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Abstract
Conditional dichotomy, the contrast between
two outputs conditioned on the same context,
is vital for applications such as debate, defea-
sible natural language inference, and causal
reasoning. Existing methods that rely on
semantic similarity often fail to capture the
nuanced oppositional dynamics essential for
these applications. Motivated by these limita-
tions, we introduce a novel task, Conditional
Dichotomy Quantification (ConDQ), which
formalizes the direct measurement of condi-
tional dichotomy and provides carefully con-
structed datasets covering debate, defeasible
natural language inference, and causal rea-
soning scenarios. To address this task, we
develop the Dichotomy-oriented Geometric
Embedding (DoGE) framework, which lever-
ages complex-valued embeddings and a di-
chotomous objective to model and quantify
these oppositional relationships effectively. Ex-
tensive experiments validate the effectiveness
and versatility of DoGE, demonstrating its po-
tential in understanding and quantifying con-
ditional dichotomy across diverse NLP ap-
plications. Our code and datasets are avail-
able at https://github.com/cui-shaobo/
conditional-dichotomy-quantification.

1 Introduction

Conditional dichotomy refers to the contrast be-
tween two outputs that are conditioned on the same
context, highlighting both their opposition and in-
terconnectedness (Apothéloz et al., 1993; Hidey
and McKeown, 2019). In many NLP tasks, the
ability to generate and assess contrasting outputs
conditioned on the same context is crucial for ap-
plications like debate (Chen et al., 2019; Liang
et al., 2024), defeasible natural language infer-
ence (NLI) (Forbes et al., 2020; Rudinger et al.,
2020), and causal reasoning (Kiciman et al., 2024;
Cui et al., 2024). Despite its importance and broad
applications, conditional dichotomy has not been
thoroughly explored in the literature.

Supporter : 

Defeater : 

Effect: The company gains a significant market share. 

Cause: A company launches a revolutionary product. Defeasible
cause-effect

pair 

Supporter : 

0.85

0.92

>

The product's unique features attract a quite
large customer base. 

People frequently share their happy usage
experience on social media. 

Competitors quickly release similar products,
reducing the company’s advantage.

Figure 1: A motivational example illustrating the chal-
lenge of assessing conditional dichotomy through se-
mantic similarity. The similarity score between two
supporters (0.85) is lower than the similarity score be-
tween one supporter and one defeater (0.92).

An intuitive approach to measuring conditional
dichotomy primarily relies on semantic textual sim-
ilarity (STS) (Reimers and Gurevych, 2019; Gao
et al., 2021), operating under the assumption that a
lower similarity score indicates a higher degree of
dichotomy. However, as illustrated in Figure 1,
this assumption does not always hold. For the
same cause-effect pair, the similarity score between
two supporters (0.85) is unexpectedly lower than
the similarity score between a supporter and a de-
feater (0.92).1 This counterintuitive result demon-
strates that using semantic textual similarity as an
indirect measure of conditional dichotomy is both
unreliable and ineffective, as it fails to capture the
genuine dichotomy between conditioned outputs.

To bridge the gap in benchmarking, evaluation,
and methods in conditional dichotomy, we intro-
duce a novel task termed Conditional Dichotomy
Quantification (ConDQ), which aims to directly
measure the degree of dichotomy between two out-
puts conditioned on the same context. We instanti-
ate this task across three representative scenarios,

1We refer to a supporter as an argument that reinforces a
cause-effect relation, and a defeater as one that weakens it.
The scores are computed by the state-of-the-art STS model
AoE (Li and Li, 2024).
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as illustrated in Figure 2: (i) debate: dichotomy
between supporting and opposing arguments for
given debate topics (Chen et al., 2019; Liang et al.,
2024); (ii) defeasible NLI: dichotomy between
strengtheners and weakeners in defeasible natu-
ral language inference (Rudinger et al., 2020); (iii)
causal reasoning: dichotomy between supporters
and defeaters for given cause-effect pairs (Cui et al.,
2024). We benchmark each scenario with datasets
consisting of quadruples of (context, positive, neg-
ative, neutral).

To comprehensively evaluate the proposed task,
we introduce two novel evaluation metrics: (i) Di-
chotomy Consistency Frequency (DCF), which as-
sesses whether embeddings preserve the relative
positional relationships among positive, negative,
and neutral arguments, i.e., relational consistency;
and (ii) Oppo-Angle, which quantifies the angular
separation between oppositional arguments, i.e.,
absolute opposition. These metrics address the lim-
itations of conventional similarity measures by of-
fering quantification of both relational consistency
and absolute opposition, thus providing a holistic
framework for assessing dichotomous structures in
embedding spaces.

To overcome the limitations of STS-based
methods, we propose the Dichotomy-oriented
Geometric Embedding (DoGE) framework for
quantifying conditional dichotomy. Inspired by pre-
vious works (Arora et al., 2017; Li and Li, 2024),
DoGE adopts a complex-valued embedding frame-
work in the mathematical sense: each sentence vec-
tor has real and imaginary components, offering
a richer geometric space for modeling dichotomy.
Moreover, DoGE introduces an innovative dichoto-
mous objective that geometrically positions neu-
tral arguments between positive and negative ones
within the embedding space (Figure 4). This struc-
ture improves both the representational quality and
the precision of dichotomy quantification.

Our extensive experiments across the debate,
defeasible NLI, and causal reasoning scenarios
demonstrate the effectiveness and versatility of
DoGE. Compared to other embedding methods,
DoGE achieves significant improvements in both
DCF and Oppo-Angle. Moreover, visualizations of
DoGE’s embedding space reveal clear angular sep-
arations among positive, negative, and neutral ar-
guments, highlighting its capability to disentangle
and model dichotomous relationships effectively.

Our contributions are as follows:

1. Formalization of the conditional dichotomy
quantification task: We introduce a novel
NLP task that measures the nuanced opposi-
tion between outputs conditioned on a shared
context, thereby establishing the foundation
for studying oppositional perspectives in natu-
ral language.

2. Novel benchmark datasets and evaluation
metrics: We develop datasets for debate, de-
feasible NLI, and causal reasoning scenar-
ios, and introduce two new metrics (DCF
and Oppo-Angle) to assess relational consis-
tency and absolute opposition. Together, these
resources establish a systematic evaluation
framework for the proposed task.

3. Proposal of the Dichotomy-oriented
Geometric Embedding (DoGE) framework:
We present a novel embedding framework
that operates within the complex-valued
embedding space, incorporating a unique
dichotomous objective to capture nuanced
dichotomy. This framework delivers geomet-
rically precise positioning of arguments and
dynamically adapts to contextual variations.

4. Extensive experiments with diverse embed-
ding methods and backbones: We conduct
comprehensive experiments using diverse em-
bedding methods and various backbone mod-
els across multiple scenarios. DoGE consis-
tently outperforms strong baselines in quanti-
fying conditional dichotomy, demonstrating
both effectiveness and versatility.

2 Task: Conditional Dichotomy
Quantification (ConDQ)

2.1 Formal Task Definition
The task of Conditional Dichotomy Quantifica-
tion (ConDQ) aims to measure the dichotomy de-
gree between two outputs, X and Y , that are de-
rived from the same context Z. Formally, the di-
chotomy degree is:

Φ(XY |Z) = f(∆(XY |Z)) (1)

where Φ(XY |Z) represents the dichotomy degree
between outputs X and Y given the context Z. The
term ∆(XY |Z)

2 represents the angular distance be-
2In this paper, ∆(XY |Z) denotes the angular distance be-

tween X and Y conditioned on Z in the real-valued space,
while Γ(XY |Z) (defined in 4.1) denotes the distance between
X and Y conditioned on Z in the complex-valued space.
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Supporter  : Living beings have basic rights.

Opposer     : Animals have no interest or rationality. 

Hypothesis: Two men are farmers. 

Premise: Two men and a dog are
standing among rolling green hills. 

Strengthener : The men are holding pitchforks.

Weakener : One man is using his binoculars.

Premise-
hypothesis

pair 

Supporter : 

Defeater : 

The product's unique features attract a large
customer base. 

Competitors quickly release similar products,
reducing the company’s advantage.

Effect: The company gains a significant
market share. 

Cause: A company launches a revolutionary
product. Defeasible

cause-effect
pair 

Debate
topic  

Animals should have lawful rights
and welfare.

Figure 2: Instantiated scenarios under the umbrella of conditional dichotomy: debate (left), defeasible natural
language inference (middle), and causal reasoning (right).

tween the embeddings of X and Y within the em-
bedding space that is influenced by Z. The function
f maps this angular distance to a dichotomy degree,
with larger distances reflecting stronger dichotomy.

ConDQ differs from related tasks by explicitly
quantifying opposition between conditioned out-
puts, rather than simply measuring semantic simi-
larity. A detailed comparison is provided in App. B.

2.2 Instantiated Scenarios

We define three concrete scenarios under the
ConDQ framework, each capturing contextual di-
chotomy in a different domain.
Scenario A: Supporting and Opposing Argu-
ments in Debate. This scenario focuses on
measuring the dichotomous degree between a sup-
porting argument X and an opposing argument Y
given a debate topic Z. In Figure 2 (left), these ar-
guments represent oppositional viewpoints on the
issue of animals’ lawful rights. The supporting
argument emphasizes the basic rights of animals,
while the opposing argument challenges their inter-
est or rationality. We reconstruct PERSPECTRUM

dataset (Chen et al., 2019) for this scenario.
Scenario B: Strengtheners and Weakeners in De-
feasible Natural Language Inference. In this
scenario, as shown in Figure 2 (middle), the shared
context Z consists of a premise and a hypothesis.
The task measures the dichotomous degree between
a strengthener argument X and a weakener argu-
ment Y for the given premise-hypothesis relation-
ship. The opposition lies in how X and Y focus
on the actions described, with X supporting and
Y weakening the connection between the premise
and the hypothesis. For example, the selected tools,
pitchforks and binoculars, have opposite effects on
justifying the inference. We evaluate this scenario
using the δ-NLI dataset (Rudinger et al., 2020).
Scenario C: Supporting and Defeating Argu-
ments in Causal Reasoning. This scenario in-
volves measuring the dichotomous degree between
a supporter X and a defeater Y for a given cause-

effect pair Z, as shown in Figure 2 (right). It cap-
tures how oppositional influences interact with a
shared causal context. This scenario is supported
with the δ-CAUSAL dataset (Cui et al., 2024).

2.3 Evaluation Metrics

To evaluate the embedding space structure, we
introduce a neutral argument W for each con-
text. W is unaligned with positive X or negative
Y arguments, ensuring (X,Y )’s distinction and
positioning W between them. We propose two
metrics to assess conditional dichotomy from com-
plementary perspectives: (i) DCF measures the
relational consistency between dichotomous and
non-dichotomous pairs; and (ii) Oppo-Angle di-
rectly quantifies explicit opposition degree.
Dichotomy Consistency Frequency (DCF).
DCF evaluates whether the embeddings preserve
positional relationships among dichotomous and
non-dichotomous pairs, i.e., relational consistency.
Dichotomous pairs (X,Y ) are positive and nega-
tive arguments. We also generate neutral arguments
W detailed in § 3, and create non-dichotomous
pairs (X,W ) and (Y,W ). Specifically, DCF mea-
sures the percentage of test samples where (i) the
angular distance between positive and neutral em-
beddings is smaller than the angular distance be-
tween positive and negative embeddings, and (ii)
the angular distance between negative and neutral
embeddings is smaller than the angular distance
between positive and negative embeddings. Mathe-
matically,

DCF =
100

N

N∑

i=1

1

(
∆(XiYi|Zi) > ∆(XiWi|Zi) ∧

∆(XiYi|Zi) > ∆(YiWi|Zi)

) (2)

Here, N is the number of examples. ∆(XiYi|Zi)

represents the angular distance between arguments
Xi and Yi conditioned on the same Zi. The fi-
nal metric is the computed ratio multiplied by 100
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Figure 3: Sentence length distributions for contexts, positive, negative, and neutral arguments across datasets.

for intuitive interpretation. Submetrics include: (i)
DCFpositive: validates that the positive-neutral an-
gular distance is smaller than the positive-negative
angular distance; and (ii) DCFnegative: validates
that the negative-neutral angular distance is smaller
than the positive-negative angular distance.

