
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 7333–7348
July 27 - August 1, 2025 ©2025 Association for Computational Linguistics

ChartCoder: Advancing Multimodal Large Language Model for
Chart-to-Code Generation

Xuanle Zhao1,*, Xianzhen Luo2,*, Qi Shi1,†, Chi Chen1,†,
Shuo Wang1, Zhiyuan Liu1, Maosong Sun1

1 Tsinghua University, Beijing, China
2 Harbin Institute of Technology, Harbin, China
2429527z@gmail.com, xzluo@ir.hit.edu.cn

Abstract

Multimodal Large Language Models (MLLMs)
have demonstrated remarkable capabilities in
chart understanding tasks. However, inter-
preting charts with textual descriptions often
leads to information loss, as it fails to fully
capture the dense information embedded in
charts. In contrast, parsing charts into code
provides lossless representations that can ef-
fectively contain all critical details. Although
existing open-source MLLMs have achieved
success in chart understanding tasks, they still
face two major challenges when applied to
chart-to-code tasks: (1) Low executability and
poor restoration of chart details in the gener-
ated code and (2) Lack of large-scale and di-
verse training data. To address these challenges,
we propose ChartCoder, the first dedicated
chart-to-code MLLM, which leverages Code
LLMs as the language backbone to enhance
the executability of the generated code. Fur-
thermore, we introduce Chart2Code-160k, the
first large-scale and diverse dataset for chart-
to-code generation, and propose the Snippet-
of-Thought (SoT) method, which transforms
direct chart-to-code generation data into step-
by-step generation. Experiments demonstrate
that ChartCoder, with only 7B parameters, sur-
passes existing open-source MLLMs on chart-
to-code benchmarks, achieving superior chart
restoration and code excitability. Our code
is available at https://github.com/thunlp/
ChartCoder.

1 Introduction

Recently, Multimodal Large Language Models
(MLLMs) have demonstrated remarkable capabili-
ties in addressing a wide range of visual tasks, such
as captioning and question answering (Zhang et al.,
2024c; Wang et al., 2024b; Bi et al., 2024b; Zhang
et al., 2025). However, current models still face sig-
nificant challenges in understanding and analyzing

*Equal contribution.
†Corresponding author.

Create the figure and axis
fig, ax = plt.subplots(figsize=(8.0, 6.0))
Plot the bars
ax.bar(labels, performance_gap)
Set the y-axis tick labels
ax.set_yticks(range(-10, 70, 10))
ax.set_yticklabels(['-10', '-5', '0', '5’, '10’, '20’,

'30’, '40', '50', '60'])

Open-source
MLLMs

Input InternVL2-8B Output

Create the figure and subplots
fig, ax = plt.subplots(figsize=(8.0, 6.0))
Plot box plots for each dataset
for i, (title, dataset) in enumerate(data.items()):

ax.boxplot(dataset, positions=[i],
patch_artist=True, boxprops=dict(facecolor=colors[i]))
Set the y-axis labels
ax.set_yticklabels(np.arange(-10, 71, 10), fontsize=12)

✅

❌

ChartCoder

“You are an expert
Python developer who
specializes in writing
matplotlib code based
on a given
picture. ... Now,
please give me the
matplotlib code that
reproduces the picture
below.” Size mismatch

Wrong Chart Type

ChartCoder Output

Figure 1: Comparison of existing MLLMs performance
on ChartQA and ChartMimic benchmarks. In the chart-
to-code task, open-source MLLMs struggle with mis-
matches in chart types and sizes, whereas ChartCoder
generates accurate code.

the dense visual information present in complex
and informative images. As a significant form of
information-intensive images, charts contain com-
plex information such as data and structures, play-
ing a pivotal role in effectively presenting details.
The automation of chart comprehension and sum-
marization has garnered significant attention from
the research community. To advance chart under-
standing tasks, current studies leverage existing
MLLMs and perform supervised fine-tuning (SFT)
on various large-scale datasets, such as chart ques-
tion answering (Methani et al., 2020) and chart-to-
text generation (Kantharaj et al., 2022), achieving
state-of-the-art performance on existing chart un-
derstanding benchmarks.

However, existing works generally treat charts
as natural images and fine-tune models by gener-
ating natural language descriptions (Zhang et al.,

7333

https://github.com/thunlp/ChartCoder
https://github.com/thunlp/ChartCoder

2024b; Han et al., 2023; Meng et al., 2024; Bi et al.,
2025). This inevitably overlooks the dense infor-
mation embedded within the charts, resulting in
inefficient analysis and comprehension. On the
other hand, parsing a chart into code offers a loss-
less representation, providing a more efficient and
comprehensive approach to understanding the chart
by accurately capturing and summarizing all its in-
formation. Recent works (Shi et al., 2024; Wu
et al., 2024; Xia et al., 2024) have proposed various
chart-to-code benchmarks, aiming to evaluate the
chart reasoning abilities through code. However,
current open-source MLLMs are not well-aligned
with code generation tasks (Zhang et al., 2024a),
resulting in poor performance in parsing charts
into corresponding code and limited execution rate
of the generated code. Figure 1 shows that the
InternVL2-8B suffers from chart type errors and
coordinate size mismatches when converting box-
plots to code.

To overcome the above challenges in chart-to-
code generation, we first conduct an exploratory
attempt by leveraging Code LLMs as the language
backbone of the MLLMs and propose ChartCoder,
the first dedicated chart-to-code MLLM, which in-
corporates a two-stage training paradigm that con-
tains chart-to-text alignment and chart-to-code in-
struction tuning. However, compared to chart-to-
text, the available chart-to-code dataset is signifi-
cantly smaller in scale, making it insufficient to sup-
port effectively supervised fine-tuning. Therefore,
to address the scarcity of data for the chart-to-code
domain and train our proposed ChartCoder, we pro-
pose the first large-scale, diverse and high-quality
chart-to-code dataset named Chart2Code-160k
along with the model, which contains 160k diverse
chart-code pairs with 27 chart types. To enhance
the model’s capacity to capture critical information,
such as chart types and data values, and strengthen
its reasoning ability, we propose the Snippet-of-
Thought (SoT) method, which emphasizes critical
information and optimizes the chart-to-code rea-
soning process. Specifically, we sample 50k chart-
code pairs from the Chart2Code-160k, then utilize
Chain-of-Thought (CoT) (Wei et al., 2022) method
to extend direct generation to step-by-step genera-
tion, which aims to emphasize critical information
in each step. Experimental results show that by uti-
lizing our proposed Chart2Code-160k with the SoT
method, ChartCoder, which, with only 7B parame-
ters, outperforms all open-source MLLMs across
various chart-to-code benchmarks. As shown in

Figure 1, ChartCoder demonstrates a significantly
higher ability to generate correct and executable
code.

In summary, the main contributions of this work
are as follows:

• We propose ChartCoder, the first chart-to-
code MLLM, which leverages Code LLMs as
language backbones. With only 7B parame-
ters, ChartCoder outperforms existing open-
source MLLMs on chart-to-code benchmarks.

• We introduce Chart2Code-160k, the first
large-scale and diverse chart-to-code dataset,
consisting of 160k chart-code pairs across 27
chart types.

• We propose Snippet-of-Thought (SoT),
transforming direct generation to step-by-step
generation to emphasize critical information
and enhance reasoning capabilities.

