confidence (Murray and Chiang, 2018; Kada-
vath et al., 2022; Malinin and Gales, 2020). In such
cases, uncertainty acts as a guiding signal, identify-
ing the chain where the model exhibits the highest
confidence. Our approach builds on this intuition
by enabling a weighted voting mechanism to select
the final answer. More importantly, instead of ap-
plying our uncertainty estimation function to every
token, we focus only on critical tokens, specifically
the intermediate answers in a CoT chain.

3 Confidence Enhanced Reasoning

Prior research has demonstrated that, analogous
to human cognitive processes, enabling LLMs to
generate intermediate reasoning steps can substan-
tially enhance their accuracy in complex reasoning
tasks. In this work, we aim to extend this approach
further by incorporating confidence estimation into
the reasoning process. We hypothesize that the fi-
nal output of each intermediate step—whether a
numerical value in mathematical problems or a con-
textually salient entity in open-domain generative
reasoning—serves as a probabilistic signal, provid-
ing valuable insight into the model’s confidence
in that step’s validity. Moreover, these localized
confidence scores can be aggregated to estimate the
model’s overall confidence in the entire reasoning
chain. By doing so, we refine the self-consistency
voting mechanism: rather than selecting the most
frequent answer, we sum the confidence scores of
chains arrive at the same conclusion and choose
the answer with the highest total confidence.

3.1 Definitions
In the following, we present the unified definitions
used throughout this paper:

• Token Probability: The output probability of
token t is derived directly from the model’s
output logits with a simple softmax function;
denoted pt.

• Word Confidence: The confidence of a word
w generated by the model, calculated using a
function f that incorporates all the tokens that
make up the word; denoted as

cfw = f({pt|t ∈ w}). (1)

• Path Confidence: An output sequence gener-
ated by the LLM, denoted y and consisting of
n steps where n shows the number of the con-
stituent parts of the reasoning paths. Each step
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is composed of two components: a content
and an answer component, denoted as o and
a, respectively. In our method, the confidence
score for each path y, obtained by aggregat-
ing the confidence values of only the critical
points, i.e. the answer components {aj}nj=1,
on the path through a function g as

cg,fy = g
(
cfa1 , . . . , c

f
an

)
. (2)

Algorithm 1 CER Algorithm

Require: x, P , f , g, K, T
Ensure: a∗

Description: Given an input prompt x, the lan-
guage model P generates responses. The func-
tions f and g represent step-wise and path-wise
aggregation, respectively. The temperature pa-
rameter is denoted by T , and the ensemble
consists of K generations. The final output, is
denoted as a∗.

1: P ← ∅
2: {yi}Ki=1 ← P (y|x, T )
3: for i← 1 to K do
4: yi =

{
(oij , a

i
j)
}ni

j=1

5: for each aij in yi do
6: cf

aij
← f(aij) ▷ Eq. (1)

7: end for
8: cg,f

yi
← g

(
cf
aia1

, . . . , cf
ai
ni

)
▷ Eq. (2)

9: Ai = ai
ni

10: P ← P ∪ {(cg,f
yi

, Ai)}
11: end for
12: A ← { a | (cg,f

yi
, Ai) ∈ P}

13: for each a ∈ A do
14: C(a)←∑K

i=1 c
g,f
yi

.I({Ai = a}) ▷ Eq. (5)
15: end for
16: a∗ ← argmaxa∈AC(a)
17: return a∗

3.2 Method
At first, we independently generate K response
paths {y1, y2, . . . , yK} from the LLM. Next, we
break down each response yi into ni constituent
steps, extracting the answers at different steps as
key elements {aij}n

i

j=1 for constructing our con-
fidence subset. Specifically, the LLM-produced
answer in the final step of the generation process
yi, i.e. ai

ni , representing the conclusive answer to
the question in this path is denoted as Ai.

We can compute the confidence of each answer
using the function f as in (1). For instance, if f is a
multiplication function and aij consists of r tokens
{t1, . . . , tr}, the confidence on this special point
can be written as:

c
∏

aij
=

r∏

k=1

p(tk). (3)

One other choice of f is mean entropy which is
computed as the average entropy of distributions
on all tokens in the word. Details about different
choices of f and subsequent impact on the results
are thoroughly examined in Appendix A and D.

Subsequently, we aggregated the confidence
scores from all steps of a path using the function g
as in (2). For the path-wise aggregate function g,
which aggregates the confidence scores of words,
we experimented with several formulations. Our
primary aggregation method is:

cg,f
yi

=

∑ni

j=1 j · c
f

aij∑ni

j=1 j
. (4)

It assigns higher weights to the steps that are closer
to the final answer. Other aggregation schemes we
considered include harmonic mean and different
kinds of weighted means which are introduced and
assessed in Appendix B and Appendix D.

Once path confidence is determined, we further
aggregate the confidence scores of all paths that
yield the same Ai. The answer with the highest
aggregate confidence is then selected.

A = { a | a ∈ {Ai}Ki=1}

C(a) =

K∑

i=1

cg,f
yi
× I(Ai = a) ∀a ∈ A,

a∗ = argmax
a∈A

C(a).

(5)

where A is the set of unique final answers among
{Ai}Ki=1. C(a) is the aggregated confidence score
for each unique a. Finally, a∗ is the best candidate,
chosen by maximizing the confidence score over
all a ∈ A.