DCFpositive =
100

N

N∑

i=1

1

(
∆(XiYi|Zi) > ∆(XiWi|Zi)

)

DCFnegative =
100

N

N∑

i=1

1

(
∆(XiYi|Zi) > ∆(YiWi|Zi)

) . (3)

Direct Angular Quantification of Positive-
Negative Embedding Opposition (Oppo-Angle).
Oppo-Angle directly quantifies the angular sepa-
ration between positive and negative arguments,
offering an explicit measure of absolute opposi-
tion. Unlike DCF, which evaluates relational con-
sistency, Oppo-Angle focuses solely on the magni-
tude of dichotomous degree:

Oppo-Angle = 100
N

∑N
i=1

(
1− cos(EXi|Zi

,EYi|Zi
)
)

(4)

Similarly, the factor of 100 scales the score to a
more interpretable and readable range.

3 Supportive Datasets

3.1 Construction of Datasets
Raw Dataset Collection. Our dataset construc-
tion process starts from the raw data described in
§ 2.2. For each context Z, we gather two distinct
sets of arguments: positive arguments X and neg-
ative arguments Y . To ensure comprehensive cov-
erage of oppositional perspectives, we generate
all possible triples (Z,X, Y ) by selecting one X
from X and one Y from Y . Namely, the dataset
encompasses all triples drawn from the Cartesian
product {Z}⊗X ⊗Y , encompassing a wide range
of oppositional viewpoints for each context.
Neutral Argument Collection. Beyond positive
and negative arguments, neutral arguments W play

Statistic Debate Defeasible NLI Causal Reasoning
# Overall 95,524 440,744 47,518
# Train 58,058 8,462 14,008
# Valid 21,316 8,656 17,944
# Test 16,150 423,626 15,566

avg. len(context) 8.79 23.12 20.99
avg. len(positive) 11.59 8.52 8.35
avg. len(negative) 11.51 8.32 10.08
avg. len(neutral) 11.16 8.37 9.07

Table 1: Dataset statistics of each scenario.

a vital role in our evaluation metrics by offering
a reference point. We generate W for each triple
(Z,X, Y ) via a meticulous three-step process: (i)
We analyze the linguistic features of X and Y (in-
cluding the number of words, noun chunks, and
verb chunks) using the spaCy library (Honnibal
and Montani, 2017); (ii) We use GPT-4o (OpenAI,
2023) to generate neutral arguments with word
counts similar to X or Y . This ensures that the
model focuses on the semantic content rather than
exploiting lexical cues like word counts. Further-
more, we randomly keep half of the noun and verb
chunks from X or Y and prompt the model to gen-
erate arguments incorporating those chunks. This
design enables the neutral arguments to mimic ei-
ther X or Y in their forms (e.g., sentence lengths)
and partially in their contents (e.g., shared nouns
or verbs), rather than being entirely unrelated to
the context, thus avoiding the encoding of spuri-
ous correlations; (iii) To ensure the neutrality of
the generated arguments, two annotators indepen-
dently verified them. Their high level of agreement
confirms the reliability of these neutral arguments.

This three-step process guarantees the quality of
neutral arguments and mitigates the risk of spurious
correlations. Details on neutral argument genera-
tion and licensing information for datasets, tools,
and software are provided in App. C and App. E.

3.2 Statistics of Collected Datasets
Table 1 provides a statistical summary of the
collected benchmarks. Sentence length distribu-
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tions are visualized in Figure 3. We find that
(i) Diverse length distributions across scenarios:
Across all scenarios, the length distributions are
well-diversified, ensuring that the datasets cover
a wide range of argument complexities and struc-
tures. This diversity is essential for robustly eval-
uating the proposed ConDQ task; and (ii) Aligned
length distributions of arguments within scenar-
ios: Within each scenario, the length distributions
of positive, negative, and neutral arguments are
closely aligned. This alignment prevents models
from exploiting superficial length differences to
distinguish between argument types, thereby en-
forcing a focus on genuine dichotomous relation-
ships rather than superficial cues. More analysis of
dataset statistics is presented in App. F.

4 Dichotomy-oriented Geometric
Embedding (DoGE) Framework

The Dichotomy-oriented Geometric Embedding
(DoGE) framework comprises several components:
representing text in a complex-valued embedding
space (§4.1), implementing a dichotomous objec-
tive for geometric positioning of different argu-
ments in the complex-valued space (§4.2), incor-
porating contrastive learning to enhance opposi-
tion (§4.3), and establishing training and inference
procedures (§4.4).

4.1 Representing Text in Complex-Valued
Embedding Space

Existing embedding approaches predominantly rely
on real-valued representations that encode seman-
tic information. However, measuring dichotomy
requires distinguishing not only surface semantic
differences but also essential oppositions. Exist-
ing research shows that complex-valued embed-
dings are suitable for preserving essential informa-
tion (Arora et al., 2017; Li and Li, 2024). Inspired
by them, DoGE leverages a complex-valued em-
bedding space that represents each sentence with
both real and imaginary components, enhancing the
model’s ability to capture conditional dichotomy.
Text Representation. Each input text is encoded
into a complex-valued embedding by first obtain-
ing a 2d-dimensional real vector E ∈ R2d from a
Transformer encoder such as BERT (Devlin et al.,
2019) or LLaMA (Touvron et al., 2023). We par-
tition E into two d-dimensional components: the
real part Ere = E0:d ∈ Rd and the imaginary part
Eim = Ed:2d ∈ Rd. These components together

define a complex-valued embedding.
Distance in Complex-Valued Space. Con-
sider two embedding vectors in the complex-valued
space C:

X = a+ bi ∈ C
W = c+ di ∈ C

. (5)

The distance (Li and Li, 2024) between X and W
in the complex-valued space Γ(XW |Z) is:3

Γ(XW |Z) = abs(
X

W
×
√
∥c∥2 + ∥d∥2√
∥a∥2 + ∥b∥2

)

= abs

[
(a · c+ b · d) + (b · c− a · d)i

∥c∥2 + ∥d∥2 ×
√
∥c∥2 + ∥d∥2√
∥a∥2 + ∥b∥2

]

= abs

[
(a · c+ b · d) + (b · c− a · d)i√

(∥c∥2 + ∥d∥2)(∥a∥2 + ∥b∥2)

]
. (6)

4.2 Dichotomous Objective for Geometrical
Positioning in Complex-Valued Space

Re

Im

Figure 4: Illustration of the dichotomous objective: the
neutral argument (W ) is geometrically positioned be-
tween the positive (X) and negative (Y ) arguments, es-
tablishing a geometrically balanced arrangement in the
complex-valued embedding space. A low-dimensional
case (d = 1) is shown for clarity, whereas actual embed-
dings are high-dimensional.

To ensure that embeddings reflect the intended
geometric relationships among positive, negative,
and neutral arguments, we introduce a dichotomous
objective function. This objective geometrically
positions neutral arguments between positive and
negative arguments in the embedding space, as
illustrated in Figure 4. Specifically, consider a
quadruple (Z,X, Y,W ), where X and Y represent
positive and negative arguments, respectively, con-
ditioned on the context Z, and W is a neutral argu-
ment. Given the context Z, the distances between
these arguments in the complex-valued space are
defined as: (i) Γ(XY |Z) (the complex-valued dis-
tance between X and Y conditioned on Z); (ii)
Γ(XW |Z) (the complex-valued distance between

3Full proof is provided in App. G.
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Scenario Scenario A: Debate Scenario B: Defeasible NLI Scenario C: Defeasible Causality

Metric DCF DCFpositive DCFnegative Oppo-Angle DCF DCFpositive DCFnegative Oppo-Angle DCF DCFpositive DCFnegative Oppo-Angle

Open-source models

InferSent-GloVe 36.19 64.22 61.47 1.58 23.11 49.83 49.06 0.39 26.71 57.75 48.05 0.44
InferSent-fastText 42.02 68.41 65.52 4.56 27.66 54.97 53.05 1.42 32.36 64.78 52.63 1.44
USE 16.53 46.39 43.37 3.31 18.07 48.54 45.35 1.01 13.54 42.19 34.19 0.46

BERT baselines

BERT 31.37 54.72 52.58 0.18 11.99 27.11 26.68 0.25 27.17 54.01 42.11 0.26
CoSENT 38.49 63.63 58.92 0.64 26.86 55.07 52.29 0.28 30.07 59.83 47.41 0.14
SBERT 31.61 58.07 55.02 1.50 22.89 51.29 48.50 0.64 22.68 51.61 41.23 0.43
SimCSE 30.59 61.51 52.89 2.78 13.91 44.85 39.83 0.93 25.15 66.25 42.54 1.30
AoE 26.27 55.35 49.34 0.48 24.02 51.63 47.07 0.10 30.09 63.45 44.98 0.11

RoBERTa baselines

RoBERTa 43.61 64.41 64.76 0.00 12.6 34.12 32.82 0.00 24.06 53.37 40.68 0.00
SimCSE 30.84 61.60 51.16 2.42 12.78 42.41 37.24 0.64 27.01 67.45 42.88 1.28

LLaMA baselines

LLaMA-2(7B) 30.46 50.50 51.65 16.99 21.25 39.72 39.22 8.65 32.80 58.45 45.81 5.67
LLaMA-2(13B) 47.42 65.04 64.13 11.24 30.27 43.65 43.54 4.59 34.05 55.53 45.85 2.56
AoE(7B) 38.92 58.82 55.10 14.85 20.01 41.13 37.14 8.22 27.20 57.13 40.13 4.03
AoE(13B) 44.88 62.28 60.21 9.73 28.72 42.45 40.63 3.20 30.89 54.43 42.01 1.58
LLaMA-3.1(8B) 39.81 58.73 56.13 10.86 21.7 38.20 37.56 5.33 26.38 45.22 39.15 2.67
LLaMA-3.1(70B) 34.47 55.15 52.98 13.74 15.95 37.27 34.67 6.83 25.23 46.13 40.43 3.84

Our Method: DoGE (BERT version) with ablation versions.

DoGE (ours) 46.97 ± 0.491 69.96 ± 0.975 63.43 ± 0.776 30.66 ± 6.671 41.72 ± 10.432 57.42 ± 9.596 57.44 ± 9.457 3.25 ± 0.766 67.59 ± 1.151 85.08 ± 0.845 77.34 ± 0.507 20.69 ± 1.821

DoGE w/o DICT 35.72 ± 2.154 63.19 ± 1.485 55.12 ± 1.398 82.72 ± 0.290 34.77 ± 1.355 54.10 ± 1.240 54.14 ± 0.941 42.47 ± 1.328 53.98 ± 3.349 77.12 ± 1.344 66.19 ± 2.508 103.80 ± 3.456

DoGE w/o CL 47.78 ± 0.584 70.95 ± 0.287 63.94 ± 0.605 18.02 ± 0.769 40.71 ± 4.636 57.21 ± 4.089 56.74 ± 4.167 2.71 ± 0.308 68.78 ± 0.570 85.59 ± 0.529 78.02 ± 0.408 19.58 ± 1.145

Our Method: DoGE (RoBERTa version) with ablation versions.

DoGE (ours) 55.93 ± 0.903 74.99 ± 0.664 68.72 ± 0.812 83.67 ± 3.126 47.27 ± 24.340 59.16 ± 25.820 58.74 ± 25.500 0.63 ± 0.471 76.55 ± 0.500 90.39 ± 0.543 83.11 ± 0.157 5.06 ± 0.568

DoGE w/o DICT 43.97 ± 2.740 63.97 ± 3.962 61.76 ± 2.845 31.59 ± 44.670 11.62 ± 1.048 20.19 ± 1.650 19.88 ± 1.610 0.01 ± 0.012 24.73 ± 1.561 40.04 ± 4.326 37.19 ± 1.817 0.00 ± 0.005

DoGE w/o CL 62.98 ± 1.776 81.42 ± 1.318 74.79 ± 1.224 3.62 ± 0.296 47.31 ± 24.440 59.39 ± 25.720 58.77 ± 25.440 0.67 ± 0.438 76.64 ± 1.557 90.35 ± 0.391 83.21 ± 1.512 2.08 ± 0.316

Table 2: Comparative study of different embedding methods on the conditional dichotomy quantification task (§ 5.2).
The last few rows of this table present the ablation study results, in which key components of DoGE (our proposed
method) are removed to illustrate their individual impact (§ 5.3).