2 Related Works

2.1 Chart Understanding

Chart understanding is a crucial area of research
that encompasses both low-level and high-level
tasks. Previous approaches (Singh et al., 2019;
Methani et al., 2020) have typically relied on
pipeline-based methods. However, these pipeline
approaches often struggle with error accumulation
across different stages, which limits their overall
effectiveness and flexibility. Recent works have led
to the development of end-to-end MLLMs (Liu
et al., 2023b,c; Yu et al., 2025) specifically de-
signed for chart-related tasks. Trained on extensive
chart-specific datasets, these chart-domain MLLMs
(Xia et al., 2024; Zhang et al., 2024b) have achieved
superior performance across various chart-related
tasks. However, existing studies typically describe
charts in natural language, which inevitably over-
looks the dense information embedded within them,
leading to inefficiencies in analysis and understand-
ing. In contrast, code serves as a lossless repre-
sentation of charts, offering a more effective and
expressive approach to capturing chart information,
thereby facilitating the solution of various chart-
related tasks.

2.2 MLLMs For Code

Multimodal code generation has recently garnered
much more attention. Several works, such as MM-
Code (Li et al., 2024b) and HumanEval-V (Zhang

7334

et al., 2024a), have been developed to evaluate the
capability of MLLMs in solving code problems
that incorporate visual elements. Design2Code
(Si et al., 2024) and Web2Code (Yun et al., 2024)
evaluate the performance of MLLMs by focusing
on code generation for HTML web page creation.
Among the emerging tasks in this domain, chart-
to-code generation has attracted significant interest
as the visual elements of charts are more complex.
This task challenges MLLMs to generate code that
accurately reproduces a given chart or visual repre-
sentation. Recent works (Zhang et al., 2024d; Zhao
et al., 2025) like ChartMimic (Shi et al., 2024) eval-
uate the reasoning ability of MLLMs in this con-
text. Similarly, Plot2Code (Wu et al., 2024) and
ChartX (Xia et al., 2024) also evaluate MLLMs
code generation ability, especially for text and data
reproducibility. To the best of our knowledge, no
dedicated research has focused on solving the chart-
to-code generation problem. Our work is the first
to attempt to address this challenge.

3 Chart2Code-160k Dataset

3.1 Direct Chart-to-code Generation

Despite the availability of many chart-reasoning
instruction-tuning datasets, there is a notable lack
of datasets specifically for chart-to-code tasks.
Compared to chart reasoning data, chart-to-code
data have the following distinct characteristics:
(1) One-to-One Mapping: Unlike chart reasoning
datasets, which could derive multiple question-
answer pairs from a single chart, chart-to-code
datasets require a one-to-one correspondence, de-
manding a large number of chart images for train-
ing. (2) Diversity Reflect on Charts: Unlike the
diversity of chart reasoning data, which can be
reflected in instructions, the diversity of chart-to-
code data primarily lies in the variety of chart types
and structures. (3) Syntax Constraints: Unlike the
flexible natural language answers in chart reason-
ing tasks, the output code must strictly adhere to
programming syntax to ensure executability.

Therefore, collecting a large number of chart-
code pairs that meet the above requirements is chal-
lenging. Recent studies have demonstrated the fea-
sibility of generating code with LLMs (Xu et al.,
2023; Zhang et al., 2024c). Leveraging the one-
to-one mapping property of chart-to-code data, we
generate code first and execute it to produce the
corresponding charts. In this way, we construct the
first large-scale and diverse chart-to-code dataset,

Dataset Train/Eval Chart Type Number

ChartX Eval 18 6k
Plot2Code Eval 6 132
ChartMimic Eval 22 2.4k
ChartLlama Train 10 7.8k

Chart2Code-160k Train 27 160k

Table 1: Comparisons of existing chart-to-code datasets.

named Chart2Code-160k.
Specifically, we generate chart-to-code data

through the following steps: First, we prompt the
LLM to generate keywords within a specific do-
main and guide it to generate simulated data re-
lated to these keywords. Then, to ensure the diver-
sity of chart types, we identify 27 commonly used
chart types and manually write 79 template codes
for each as in-context demonstrations. These tem-
plate codes contain almost all common chart for-
mats. We further provide available functions such
as plt.text() and parameters such as hatch=’/’
to encourage the generation of more diverse func-
tions and parameters, resulting in the chart struc-
tures more diversely. To enhance the generality
of generated code, LLMs are encouraged to use
standard libraries such as Matplotlib and Seaborn.
Additionally, we explicitly define all parameters
within the code itself, eliminating the need for ex-
ternal files such as CSVs. This ensures that the
code can be executed directly and accurately to
represent the chart details. The final step involved
executing the generated code to produce the cor-
responding chart. We utilize the above process to
yield 200k code snippets for charts. After execut-
ing the code and filtering out problematic charts,
such as those with excessive pixels or ticks, we
construct a high-quality dataset of 160k diverse
chart-to-code pairs. These pairs are formatted as
multimodal instruction-tuning samples in the uni-
fied structure of <chart, instruction, code>.

3.2 Step-by-step Chart-to-code Generation

Although the dataset described above includes var-
ious chart types and structures, most of the gen-
erated code follows a similar template, with only
certain details (such as colors and values) providing
the essential distinguishing information. This can
cause chart-to-code generation models to overlook
these critical details and thus produce incomplete
or incorrect results. To address the above chal-
lenge and further improve the reasoning ability of
MLLMs, we propose the Snippet-of-Thought (SoT)
method to expand direct chart-to-code generation

7335

89 seed code with
27 chart types

Available functions
and parameters

Keywords and data

Generated code

Keywords: model performance,
NLU benchmarks

Data: Model, SQuAD, GLUE, MNLI
GPT-4, 93.2%, 90.1%, 89.5%
BERT, 88.5%, 80.4%, 83.2%

import matplotlib.pyplot as plt
……
Data
categories = ['GPT-4', 'BERT’]
……
plt.title('Performance Comparison on
Different Benchmarks’)
……
Display the plot
plt.show()

Generate entity terms that are
related to NLU and models,

and then create data
associated with these terms.

Instructions

Execute and filter High-quality code

Chart2Code-160k

160k <chart image, input instruction, output code>

Step 1: Generate
Keywords and Data

Step 2: Generate Code

Step 3: Execution and Filter

Sample 50k code

Assume you need to generate the
following code from a chart. Please
break it down into three steps.