The algorithm 1 summarizes the complete pro-
cedure of our method.

4 Experiments

4.1 Experimental Setup
In this section, we present the experimental setup
used to assess our method and compare it with the
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Models & Datasets Self-Consistency P(True) PE NL NE LL Greedy CER

LLaMA-3.1-8B

GSM8K 89.6 87.6 85.2 86.2 86.2 83.8 82.8 90.0 (+0.4%)
MATH 55.4 56.8 52.0 52.8 53.6 50.4 53.4 58.2 (+1.8%)
MathQA 63.2 65.2 64.4 65.2 61.6 65.4 60.0 68.2 (+2.8%)
Average 69.4 69.8 67.2 68.0 67.1 66.53 65.4 72.1 (+2.3%)

Mistral-7B

GSM8K 62.2 46.6 55.8 59.0 60.0 55.6 44.8 65.2 (+3.0%)
MATH 20.4 13.6 19.0 20.2 20.0 19.6 17.0 24.0 (+3.6%)
MathQA 20.8 12.4 22.6 20.0 19.4 22.6 20.2 22.6 (+0.0%)
Average 34.4 24.2 32.4 33.0 33.1 32.6 27.3 37.2 (+2.8%)

OLMo-2-7B

GSM8K 85.0 82.0 84.4 83.8 78.0 84.8 84.2 88.8 (+3.8%)
MATH 42.5 40.0 41.0 40.0 39.2 42.6 37.8 48.0 (+5.4%)
MathQA 52.0 51.8 44.8 50.0 48.8 47.4 45.2 59.4 (+7.4%)
Average 59.8 57.9 56.7 57.9 53.3 58.2 55.73 65.1 (+5.3%)

LLama-3.3-3B

GSM8K 78.4 73.2 73.0 77.0 78.6 75.2 75.2 82.6 (+4%)
MATH 51.2 44.2 44.0 42.6 40.0 40.2 46.4 56.0 (+4.8%)
MathQA 59.6 52.2 55.6 54.2 58.4 57.4 55.4 62.8 (+3.2%)
Average 63.0 56.5 57.5 57.9 59.0 57.6 59.0 67.1 (+4.1%)

Table 1: Accuracy comparison across three mathematical datasets—MATH, MATHQA, and GSM8K—on 500
sampled instances evaluated using various baseline methods and the proposed CER approach. The colored values
indicate the improvement or decline compared to the best performance of the baselines for each dataset.

other methods.

Models: We evaluate our approach on a diverse
set of LLMs to capture a wide range of architec-
tures and capabilities. Our primary model is Meta
Llama 3.1 8B Instruct (Dubey et al., 2024), a
state-of-the-art open source LLM known for its ro-
bust performance. To further support our findings,
we also conducted experiments on Meta Llama
3.2 3B (Dubey et al., 2024), representing a pow-
erful yet compact model. Additional experiments
were performed using Mistral 7B Instruct (Jiang
et al., 2023), a model frequently referenced in re-
cent studies, and Olmo 2 7B (Groeneveld et al.,
2024), which exemplifies the latest mixture of ex-
pert architectures.

Datasets and Tasks: We evaluate our method
across two task categories: 1) mathematical reason-
ing and 2)open-domain question answering. For
the mathematical tasks, we utilize the following
datasets:

• GSM8K (Cobbe et al., 2021): A widely used
benchmark that contains mathematical prob-
lems with numerical answers.

• MATH (Hendrycks et al., 2021): A dataset
that presents more complex mathematical
problems than GSM8K. It consists of two
parts: numerical and non-numerical answers.
We preprocessed the dataset and filtered out
all mathematical questions that yield non-
numerical answers.

• Math QA (Amini et al., 2019): A collection
of difficult math problems that do not overlap
with the MATH dataset.

For open-domain question answering, we utilize
the following datasets:

• TriviaQA (Joshi et al., 2017): A large-scale
dataset containing knowledge-intensive ques-
tions sourced from Wikipedia.

• HotPotQA (Yang et al., 2018): A dataset de-
signed for multi-hop reasoning (Yang et al.,
2024b), requiring models to synthesize infor-
mation from multiple documents. We prepro-
cessed the dataset by removing all comparison
questions and filtering out open-domain gener-
ation questions that do not have a proper noun
as their answer.
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Models & Datasets Self-Consistency P(True) PE NL NE LL Greedy CER

LLaMA-3.1-8B

Trivia QA 62.2 64.8 58.0 58.0 60.2 59.4 61.8 66.0 (+1.2%)
HotPot QA 10.2 14.4 11.0 13.4 12.6 13.2 14.2 14.4 (+0.0%)
Average 36.2 39.6 34.5 35.7 36.4 36.3 38.0 40.2 (+0.6%)

Mistral-7B

Trivia QA 37.0 43.2 48.6 46.0 44.2 47.0 44.8 54.4 (+5.8%)
HotPot QA 7.2 6.4 10.2 7.6 6.8 8.8 8.4 10.4 (+0.2%)
Average 22.1 24.8 29.4 26.8 25.5 27.9 26.6 32.4 (+3.0%)