X and W conditioned on Z); and (iii) Γ(YW |Z)

(the complex-valued distance between Y and W
conditioned on Z). The constraints that place W
between X and Y in the complex-valued space are:

{
Γ(XW |Z) < Γ(XY |Z)

Γ(YW |Z) < Γ(XY |Z)

(7)

We encode these two constraints using a dichoto-
mous loss:

Ldichotomous =
∑

log

(
1 + e

Γ(XW |Z)−Γ(XY |Z)
τdichotomous

)
+

∑
log

(
1 + e

Γ(Y W |Z)−Γ(XY |Z)
τdichotomous

) (8)

where τdichotomous is a temperature parameter. Mini-
mizing this loss encourages the neutral argument to
lie geometrically between the positive and negative
arguments, ensuring a balanced and interpretable
representation of the dichotomous structure.

4.3 Contrastive Learning Mechanism for
Enhanced Opposition

While the dichotomous objective ensures proper
geometric relations, it alone may not fully capture
the intensity of oppositional relationships. To ad-
dress this, we incorporate a contrastive loss that
pushes positive and negative arguments farther
apart, strengthening their separability.

For each pair of positive and negative samples
(Xi, Yi) sharing context Zi, we define the con-
trastive loss. Here, Wj is a neutral sample. The

contrastive loss is formulated as:

Lcl = −
∑

b

m∑

i

(
log


 e

∆(XiYi|Zi)

τcl

e
∆(XiYi|Zi)

τcl +
∑m

j ̸=i e

∆(XiWj |Zi)

τcl




+ log


 e

∆(XiYi|Zi)

τcl

e
∆(XiYi|Zi)

τcl +
∑m

j ̸=i e

∆(YiWj |Zi)

τcl



) (9)

where τcl is a temperature hyperparameter. m rep-
resents the number of samples in the b-th batch.
Minimizing Lcl maximizes the angular distance
between dichotomous pairs while minimizing the
angular distance between non-dichotomous pairs,
enabling more effective utilization of contrastive
learning and enhancing the model’s ability to cap-
ture and emphasize their dichotomous relationship.

4.4 Training and Inference of DoGE
The final training objective combines the dichoto-
mous and contrastive losses:

L = w1 · Ldichotomous + w2 · Lcl (10)

where w1 and w2 are hyperparameters balancing
these two objectives. During inference, given two
arguments X and Y conditioned on the same con-
text Z, we measure their dichotomous degree as:

Φ(XY |Z) = 1− cos(EX|Z ,EY |Z) (11)

where cos is the cosine similarity taken over the
concatenated real and imaginary parts of the em-
beddings EX|Z and EY |Z . Each embedding EX|Z
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Figure 5: Distributions of angular distance between positive, neutral, and negative argument embeddings (Positive-
Neutral: ∆(XW |Z), Positive-Negative: ∆(XY |Z), Negative-Neutral: ∆(YW |Z)) across BERT, SimCSE (in BERT
base backbone), SimCSE-R (SimCSE in RoBERTa base backbone), and DoGE under different scenarios.

is obtained by encoding the concatenated text of
context Z and argument X . A larger value of
Φ(XY |Z) indicates a stronger dichotomy. By in-
tegrating complex-valued embeddings, geometric
constraints, and contrastive learning, DoGE en-
sures an interpretable quantification of conditional
dichotomy, paving the way for analysis of opposi-
tional perspectives in NLP tasks.

5 Empirical Study

In this section, we empirically evaluate our DoGE
framework. We start with the experimental
setup (§5.1), present the main results in comparison
with baseline models (§5.2), conduct an ablation
study to assess the contributions of individual com-
ponents (§5.3), and finish with embedding space vi-
sualizations illustrating DoGE’s capabilities (§5.4).

5.1 Experimental Setup
We evaluate DoGE against baselines including In-
ferSent (Conneau et al., 2017), USE (Cer et al.,
2018), SBERT (Reimers and Gurevych, 2019),
SimCSE (Gao et al., 2021), CoSENT (Su, 2022),
and AoE (Li and Li, 2024) across BERT (Devlin
et al., 2019), RoBERTa (Liu et al., 2020), LLaMA-
2 (Touvron et al., 2023), and LLaMA-3 (Grattafiori
et al., 2024) backbones. DoGE is trained for
5 epochs with hyperparameters w1 = 1.0 and
w2 = 3.0 (see more details about experimental
setup in App. H).

5.2 Main Results
Superior Performance of DoGE. Table 2
presents the performance of all models across
the three scenarios using four metrics: DCF,

DCFpositive, DCFnegative, and Oppo-Angle. The
results are categorized under open-source mod-
els, BERT baselines, RoBERTa baselines, LLaMA
baselines, and our proposed DoGE with its ablated
variants. Key observations include: (i) Superior
DCF and Oppo-Angle scores: DoGE surpasses
all open-source, BERT, and RoBERTa baselines,
achieving higher DCF and Oppo-Angle scores
across all scenarios, indicating better relational
consistency among positive, negative, and neutral
arguments, as well as clearer angular separations
between dichotomous pairs. Remarkably, these
scores are even higher than, or comparable to, those
of LLaMA variants, which have substantially more
parameters; (ii) Robustness across backbones: Per-
formance gains are consistent across different back-
bones, underscoring DoGE’s versatility.

Visualizing Angular Distance Distributions.
Figure 5 illustrates the distributions of angular
distances between different pairs of argument em-
beddings (positive-negative, negative-neutral, and
positive-neutral) for various models. The score dis-
tribution of DoGE distinctly positions the positive-
negative angular distance towards the far right,
whereas the other baseline models exhibit blended
distributions without clear separation. This demon-
strates that DoGE ultimately captures the expected
dichotomous relationships, delving deeper into the
distinction between oppositional arguments com-
pared to existing methods.

Further analyses, including out-of-domain gen-
eralization and the role of context, are detailed in
App. I and App. J, respectively.
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5.3 Ablation Study
To assess component impact, we evaluate two ab-
lated versions of DoGE (last rows of Table 2).

1. DoGE w/o DICT (without Dichotomous Objec-
tive): Removing the Dichotomous objective
might increase the absolute magnitude of the
dichotomous degree, as indicated by increased
Oppo-Angle scores in BERT across all scenar-
ios. However, this leads to a notable decrease in
relational consistency, evidenced by DCF scores
decreasing across all scenarios and backbone
models. For instance, in Scenario A, DCF drops
from 46.97 to 35.72 for the BERT version and
from 55.93 to 43.97 for the RoBERTa one, indi-
cating a loss in relational consistency.

2. DoGE w/o CL (without Contrastive Learning):
While removing the Contrastive Learning com-
ponent retains or slightly improves DCF, it gen-
erally leads to a substantial decrease in Oppo-
Angle scores across most scenarios and back-
bone models, highlighting the role of Con-
trastive Learning in maintaining angular separa-
tions. In Scenario A, the Oppo-Angle score for
BERT drops from 30.66 to 18.02; for RoBERTa,
it falls sharply from 83.67 to 3.62.

The ablation results underscore the importance
of both DICT and CL for balancing strong rela-
tional consistency with significant opposition mag-
nitude, enabling DoGE to model and quantify di-
chotomous relationships collaboratively.

5.4 Visualization of Embeddings
Figure 6 presents the t-SNE projection of embed-
dings EX|Z , EY |Z , and EW |Z (∈ R2d), produced
by DoGE model for positive (X), negative (Y), and
neutral (W ) arguments, each conditioned on the de-
bate topic Z in the debate scenario. The visualiza-
tion demonstrates that DoGE effectively captures
the underlying argument dichotomy: (i) In-context
separation: Within each debate topic Z, DoGE
places the positive ( ) and its paired negative ( )
on opposite sides of the embedding space. The oc-
casional red-blue overlap occurs only when points
from different topics are projected close together
(e.g., a positive from topic A near a negative from
topic B). (ii) Intermediary positioning of neutral ar-
guments: Neutral arguments ( ) are well positioned
between positive ( ) and negative ( ) arguments,
reflecting their intermediary stance; and (iii) Con-
sistency across scenarios: The spatial patterns per-
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Figure 6: The t-SNE visualization of embeddings pro-
duced by DoGE (BERT version). Positive ( ) and neg-
ative ( ) arguments are distinctly separated, while neu-
tral ( ) arguments are positioned between them. This
highlights DoGE’s effectiveness in representing dichoto-
mous relationships.

sist across scenarios, underscoring the robustness
of DoGE. More visualizations are shown in App. J.

6 Related Work

Our work is closely related to semantic textual sim-
ilarity (STS) and contrastive learning. STS meth-
ods (Reimers and Gurevych, 2019; Gao et al., 2021;
Li and Li, 2024) primarily focus on measuring se-
mantic proximity between text pairs, using similar-
ity scores to assess their degree of alignment. How-
ever, these methods are limited in capturing faithful
dichotomous relationships, where dichotomous out-
puts are not merely dissimilar but fundamentally
oppositional. Contrastive learning methods have
shown success in learning textual representations
that distinguish positive and negative pairs (Gao
et al., 2021; Lee et al., 2021). However, these
works often merely classify or contrasting exam-
ples rather than explicitly quantifying the opposi-
tion degree between text pairs. Unlike STS and
contrastive learning, our work introduces a novel
task: conditional dichotomy quantification, which
focuses on context-conditioned opposition rather
than semantic proximity or direct contrast, thereby
expanding the scope of NLP research topics.

Recent studies have examined dichotomy in con-
texts such as defeasible NLI (Rudinger et al., 2020),
causal reasoning (Cui et al., 2024), debate (Chen
et al., 2019), and semantic opposition (de Silva and
Dou, 2019; Vahtola et al., 2022). However, these
works lack a standard measurement for the dichoto-
mous relationships. Our proposed task, ConDQ,
and embedding framework, DoGE, address this
gap by offering a novel paradigm specifically de-
signed to quantify the degree of opposition between
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Domain Representative Scenario Societal Implications

Public Governance
and Policy Making

Cluster public opinions that sup-
port or oppose a proposed regu-
lation/policy during public hear-
ings or citizen assemblies.

Context: Proposed policies

Supporting opinions Opposing opinions

Inclusive and evidence-based policy drafting

DoGE

(i) Foster inclusive civic participation re-
garding public topics through balanced ag-
gregation of competing viewpoints; (ii)
Support more inclusive and evidence-
based policy drafting by surfacing and con-
trasting diverse civic arguments.

Social Media and On-
line Discourse

Detect polarized clusters (pro and
con) and disentangle mixed sen-
timents (positive and negative)
during a controversial product
launch or public topics in social
media.

Pro sentiment Con sentiment

Early intervention and de-polorization 

DoGE

Context: Trending topics

(i) Strengthen societal resilience to digi-
tal polarization by identifying polarized
opinion clusters; (ii) Support responsi-
ble platform governance through early de-
escalation of toxic or divisive dynamics in
crisis-prone topics.

Journalism and Infor-
mation Verification

Investigate a trending claim (e.g.,
on public health or election in-
tegrity) by retrieving its most
robust counter-evidence and
gauging the strength of oppo-
sition across published sources.

Supporting evidence Counter evidence

Balanced reporting and fact-checking

DoGE

Context: Public claims

(i) Promote the integrity of journalism by
enabling rapid access to the most contested
claims and strongest rebuttals; (ii) Pro-
vide automated dashboards and alerts that
highlight claims facing strong opposition
across published sources.

Causal Analysis (Fi-
nance, Health, Cli-
mate, etc)

Contrast evidence (supporters
and defeaters) that distinctly in-
fluences the causal relation in
critical incidents (e.g., factors un-
derlying a market crash, disease
outbreak, or extreme weather).

Supporters Defeaters

Interpretable and measurable causal analysis

DoGE

Context: hypothesized cause-effect links

(i) Clarify and accelerate the root-cause
analysis under uncertainty, informing bet-
ter public responses; (ii) Support reliable
legal judgments by rapidly identifying
competing (causal) explanations in inci-
dent reports.

Table 3: Real-world applications of conditional dichotomy quantification and the DoGE framework, highlighting
their societal implications across policy making, social media, journalism, and causal analysis.

two context-conditioned texts.