Add the sampled code as the Step 4

Downsample

Pre-defined Aspect Ratio

```python\nimport matplotlib.pyplot\n…\nplt.show()```
Stage-2:  Chart2Code Instruction Tuning 

Vison-language Connector

Code LLM

🔥

Visual Encoder

Please describe the
details of the chart.

Stage-1:  Chart/Image Text Alignment

Downsample
384×384 

The chart appears to be a line graph representing 
some performance or measurement values …

❄

❄

Direct Chart2Code Generation

Step-by-step Chart2Code Generation

Vison-language Connector

Code LLM

Visual Encoder

Please redraw the 
chart image using 
Python code.

🔥

384×384 

Any Resolution

🔥

🔥

Please redraw the chart 
image using Python code.

Snippet of Thought

Step 1: Overall layout and type analysis. 
The figure contains a single pie chart. 
plt.pie()
Step 2: Data text and color analysis.
The figure contains four type of data.
data = ['deployment', 'development', 'support', 
'training']
Step 3: Detail modification and style optimization.
explode = (0.1, 0, 0, 0)
plt.pie(sizes, explode=explode, labels=labels, 
autopct='%1.1f%%', shadow=True, startangle=90)

```python 
Import matplotlib.pyplot as
plt\n……
Display the plot
\nplt.show()
```

(a) Data generation pipelines (b) Model training stages

Chart2Code-160k

Steps 1-3 code snippets

Figure 2: Illustration of Chat2Code dataset generation process and the ChartCoder training process. The dataset
generation process is divided into two stages: direct generation and step-by-step generation. In the step-by-step
generation, the code processed by the Snippet-of-Thought method is sampled from the Chart2Code-160k generated
in the direct generation process. The training process of the ChartCoder also consists of two stages: alignment and
instruction tuning.

into step-by-step generation formats, which has
demonstrated effectiveness in text-to-code genera-
tion tasks (Zheng et al., 2023; Luo et al., 2024).

Specifically, we adopt the SoT to imitate the
human reasoning process, deriving the final code
step by step. This process is divided into four
steps: Step 1: Generate the chart type and lay-
out, such as plt.bar() and plt.subplot(). Step
2: Generate the data and corresponding colors
used in the chart, such as data=[10, 15] and
colors=[’#FF0000’,’#00FF00’]. Step 3: Gen-
erate critical details of the chart, such as hatch=’/’
and loc=’upper left’. Step 4: Generate the com-
plete and final code. Different from CoT and PoT,
we incorporate textual explanations and code snip-
pets for each step to emphasize key information
enhance the reasoning process and produce com-
prehensive outputs.

However, directly instructing the LLM to gen-
erate step-by-step code may lead to hallucinations,
causing inconsistencies between intermediate code
snippets and the final executable code. To maintain
consistency among code snippets, we reformulated

the step-by-step code data generation into a two-
step process involving code generation and decom-
position. We sample 50k chart-code pairs from the
previously generated 160k data pairs and encour-
age the LLM to decompose the original code into
the required textual explanations and code snippets
of Steps 1–3, then concatenate the complete code
in Step 4. To further mitigate hallucinations, such
as undefined values or parameters in Steps 1 and 2,
we used placeholder or default parameters during
code decomposition to ensure the construction of
consistent and reliable step-by-step code.

3.3 Dataset Analysis

Chart2Code-160k dataset provides three key ad-
vantages: (1) The First Large-Scale Dataset: It
contains 160k data pairs for instruction tuning, sig-
nificantly surpassing the size of previous datasets.
(2) Diverse Chart Structures and Types: It includes
27 different chart types, with diverse structures
enabled by a wide variety of functions and param-
eters in the code. (3) Syntactically Correct and
Executable Code: All corresponding code is syn-

7336



Dataset Source Chart Quality

Mean µ SD σ

Chart2Code-160k sample Generated 77.32 4.04
ChartMimic testmini Real-world 78.96 3.96

Table 2: Quantitative evaluation of the chart quality,
comparing with real-world charts. SD is the abbrevia-
tion version for standard deviation.

tactically correct and executable, with explicitly
defined parameters that ensure precise alignment
between chart structures and code representations.

The comparisons of Chart2Code-160k with rele-
vant chart-to-code datasets are listed in Table 1. To
ensure data quality, we randomly sample around
1k instances and evaluate the quality of the chart
images manually during the dataset construction
period. Given the strong generation capabilities of
LLM, we reckon the generated charts are suitable
for training purposes. Furthermore, to quantita-
tively evaluate the chart quality, we also sample 8k
data pairs (5% of the total) from Chart2Code-160k
and utilize gpt-4o-2024-08-06 to evaluate them
on four criteria: Aesthetics, Readability, Repro-
ducibility, and Data Presentation Simplicity. The
results in Table 2 show that the overall scores are
broadly the same as real-world charts in Chart-
Mimic. The detailed prompt is in the Figure 8. Our
proposed Chart2Code-160k fills the gap between
chart and code, equipping the model with advanced
capabilities for downstream chart tasks.

4 ChartCoder Model

After constructing the Chart2Code-160k, we aimed
to leverage the data to enhance the capacities of
MLLMs to generate code from charts. Unlike pre-
vious methods that rely on general LLMs with a
low proportion of code in their training corpus, we
pioneer the use of Code LLMs to enhance the cod-
ing abilities of MLLMs from scratch.

4.1 Model Architecture

Following the standard architecture of MLLMs,
ChartCoder consists of three modules: a pre-
trained vision encoder (SigLIP-384 (Zhai et al.,
2023a)), a vision-language connector (two-layer
MLP) and a Code LLM backbone (DeepSeek
Coder 6.7B (Guo et al., 2024)). The vision en-
coder extracts the input image into visual features,
and the connector projects it into the word embed-
ding space. LLM backbone then combines visual
and textual features to generate responses.

Previous works emphasize the importance of
high-resolution input for chart understanding (Liu
et al., 2024; Guo et al., 2025), as details like textual
words may lost in low-resolution images. How-
ever, vision transformers (ViTs) like CLIP (Rad-
ford et al., 2021) and SigLIP (Zhai et al., 2023b)
are constrained to resolutions of 2242 and 3842 re-
spectively, which limits their capacities to encode
chart images with sufficient detail. To address this,
we utilize the Any Resolution strategy (Liu et al.,
2024) to resize and patchify chart images to en-