OLMo-2-7B

Trivia QA 47.0 49.0 48.0 45.2 43 46.4 48.4 50.8 (+1.8%)
HotPot QA 8.6 8.6 8.2 8.8 7.8 8.6 8.4 10.6 (+1.8%)
Average 27.8 28.8 28.1 27.0 25.4 27.5 28.4 30.7 (+1.9%)

LLama-3.3-3B

Trivia QA 48.8 50.8 45.0 43.4 42.4 41.4 49.4 53.0 (+2.2%)
HotPot QA 9.0 8.4 6.4 6.8 7.8 7.4 9.0 9.2 (+0.2%)
Average 28.9 29.6 25.7 25.1 25.1 24.4 29.0 31.1 (+1.5%)

Table 2: Accuracy comparison on two open-domain QA datasets—Trivia QA and HotPot QA—using 500 sampled
instances. The table presents results across multiple baseline methods alongside the proposed CER method. Colored
values represent the performance change compared to the best baseline performance.

Both of these datasets require comprehensive rea-
soning and are knowledge-intensive.

Evaluation Metrics: Given our emphasis on rea-
soning and verifiable problem solving, we adopt
accuracy as the main evaluation metric.

Baselines: We compare our approach against sev-
eral baselines that include greedy sampling and
self-consistency as baselines and also improved
versions of self-consistency by incorporating confi-
dence or uncertainty in their voting phase:

• Greedy Sampling: Uses straightforward
greedy decoding to generate a single response,
serving as a baseline for the model’s raw per-
formance.

• Self-Consistency (Wang et al., 2022): Ag-
gregates multiple response paths to enhance
reasoning accuracy.

• Token "True" Probability (Kadavath et al.,
2022): Determines the final answer based on
the probability assigned to the token “true”.

• Log Likelihood (LL) (Murray and Chiang,
2018): Multiply the probabilities of all tokens
in a response path.

• Normalized Likelihood (NL) (Murray and
Chiang, 2018): A length-normalized variant
of log likelihood, computed by dividing the
log likelihood by the sequence length.

• Predictive Entropy (PE) (Kadavath et al.,
2022): Computes the mean entropy over all
tokens in a response path to assess confidence.

• Normalized Entropy (NE) (Malinin and
Gales, 2020): A length-normalized variant
of predictive entropy, obtained by dividing the
entropy by the sequence length.

More details on the formulation and the aggre-
gation approach of confidence-based methods are
provided in the Appendix H.

Implementation Details: All methods, except
for the simple greedy baseline, utilize tempera-
ture sampling with T = 1 to generate responses.
The number of generated paths K is set to 10, a
choice supported by previous research. (Zhang
et al., 2023; Duan et al., 2024; Qiu and Miikku-
lainen, 2024; Fadeeva et al., 2024) We aggregated
all response paths based on an exact match of the
final answer to the question. Our experiments were
conducted on a single A100 80G GPU. We sample
500 data points from each dataset and evaluate our
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results on these subsets. Additional details, includ-
ing input prompts and sample instances from the
datasets, can be found in the Appendix C.

4.2 Main Results

Mathematical Reasoning Table 1 reports the
performance of our models on three mathemati-
cal datasets under the CER framework, alongside
all baseline methods. Notably, our CER approach
consistently surpasses every baseline, with its ad-
vantage being particularly marked when applied
to smaller, less powerful LLMs. In addition, our
method yields more significant relative improve-
ments on more challenging datasets. For instance,
Llama 3.1 8B records an average relative gain of
2.3% across the datasets; Mistral 7B, Olmo 2 7B,
and Llama 3.2 3B achieve gains of 0.8%, 5.3%,
and 4.1%, respectively. An intriguing observa-
tion arises from the results on Llama 3.1 7B—the
most potent model in our experiments. Although
this model already exhibits strong baseline perfor-
mance, CER not only boosts its overall results but
also delivers particularly significant improvements
on the more demanding MATH and Allen AI’s
Math QA datasets. By contrast, the performance
trend for the Mistral model differs: while it shows
consistent improvements across all datasets, the
performance gap does not widen as markedly on
the more challenging problems. This suggests that
while CER can unlock additional reasoning capabil-
ities in models with sufficient capacity, its benefits
are limited when the underlying model lacks the
capacity to solve the problem entirely.

Knowledge Intensive Reasoning Our CER
method outperforms all baselines by a substantial
margin for open-domain generation tasks requir-
ing intensive knowledge reasoning. Specifically,
it delivers average gains of 0.6% for Llama 3.1
8B, 3.0% for Mistral 7B, 1.9% for Olmo 2 7B,
and 1.5% for Llama 3.1 3B. A notable finding is
the relatively poor performance of Llama 3.2 3B
compared to the other models. Although Llama
3.2 3B outperforms Mistral 7B on mathematical
reasoning tasks by a considerable margin, it falls
short on knowledge-intensive tasks. We attribute
this discrepancy to the nature of questions in Trivia
QA and HotPot QA, which demand that specific
knowledge be stored within the model’s parame-
ters. In contrast, mathematical reasoning relies
primarily on operational and logical skills. Con-
sequently, even though Llama 3.2 3B is distilled

Figure 2: Performance comparison of CER and baseline
models across different generations K = {3, 5, 10} on
the LLAMA 3.3-3B model using the MATH dataset.

from larger, more capable models, its smaller size
means it possesses fewer parameters to encapsulate
the extensive knowledge required, leading to its
diminished performance on knowledge-intensive
tasks.