7 Broader Impact

Key Applications. By quantifying the degree
of opposition between context-linked texts through
geometric embeddings, our conditional dichotomy
quantification task and DoGE framework unlock
impactful applications across public policy, media,
journalism, and causal analysis. As summarized in
Table 3, our work empowers public policy making
by summarizing contested opinions during citizen
consultations, helps social media moderation via
detecting and de-escalating early signs of polar-
ization, supports journalism by retrieving robust
counterclaims, and aids causal-risk analysis in eval-
uating competing causal evidence.
Societal Implications. These applications high-
light broader societal benefits: facilitating inclusive
and evidence-based policy drafting, strengthening
digital resilience via earlier polarization detection,
enhancing journalism integrity by considering the
rebuttal, and strengthening causal accountability
in high-stakes scenarios. Furthermore, our bench-
marks and embeddings offer a new lens for assess-
ing textual opposition and probing the robustness
of LLMs under conflicting inputs. However, this
ability to quantify the opposition degree could also

be misused to algorithmically rank or amplify divi-
sive content. We therefore strongly advocate for re-
sponsible usage, supported by human oversight and
regulatory safeguards, especially before large-scale
deployment of dichotomy-aware NLP systems.

8 Conclusion

In this paper, we formalize the Conditional Di-
chotomy Quantification (ConDQ) task, target-
ing the need to measure opposition between
conditioned outputs. We introduce a suite of
benchmark datasets spanning diverse scenarios,
including debate, defeasible NLI, and causal
reasoning, alongside novel evaluation metrics
(DCF and Oppo-Angle) that effectively cap-
ture relational consistency and absolute opposi-
tion. Our proposed Dichotomy-oriented Geometric
Embedding (DoGE) framework leverages complex-
valued embeddings and a specialized dichotomous
objective to accurately represent dichotomous re-
lationships. Extensive experiments demonstrate
that DoGE consistently outperforms existing ap-
proaches across diverse backbones and scenarios,
highlighting its robustness and versatility. Our
work lays a principled foundation for studying
conditional dichotomy and supports more nuanced
modeling of oppositional perspectives in language.

7773



Limitations

While our proposed task Conditional Dichotomy
Quantification and the embedding framework
DoGE demonstrate effectiveness in quantifying
conditional dichotomy across various scenarios,
there are limitations that are worthy of attention.
First, the benchmarks and datasets used in the pa-
per may not encompass all forms of dichotomous
relationships found in machine learning and natural
language processing tasks. Additionally, models’
performance may vary when applied to languages
other than English or to areas not represented in
the investigated corpus. To address these limita-
tions, future work could (i) expand the scope of
benchmark datasets to include a wider array of
dichotomous constructs and (ii) investigate cross-
lingual and cross-domain performance to broaden
the scope of our task and evaluate the generalizabil-
ity of our framework.

Ethical Consideration

In developing this novel conditional dichotomy
task and our proposed DoGE framework, we have
carefully considered the potential ethical implica-
tions associated with our work. One primary con-
cern is the potential misuse of DoGE framework
in amplifying or detecting polarized content. It is
essential to emphasize that our work aims to en-
hance the understanding and analysis of contrasting
perspectives in a responsible manner. We encour-
age users of our framework to utilize it ethically,
particularly in contexts like social media analy-
sis, political discussion, debate, or any other area
where polarizing content may have significant im-
pacts. Secondly, semantic opposition is always
context-specific and culture-specific. This context-
specific property could lead to overgeneralization
when the DoGE is applied across different domains
or languages. We recommend that users consider
particular contextual and domain-specific analysis
when using and interpreting the results provided by
DoGE.

References
Denis Apothéloz, Pierre-Yves Brandt, and Gustavo

Quiroz. 1993. The function of negation in argumen-
tation. Journal of Pragmatics, 19(1):23–38.

Sanjeev Arora, Yingyu Liang, and Tengyu Ma. 2017. A
simple but tough-to-beat baseline for sentence em-
beddings. In International Conference on Learning
Representations.

Steven Bird and Edward Loper. 2004. NLTK: The natu-
ral language toolkit. In Proceedings of the ACL In-
teractive Poster and Demonstration Sessions, pages
214–217, Barcelona, Spain. Association for Compu-
tational Linguistics.

Daniel Cer, Yi Yang, Shiyang Kong, Nikhil Hua,
Eng Siong Lim, Zhenya Yao, and Rui Zhang.
2018. Universal sentence encoder. arXiv preprint
arXiv:1803.11175.

Sihao Chen, Daniel Khashabi, Wenpeng Yin, Chris
Callison-Burch, and Dan Roth. 2019. Seeing things
from a different angle:discovering diverse perspec-
tives about claims. In Proceedings of the 2019 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long and Short Pa-
pers), pages 542–557, Minneapolis, Minnesota. As-
sociation for Computational Linguistics.

Alexis Conneau, Douwe Kiela, Holger Schwenk, Loïc
Barrault, and Antoine Bordes. 2017. Supervised
learning of universal sentence representations from
natural language inference data. In Proceedings of
the 2017 Conference on Empirical Methods in Nat-
ural Language Processing, pages 670–680, Copen-
hagen, Denmark. Association for Computational Lin-
guistics.

Shaobo Cui, Lazar Milikic, Yiyang Feng, Mete Ismay-
ilzada, Debjit Paul, Antoine Bosselut, and Boi Falt-
ings. 2024. Exploring defeasibility in causal rea-
soning. In Findings of the Association for Compu-
tational Linguistics ACL 2024, pages 6433–6452,
Bangkok, Thailand and virtual meeting. Association
for Computational Linguistics.

Nisansa de Silva and Dejing Dou. 2019. Semantic op-
positeness embedding using an autoencoder-based
learning model. In Database and Expert Systems
Applications: 30th International Conference, DEXA
2019, Linz, Austria, August 26–29, 2019, Proceed-
ings, Part I 30, pages 159–174. Springer.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Maxwell Forbes, Jena D. Hwang, Vered Shwartz,
Maarten Sap, and Yejin Choi. 2020. Social chem-
istry 101: Learning to reason about social and moral
norms. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing
(EMNLP), pages 653–670, Online. Association for
Computational Linguistics.

Tianyu Gao, Xingcheng Yao, and Danqi Chen. 2021.
SimCSE: Simple contrastive learning of sentence em-
beddings. In Proceedings of the 2021 Conference

7774

https://doi.org/https://doi.org/10.1016/0378-2166(93)90068-Z
https://doi.org/https://doi.org/10.1016/0378-2166(93)90068-Z
https://openreview.net/forum?id=SyK00v5xx
https://openreview.net/forum?id=SyK00v5xx
https://openreview.net/forum?id=SyK00v5xx
https://aclanthology.org/P04-3031
https://aclanthology.org/P04-3031
https://doi.org/10.18653/v1/N19-1053
https://doi.org/10.18653/v1/N19-1053
https://doi.org/10.18653/v1/N19-1053
https://doi.org/10.18653/v1/D17-1070
https://doi.org/10.18653/v1/D17-1070
https://doi.org/10.18653/v1/D17-1070
https://aclanthology.org/2024.findings-acl.384
https://aclanthology.org/2024.findings-acl.384
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/2020.emnlp-main.48
https://doi.org/10.18653/v1/2020.emnlp-main.48
https://doi.org/10.18653/v1/2020.emnlp-main.48
https://doi.org/10.18653/v1/2021.emnlp-main.552
https://doi.org/10.18653/v1/2021.emnlp-main.552


on Empirical Methods in Natural Language Process-
ing, pages 6894–6910, Online and Punta Cana, Do-
minican Republic. Association for Computational
Linguistics.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri,
Abhinav Pandey, Abhishek Kadian, Ahmad Al-
Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten,
Alex Vaughan, et al. 2024. The llama 3 herd of mod-
els. arXiv preprint arXiv:2407.21783.

Sylvain Gugger, Lysandre Debut, Thomas Wolf, Philipp
Schmid, Zachary Mueller, Sourab Mangrulkar, Marc
Sun, and Benjamin Bossan. 2022. Accelerate: Train-
ing and inference at scale made simple, efficient and
adaptable. https://github.com/huggingface/
accelerate.

Charles R. Harris, K. Jarrod Millman, Stéfan J. van der
Walt, Ralf Gommers, Pauli Virtanen, David Cour-
napeau, Eric Wieser, Julian Taylor, Sebastian Berg,
Nathaniel J. Smith, Robert Kern, Matti Picus,
Stephan Hoyer, Marten H. van Kerkwijk, Matthew
Brett, Allan Haldane, Jaime Fernández del Río, Mark
Wiebe, Pearu Peterson, Pierre Gérard-Marchant,
Kevin Sheppard, Tyler Reddy, Warren Weckesser,
Hameer Abbasi, Christoph Gohlke, and Travis E.
Oliphant. 2020. Array programming with NumPy.
Nature, 585(7825):357–362.

Christopher Hidey and Kathy McKeown. 2019. Fixed
that for you: Generating contrastive claims with se-
mantic edits. In Proceedings of the 2019 Conference
of the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
1756–1767, Minneapolis, Minnesota. Association for
Computational Linguistics.

Matthew Honnibal and Ines Montani. 2017. spacy 2:
Natural language understanding with bloom embed-
dings, convolutional neural networks and incremental
parsing. To appear.

John D. Hunter. 2007. Matplotlib: A 2d graphics envi-
ronment. Comput. Sci. Eng., 9(3):90–95.

Prannay Khosla, Piotr Teterwak, Chen Wang, Aaron
Sarna, Yonglong Tian, Phillip Isola, Aaron
Maschinot, Ce Liu, and Dilip Krishnan. 2020. Su-
pervised contrastive learning. In Advances in Neural
Information Processing Systems, volume 33, pages
18661–18673. Curran Associates, Inc.

Emre Kiciman, Robert Ness, Amit Sharma, and Chen-
hao Tan. 2024. Causal reasoning and large language
models: Opening a new frontier for causality. Trans-
actions on Machine Learning Research. Featured
Certification.

Jinhyuk Lee, Mujeen Sung, Jaewoo Kang, and Danqi
Chen. 2021. Learning dense representations of
phrases at scale. In Proceedings of the 59th Annual
Meeting of the Association for Computational Lin-
guistics and the 11th International Joint Conference
on Natural Language Processing (Volume 1: Long

Papers), pages 6634–6647, Online. Association for
Computational Linguistics.

Xianming Li and Jing Li. 2024. AoE: Angle-optimized
embeddings for semantic textual similarity. In Pro-
ceedings of the 62nd Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers), pages 1825–1839, Bangkok, Thailand. As-
sociation for Computational Linguistics.

Jingcong Liang, Rong Ye, Meng Han, Ruofei Lai, Xinyu
Zhang, Xuanjing Huang, and Zhongyu Wei. 2024.
Debatrix: Multi-dimensional debate judge with it-
erative chronological analysis based on LLM. In
Findings of the Association for Computational Lin-
guistics: ACL 2024, pages 14575–14595, Bangkok,
Thailand. Association for Computational Linguistics.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2020.
Ro{bert}a: A robustly optimized {bert} pretraining
approach.

Wes McKinney. 2010. Data structures for statistical
computing in python. In Proceedings of the 9th
Python in Science Conference 2010 (SciPy 2010),
Austin, Texas, June 28 - July 3, 2010, pages 56–61.
scipy.org.

OpenAI. 2023. GPT-4 technical report. CoRR,
abs/2303.08774.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, Alban Desmaison, Andreas Köpf, Edward Z.
Yang, Zachary DeVito, Martin Raison, Alykhan Te-
jani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,
Junjie Bai, and Soumith Chintala. 2019. Pytorch: An
imperative style, high-performance deep learning li-
brary. In Advances in Neural Information Processing
Systems 32: Annual Conference on Neural Informa-
tion Processing Systems 2019, NeurIPS 2019, De-
cember 8-14, 2019, Vancouver, BC, Canada, pages
8024–8035.

Nils Reimers and Iryna Gurevych. 2019. Sentence-
BERT: Sentence embeddings using Siamese BERT-
networks. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
3982–3992, Hong Kong, China. Association for Com-
putational Linguistics.