sure ChartCoder processes high-resolution chart
images effectively. Specifically, the input chart im-
age is first resized to a pre-defined optimal aspect
ratio, whose height and width are integer multi-
ples of the image resolution. The resized image is
then divided into patches of standard resolution and
concatenated with a directly downsampled version
of the image. This approach preserves both gen-
eral and detailed information without requiring the
original high-resolution image to be resized into a
standard square, thereby avoiding the loss of fine
details. Details are shown in Figure 2.

4.2 Model Training
Since we propose to use Code LLMs as the lan-
guage backbone to enhance the code abilities of
MLLMs, existing models do not meet our require-
ments as their backbones are general LLMs. Thus,
to align charts with text and perform supervised
fine-tuning for chart-to-code tasks, we adopt the
following two-stage training process.

Chart-to-text Alignment. The alignment pro-
cess aims to endow the model with chart structure
perception capability. In this stage, we freeze the
language and vision encoder models and pre-train
the vision-language connector (Liu et al., 2023c).
We collect and filter public chart corpora for align-
ment, which contains multiple tasks like chart cap-
tion and chart-to-table. Specifically, we use the fol-
lowing corpora: (1) UniChart (Masry et al., 2023),
(2) Chart-to-Text (Kantharaj et al., 2022), (3) Sc-
iCap (Hsu et al., 2021), and (4) SciCap+ (Yang
et al., 2024). Additionally, we incorporate the
LLaVA pre-training dataset (Liu et al., 2023c) and
our proposed Chart2Code-160k to achieve a more
balanced coverage of concepts.

Chart-to-code Instruction-tuning. The second
stage focuses on enhancing the model’s capabili-
ties in chart-to-code tasks. In this stage, all three
modules are jointly fine-tuned with our proposed
Chart2Code-160k, and additional code-related data,

7337



Model Params ChartMimic Plot2Code ChartX

Exec.Rate Low-Level High-Level Pass Rate Text-Match Rating GPT-score

Full score - 100 100 100 100 100 10 5

Proprietary

GeminiProVision - 68.2 53.8 53.3 68.2 53.6 3.69 -
Claude-3-opus - 83.3 60.5 60.1 84.1 57.5 3.80 -
GPT-4V - 91.2 76.4 78.9 84.1 57.7 5.58 2.63
GPT-4o - 93.2 79.0 83.5 88.6 56.3 5.71 -

Open-Source General-Domain

DeepSeek-VL-7B 7.3B 41.3 19.0 17.6 64.4 32.6 2.26 -
LLaVA-Next-Mistral-7B 7.6B 59.7 20.7 21.3 72.0 38.7 2.87 -
Qwen2-VL-7B 7.0B 67.0 32.9 35.0 68.2 33.8 3.10 1.50
InternVL2-4B 4.2B 66.2 33.8 38.4 66.3 33.4 2.52 1.57
InternVL2-8B 8.1B 61.8 34.4 38.9 77.3 37.1 2.78 1.63
MiniCPM-Llama3-V2.5 8.4B 80.3 36.6 42.1 76.3 37.3 2.61 1.66
InternVL2-26B 26.0B 69.3 41.4 47.4 81.3 43.1 3.42 1.70
Qwen2-VL-72B 72.0B 73.3 54.4 50.9 72.0 53.4 4.26 1.69
InternVL2-Llama3-76B 76.0B 83.2 54.8 62.2 85.6 46.6 3.89 1.74

Open-Source Chart-Domain

ChartLlama 13B 57.5 24.8 28.1 58.4 40.3 2.32 0.94
ChartAssisstant 13B - - - - - - 0.82
TinyChart 3B 42.5 26.3 25.9 43.2 44.6 2.19 1.89
ChartVLM-L 14.3B 19.5 15.8 13.9 - - - 1.58
ChartCoder (Ours) 7.0B 91.4 77.4 74.0 87.9 54.5 4.50 2.09

Table 3: Evaluation results of various baseline models. Unless otherwise specified, we directly use the results in the
relevant benchmarks. We evaluate models that are not reported in those benchmarks. The best performances of
open-source MLLMs are indicated in bold.

Model Chart Types Layout Text Content Data Style Clarity

Full score 20 10 20 20 20 10

GPT-4o 18.96 9.59 17.16 15.68 14.66 8.84

InternVL2-Llama3-76B 13.06 8.44 12.59 10.51 8.74 7.87
Qwen2-VL-72B 10.45 7.83 9.92 8.14 7.10 7.47
InternVL2-8B 7.20 6.82 8.81 5.74 5.42 6.64

TinyChart 4.16 5.06 5.22 2.74 3.21 5.58
ChartVLM-L 0.97 3.53 2.48 0.81 0.90 5.25
ChartCoder (Ours) 16.83 9.13 14.77 12.41 12.68 8.29

Table 4: Detailed results of high-level scores on ChartMimic Direct Mimic task. All the subscores of ChartCoder
are close to GPT-4o.

such as ChartQA PoT (Zhang et al., 2024b) and
ChartLlama chart-to-chart (Han et al., 2023).

5 Experiments

5.1 Baselines and Benchmarks

We compare ChartCoder with existing models
in three setups (1) General-domain open-source
MLLMs including InternVL2(4B, 8B, 26B, 76B)
(Chen et al., 2024), Qwen2-VL(7B, 72B) (Wang
et al., 2024a), DeepSeek-VL-7B (Lu et al., 2024),
LLaVA-Next(7B) (Li et al., 2024a) and MiniCPM-
Llama3-V2.5 (Yao et al., 2024). (2) Proprietary
models include GeminiProVision (Team et al.,
2023), Claude-3-opus (Anthropic, 2024), GPT-4V
(OpenAI, 2023), and GPT-4o (OpenAI, 2024). (3)
Chart-domain MLLMs including ChartLlama (Han

et al., 2023), ChartAssisstant (Meng et al., 2024),
Tinychart (Zhang et al., 2024b) and ChartVLM
(Xia et al., 2024). All the methods are evalu-
ated on the benchmarks ChartMimic (Shi et al.,
2024), Plot2Code (Wu et al., 2024) and ChartX
(Xia et al., 2024). We revise the Rating calcula-
tion in Plot2Code. The original evaluation only
considers charts corresponding to executable code,
which leads to higher ratings for only generating
simple charts. We calculate all the results, which
better reflect the impact of complex charts. For all
methods, the zero-shot setting was adopted during
the evaluation. Details about these benchmarks are
shown in the Appendix A.2.

7338



Model Text Layout Type Color

Full score 100 100 100 100

GPT-4o 81.5 89.8 77.3 67.2

InternVL2-Llama3-76B 54.1 74.5 49.2 41.5
Qwen2-VL-72B 43.2 80.5 54.6 39.4
InternVL2-8B 31.5 51.1 28.6 26.2

TinyChart 9.8 48.2 32.9 14.2
ChartVLM-L 7.7 33.7 17.6 5.2
ChartCoder (Ours) 67.2 95.0 78.5 69.0

Table 5: Detailed results of low-level scores on Chart-
Mimic Direct Mimic task. Three out of four subscores
of ChartCoder are even higher than GPT-4o.

5.2 Main Results

As indicated in Table 3 ChartCoder achieves the
best performance among open-source MLLMs
in all the chart-to-code tasks and even better
than some proprietary models. Notably, on the
most challenging ChartMimic task, ChartCoder
surpasses leading small-scale general-domain
MLLMs (<20B) such as MiniCPM-Llama3-V2.5
and InternVL2-8B with average scores of 26.7 and
34.6 respectively. The improvement achieved by
ChartCoder highlights the effectiveness of our pro-
posed Code LLM as the language backbone, com-
bined with the Chart2Code-160k dataset, in en-
abling MLLMs to excel in chart understanding and
code generation tasks. In addition, ChartCoder also
performs better than existing state-of-the-art large-
scale MLLMs such as InternVL2-Llama3-76B and
chart-domain MLLMs such as TinyChart.

We further illustrate the detailed high-level and
low-level scores for the ChartMimic benchmark.
The high-level score utilizes GPT-4o to evaluate
the detailed similarity between the ground truth and