Results Across Different Models As previously
noted, our selection of models aims to demonstrate
the performance and versatility of our approach
across both smaller models and mixtures of ex-
perts—a popular choice in recent research. As
illustrated in Tables 1 and 2, our framework not
only achieves strong results with commonly used
models such as Llama 3.1 8B and Mistral 7B, but
also shows impressive performance on the compact
Llama 3.1 3B and the state-of-the-art open-source
MoE model, Olmo 2 7B. In every case, CER out-
performs all baseline methods across all datasets.

4.3 Ablation Studies
We conducted several ablation studies to further
elucidate the contributions of individual compo-
nents and assess the robustness of our approach.

Varying the Number of Paths (K) Our first ex-
periment explores the impact of the hyperparam-
eter K, which denotes the number of generated
paths. As shown in Figure 2, both CER and all
baseline methods benefit from increasing K. How-
ever, CER consistently outperforms the baselines
for every value of K.

Entropy vs. Probabilities While entropy is com-
monly used in the literature as a measure of model
uncertainty and confidence, we conducted an ab-
lation study comparing the mean entropy over all
tokens to the word confidence measure defined in
Equation 3. Appendix D provides the complete
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Figure 3: Ablation study results comparing the performance of the CER method using the last answer confidence
(CER-LAST, red) versus the original CER method utilizing all intermediate answers (CER-ALL, blue) across
mathematical reasoning datasets (GSM8K, MATH, MathQA) and open-domain question-answering datasets
(TriviaQA, HotpotQA). The left side presents results for LLaMA-3.1-8B, while the right side shows results for
Mistral-7B. Across all datasets, CER-ALL consistently outperforms CER-LAST, emphasizing the advantage of
incorporating intermediate answers for improved accuracy.

results and the precise formulation of the entropy
function, as f is in Appendix A.

Different Path-Level Aggregators This study
investigated the effect of various path-level aggre-
gator functions, denoted by g. Beyond our primary
choice of weighted mean aggregation, we experi-
mented with several similar alternatives. The re-
sults across these different aggregators were strik-
ingly similar, indicating that the weighted mean
is sufficiently effective without requiring further
tuning. We also assessed an aggregation func-
tion based on the multiplication of word-level con-
fidences along each path, as well as the mini-
mum function—motivated by the adage “a chain
is only as strong as its weakest link.” All alter-
natives yielded comparable results, as detailed in
Appendix D

Last Answer Confidence Finally, we examined
the effect of relying solely on the confidence of the
last answer to guide the overall reasoning process,
thereby excluding intermediate signals. As illus-
trated in Figure 3, this ablation reveals a significant
performance gap compared to the original CER
method. Although confidence in the final answer
is an important indicator, these results confirm that
incorporating all intermediate responses leads to
superior performance.

Recent Reasoning-based Models To evaluate
appling our method on recent reasoning models,
DeepSeek-R1-Distill-Qwen-7B model (Guo et al.,

2025), a distilled variant of the state-of-the-art
DeepSeek-R1 architecture, is utilized. This model
is specifically optimized for mathematical reason-
ing tasks using the GRPO reinforcement learn-
ing method. We compare employing our method
against several baseline methods on two bench-
marks: GSM8K, which focuses on mathemati-
cal reasoning, and TriviaQA, which targets open-
domain question answering. The obtained results
are shown in Table 3.

5 Discussion and Conclusion

In this paper, we introduced a lightweight frame-
work that enhances performance on various rea-
soning tasks by relying solely on the model’s out-
put logits without the need for fine-tuning or task-
specific prompts. Our approach bridges the gap
between reasoning and uncertainty estimation in
LLMs. Through extensive empirical analysis, we
observe some key findings: (1) Aggregating mul-
tiple responses based on the model’s confidence
leads to more reliable outcomes. Unlike self-
consistency methods, which generate multiple rea-
soning paths but assign them equal weight, CER
employs a confidence-based approach that assigns
weights to each path and aggregates them accord-
ingly. (2) Considering intermediate answer to-
kens to assess confidence is more effective than
using all tokens in the chain. We observe that at
the end of each step, the model is expected to arrive
at a certain level of confidence in its output, while
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Models & Datasets Self-Consistency P(True) PE NL NE LL Greedy CER

GSM8K 89.8 82.6 83.8 85.2 83.8 84.0 87.2 90.2
Trivia QA 22.4 15.2 16.0 15.4 14.8 15.8 19.4 24.4

Table 3: Comparison of CER with baselines on DeepSeek-R1-Distill-Qwen-7B across the GSM8K and TriviaQA
datasets.

some degree of uncertainty is natural throughout a
thought due to an incomplete or evolving reasoning
step. Therefore, a CoT should not be penalized for
these natural uncertainties throughout its thoughts.
As a result, the overall undesired uncertainty in
the reasoning chain is inferred by analyzing the
confidence levels of only the critical tokens that
constitute the intermediate and final answers, while
discarding the confidence of other tokens that may
lead to misleading conclusions. To achieve this,
CER encourages the LLM to express intermedi-
ate answers through reasoning and leverages these
tokens—like numerical values in mathematical rea-
soning and proper nouns in open-domain genera-
tion. (3) Assigning higher weights to reasoning
steps closer to the final answer improves perfor-
mance. By combining these findings, CER thus
enhances the reasoning capabilities of large lan-
guage models.