Rachel Rudinger, Vered Shwartz, Jena D. Hwang, Chan-
dra Bhagavatula, Maxwell Forbes, Ronan Le Bras,
Noah A. Smith, and Yejin Choi. 2020. Thinking like
a skeptic: Defeasible inference in natural language.
In Findings of the Association for Computational Lin-
guistics: EMNLP 2020, pages 4661–4675, Online.
Association for Computational Linguistics.

Jianlin Su. 2022. Cosent (1): A more effective sentence
vector scheme than sentence bert.

7775

https://github.com/huggingface/accelerate
https://github.com/huggingface/accelerate
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.18653/v1/N19-1174
https://doi.org/10.18653/v1/N19-1174
https://doi.org/10.18653/v1/N19-1174
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.1109/MCSE.2007.55
https://proceedings.neurips.cc/paper_files/paper/2020/file/d89a66c7c80a29b1bdbab0f2a1a94af8-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/d89a66c7c80a29b1bdbab0f2a1a94af8-Paper.pdf
https://openreview.net/forum?id=mqoxLkX210
https://openreview.net/forum?id=mqoxLkX210
https://doi.org/10.18653/v1/2021.acl-long.518
https://doi.org/10.18653/v1/2021.acl-long.518
https://aclanthology.org/2024.acl-long.101
https://aclanthology.org/2024.acl-long.101
https://doi.org/10.18653/v1/2024.findings-acl.868
https://doi.org/10.18653/v1/2024.findings-acl.868
https://openreview.net/forum?id=SyxS0T4tvS
https://openreview.net/forum?id=SyxS0T4tvS
https://doi.org/10.25080/MAJORA-92BF1922-00A
https://doi.org/10.25080/MAJORA-92BF1922-00A
https://doi.org/10.48550/ARXIV.2303.08774
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/2020.findings-emnlp.418
https://doi.org/10.18653/v1/2020.findings-emnlp.418
https://kexue.fm/archives/8847
https://kexue.fm/archives/8847


Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal
Azhar, Aurélien Rodriguez, Armand Joulin, Edouard
Grave, and Guillaume Lample. 2023. Llama: Open
and efficient foundation language models. CoRR,
abs/2302.13971.

Teemu Vahtola, Mathias Creutz, and Jörg Tiedemann.
2022. It is not easy to detect paraphrases: Analysing
semantic similarity with antonyms and negation us-
ing the new SemAntoNeg benchmark. In Proceed-
ings of the Fifth BlackboxNLP Workshop on Analyz-
ing and Interpreting Neural Networks for NLP, pages
249–262, Abu Dhabi, United Arab Emirates (Hybrid).
Association for Computational Linguistics.

Michael L. Waskom. 2021. seaborn: statistical data
visualization. Journal of Open Source Software,
6(60):3021.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-art natural language processing.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38–45, Online. Association
for Computational Linguistics.

7776

https://doi.org/10.48550/ARXIV.2302.13971
https://doi.org/10.48550/ARXIV.2302.13971
https://doi.org/10.18653/v1/2022.blackboxnlp-1.20
https://doi.org/10.18653/v1/2022.blackboxnlp-1.20
https://doi.org/10.18653/v1/2022.blackboxnlp-1.20
https://doi.org/10.21105/joss.03021
https://doi.org/10.21105/joss.03021
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6


A Appendix Contents

The appendix is organized as follows:

• Comparison with Related Tasks (App. B):
situates ConDQ with respect to Semantic Tex-
tual Similarity and Contrastive Learning, out-
lining conceptual and empirical distinctions.

• Responsible NLP Research (App. C): enu-
merates datasets, backbone models, and soft-
ware artifacts (App. C.1); details content-
safety checks (App. C.2).

• Random Baseline Discussion (App. D): de-
rives theoretical results for the random base-
line.

• Neutral Argument Acquisition (App. E): de-
tails our differentiated strategy for construct-
ing neutral arguments (using GPT-4o for val-
idation/test sets and cross-scenario sampling
for training) to mitigate stylistic overfitting;
includes empirical analysis and motivating ex-
amples.

• Dataset Statistics (App. F): reports corpus-
level distributions and verifies the neutrality
of constructed neutral argument sets.

• Complex-Valued Distance Derivation
(App. G): presents a detailed proof of the dis-
tance between vectors in the complex-valued
space.

• Experimental Setup (App. H): specifies
backbone architectures, hardware, hyperpa-
rameters, and training schedules.

• Out-of-Domain Evaluation (App. I): evalu-
ates the generalizability of DoGE across sce-
narios by training on one scenario and testing
on another, with findings highlighting trans-
ferability and domain-specific challenges.

• Role of Context (App. J): provides illustrative
examples (App. J.1), ablation studies without
context (App. J.2), and t-SNE visualizations
(App. J.3).

• List of Notations (App. K): summarizes all
symbols and variables for quick reference.

B Comparison with Related Tasks

We compare ConDQ with related tasks in Table 4.
The tasks most related to our conditional dichotomy
quantification are semantic textual similarity (STS)
and contrastive learning for NLP (CL-NLP).

STS aims to quantify the semantic similarity
between two texts, often using embeddings or simi-
larity scores. STS primarily focuses on identifying
alignments and semantic overlaps between texts,
such as paraphrasing or rephrasing. Unlike STS,
ConDQ measures the degree of opposition between
two outputs conditioned on the same context, mak-
ing it particularly suited for applications that re-
quire understanding oppositional arguments, such
as debate, legal reasoning, social media modera-
tion, and public policy drafting.

CL-NLP enhances representation learning by
distinguishing between positive and negative pairs,
improving model robustness and discriminative ca-
pabilities. While CL-NLP emphasizes learning
effective representations through contrasting exam-
ples, it does not specifically measure the degree
of opposition between texts. ConDQ differs by
explicitly measuring how two arguments oppose
each other conditioned on the same context, em-
phasizing the dichotomous nature of the arguments
rather than merely classifying or contrasting sam-
ples. This unique focus on measuring dichotomy
fills a gap left by CL-NLP, where the central inter-
est lies in the representation quality of dichotomy,
rather than directly evaluating how two conditioned
arguments contrast with each other.

C Responsible NLP Research

C.1 Artifacts
We provide the datasets and software we use in Ta-
ble 5. Our use of these artifacts (packages, models)
is consistent with their intended use.

C.2 Content Check
In accordance with ethical considerations men-
tioned after the limitation section, we carefully
examined our collected datasets to ensure that
they do not contain personal identifiable informa-
tion or content that could be deemed offensive.
Specifically, the original sources of our benchmark
datasets (debate, defeasible NLI, and causal reason-
ing) are drawn from publicly available resources.
Based on these resources, we further collected neu-
tral arguments using the GPT-4o model. During
data preparation, we closely inspected samples for
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Aspect Conditional Dichotomy Quantification
(ConDQ)

Semantic Textual Similarity (STS) Contrastive Learning for NLP

Goal Measuring the dichotomous degree be-
tween two outputs conditioned on the
same input.

Measuring how semantically simi-
lar two pieces of text are.

Learning representations by con-
trasting positive and negative pairs
of samples.

Problem
definition

The task of Conditional Dichotomy
Quantification (ConDQ) aims to measure
the dichotomy degree between two out-
puts, X and Y , that are derived from the
same context Z. Formally, the dichotomy
degree is: Φ(XY |Z) = f(∆(XY |Z))
where Φ(XY |Z) represents the dichotomy
degree between outputs X and Y given
the context Z. The term ∆(XY |Z) rep-
resents the angular distance between the
embeddings of X and Y within the em-
bedding space that is influenced by Z.
The function f maps this angular dis-
tance to a dichotomy degree, with larger
distances reflecting stronger dichotomy.

Given two sentences x and y, STS
models learn a similarity function
Sim(x, y) = sim(f(x), f(y)),
where f is a sentence encoder and
sim(·, ·) measures semantic close-
ness (e.g., cosine similarity). The
model is trained to align Sim(x, y)
with human-annotated similarity
scores.

Given an anchor x, a positive
x+, and negatives x−, an encoder
model is trained with various for-
mulations of contrastive learning
loss (Khosla et al., 2020), pulling
the anchor toward its positive and
pushing it away from all negatives.

Challenges (i) Measuring contrast instead of similar-
ity; (ii) Lack of benchmarks and special-
ized embedding methods.

(i) Accurately gauging semantic
similarity; (ii) Dealing with vary-
ing levels of semantic overlap.

(i) Creating effective contrastive
pairs; (ii) Maintaining meaningful
feature representation while distin-
guishing between classes.

Applications (i) Summarizing opposing arguments in
public policy consultations; (ii) Detect-
ing early signs of polarization in social
media moderation; (iii) Retrieving coun-
terclaims to improve journalistic balance;
(iv) Comparing conflicting causal evi-
dence in scientific or risk analysis.

(i) Identifying semantically equiv-
alent or similar sentences across
corpora; (ii) Ranking candidate
responses or documents by rele-
vance in retrieval and QA systems;
(iii) Evaluating the quality of para-
phrase outputs.

(i) Unsupervised pretraining of
sentence and document encoders;
(ii) Structuring embedding spaces
for tasks like clustering, retrieval,
and semantic search.

Contributions ConDQ uniquely explores the inherent contrasts between dual outputs, introducing the novel conditional semantic
textual dichotomousness task. It enriches research in natural language inference, facilitating dichotomous content
measurement across various domains, such as debate, legal reasoning, social media moderation, public policy
drafting, and causal analysis.

Table 4: Comparison of ConDQ with Semantic Textual Similarity (STS) and Contrastive Learning for NLP (CL-
NLP) across key dimensions: goals, problem formulations, challenges, and applications. Unlike existing tasks
that focus on similarity or representation learning, ConDQ introduces a novel perspective by directly quantifying
the degree of opposition between conditioned texts, enabling new capabilities in domains such as public policy,
journalism, and causal analysis.

any unique identifiers (e.g., names, addresses, or
personal attributes that could identify an individual)
and removed or masked such information where
necessary. Furthermore, we manually reviewed
the data to identify and remove potentially hate-
ful, harassing, or otherwise harmful content, us-
ing a keyword-based search to flag offensive lan-
guage. Any instances detected as potentially offen-
sive were removed. This ensures that the curated
datasets remain free from offensive content and do
not infringe on individuals’ privacy.

Based on our efforts in collecting the dataset, we
believe that we provide a dataset free from offen-
sive content and suitable for research purposes.

D Discussion on the Random Baseline
Performance

The random baseline performance arises from the
inherent structure of the Conditional Dichotomy
Quantification task and the evaluation metrics
used, specifically the Dichotomy Consistency Fre-
quency (DCF) metric.
Task Setup and Metric Definition. For a given
context Z, recall that there are three types of argu-
ments:

• Positive argument (X): An argument that sup-
ports the context (a claim or hypothesis).

• Negative argument (Y ): An argument that
opposes the context (a claim or hypothesis).
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Artifacts/Packages/Models Citation Link License
Artifacts(datasets/benchmarks).

δ-SNLI (Rudinger et al., 2020) https://github.com/rudinger/defeasible-nli MIT License
delta-CAUSAL (Cui et al., 2024) https://github.com/cui-shaobo/defeasibility-in-causality MIT License
PERSPECTRUM (Chen et al., 2019) https://github.com/CogComp/perspectrum Missing

Packages
PyTorch (Paszke et al., 2019) https://pytorch.org/ BSD-3 License
transformers (Wolf et al., 2020) https://huggingface.co/docs/transformers/index Apache License 2.0
Accelerate (Gugger et al., 2022) https://huggingface.co/docs/accelerate/index Apache License 2.0
nltk (Bird and Loper, 2004) https://www.nltk.org/ Apache License 2.0
numpy (Harris et al., 2020) https://numpy.org/ BSD License
pandas (McKinney, 2010) https://pandas.pydata.org/ BSD 3-Clause License
matplotlib (Hunter, 2007) https://matplotlib.org/ BSD compatible License
seaborn (Waskom, 2021) https://seaborn.pydata.org/ BSD 3-Clause License
openai-python (OpenAI, 2023) https://pypi.org/project/openai/ Apache-2.0 license

Backbone Models
BERT (Devlin et al., 2019) https://huggingface.co/google-bert/bert-base-uncased Apache-2.0 license
RoBERTa (Liu et al., 2020) https://huggingface.co/FacebookAI/roberta-base MIT License
InferSent (Conneau et al., 2017) https://github.com/facebookresearch/InferSent Attribution-NonCommercial 4.0
SBERT (Reimers and Gurevych, 2019) www.sbert.net Apache-2.0 License
SimCSE (Gao et al., 2021) https://github.com/princeton-nlp/SimCSE MIT License
CoSENT (Su, 2022) https://huggingface.co/shibing624/text2vec-base-chinese Apache license 2.0
USE (Cer et al., 2018) https://huggingface.co/Dimitre/universal-sentence-encoder CC 4.0 License
AoE (Li and Li, 2024) https://github.com/SeanLee97/AnglE MIT License

Table 5: Summary of the datasets, major software packages, and backbone models we use in this paper.