generated chart images in six aspects: chart types,
layout, text content, data, style, and clarity. The
low-level score is calculated based on a comparison
between the ground truth and the generated code,
focusing on the code similarities in four aspects:
text, layout, type, and color.

Table 4 denotes the high-level results. Chart-
Coder is the model most comparable to GPT-4o,
as the evaluations were conducted by GPT-4o it-
self, suggesting the actual performance gap may
not be as pronounced as it appears. Notably, Chart-
Coder shows the largest gap with GPT-4o in the
data category, which highlights the complexity of
extracting numerical values from charts, aligning
with conclusions from existing chart understanding
benchmarks: current MLLMs struggle to directly
and accurately extract complete data from complex

Methods
ChartMimic

Exec.Rate Low-Level High-Level

ChartCoder 91.4 77.4 74.0

Code LLM → General LLM

DeepSeek LLM 80.6 61.4 63.4
△ -10.8 -16.0 -10.6

Different Visual Encoders

CLIP-336 91.6 77.3 70.3
△ +0.2 -0.1 -3.7

Without Step-by-step Generation

w/o SoT 89.2 70.1 65.4
△ -2.2 -7.3 -8.6

Open-source MLLM Finetund on Chart2Code-160k

Qwen2-VL-7B 67.0 32.9 35.0

Finetuned Model 83.6 73.4 68.2
△ +16.7 +40.5 +33.2

Table 6: The ablation studies on model architecture
and data. The results show that the effectiveness of our
proposed code LLM backbone and dataset.

charts (Wang et al., 2024c; Zhang et al., 2024b).
Table 5 shows the low-level results. ChartCoder

even slightly outperforms GPT-4o in layout, type
and color, highlighting the diversity of our pro-
posed Chart2Code-160k dataset. However, the
text score of the ChartCoder is lower than GPT-4o,
which is similar to the results of high-level scores.
We believe this is due to the lack of specialized
chart OCR-oriented training for our model. Nev-
ertheless, our text accuracy still surpasses that of
open-source models, indicating the effectiveness of
our proposed ChartCoder model and Chart2Code-
160k dataset. We further present some case studies
on ChartMimic and compare ChartCoder with ex-
isting MLLMs. The results are shown in Figure 3,
the outputs of ChartCoder are much more similar
to the ground truth chart than open-source models.

5.3 Ablation Study
We perform extensive ablation experiments to vali-
date the effectiveness of our proposed model and
dataset. We divide the ablation study into three
parts, and the results are shown in Table 6. (1)
Code or general LLMs. To investigate whether
employing Code LLMs as language backbone pro-
vides specific advantages in chart-to-code tasks
and identify the nature of these potential benefits,
we replace the Code LLM, DeepSeek Coder 6.7B,
with general LLM, DeepSeek LLM 7B (Bi et al.,
2024a), maintaining the same two-stage training
procedures. The result shows that compared with
general LLM, utilizing code LLM as the language

7339



InternVL2-76BChartCoder InternVL2-8BGround Truth GPT-4o

import matplotlib.pyplot as plt
import numpy as np
# Data points
data = {
'universe': 0.8,
'fairy tale': 0.6,
'country': 0.4,
special place': 0.2,
'cultural event': 0.1,
'landscape': 0.05,
'city': 0.03,
movie‘: 0.02,
'general': 0.01,
'mythology': 0.005,
'novel': 0.003,
'video game': 0.002,
'programming world': 0.001
}

SyntaxError: Invalid Syntax

❌

Figure 3: Generated charts of different model outputs after code execution. Our proposed ChartCoder performs
significantly better than InternVL2-8B of a similar model scale.

backbone could significantly improve the execu-
tion rate, as well as the low-level and high-level
scores. We further analyze the types of errors in
the code that failed to execute and find that uti-
lizing code LLMs significantly reduces syntax er-
rors like missing closing quotation marks and type
errors like incorrect argument type. (2) Resolu-
tion of vision encoders. Previous studies have in-
dicated that performance on chart understanding
tasks is resolution-dependent, with lower resolu-
tions negatively impacting model performance (Liu
et al., 2024). To verify whether resolution affects
chart-to-code tasks, we replace SigLIP-384 with
CLIP-336 and maintain the other setting. The re-
sult shows that the resolution of the vision encoder
generally does not affect the output code execution
rate but slightly influences the high-level chart simi-
larity. Through our analysis, we find that, similar to
the challenges in chart understanding, this issue is
caused by the negative impact of low resolution on
the recognition of text and special symbols. How-
ever, as we utilize the Any Resolution strategy, this
impact has been reduced significantly.

(3) Dataset effectiveness. We design two sce-
narios to illustrate our proposed Chart2Code-160k
dataset. Firstly, to evaluate our proposed SoT
method to emphasize the critical information in
the chart, we remove the 50k step-by-step genera-
tion data and train the model using only the direct
generation data. The result shows it influences the

Model Image Image+Code △
MiniCPM-Llama3-V2.5 0.76 0.81 6.5%
InternVL2-8B 0.79 0.82 3.8%

Table 7: Comparison of the impact of using code as
auxiliary contexts on the MMC True/False task.

low-level and high-level scores notably, especially
in text content and data, which shows the role of
emphasising critical information. Secondly, we se-
lect Qwen2-VL-7B as the baseline of open-source
MLLM and directly fine-tune it on our proposed
Chart2Code-160k datasets. The result illustrates
that after fine-tuning, the performance improves
significantly on all the metrics, demonstrating the
effectiveness of Chart2Code-160k.

5.4 Analysis

We further evaluate the role of code in the chart un-
derstanding task. We use two MLLMs to evaluate
two input forms, Image only and Image with Code,
on the MMC True/False benchmark (Liu et al.,
2023a). The result in Table 7 shows that using code
helps the model better understand chart details, es-
pecially the chart types and the data they contain.
A case study is shown in Figure 5. Also, we uti-
lize LLM to evaluate the readability of ChartCoder
output code, and details are in the Appendix A.4.

7340



6 Conclusion

This work aims to tackle the challenge of chart-
to-code tasks with MLLMs. First, we propose the
ChartCoder, which utilizes Code LLM as the lan-
guage backbone dedicated to chart-to-code tasks.
Second, to solve the scarcity of chart-to-code data,
we present the first large-scale and diverse chart-to-
code dataset, Chart2Code-160k. Finally, to empha-
size the key information, we propose the Snippet-
of-Thought (SoT) method to generate step-by-step
data. Experiments show that ChartCoder outper-
forms existing open-source MLLMs.