6 Limitations

Our work has several notable limitations. First, the
framework has currently been applied only to a lim-
ited range of tasks, specifically those that involve
mathematical reasoning and knowledge-intensive
questions. This restriction arises from the nature of
our method, which requires intermediate answers
or clear indicators of intermediate results for oper-
ation. Additionally, our approach depends on the
access to the model output logits. Consequently,
our method cannot be employed in scenarios where
logits are inaccessible, such as with black-box set-
tings. However, it can be adapted to these settings
by modifying the step-wise aggregation, prompt-
ing the LLM for intermediate answers, estimating
confidence from verbalized confidence at each step,
and applying path-wise aggregation to compute
overall confidence. Also, in this study, we focus
only on numerical outputs in mathematical rea-
soning. However, with minor modifications, our
approach can also handle non-numerical outputs,
such as mathematical proofs. Future research could
further extend our framework to mathematical rea-
soning tasks with non-numerical final answers.
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A Different Choices for step-wise
aggregation function (f )

In this work, we define the stepwise aggregate func-
tion (f ) as a function that quantifies the confidence
of a word by leveraging the probabilities of its
constituent tokens. We consider two common for-
mulations for f :

1. Mean Entropy: Compute the average entropy
of all tokens in a word. This metric represents
the confidence of the model when generating
the word, where a lower entropy indicates a
higher confidence.

2. Multiplicative Probability: Determine the
overall probability of a word by multiply-
ing the probabilities of its constituent tokens,
where a higher value indicates greater confi-
dence.

Mean Entropy: Let a word w consist of tokens
{t1, t2, . . . , tn} with the corresponding probabili-
ties of the mass functions P (T = t1), P (T =
t2), . . . , P (T = tn) and the corresponding prob-
abilities of the tokens p(t1), p(t2), . . . , p(tn). We
define the mean entropy formulation as follows:

fentropy(w) = −
1

n

n∑

i=1

H(P (T = ti)) (6)

fentropy(w) = −
1

n

n∑

i=1

∑

j

P (ti = j) logP (ti = j)

(7)

Multiplicative Probability: Alternatively, the
multiplicative probability formulation is given by:

fmult(w) =

n∏

i=1

p(ti). (8)

We also performed an ablation study using the
mean probability of tokens as an alternative.

B Different Choices for path-wise
aggregate function (g)

For the path-wise aggregate function (g), which
aggregates the confidence scores of words, we ex-
perimented with several formulations. Our primary
aggregation method is the weighted mean, where
Cw represents the confidence of each word. Other

aggregation schemes we considered include the
following:

For all cases below, let {c1, . . . , cn} denote the
confidence scores associated with words 1 through
n.

• Harmonic Mean: Aggregates confidences
using the harmonic mean.

n
1
c1

+ · · ·+ 1
cn

(9)

• Weighted Mean: This approach applies lin-
early increasing weights to the confidences,
based on the intuition that the final steps
contribute more to the overall confidence of
the path and should therefore receive greater
weight.

1 · c1 + · · ·+ n · cn
1 + · · ·+ n

(10)

• Half Split Mean: A weighted split that as-
signs half of the total weight to the final
answer, with the remaining half distributed
uniquely among the other words.

1

2
cn +

1

2(n− 1)

n−1∑

i=1

ci, n > 1. (11)

• Exponential Mean: Uses exponents of 2 as
the weights to emphasize later steps.

20 · c1 + · · ·+ 2n−1 · cn
2n − 1

(12)

• Average Log: Computes the average of the
logarithm-transformed confidences.

1

n

n∑

i=1

log(1 + ci) (13)

• Minimum: Uses the minimum confidence
among all steps.

min
i∈{1,...,n}

ci (14)

Each function represents a distinct hypothesis re-
garding the relative importance of individual words
in the response path. The experimental results com-
paring these methods are presented in the corre-
sponding section of the paper.
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**Objective**
Carefully work through the problem step by
step. For each step, perform any required
reasoning and express the answer at the end
of the step. Your response should be in the
format Answer: [answer]. After completing
the steps, provide the final answer based
on the reasoning developed throughout the
process.
**Important Rules**
1. Perform detailed analyses before
concluding the answer.
2. Express intermediate answers explicitly
at the end of each step in the format
Answer: [answer].
3. Ensure that your response ends with:
The final answer is [answer], where
[answer] is the response to the problem.

Q: <question>

Figure 4: Prompt for Math Reasoning

**Objective**
Carefully work through the problem step by
step, focusing only on the essential steps
and limiting your response to five sentences.
Your response should end with: The final
answer is [answer], where [answer] is the
response to the problem.
Q: <question>

Figure 5: Prompt for Multi-hop Reasoning

C More Implementation Details

The prompt is tailored for mathematical reasoning,
guiding the LLM through a structured step-by-step
process while ensuring it generates an answer at
each stage. This is illustrated in Figure 4. Similarly,
the prompt for open-domain generation is designed
to systematically lead the LLM through a logical
reasoning process, as shown in Figure 5.

D More Results

This section shows the results of the ablation stud-
ies for both f and g functions. Table 4 shows the
results for different choices of f , and Table 5 shows
the results for the g alternatives.