• Neutral argument (W ): An argument that is
relevant to the context (a claim or hypothesis)
but does not directly support or oppose it.

The DCF metric evaluates whether the relation-
ships among these arguments in the embedding
space adhere to the expected dichotomous struc-
ture:

1. The angular distance between the positive and
neutral arguments is smaller than the angular
distance between the positive and negative
arguments:

∆(XW |Z) < ∆(XY |Z). (12)

2. The angular distance between the negative and
neutral arguments is smaller than the angular
distance between the positive and negative
arguments:

∆(YW |Z) < ∆(XY |Z). (13)

The DCF score reflects the percentage of in-
stances in which both conditions are satisfied.
Random Guessing and Baseline Performance.
Under a random baseline, the embedding space
does not capture meaningful structures, and the
angular distances among X , Y , and W are random.
Consequently, there are three distinct relational
configurations—defined as events A, B, and C—
which would be equally likely to occur by chance:

• Event A represents the case where the angular
distance between X and Y is greater than both
the angular distance between Y and W and
the angular distance between X and W .

• Event B represents the case where the angular
distance between Y and W is greater than
both the angular distance between X and Y
and the angular distance between X and W .

• Event C represents the case where the angular
distance between X and W is greater than
both the angular distance between X and Y
and the angular distance between Y and W .

The probabilities of these events are defined as
follows:

P (A) = P (∆(XY |Z) > ∆(YW |Z),∆(XY |Z) > ∆(XW |Z)),

P (B) = P (∆(YW |Z) > ∆(XY |Z),∆(YW |Z) > ∆(XW |Z)),

P (C) = P (∆(XW |Z) > ∆(XY |Z),∆(XW |Z) > ∆(YW |Z))

(14)
Since events A, B, and C are mutually exclusive

(i.e., they cannot occur simultaneously), the sum of
their probabilities equals 1:

P (A) + P (B) + P (C) = 1 (15)

Due to symmetry (i.e., equal chance of occur-
rence), we have:

P (A) = P (B) = P (C) =
1

3
(16)

Thus, the probability of satisfying the dichoto-
mous structure purely by chance is:

P (A) =
1

3
(17)

It means that the DCF metric for the random
baseline performance is 33.33. The random base-
line performance establishes a lower bound for

7779

https://github.com/rudinger/defeasible-nli
https://github.com/cui-shaobo/defeasibility-in-causality
https://github.com/CogComp/perspectrum
https://pytorch.org/
https://huggingface.co/docs/transformers/index
https://huggingface.co/docs/accelerate/index
https://www.nltk.org/
https://numpy.org/
https://pandas.pydata.org/
https://matplotlib.org/
https://seaborn.pydata.org/
https://pypi.org/project/openai/
https://huggingface.co/google-bert/bert-base-uncased
https://huggingface.co/FacebookAI/roberta-base
https://github.com/facebookresearch/InferSent
www.sbert.net
https://github.com/princeton-nlp/SimCSE
https://huggingface.co/shibing624/text2vec-base-chinese
https://huggingface.co/Dimitre/universal-sentence-encoder
https://github.com/SeanLee97/AnglE


methods on the DCF metric. Models must out-
perform this baseline to demonstrate their ability to
encode and preserve the dichotomous relationships
among positive, negative, and neutral arguments.
This provides a robust framework for evaluating
the quality of embeddings in capturing nuanced
oppositional structures.

E Neutral Argument Acquisition

E.1 Overview of Our Differentiated Approach

In our dataset construction, we treat training, vali-
dation, and test sets differently to ensure robustness
and generalization. For the test and validation sets,
neutral samples are generated using the GPT-4o
model, while for the training set, neutral samples
are constructed from the positive and negative ex-
amples of other scenarios.

This design aims to prevent models from over-
fitting by learning shallow patterns of GPT-4o’s
generation style. By using neutral samples from
other scenarios for training, we introduce greater
diversity and complexity, encouraging the model
to focus on nuanced distinctions among positive,
negative, and neutral contexts rather than relying
on superficial cues.

E.2 Motivation of Our Differentiated
Approach

Neutral Arguments for Validation and Testing.
We prompt GPT-4o to generate high-quality and
challenging neutral arguments. Specifically, (i) we
do not provide contexts in the prompts since it may
hinder GPT-4o from generating high-quality neu-
tral arguments. In fact, we observed that when in-
cluding contexts in the prompts, even with explicit
instructions requiring neutrality, the generated ar-
guments tend to contain supportive information for
the given contexts (e.g., premise-hypothesis pairs,
cause-effect relationships, debate topics) instead
of being truly neutral. (ii) Including word chunks
from the positive or negative arguments makes the
generated arguments resemble positive/negative ar-
guments, thus increasing task complexity. This
step ensures that the model cannot rely solely on
lexical differences to distinguish neutrality.
Neutral Arguments for Training. To justify
our dataset construction, we investigate the impact
of GPT-4o-generated neutral arguments on model
performance. When these arguments are used for
both training and testing, the model tends to iden-
tify superficial patterns and stylistic consistencies

Setup DCF DCFpositive DCFnegative

Origin 94.03 95.17 95.16
Shuffled Column 74.74 88.08 78.84
Shuffled Words 68.58 78.88 77.03
Random 33.33 50.00 50.00

Table 6: Evaluation results of DoGE (BERT version)
trained on GPT-4o-generated neutral arguments across
different settings (original, column-shuffled, word-
shuffled). Shuffling reduces performance, but it is still
far above random, highlighting the risk of overfitting
to superficial patterns of GPT-generated neutral argu-
ments.

rather than meaningful conditional dichotomous
structures. In Table 6, even after shuffling argu-
ments at both the column level (interchanging pos-
itive, negative, and neutral positions inside each
column) and the word level (shuffling the order
of the words), the model’s performance remained
significantly above the random baseline. 4 This
suggests that GPT-4o’s neutral outputs share pre-
dictable syntactic or stylistic cues that the model
can exploit, leading to overfitting. By incorporat-
ing neutral samples from other scenarios during
training, we introduce diversity that dilutes these
spurious patterns, ultimately improving model ro-
bustness and ensuring that the model learns gen-
uine conditional dichotomy rather than relying on
superficial signals.

E.3 Prompt Templates for Generating Neutral
Arguments in Validation and Test Sets

We employ zero-shot prompting with the GPT-
4o (OpenAI, 2023) model to generate neutral argu-
ments. These arguments are constrained to contain
word counts similar to those of positive or negative
arguments. We randomly retain half of the noun
and verb chunks from positive/negative examples
and instruct the model to incorporate these into
the neutral output. This strategy increases the com-
plexity of the generated text and prevents the model
from exploiting simple lexical cues.

E.4 Neutral Argument Collection from Other
Scenarios for Training Set

Neutral samples within the training set are sourced
from human-annotated examples in other datasets,
selected from diverse scenarios to ensure a bal-
anced representation of neutrality. This approach

4the discussion about random baseline is presented in
App. D.
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aims to improve the semantic diversity in the train-
ing data, which helps mitigate the model’s tendency
to learn superficial patterns that are specific to GPT-
generated content.

For example, when constructing the training
dataset A, we first determine the length of a posi-
tive sample (e.g., 10 words). Next, a sentence of
approximately 10 words is randomly selected from
the positive or negative samples in datasets B or
C. The same procedure is applied to the negative
sample. Therefore, for each positive-negative pair
in dataset A, two neutral sentences are generated:
one with a length close to the positive sample and
another with a length close to the negative sample.

Besides, the much larger test set (423,626 in-
stances) compared to the training set (8,462 in-
stances) in Defeasible NLI is intentional and is
rooted in both data provenance and methodological
aims. First, neutral arguments in the Defeasible
NLI track are created by sampling syntactic chunks
from the Debate and Causal Reasoning collections.
Because these source corpora are modest in size, en-
larging the training split would force heavy re-use
of identical neutral sentences; this repetition would
reduce lexical diversity and increase the risk of
overfitting to surface patterns. Second, a compact
training set incentivizes models to learn generaliz-
able geometric regularities, whereas the expansive
test set supplies a statistically robust basis for judg-
ing how well a model discriminates fine-grained
dichotomies.

F Statistics of Datasets

Figure 7 illustrates the distribution of angu-
lar distance differences between positive-neutral
(∆(XW |Z)) and negative-neutral (∆(YW |Z)), i.e.,
∆(XW |Z) − ∆(YW |Z) across three distinct sce-
narios: debate, defeasible NLI, and causal rea-
soning. The embeddings are generated using
DoGE (BERT) and DoGE (RoBERTa). Across all
scenarios and backbone models, the distributions
are tightly centered around zero, confirming that
neutral embeddings are not systematically closer
to either side. This balance ensures that models
cannot exploit superficial alignment biases and that
the evaluation of dichotomy genuinely reflects se-
mantic contrasts rather than dataset artifacts. The
consistency across both BERT and RoBERTa vari-
ants of DoGE further supports the robustness of
this design.

G Derivation of Distance in
Complex-Valued Space

We derive the distance between two vectors in the
complex-valued space following (Li and Li, 2024).
We first need to represent the vectors as complex-
valued numbers. This allows us to compute the
angle between them efficiently by leveraging prop-
erties of complex-valued numbers in polar coor-
dinates. Consider two vectors, X and W, each
represented as a complex-valued vector:

X = a+ bi, W = c+ di (18)

where:

• a and b are the real and imaginary parts of X,
respectively.

• c and d are the real and imaginary parts of
W, respectively.

• i is the imaginary unit, i =
√
−1.

In polar coordinates, the magnitude of a complex-
valued number is given by:

rX =

√
∥a∥2 + ∥b∥2, rW =

√
∥c∥2 + ∥d∥2

(19)
These represent the lengths of the vectors X and
W, respectively, in the complex plane. To compute
the angular difference directly, we divide X by W:

X

W
=

a+ bi

c+ di
(20)

Using the division rule for complex-valued num-
bers, we obtain:

X

W
=

(a · c+ b · d) + (b · c− a · d)i
∥c∥2 + ∥d∥2

(21)

The result of this division is another complex-
valued number. The real part of this complex-
valued number corresponds to the cosine of the an-
gle difference, and the imaginary part corresponds
to the sine of the angle difference. Next, we nor-
malize the result to remove the influence of the
magnitudes of X and W. To do this, we divide by
the magnitudes rX and rW, which we computed
earlier:

X

W
= γ∆θXW (22)

where:

γ =
rX
rW

=

√
∥a∥2 + ∥b∥2

√
∥c∥2 + ∥d∥2

(23)
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Figure 7: Distribution of the angular distance differences between positive-neutral and negative-neutral pairs,
computed as ∆(XW |Z) −∆(YW |Z) across three conditional dichotomy scenarios: debate (Scenario A), defeasible
NLI (Scenario B), and causal reasoning (Scenario C). Results are based on DoGE embeddings using BERT (blue)
and RoBERTa (orange) backbones. Distributions centered around zero indicate that, at the dataset level, neutral
arguments are not biased toward either the positive or negative side. This supports the neutrality and balance of the
constructed neutral set.

Now, we compute the normalized angle difference
∆θXW by normalizing the complex-valued divi-
sion:

∆θXW = abs

[
1

γ
· (a · c+ b · d) + (b · c− a · d)i

(∥c∥2 + ∥d∥2)

]

= abs


(a · c+ b · d) + (b · c− a · d)i√

(∥c∥2 + ∥d∥2)(∥a∥2 + ∥b∥2)




(24)
This gives us the angular distance in the complex-

valued form as presented in Equation 6.