Limitation

Our study is comprehensive but has certain limi-
tations we aim to address in future research. Due
to constraints in computational resources, we only
trained ChartCoder with 7B parameters, which has
demonstrated sufficiently good results for now. A
larger model could potentially achieve even bet-
ter performance. Future work may explore more
complex and diverse charts and codes while ex-
perimenting with other image types like HTML to
develop a comprehensive multi-modal code large
language model.

Ethical Statement

Our research employs publicly available models
and datasets with proper citations. This approach
minimizes the risk of generating toxic content,
leveraging the widely used and non-toxic nature of
our datasets and prompts.

Acknowledgment

The work is initiated and supported by the AI9Stars
Team.

References
Anthropic. 2024. Introducing the next generation of

claude.

DeepSeek-AI Xiao Bi, Deli Chen, Guanting Chen, Shan-
huang Chen, Damai Dai, Chengqi Deng, Honghui
Ding, Kai Dong, Qiushi Du, Zhe Fu, Huazuo Gao,
Kaige Gao, Wenjun Gao, Ruiqi Ge, Kang Guan, Daya
Guo, Jianzhong Guo, Guangbo Hao, Zhewen Hao,
Ying He, Wen-Hui Hu, Panpan Huang, Erhang Li,
Guowei Li, Jiashi Li, Yao Li, Y. K. Li, Wenfeng
Liang, Fangyun Lin, Aixin Liu, Bo Liu (Benjamin
Liu), Wen Liu, Xiaodong Liu, Xin Liu, Yiyuan Liu,
Haoyu Lu, Shanghao Lu, Fuli Luo, Shirong Ma, Xi-
aotao Nie, Tian Pei, Yishi Piao, Junjie Qiu, Hui Qu,

Tongzheng Ren, Zehui Ren, Chong Ruan, Zhangli
Sha, Zhihong Shao, Jun-Mei Song, Xuecheng Su,
Jingxiang Sun, Yaofeng Sun, Min Tang, Bing-Li
Wang, Peiyi Wang, Shiyu Wang, Yaohui Wang,
Yongji Wang, Tong Wu, Yu Wu, Xin Xie, Zhenda
Xie, Ziwei Xie, Yi Xiong, Hanwei Xu, Ronald X Xu,
Yanhong Xu, Dejian Yang, Yu mei You, Shuiping
Yu, Xin yuan Yu, Bo Zhang, Haowei Zhang, Lecong
Zhang, Liyue Zhang, Mingchuan Zhang, Minghu
Zhang, Wentao Zhang, Yichao Zhang, Chenggang
Zhao, Yao Zhao, Shangyan Zhou, Shunfeng Zhou,
Qihao Zhu, and Yuheng Zou. 2024a. Deepseek llm:
Scaling open-source language models with longter-
mism. ArXiv, abs/2401.02954.

Jinhe Bi, Yifan Wang, Danqi Yan, Xun Xiao, Artur
Hecker, Volker Tresp, and Yunpu Ma. 2025. Prism:
Self-pruning intrinsic selection method for training-
free multimodal data selection. arXiv preprint
arXiv:2502.12119.

Jinhe Bi, Yujun Wang, Haokun Chen, Xun Xiao, Ar-
tur Hecker, Volker Tresp, and Yunpu Ma. 2024b.
Visual instruction tuning with 500x fewer parame-
ters through modality linear representation-steering.
arXiv preprint arXiv:2412.12359.

Zhe Chen, Jiannan Wu, Wenhai Wang, Weijie Su, Guo
Chen, Sen Xing, Muyan Zhong, Qinglong Zhang,
Xizhou Zhu, Lewei Lu, et al. 2024. Internvl: Scal-
ing up vision foundation models and aligning for
generic visual-linguistic tasks. In Proceedings of
the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 24185–24198.

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie,
Kai Dong, Wentao Zhang, Guanting Chen, Xiao
Bi, Yu Wu, YK Li, et al. 2024. Deepseek-coder:
When the large language model meets programming–
the rise of code intelligence. arXiv preprint
arXiv:2401.14196.

Zonghao Guo, Ruyi Xu, Yuan Yao, Junbo Cui, Zan-
lin Ni, Chunjiang Ge, Tat-Seng Chua, Zhiyuan Liu,
and Gao Huang. 2025. Llava-uhd: an lmm perceiv-
ing any aspect ratio and high-resolution images. In
European Conference on Computer Vision, pages
390–406. Springer.

Yucheng Han, Chi Zhang, Xin Chen, Xu Yang,
Zhibin Wang, Gang Yu, Bin Fu, and Hanwang
Zhang. 2023. Chartllama: A multimodal llm for
chart understanding and generation. arXiv preprint
arXiv:2311.16483.

Ting-Yao Hsu, C Lee Giles, and Ting-Hao’Kenneth’
Huang. 2021. Scicap: Generating captions for scien-
tific figures. arXiv preprint arXiv:2110.11624.

Shankar Kantharaj, Rixie Tiffany Ko Leong, Xiang
Lin, Ahmed Masry, Megh Thakkar, Enamul Hoque,
and Shafiq Joty. 2022. Chart-to-text: A large-scale
benchmark for chart summarization. arXiv preprint
arXiv:2203.06486.

7341

https://www.anthropic.com/news/claude-3-family
https://www.anthropic.com/news/claude-3-family


Feng Li, Renrui Zhang, Hao Zhang, Yuanhan Zhang,
Bo Li, Wei Li, Zejun Ma, and Chunyuan Li. 2024a.
Llava-next-interleave: Tackling multi-image, video,
and 3d in large multimodal models. arXiv preprint
arXiv:2407.07895.

Kaixin Li, Yuchen Tian, Qisheng Hu, Ziyang Luo, Zhiy-
ong Huang, and Jing Ma. 2024b. Mmcode: Bench-
marking multimodal large language models for code
generation with visually rich programming problems.
In Findings of the Association for Computational
Linguistics: EMNLP 2024, pages 736–783.

Fuxiao Liu, Xiaoyang Wang, Wenlin Yao, Jianshu Chen,
Kaiqiang Song, Sangwoo Cho, Yaser Yacoob, and
Dong Yu. 2023a. Mmc: Advancing multimodal
chart understanding with large-scale instruction tun-
ing. arXiv preprint arXiv:2311.10774.

Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae
Lee. 2023b. Improved baselines with visual instruc-
tion tuning.

Haotian Liu, Chunyuan Li, Yuheng Li, Bo Li, Yuanhan
Zhang, Sheng Shen, and Yong Jae Lee. 2024. Llava-
next: Improved reasoning, ocr, and world knowledge.

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae
Lee. 2023c. Visual instruction tuning.

Haoyu Lu, Wen Liu, Bo Zhang, Bingxuan Wang, Kai
Dong, Bo Liu, Jingxiang Sun, Tongzheng Ren, Zhu-
oshu Li, Hao Yang, et al. 2024. Deepseek-vl: towards
real-world vision-language understanding. arXiv
preprint arXiv:2403.05525.

Xianzhen Luo, Qingfu Zhu, Zhiming Zhang, Libo
Qin, Xuanyu Zhang, Qing Yang, Dongliang Xu, and
Wanxiang Che. 2024. Python is not always the best
choice: Embracing multilingual program of thoughts.
In Proceedings of the 2024 Conference on Empiri-
cal Methods in Natural Language Processing, pages
7185–7212.

Ahmed Masry, Parsa Kavehzadeh, Xuan Long Do,
Enamul Hoque, and Shafiq Joty. 2023. Unichart:
A universal vision-language pretrained model for
chart comprehension and reasoning. arXiv preprint
arXiv:2305.14761.

Fanqing Meng, Wenqi Shao, Quanfeng Lu, Peng Gao,
Kaipeng Zhang, Yu Qiao, and Ping Luo. 2024. Char-
tassisstant: A universal chart multimodal language
model via chart-to-table pre-training and multitask
instruction tuning. arXiv preprint arXiv:2401.02384.

Nitesh Methani, Pritha Ganguly, Mitesh M Khapra, and
Pratyush Kumar. 2020. Plotqa: Reasoning over sci-
entific plots. In Proceedings of the IEEE/CVF Win-
ter Conference on Applications of Computer Vision,
pages 1527–1536.

OpenAI. 2023. Gpt-4v(ision) system card.

OpenAI. 2024. Gpt-4o. Accessed: 2024-05-13.

Qwen Team. 2024. Qwen2.5: A party of foundation
models.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sas-
try, Amanda Askell, Pamela Mishkin, Jack Clark,
et al. 2021. Learning transferable visual models from