**Objective**
Carefully work through the problem step by
step. For each step, perform any required
reasoning, and express the response at
the end of the step. Your response for
each intermediate step should be in the
format Response: [response]. After
completing the steps, provide the final
response based on the reasoning developed
throughout the process.
**Important Rules**
Your response should end with: The
final response is [response], where
[response] is the final response to the
problem.

Q: <question>

Figure 6: Second Prompt (more flexible)

E Additional Prompt Formats and
Evaluation

We evaluated our method on all models using two
additional prompt formats on the GSM8K data set.
The second format closely resembles our origi-
nal prompt but replaces Answer:[answer] with
Response:[response] for intermediate steps.
The third format offers the most flexibility, al-
lowing the LLM to generate intermediate answers
freely at the end of each step without enforcing
a specific structure. However, to ensure that the
final answer remains easily identifiable and error-
free, we still require the model to provide it in a
predefined format.

E.1 Prompt Formats

The second prompt, which offers greater flexibility
than the original, is presented in Figure 6, while
the third prompt, the most flexible of the three, is
shown in Figure 7.

E.2 Prompt Results

Table 6 presents the results of different models eval-
uated on the GSM8K dataset using these prompts,
while Table 7 displays the comparison results of
our primary models on the MATH and Allen AI
Math datasets on the primary prompt and the most
flexible one.
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**Objective**
Carefully work through the problem step by
step. For each step, perform any required
reasoning and express the answer at the
end of the step. After completing the
steps, provide the final answer based on
the reasoning developed throughout the
process.
**Important Rules**
Your response should end with The final
answer is [answer], where [answer] is
the final response to the problem.

Q: <question>

Figure 7: Third Prompt (most flexible)

F Further Exploration of the Dataset

Here, we show a sample from each dataset. Ta-
ble 8 shows the mathematical datasets samples and
Table 9 shows the open domain generation QA
datasets samples.

G Full question and responses related to
the main figure

Table 10 shows a question as an input sample to
the LLm with our prompt and the corresponding
generated paths and their intermediate steps.

H Examination of Confidence Baselines

We examine baseline methods that integrate confi-
dence measures, specifically Log-Likelihood (LL),
Normalized-Length Likelihood (NL), Predictive
Entropy (PE), and Normalized-Length Entropy
(NE). Let Pθ represent the LLM, and denote N
as the number of generated tokens, expressed as
{y1, . . . , yN}.

• Log-Likelihood (LL): Computes the likeli-
hood of a response path by multiplying the
probabilities of all tokens in the sequence. Af-
ter evaluating the confidence of each response,
the answer with the highest confidence—or
equivalently, the one with the lowest negative
log-likelihood—is selected. Its corresponding
equation is:

LL = −
N∑

t=1

logPθ(yt | y1:t−1, x) (15)

• Normalized Likelihood (NL): Computes a
normalized version of the log-likelihood for a
response path by multiplying the probabilities
of all tokens in the sequence and normalizing
the value by the length of the generated re-
sponse (N ). The answer with the highest con-
fidence—or equivalently, the one with the low-
est negative normalized-length likelihood—is
selected. Its corresponding equation is:

NL =
−1
N

N∑

t=1

logPθ(yt | y1:t−1, x) (16)

• Predictive Entropy (PE): Computes the
mean entropy over all tokens in a response
path to assess confidence. The answer with
the highest confidence—or equivalently, the
one with the lowest predictive entropy—is se-
lected. Its corresponding equation is:

PE = −
N∑

t=1

Pθ(yt | y1:t−1, x)

· logPθ(yt | y1:t−1, x) (17)

• Normalized Entropy (NE): A normalized
version of predictive entropy that accounts for
sequence length. The answer with the highest
confidence—or equivalently, the one with the
lowest normalized entropy—is selected. Its
corresponding equation is:

NE =
−1
N

N∑

t=1

Pθ(yt | y1:t−1, x)

· logPθ(yt | y1:t−1, x) (18)
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LLM Math datasets Open-domain datasets

GSM8K MATH MathQA TriviaQA HotPotQA

Multiplication
LLama-3.1-8B 90.0 58.2 68.2 66.0 14.4
Mistral-2-7B 65.2 18.0 22.6 54.4 10.4
OLMo-2-7B 88.8 48.0 59.4 50.8 10.6
LLama-3.3-3B 82.6 56.0 62.8 53.0 9.2

Entropy
LLama-3.1-8B 89.0 57.2 66.6 62.0 12.8
Mistral-2-7B 65.2 21.4 22.2 52.6 9.2
OLMo-2-7B 84.0 30.0 50.0 54.0 8.0
LLama-3.3-3B 85.8 50.0 60.8 50.4 8.4

Table 4: Accuracy comparison of different large language models (LLMs) on mathematical reasoning and open-
domain question-answering datasets. The models are evaluated on GSM8K, MATH, and MathQA for mathematical
reasoning, and TriviaQA and HotPotQA for open-domain tasks. Results are reported for two variations of our
step-wise aggregate functions (f ): Multiplication and Entropy.
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LLM Math datasets Open-domain datasets