H More Details of Experimental Setup

Backbone Models and Hardware. We con-
duct a comprehensive training of DoGE using two
pre-trained backbone models: BERT (Devlin et al.,
2019) and RoBERTa (Liu et al., 2020). For both
models, the initial learning rate is set to 2× 10−5.
The computing infrastructure is as follows: The
CPU model is an AMD EPYC 7543 32-Core Pro-
cessor. The GPU computing model is NVIDIA
A100-SXM4-80GB. For DoGE (BERT), the model
has 110 million parameters, and it takes 10 minutes
to train for 5 epochs on each dataset. Similarly,
for DoGE (RoBERTa), the model has 125 million
parameters, and it takes around 10 minutes to train
for 5 epochs on each dataset. Therefore, the overall
GPU computation time is 1 hour.
Input Format. During the training phase, the
input consists of combinations of context, positive,
neutral, and negative examples. Specifically, for
each sample, the input is structured as ["context"
+ "positive"], ["context" + "neutral"], ["context" +
"negative"].
Training Schedule. The weights w1 and w2 in
Equation 10 are set to 1.0 and 3.0, respectively.

These hyperparameters are chosen based on prelim-
inary experiments to optimize model performance.
We set the batch size to 256 for training and 32 for
testing, conducting 5 training epochs for DoGE
and its ablated versions (DoGE w/o DICT and
DoGE w/o CL). Evaluation is performed using
the model from the final epoch. A larger train-
ing batch size facilitates Contrastive Learning for
dichotomy, enhancing the model’s ability to ef-
fectively discern differences between dichotomous
and non-dichotomous pairs.
Random Seeds and Reporting. To ensure the
stability and robustness of the results, we train the
model using three distinct random seeds: 42, 1015,
and 6900. The average performance across these
runs is reported, along with the standard deviation
to account for any variability in the results.

I Out of Domain Evaluation

I.1 Setup

To further assess the robustness and generalizabil-
ity of the DoGE framework, we conduct out-of-
domain (OOD) evaluations. In these experiments,
we train DoGE on one scenario and test it on a
different scenario. This setup probes whether the
model can capture the essence of dichotomous re-
lationships beyond the domain it was originally
trained on, thereby evaluating the model’s ability
to generalize across diverse contextual settings.

I.2 Results and Analysis

Table 7 reports OOD performance. We have two
observations: (i) When trained on Scenario B
and tested on Scenario C, it achieves relatively
high DCF and Oppo-Angle scores, indicating that
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Train Scenario Test Scenario Model DCF DCFpositive DCFnegative Oppo-Angle

Scenario A Scenario B DoGE 9.82 ± 0.135 20.55 ± 0.233 20.46 ± 0.255 0.01 ± 0.008

Scenario A Scenario C DoGE 24.30 ± 0.631 41.30 ± 2.029 41.86 ± 0.493 2.50 ± 0.951

Scenario B Scenario A DoGE 43.49 ± 0.625 63.36 ± 1.037 62.95 ± 0.882 0.04 ± 0.014

Scenario B Scenario C DoGE 51.52 ± 4.675 76.13 ± 3.174 66.57 ± 3.164 0.79 ± 0.215

Scenario C Scenario A DoGE 49.10 ± 0.847 71.56 ± 0.249 64.54 ± 0.981 2.94 ± 0.279

Scenario C Scenario B DoGE 17.86 ± 1.610 36.11 ± 2.238 33.42 ± 2.001 0.92 ± 0.143

Table 7: Out-of-domain evaluation results. The metrics include Dichotomy Consistency Frequency (DCF), Positive
Consistency (DCFpositive), Negative Consistency (DCFnegative), and Opposite Angle Scale (Oppo-Angle). Higher
values across these metrics indicate better generalization and the ability to capture dichotomous relationships.

the representations learned for defeasible NLI can
transfer effectively to the causal reasoning scenario;
(ii) Conversely, certain scenario shifts (e.g., Sce-
nario A to Scenario B) pose greater challenges, as
reflected in lower DCF values.

J Role of Context in Conditional
Dichotomy Quantification

Context plays an essential role in transforming oth-
erwise independent statements into dichotomous
arguments. Without a shared contextual frame-
work, positive and negative statements may not
be inherently oppositional, even if they express
divergent viewpoints. In contrast, when contextual-
ized, these same statements can form clearly oppo-
sitional positions that either support or challenge a
given premise, hypothesis, or causal relationship.

J.1 Motivation Example for the Role of
Context

We list different motivational examples describing
the role of context in different scenarios.
Example in Debate. In debate scenarios, con-
text is crucial for transforming individual state-
ments into oppositional arguments. Without a
shared topic, positive and negative statements may
not be inherently oppositional. The following are
examples of how context influences the perception
of opposition in debate, as illustrated in Figure 8a.
We could observe that:

• Without context: The statements “Developing
new infrastructure boosts economic growth
and provides jobs” and “Preserving natural
habitats is essential for environmental sustain-
ability” are not inherently oppositional. Each
statement highlights a positive aspect of a dif-
ferent domain: economic development and en-
vironmental conservation, respectively. With-

out a specific context, these statements are
only independent, covering separate domains.

• With context: However, when provided with
the debate topic, i.e., the context, “Discussing
urban development versus environmental con-
servation,” these statements become opposi-
tional. The first statement advocates for urban
development by emphasizing economic bene-
fits, aligning with the pro-development side of
the debate. The second statement underscores
the importance of environmental conservation,
aligning with the opposing stand that priori-
tizes preserving natural habitats over develop-
ment. The shared context frames these state-
ments as directly oppositional viewpoints on
the same issue, illustrating how context turns
independent statements into dichotomous ar-
guments.

Example for Defeasible Natural Language Infer-
ence. In defeasible NLI, the presence of context
transforms positive and negative statements that
are not inherently oppositional into clearly oppo-
sitional positions by framing a specific inference
relationship. As the example shown in Figure 8b,
we could find that:

• Without context: Individually, positive and
negative statements are not inherently oppo-
sitional. The first could indicate a general
farming technique, while the second reflects a
choice made for crop yield. Without the spe-
cific context, the two statements can be valid
independently.

• With context: Given the premise-hypothesis
inference relationship emphasizing sustain-
able agriculture and organic crops, these state-
ments become oppositional. Specifically, the

7783



Context: Discussing urban develop-
ment versus environmental conservation.

 Positive: Developing new infrastructure
boosts economic growth and provides jobs.

 Negative: Preserving natural habitats is
essential for environmental sustainability.

(a) Scenario A: Debate.

Context:
Premise: "Two men are farmers, each
dedicated to sustainable agriculture."

Hypothesis: "The men are prepar-
ing the land for organic crops."

 Positive: The men are working to improve
soil quality, essential for organic farming.

 Negative: The men are using chemical
fertilizers to increase food production.

(b) Scenario B: Defeasible NLI.

Context:
Cause: "A company launches a

wellness program for employees."
Effect: "Employee productivity increases. "

 Positive: Employees manage stress better,
leading to higher productivity.

 Negative: Some employees rest longer dur-
ing work hours

(c) Scenario C: Causal Reasoning.

Figure 8: Examples demonstrating how context transforms independent statements into dichotomous arguments
across three scenarios: debate, defeasible natural language inference (NLI), and causal reasoning. Each subfigure
shows the influence of shared context in framing statements as oppositional viewpoints or influences.

positive statement aligns with organic farming,
supporting the hypothesis that these men are
helping the land remain sustainable. However,
the negative statement says that these men in-
troduce chemical fertilizer, which opposes the
organic practice. As seen, context justifies
these two statements (organic versus chemical
fertilizers) are dichotomous and oppositional
within a sustainable farming approach.

Example for Causal Reasoning. In causal rea-
soning, context establishes a specific cause-effect
relationship that additional statements can either
support or refute. Without this context, statements
may not appear oppositional. As the example
shown in Figure 8c, we could observe that:

• Without context: The statements “Employees
manage stress better, leading to higher pro-
ductivity” and “Some employees rest longer
during work hours” are not necessarily op-
positional on their own. The first statement
suggests a positive outcome of stress man-
agement, while the second indicates that em-
ployees are taking longer breaks. Without a
specific cause-effect framework, these state-
ments could describe independent aspects of
workplace behaviors.

• With context: However, when provided with
the contextual information of the cause “A
company launches a wellness program for
employees” and the effect “Employee pro-
ductivity increases,” these two statements be-
come oppositional regarding their influences
on strength of causal-effect relationship. The
positive statement supports the causal link by
explaining that the wellness program helps

employees manage stress better, thereby en-
hancing productivity. The negative statement
weakens or challenges the causal link by sug-
gesting that the wellness program leads some
employees to rest longer during work hours,
potentially decreasing productivity. Within
this context, the two statements offer oppo-
sitional perspectives on the effectiveness of
the wellness program, transforming them into
dichotomous arguments that either strengthen
or weaken the perceived causal relationship.

J.2 Empirical Evaluation of Contextual
Influence

To quantify the importance of contextual informa-
tion in dichotomy assessment, we evaluated model
performance with context (Table 2, presented in
the main body of this paper) and without context
(Table 8). Our observations indicate that while our
proposed DoGE achieves the highest scores across
all metrics and scenarios when context is available,
the removal of context leads to varied changes in
Dichotomy Consistency Frequency (DCF) across
other models or baselines. Specifically, some mod-
els exhibit an increase in DCF, others a decrease,
but overall, the DCF scores are comparable or
lower than 33.33, the threshold for random guess-
ing. This convergence suggests that without con-
text, the models’ ability to accurately quantify
dichotomy diminishes, as the arguments become
more neutral.

Key observations include:

• Convergence towards random guessing
when removing context: Removing context
leads to Dichotomy Consistency Frequency
scores (DCF, DCFpositive, DCFnegative) being
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Scenario Scenario A: Debate Scenario B: Defeasible NLI Scenario C: Defeasible Causality

Metric DCF DCFpositive DCFnegative Oppo-Angle DCF DCFpositive DCFnegative Oppo-Angle DCF DCFpositive DCFnegative Oppo-Angle

Open-source models

InferSent-GloVe 36.24 62.32 61.12 8.59 25.98 54.04 53.05 14.55 33.67 59.98 58.36 12.61
InferSent-fastText 41.33 66.51 65.55 17.71 33.24 60.06 58.81 23.64 38.37 66.58 60.52 20.37
USE 22.35 52.82 49.78 21.54 23.36 54.20 53.02 29.55 20.88 48.62 45.60 21.47

BERT baselines

BERT 36.82 58.04 58.74 1.33 19.52 38.64 37.12 1.16 32.14 57.81 46.87 1.61
CoSENT 32.14 57.81 46.87 1.61 29.14 56.14 54.47 5.21 31.74 55.73 53.19 4.21
SBERT 27.03 53.05 49.49 15.18 24.51 54.13 52.25 26.11 23.18 50.15 45.24 18.05
SimCSE 31.57 57.95 52.61 15.87 23.68 53.26 50.80 26.33 28.36 59.61 48.05 21.95
AoE 27.71 56.87 49.67 8.04 26.35 54.81 52.20 12.33 26.60 57.88 45.46 9.65

RoBERTa baselines

RoBERTa 35.59 55.10 54.09 0.00 24.30 47.40 46.98 0.00 25.93 51.91 45.64 0.00
SimCSE 32.11 57.99 52.19 16.11 24.05 53.43 50.98 26.85 30.07 60.43 48.90 22.35

LLaMA baselines

LLaMA-2(7B) 37.44 56.49 54.79 18.76 27.31 46.15 45.53 11.57 28.89 51.48 46.55 5.68
LLaMA-2(13B) 38.70 60.26 57.48 11.06 22.37 42.75 42.34 4.54 27.07 49.95 43.40 3.03
AoE(7B) 35.42 54.11 53.37 21.03 29.83 49.05 48.87 11.63 31.02 51.77 48.30 4.92
AoE(13B) 36.45 56.63 55.03 10.66 23.36 44.25 43.95 3.60 28.90 51.34 45.64 2.20
LLaMA-3.1(8B) 28.34 49.91 43.67 5.70 26.27 43.96 43.06 9.43 26.38 45.22 39.15 2.67
LLaMA-3.1(70B) 32.15 53.57 51.46 17.73 25.33 44.66 43.93 11.65 29.32 52.11 43.36 6.10