natural language supervision. In International confer-
ence on machine learning, pages 8748–8763. PMLR.

Chufan Shi, Cheng Yang, Yaxin Liu, Bo Shui, Junjie
Wang, Mohan Jing, Linran Xu, Xinyu Zhu, Siheng Li,
Yuxiang Zhang, et al. 2024. Chartmimic: Evaluating
lmm’s cross-modal reasoning capability via chart-to-
code generation. arXiv preprint arXiv:2406.09961.

Chenglei Si, Yanzhe Zhang, Zhengyuan Yang, Ruibo
Liu, and Diyi Yang. 2024. Design2code: How far are
we from automating front-end engineering? arXiv
preprint arXiv:2403.03163.

Amanpreet Singh, Vivek Natarajan, Meet Shah,
Yu Jiang, Xinlei Chen, Dhruv Batra, Devi Parikh,
and Marcus Rohrbach. 2019. Towards vqa models
that can read. In Proceedings of the IEEE/CVF con-
ference on computer vision and pattern recognition,
pages 8317–8326.

Gemini Team, Rohan Anil, Sebastian Borgeaud, Jean-
Baptiste Alayrac, Jiahui Yu, Radu Soricut, Johan
Schalkwyk, Andrew M Dai, Anja Hauth, Katie
Millican, et al. 2023. Gemini: a family of
highly capable multimodal models. arXiv preprint
arXiv:2312.11805.

Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhi-
hao Fan, Jinze Bai, Keqin Chen, Xuejing Liu, Jialin
Wang, Wenbin Ge, et al. 2024a. Qwen2-vl: Enhanc-
ing vision-language model’s perception of the world
at any resolution. arXiv preprint arXiv:2409.12191.

Wenhai Wang, Zhe Chen, Xiaokang Chen, Jiannan Wu,
Xizhou Zhu, Gang Zeng, Ping Luo, Tong Lu, Jie
Zhou, Yu Qiao, et al. 2024b. Visionllm: Large
language model is also an open-ended decoder for
vision-centric tasks. Advances in Neural Information
Processing Systems, 36.

Zirui Wang, Mengzhou Xia, Luxi He, Howard Chen,
Yitao Liu, Richard Zhu, Kaiqu Liang, Xindi Wu,
Haotian Liu, Sadhika Malladi, et al. 2024c. Charxiv:
Charting gaps in realistic chart understanding in mul-
timodal llms. arXiv preprint arXiv:2406.18521.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
et al. 2022. Chain-of-thought prompting elicits rea-
soning in large language models. Advances in neural
information processing systems, 35:24824–24837.

Chengyue Wu, Yixiao Ge, Qiushan Guo, Jiahao Wang,
Zhixuan Liang, Zeyu Lu, Ying Shan, and Ping Luo.
2024. Plot2code: A comprehensive benchmark for
evaluating multi-modal large language models in
code generation from scientific plots. arXiv preprint
arXiv:2405.07990.

7342

https://llava-vl.github.io/blog/2024-01-30-llava-next/
https://llava-vl.github.io/blog/2024-01-30-llava-next/
https://openai.com/index/gpt-4v-system-card/
https://openai.com/index/hello-gpt-4o
https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwen2.5/


Renqiu Xia, Bo Zhang, Hancheng Ye, Xiangchao
Yan, Qi Liu, Hongbin Zhou, Zijun Chen, Min
Dou, Botian Shi, Junchi Yan, et al. 2024. Chartx
& chartvlm: A versatile benchmark and founda-
tion model for complicated chart reasoning. arXiv
preprint arXiv:2402.12185.

Can Xu, Qingfeng Sun, Kai Zheng, Xiubo Geng,
Pu Zhao, Jiazhan Feng, Chongyang Tao, and Daxin
Jiang. 2023. Wizardlm: Empowering large lan-
guage models to follow complex instructions. arXiv
preprint arXiv:2304.12244.

Zhishen Yang, Raj Dabre, Hideki Tanaka, and Naoaki
Okazaki. 2024. Scicap+: A knowledge augmented
dataset to study the challenges of scientific figure
captioning. Journal of Natural Language Processing,
31(3):1140–1165.

Yuan Yao, Tianyu Yu, Ao Zhang, Chongyi Wang,
Junbo Cui, Hongji Zhu, Tianchi Cai, Haoyu Li,
Weilin Zhao, Zhihui He, et al. 2024. Minicpm-v:
A gpt-4v level mllm on your phone. arXiv preprint
arXiv:2408.01800.

Yahan Yu, Duzhen Zhang, Yong Ren, Xuanle Zhao, Xi-
uyi Chen, and Chenhui Chu. 2025. Progressive lora
for multimodal continual instruction tuning. In Find-
ings of the Association for Computational Linguistics
ACL 2025.

Sukmin Yun, Haokun Lin, Rusiru Thushara, Moham-
mad Qazim Bhat, Yongxin Wang, Zutao Jiang,
Mingkai Deng, Jinhong Wang, Tianhua Tao, Junbo
Li, et al. 2024. Web2code: A large-scale webpage-
to-code dataset and evaluation framework for multi-
modal llms. arXiv preprint arXiv:2406.20098.

Xiaohua Zhai, Basil Mustafa, Alexander Kolesnikov,
and Lucas Beyer. 2023a. Sigmoid loss for lan-
guage image pre-training. 2023 IEEE/CVF Interna-
tional Conference on Computer Vision (ICCV), pages
11941–11952.

Xiaohua Zhai, Basil Mustafa, Alexander Kolesnikov,
and Lucas Beyer. 2023b. Sigmoid loss for language
image pre-training. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages
11975–11986.

Duzhen Zhang, Yong Ren, Zhong-Zhi Li, Yahan Yu, Ji-
ahua Dong, Chenxing Li, Zhilong Ji, and Jinfeng Bai.
2025. Enhancing multimodal continual instruction
tuning with branchlora. In Proceedings of the 63rd
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers).

Fengji Zhang, Linquan Wu, Huiyu Bai, Guancheng Lin,
Xiao Li, Xiao Yu, Yue Wang, Bei Chen, and Jacky
Keung. 2024a. Humaneval-v: Evaluating visual un-
derstanding and reasoning abilities of large multi-
modal models through coding tasks. arXiv preprint
arXiv:2410.12381.

Liang Zhang, Anwen Hu, Haiyang Xu, Ming Yan,
Yichen Xu, Qin Jin, Ji Zhang, and Fei Huang. 2024b.

Tinychart: Efficient chart understanding with visual
token merging and program-of-thoughts learning.
arXiv preprint arXiv:2404.16635.

Wenqi Zhang, Zhenglin Cheng, Yuanyu He, Mengna
Wang, Yongliang Shen, Zeqi Tan, Guiyang Hou,
Mingqian He, Yanna Ma, Weiming Lu, et al. 2024c.
Multimodal self-instruct: Synthetic abstract image
and visual reasoning instruction using language
model. arXiv preprint arXiv:2407.07053.

Zhehao Zhang, Weicheng Ma, and Soroush Vosoughi.
2024d. Is gpt-4v (ision) all you need for automat-
ing academic data visualization? exploring vision-
language models’ capability in reproducing academic
charts. In Findings of the Association for Computa-
tional Linguistics: EMNLP 2024, pages 8271–8288.

Xuanle Zhao, Xuexin Liu, Haoyue Yang, Xianzhen Luo,
Fanhu Zeng, Jianling Li, Qi Shi, and Chi Chen. 2025.
Chartedit: How far are mllms from automating chart
analysis? evaluating mllms’ capability via chart edit-
ing. arXiv preprint arXiv:2505.11935.

Wenqing Zheng, S P Sharan, Ajay Jaiswal, Kevin Wang,
Yihan Xi, Dejia Xu, and Zhangyang Wang. 2023.
Outline, then details: Syntactically guided coarse-to-
fine code generation. In International Conference on
Machine Learning.

7343



A Appendix

A.1 Implementation Details

In the data generation stage, we utilize
gpt-4o-2024-08-06 as the LLM for both
direct and step-by-step generation processes.

In the training stage, ChartCoder is initialized
with SigLIP-384 (Radford et al., 2021) as the vi-
sion encoder and DeepSeek Coder 6.7B (Guo et al.,
2024) as the large language model. The whole
training process is divided into alignment and in-
struction tuning. During the alignment stage, we