GSM8K MATH MathQA TriviaQA HotPotQA

Self-Consistency
LLama-3.1-8B 89.6 55.4 63.2 62.2 10.2
Mistral-2-7B 62.2 20.4 20.8 37.0 7.2
OLMo-2-7B 85.0 42.5 52.0 47.0 8.6
LLama-3.3-3B 78.4 51.2 59.6 48.8 9.0

Avg(log c)
LLama-3.1-8B 89.6 56.8 68.6 65.8 14.6
Mistral-2-7B 66.8 19.2 24.8 54.2 9.8
OLMo-2-7B 8788.2 48.0 58.0 53.0 8.8
LLama-3.3-3B 84.0 55.6 61.6 54.8 9.6

min(c)
LLama-3.1-8B 90.6 57.6 65.4 65.2 12.6
Mistral-2-7B 63.4 17.2 24.8 54.6 9.4
OLMo-2-7B 89.4 46.8 58.8 49.4 8.4
LLama-3.3-3B 80.6 53.6 58.6 52.0 6.4

Weighted half
LLama-3.1-8B 89.0 59.0 68.2 67.4 13.8
Mistral-2-7B 66.8 20.0 21.6 53.2 10.0
OLMo-2-7B 89.2 46.0 59.2 50.2 9.6
LLama-3.3-3B 82.2 56.2 63.2 51.0 9.6

Weighted exp-2
LLama-3.1-8B 91.0 59.4 68.2 66.2 15.0
Mistral-2-7B 63.4 18.2 22.6 54.0 9.2
OLMo-2-7B 88.8 48.2 58.4 49.6 9.0
LLama-3.3-3B 82.0 55.6 62.8 55.2 8.8

Harmonic mean
LLama-3.1-8B 90.2 56.4 65.6 66.0 12.8
Mistral-2-7B 66.4 22.4 23.2 52.0 9.4
OLMo-2-7B 88.2 40.0 54.0 49.6 9.0
LLama-3.3-3B 84.2 56.0 62.6 54.0 8.8

Table 5: Accuracy comparison of different variants of our main method g function against the self-consistency
baseline on all models, evaluated on mathematical reasoning and open-domain generation datasets.

Model Original Prompt Second Prompt Third Prompt

Llama 3.1 8B 90.0 88.0 90.6
Mistral 7B 65.2 62.6 67.8
Llama 3.2 3B 82.6 81.2 80.4
Olmo 2 7B 88.8 88.4 90.2

Table 6: Accuracy on GSM8K with different prompt formats
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MATH Dataset Allen AI Math Dataset

Model Original Prompt Third Prompt Original Prompt Third Prompt

Llama 3.1 8B 58.2 57.4 68.2 66.0
Mistral 7B 18.0 18.6 22.6 21.8

Table 7: A comparison of accuracy on the MATH and Allen AI Math datasets using the main prompt (Figure 4) and
the most flexible prompt (Figure 7).
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Question Sampled Path
[GSM8K] The basketball team
went to the steakhouse to eat din-
ner. The first player ate a 6-ounce
steak. The second player ate beef
tips, containing 8 beef tips, each
an ounce in size. The third player
ate a one-pound steak. And the
fourth and fifth players ordered
vegetarian meals. In total, how
many ounces of meat were con-
sumed by the team?

Step 1: Calculate the amount of meat eaten by the first player.
The first player ate a 6-ounce steak. 0.8 pounds is equal to 6
ounces (using the conversion factor 1 pound is equal to 16 ounces.)
Answer: 6. Step 2: Calculate the amount of meat eaten by the
second player. The second player ate beef tips, containing 8 beef
tips, each an ounce in size. Multiply the number of tips (8) by
the size of each tip (1 ounce to find the total amount eaten by
the second player). 8 * 1 ounce = 8 ounces. Answer: 8. Step 3:
Calculate the amount of meat eaten by the third player. The third
player ate a 1-pound steak. First, we need to convert the 1-pound
steak to ounces using the conversion factor 1 pound is equal to 16
ounces. 1 pound multiplied by 16 ounces (pound-ounces) is 16
ounces. Answer: 16. Step 4: Calculate the total amount of meat
eaten by the team by summing the amounts for all the players.
Since the fourth and fifth players ate vegetarian meals, they did
not eat any meat, so we will only sum the amounts eaten by the
first three players. 6 + 8 + 16 = 30 ounces. Answer: 30. The final
answer is 30.

[MATH] Find the value of x such
that
√
x− 4 = 4.

Step 1: To start solving this equation, I will square both sides of
the equation to eliminate the square root. By doing this, I will be
able to get rid of the radical sign and simplify the equation. An-
swer: (

√
x− 4)2 = 42 Step 2: The left-hand side of the equation

becomes x− 4 after squaring the square root because (
√
y)2 = y.

The right-hand side of the equation becomes 16 since 42 = 4× 4.
Answer: x− 4 = 16. Step 3: Now, I will isolate x by adding 4 to
both sides of the equation. This gets rid of the −4 on the left-hand
side of the equation. Answer: x− 4 + 4 = 16 + 4. Step 4: The
left-hand side of the equation simplifies to x since any number
minus itself is equal to zero, and adding zero to a number doesn’t
change its value. The right-hand side of the equation becomes 20
since 16 + 4 = 20. Answer: x = 20. The final answer is 20.

[MathQA] Find a sum for first 8
prime numbers?