Our Method (BERT version)

DoGE (ours) 36.90 ± 1.145 62.59 ± 0.948 57.75 ± 1.139 18.43 ± 5.695 31.93 ± 1.388 52.06 ± 1.433 51.21 ± 1.568 2.41 ± 0.694 45.67 ± 2.245 74.12 ± 3.183 58.25 ± 1.519 5.06 ± 0.941

DoGE w/o DICT 31.72 ± 1.187 58.63 ± 2.065 52.94 ± 0.764 64.08 ± 7.420 27.15 ± 1.670 48.40 ± 1.356 49.55 ± 1.525 4.44 ± 3.753 45.63 ± 1.940 75.75 ± 0.827 57.95 ± 1.530 69.25 ± 2.041

DoGE w/o CL 34.77 ± 0.823 58.67 ± 0.645 55.2 ± 0.725 9.48 ± 0.677 29.28 ± 1.394 49.28 ± 2.113 48.28 ± 1.717 2.07 ± 0.164 48.03 ± 1.250 75.76 ± 1.413 60.09 ± 0.935 5.70 ± 0.865

Our Method (RoBERTa version)

DoGE (ours) 47.66 ± 1.304 69.81 ± 1.219 63.56 ± 0.697 42.28 ± 5.149 31.96 ± 5.811 49.85 ± 6.703 49.63 ± 7.370 0.00 ± 0.005 52.66 ± 1.171 80.01 ± 1.292 63.38 ± 1.278 0.08 ± 0.036

DoGE w/o DICT 38.58 ± 3.671 60.84 ± 4.926 56.61 ± 1.762 31.66 ± 44.760 31.98 ± 0.923 44.97 ± 3.192 43.72 ± 2.892 0.17 ± 0.173 34.57 ± 0.925 53.97 ± 3.427 50.83 ± 1.098 0.00 ± 0.000

DoGE w/o CL 54.28 ± 0.198 73.35 ± 0.550 67.22 ± 0.209 0.61 ± 0.045 33.53 ± 3.814 50.59 ± 5.825 50.25 ± 6.041 0.00 ± 0.000 48.67 ± 5.394 76.77 ± 5.373 60.01 ± 4.346 0.01 ± 0.012

Table 8: Empirical evaluation of various models on the task of conditional dichotomy quantification in scenarios
where contextual input is absent. The evaluation spans three distinct scenarios: debate (Scenario A), defeasible
natural language inference (Scenario B), and causal reasoning (Scenario C). The results highlight the indispensable
role of context in enabling models to accurately quantify dichotomous relationships. While most models suffer
performance declines without contextual input (they tend to behave as random guesses in the absence of context),
the proposed DoGE demonstrates relative robustness, maintaining higher DCF and Oppo-Angle scores compared to
traditional baselines. This robustness is attributed to the integrated Dichotomous Objective and Contrastive Learning
mechanisms, which collectively enhance the model’s ability to discern and preserve dichotomous relationships even
in the absence of explicit contextual guidance.

comparable or lower than random guessing
thresholds across most models (DCF = 33.33,
DCFpositive = 50.00, DCFnegative = 50.00)
This trend indicates that, in the absence of
contextual cues, arguments that once appeared
as opposing standpoints often degrade into
loosely related statements, underscoring the
critical role of context in establishing mean-
ingful opposition.

• Effect of Context on Oppo-Angle: For
the Oppo-Angle metric, most models exhibit
larger angle values when context is removed.
This occurs because these models concatenate
the context with the positive, negative, and
neutral arguments. Without the context, the
shared content is lost, resulting in larger an-
gles. Larger angles imply greater absolute
opposition, but at a cost of losing relational
consistency (much lower DCF values). In
contrast, training with contextual information
produces slightly smaller Oppo-Angle values
but achieves higher DCF values and relational
consistency. This suggests that training with

contextual information effectively balances re-
lational consistency with absolute opposition,
capturing genuine oppositional relationships
rather than relying solely on surface-level sim-
ilarities, unlike other models.

• DoGE ’s Relative Robustness: While DoGE
also shows reduced performance without con-
text, it generally maintains its status as the
top-performing model. This result indicates
that the joint use of dichotomous (DICT) and
contrastive (CL) objectives in DoGE provides
a stronger inherent structure, enabling the
model to better preserve dichotomous rela-
tionships in the absence of explicit contextual
cues.

• Influence of Objectives (Ablation Study):
Ablation studies on DoGE (i.e., w/o DICT and
w/o CL) reveal that removing either objective
leads to a more pronounced performance de-
cline without context. This finding confirms
that both objectives contribute to robust di-
chotomy quantification, maintaining appropri-
ate geometric and dichotomous relationships
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even when contextual guidance is removed.

In summary, while DoGE remains comparatively
effective without context, the overall performance
drop across all models reinforces that context is
a crucial driver of opposition. These results align
with earlier analyses and visualizations, demon-
strating that context is not merely supplementary
but fundamentally integral to reliable dichotomy
quantification.

J.3 Visualization for Role of Context

We plot the visualization of positive, negative,
and neutral samples without context as the prefix
for BERT, RoBERTa, LLaMA-3.1(8B), LLaMA-
3.1(70B), DoGE (BERT), DoGE (RoBERTa) in Fig-
ure 9, Figure 10, Figure 11, and Figure 12, Fig-
ure 13, and Figure 14, respectively. From these
figures, we have the following observations:

1. When examining the embedding distributions
of baseline models such as BERT, RoBERTa,
and various LLaMA-based configurations, a
consistent pattern emerges. In the absence of
contextual information, these baseline models
clearly separate neutral samples from posi-
tive and negative ones. This initial distinction
occurs because neutral arguments originate
from data distributions that differ starkly from
those of the positive and negative arguments,
enabling the models to rely on superficial lex-
ical or stylistic cues. Under these no-context
conditions, the baselines effectively use such
distributional discrepancies to position neutral
instances in distinct regions of the embedding
space, clearly isolating them from the other
two categories.

2. When contextual input is introduced, these
superficial differences are largely diminished.
The presence of context tends to align the over-
all textual profiles of positive, negative, and
neutral arguments, thereby obscuring the sim-
ple lexical or stylistic markers that the base-
line models previously exploited. As a result,
baseline models like BERT, RoBERTa, and
LLaMA-based models no longer consistently
find distributional patterns that readily sepa-
rate neutral arguments from positive and neg-
ative arguments. Instead of the neat clustering
observed without context, their embedding
spaces become more entangled, reflecting a

diminished ability to maintain clear distinc-
tions.

3. In contrast, our proposed method, DoGE,
preserves robust separations among positive,
negative, and neutral samples regardless of
whether context is present or not. Rather
than depending solely on external distribu-
tional cues, DoGE leverages a specialized di-
chotomous objective in conjunction with con-
trastive learning. This combination encour-
ages the model to capture deeper semantic
and relational attributes that define the opposi-
tion between arguments. Consequently, even
when context aligns certain textual properties
across all samples, DoGE retains its capac-
ity to represent and differentiate dichotomous
relationships. Its embeddings maintain a sta-
ble geometric structure that clearly positions
neutral arguments between the positive and
negative extremes, ensuring that context does
not erode the model’s ability to recognize and
preserve semantic or relational contrasts.

K List of Notations

To facilitate a clear understanding of the concepts
and methodologies presented in this paper, we pro-
vide a comprehensive table of notations in Table 9.
This table outlines all the symbols and abbrevi-
ations used, along with their precise definitions,
ensuring that readers can easily refer to and com-
prehend the technical aspects of our work.
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(f) Scenario C without context.

Figure 9: The t-SNE visualization of the embedding space for positive, negative, and neutral argument types using
BERT across various scenarios. The figure contrasts the embedding distributions with and without contextual input.
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Figure 10: The t-SNE visualization of the embedding space for positive, negative, and neutral argument types using
RoBERTa across various scenarios. The figure contrasts the embedding distributions with and without contextual
input.
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Figure 11: The t-SNE visualization of the embedding space for positive, negative, and neutral argument types
using LLaMA-3(8B) across various scenarios. The figure contrasts the embedding distributions with and without
contextual input.
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Figure 12: The t-SNE visualization of the embedding space for positive, negative, and neutral argument types
using LLaMA-3(70B) across various scenarios. The figure contrasts the embedding distributions with and without
contextual input.
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(d) Scenario A without context.
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Figure 13: The t-SNE visualization of the embedding space for positive, negative, and neutral argument types using
DoGE (BERT version) across various scenarios. The figure contrasts the embedding distributions with and without
contextual input, illustrating DoGE’s capability to preserve dichotomous relationships regardless of contextual
variations.
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Figure 14: The t-SNE visualization of the embedding space for positive, negative, and neutral argument types
using DoGE (RoBERTa version) across various scenarios. The figure contrasts the embedding distributions with
and without contextual input, illustrating DoGE’s capability to preserve dichotomous relationships regardless of
contextual variations.

7789



Notation Meaning

Z A shared conditional context. This is a piece of text or scenario on which
multiple arguments (positive, negative, neutral) are based.

X A positive argument conditioned on Z. In the dichotomous setting, X supports
or strengthens the stance conveyed by Z.

Y A negative argument conditioned on Z. This argument is the opposite or
adversarial counterpart to X , providing a contrasting stance.

W A neutral argument conditioned on Z. Unlike X or Y , the neutral argument
does not strongly support or oppose the stance conveyed by Z.

EX|Z , EY |Z ,
EW |Z

Embeddings of X , Y , and W when considered under the context Z. These
embeddings are learned vector representations capturing semantic information
as well as the relationship to Z.

E = Ere+Eimi Complex-valued embedding representation of an argument. The embedding
vector is decomposed into a real part Ere and an imaginary part Eim. This
complex-valued representation provides richer geometric properties to capture
dichotomy.

Φ(XY |Z) The dichotomous degree function that quantifies how opposing X and Y are
conditioned on the shared context Z. Larger values indicate greater dichotomy.

∆(XY |Z) Angular distance between embeddings EX|Z and EY |Z . This measures the
angle between the vectors, reflecting their relational difference rather than just
their lexical or semantic similarity.

Γ(XY |Z) The angular distance computed in the complex-valued embedding space. In-
corporating the imaginary part allows for a more nuanced representation of
opposing stances.

DCF Dichotomy Consistency Frequency. A metric that measures how often the
model correctly captures the relational order: neutral arguments lie closer to
positive and negative arguments than these arguments lie to each other. A higher
DCF means the embedding space consistently reflects the intended dichotomous
structure.

DCFpositive,
DCFnegative

Sub-metrics derived from DCF. DCFpositive measures how often the neutral argu-
ment is closer to the positive argument than the positive and negative arguments
are to each other. DCFnegative checks the same for the neutral argument and the
negative argument.

Oppo-Angle A metric that directly quantifies the absolute opposition between X and Y .
Unlike DCF, which is relational and involves a neutral argument, Oppo-Angle
measures how strongly the positive and negative arguments diverge in the
embedding space. Larger Oppo-Angle scores reflect stronger opposition.

Ldichotomous The dichotomous objective loss term, ensuring that neutral arguments are geo-
metrically positioned between positive and negative arguments, thus enforcing
a balanced and interpretable embedding structure.

Lcl The contrastive learning loss term that pushes positive and negative arguments
further apart, enhancing the capture of inherent opposition beyond simple
semantic similarity or difference.
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τdichotomous, τcl Temperature hyperparameters for two different loss functions: τdichotomous con-
trols the sharpness of the training signal in the dichotomous loss, where smaller
values emphasize hard negatives and positives, and larger values smooth the
signal; τcl similarly controls the sharpness in the contrastive loss.

w1, w2 Weighting coefficients that balance the dichotomous and contrastive loss terms.
They control the relative emphasis on relational consistency vs. absolute oppo-
sition during training.

N The number of samples in a dataset or batch of data. Used in averaging metrics
over multiple instances.

m,b m represents the number of positive pairs in the b-th batch.

d The dimension of the embedding vector for each argument. The full embedding
in the complex-valued space has dimension 2d due to the real and imaginary
parts.

Table 9: A detailed summary of notations and their meanings.
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