Step 1: To find the sum of the first 8 prime numbers, we need
to identify the first 8 prime numbers. Answer: 2, 3, 5, 7, 11, 13,
17, and 19. Step 2: Now, let’s add these numbers together to get
the sum. Answer: 2 + 3 + 5 + 7 + 11 + 13 + 17 + 19. Step 3:
Performing the addition: Sum = 2 + 3 = 5, Sum = 5 + 5 = 10, Sum
= 10 + 7 = 17, Sum = 17 + 11 = 28 - Sum = 28 + 13 = 41, Sum =
41 + 17 = 58, Sum = 58 + 19 = 77 Answer: 77 The final answer is
77.

Table 8: We domenstrate the performance of our method, CER, along with a sampled response path for solving each
question in the math dataset. Intermediate answers at each step are highlighted in blue, while the final answer is
emphasized in green.
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Question Sampled Path
[TriviaQA] In which town or city
would you find the ’Caledonian
Brewery’?

[Step 1] To find the location of the ’Caledonian Brewery’, let’s
start by understanding the name itself. [Step 2] ’Caledonian’
refers to Caledonia, an ancient Roman name for Scotland. [Step
3] The brewery is likely to be in Scotland given its name. [Step 4]
Caledonian Brewery is specifically located in Edinburgh, Scotland.
[Step 5] Edinburgh is the capital city of Scotland. The final answer
is Edinburgh.

[HotPotQA] The Mutlu Onaral al-
bum "LivinÍt" was produced by the
bassist for what duo?

[Step 1] To find the answer, we need to look for information about
the Mutlu Onaral album "LivinÍt" and find a connection to a duo.
[Step 2] After researching "LivinÍt," I found itś by Mutlu Onaral,
a Turkish-born singer-songwriter known for being a member of
Hall & Oates. [Step 3] The American duo Hall & Oates consists
of Daryl Hall and John Oates. [Step 4] The bassist for Hall &
Oates, which is none other than bassist and vocalist Klyde Jones is
the lead vocalist who is also the bassist. The final answer is Hall
& Oates.

Table 9: We demonstrate the performance of our method, CER, along with a sampled response path for solving
each question in the open-domain generation dataset. Each step is clearly separated by a period and labeled as
[Step i], where i represents the step number. Intermediate answers, including the last proper noun in each step, are
highlighted in blue, while the final answer is emphasized in green.
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Question Sampled Paths
Carefully work through the
problem step by step. For each
step, perform any required
reasoning, and express the answer
at the end of the step, Your
response should be in the format
Answer: [answer]. After
completing the steps, provide the
final answer based on the
reasoning developed throughout
the process. Your response should
end with The final answer is
[answer], where [answer] is the
response to the problem. Q: a
cube of side one meter length is
cut into small cubes of side 20 cm
each. how many such small cubes
can be obtained?

Step 1: First, we need to understand the size of the large cube and
the size of the small cubes. The large cube has a side length of 1
meter, and the small cubes have a side length of 20 cm. Answer:
20. Step 2: We need to convert the side length of the large cube
from meters to centimeters for a uniform unit of measurement.
Since 1 meter = 100 centimeters, the side length of the large cube
is 100 cm. Answer: 100. Step 3: We will calculate the number
of small cubes that can fit along the side of the large cube. The
number of small cubes on one side of the large cube is 100 cm
/ 20 cm = 5. Answer: 5. Step 4: To find the total number of
small cubes, we will multiply the number of small cubes along the
length, width, and height. So, the total number of small cubes = 5
x 5 x 5 = 125. Answer: 125. The final answer is 125.
Step 1: To find the number of small cubes in one dimension, we
will divide the length of the big cube in meters by the side length
of the small cube in meters. Since 1 meter = 100 cm, and small
cube side = 20 cm, Answer: 100 / 20 = 5. Step 2: Since the small
cubes will be cubical in shape, we need to get the result for all the
dimensions (length, breadth, and height) and then multiply them
to get the total number of cubes. We’ve already found out that 5
cubes can fit along the length and breadth (in step 1). As the cube
is cube-shaped, the same number of cubes will fit along the height.
Answer: 5 * 5 = 25. Step 3: Now we need to consider all the
combinations (length, breadth, and height) to get the final answer.
But since we already got the same result for length and breadth,
there’s no need to multiply again. Answer: 25. The final answer is
25.
Step 1: First, we need to determine the volume of the large cube.
Since the side length of the large cube is 1 meter, which is equiv-
alent to 100 centimeters, we calculate its volume. Volume of
the large cube = side^3 = 100^3 = 1,000,000 cubic centimeters.
Answer: 1,000,000. Step 2: Next, we calculate the volume of a
small cube. The side length of a small cube is given as 20 cm, so
its volume is calculated by cubing this side length. Volume of a
small cube = side^3 = 20^3 = 8,000 cubic centimeters. Answer:
8,000. Step 3: To find out how many small cubes can be obtained
from the large cube, we divide the volume of the large cube by the
volume of one small cube. Number of small cubes = Volume of
the large cube / Volume of a small cube = 1,000,000 / 8,000 = 125.
Answer: 125. The final answer is 125.

Table 10: We present the complete prompt and full answers for our main figure. This table includes the full prompt
along with three sample paths, where intermediate answers at each step are highlighted in blue, and the final answer
is emphasized in green.
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