only train the vision-language connector with the
chart-to-text alignment data. The learning rate is
set to 1e-3. In the instruction tuning stage, we train
the entire model for 1 epoch with a batchsize of
128. The learning rate of SigLIP and other modules
are 5e-6 and 1e-5 respectively, with a warmup at
the beginning of 3%, then decays to 0 at the end
of training. The alignment and instruction tuning
processes cost 12 and 5 hours on 32 Tesla A100
GPUs with 80 GB VRAMs.

A.2 Benchmark Details

ChartMimic (Shi et al., 2024) focuses on evalu-
ating the ability of MLLMs to redraw charts from
ArXiv papers, emphasizing the preservation of the
original style and appearance. It consists of two
subsets: testmini and test. Following the settings in
the original paper, we adopt the Direct Mimic task
on the testmini subset as the default evaluation stan-
dard, reporting execution success rates alongside
low-level and high-level scores.

Plot2Code (Wu et al., 2024) aims to evaluate
models’ abilities to generate code corresponding to
charts from the available Matplotlib galleries, with
a focus on textual similarity. We evaluate models
on its Direct Asking task using three metrics: Pass
Rate, Text-Match, and Rating.

ChartX (Xia et al., 2024) contains various tasks
with synthesis chart images, including Question
Answering, Summarization, Description and Re-
drawing. We choose the Redrawing task and report
the GPT score as the metrics in ChartX.

A.3 More Ablation Studies

We also perform more ablation studies on the lan-
guage backbone and further choose Qwen2.5-7B
and Qwen2.5 Coder-7B (Qwen Team, 2024) for
comparison. The results also show that using Code
LLM as the language backbone is better than us-
ing general LLM. However, we find that using the

Methods
ChartMimic

Exec.Rate Low-Level High-Level

ChartCoder 91.4 77.4 74.0

Replace Language Backbone

Qwen2.5 88.1 73.4 67.9
△ -3.3 -4.0 -6.1

Qwen2.5 Coder 90.3 76.8 69.7
△ -1.1 -0.6 -4.3

Table 8: The ablation studies on model architecture
and data. The results show that the effectiveness of our
proposed model architecture and dataset.

Dataset Source Code Readability

Mean µ SD σ
Qwen2-VL-7B Output Model generated 82.48 6.81
ChartCoder Output Model generated 85.22 6.78
ChartMimic Source Human written 87.66 4.30

Table 9: Performance Comparison of model outputs and
human-written sources. SD is the abbreviation ddfor
standard deviation.

Qwen2.5 Coder as the backbone does not perform
as well as using the DeepSeek Coder. This obser-
vation seems counterintuitive, as the official evalua-
tion suggests that the performance of the Qwen2.5
Coder is better than the DeepSeek Coder. We an-
alyze experimental results and find that the code
generated by Qwen2.5 is more standardized. For
instance, the DeepSeek Coder backbone tends to
use ax[0], ax[1], while the Qwen2.5 Coder back-
bone prefers a more standardized approach, such
as using for i in range(2): ax[i]. However,
in some complex scenarios, using a for loop may
lead to errors, such as ax[0] and ax[1] do not
have same number of bars.

A.4 Output Code Analysis

To evaluate the output code readability, we
conduct an ablation experiment, utilizing
gpt-4o-2024-08-06 to evaluate the output code
readability. We evaluate four aspects of the gener-
ated code, including Naming Conventions, Code
Structure, Comments, and Logical Clarity, with a
total score of 100. We choose the generated code
from the ChartMimic task (ChartCoder output)
and the ground truth code (human-annotated) in
the ChartMimic dataset. The results are as shown
in Table 9. We also evaluate the error types on
ChartMimic direct generation tasks with code and
general LLMs as the language backbone. The
results are shown in Figure 4.

7344



Figure 4: Comparison of error types on ChartMimic
direct generation tasks with code and general LLMs as
language backbone, respectively.

Type pie line bar bar_num

Percent 8.0% 9.7% 8.3% 3.3%

Type 3d area box bubble

Percent 5.6% 3.9% 4.4% 2.8%

Type candlestick funnel heatmap multi-axes

Percent 2.8% 2.7% 3.9% 3.8%

Type rader ring pie rose

Percent 3.8% 2.7% 2.8% 3.9%

Type treemap violin scatter quiver

Percent 3.9% 3.9% 3.8% 5.2%

Type inset histogram graph error bar

Percent 1.2% 1.2% 1.2% 1.6%

Type error point density Combination Total

Percent 1.6% 1.2% 2.8% 100%

Table 10: Type distributions of the Chart2Code-160k
instruction-tuning dataset.

A.5 Chart2Code-160k Analysis
We count the proportion of different charts in the
Chart2Code-160k dataset in Table 10. Also, we
utilize gpt-4o-2024-08-06 to evaluate the quality
of the charts in the Chart2Code-160k and compare
them with the real-world chart. The prompts are
shown in Figure 8.

7345



" <Original Instruction > " :
" '{  \"title\": \"Ten most popular F.C. Internazionale Milano players on Instagram as of May 29 , 2020 (in million 
followers)\",  \"players\": [    {      \"name\": \"Lukaku\",      \"followers\": 5.3    },    {      \"name\": \"Young\",      
\"followers\": 2.49    },    {      \"name\": \"Godín\",      \"followers\": 1.81    },    {      \"name\": \"Martínez\",      
\"followers\": 1.75    },    {      \"name\": \"Asamoah\",      \"followers\": 0.93    },    {      \"name\": \"Brozovic\",     
\"followers\": 0.83    },    {      \"name\": \"Skriniar\",      \"followers\": 0.65    },    {      \"name\": \"D'Ambrosio\",  
\"followers\": 0.57    },    {      \"name\": \"De Vrij\",      \"followers\": 0.49    },    {      \"name\": \"Barella\",      
\"followers\": 0.46    }  ]}'. It's a correct json file transferred from the image. Please answer whether it's true or false." 
" < Label > " :
" False " 
MiniCPM-Lllama3-V2.5 Output
" < Original Response > " :
"True" ❌

" < Instruction with Code> ":
"< Code >\nYou can use the above code as the reference to solve the problem, but focus on extracting information 
from the image to answer the following problem.\n< Original Instruction >" 
MiniCPM-Lllama3-V2.5 Output
“< Response with Code > ":
“ The provided JSON data is not related to the original image or the bar chart displayed in the code. It represents a 
different set of data concerning the per capita real GDP of Massachusetts from 2000 to 2019, measured in chained 
2012 U.S. dollars. The data in the JSON file does not correspond to the content of the bar chart, which displays 
Instagram followers for soccer players from Interazionale Milano as of May 29, 2020. Therefore, the statement that 
this is a correct JSON file transferred from the image is false.”✅

ChartCoder Output
" < Code > "
" ```python\nimport matplotlib.pyplot as 
plt\nimport os\n\n# Data\nplayers = [‘Ashley 
Young’, ‘Danilo Ambrosio’, ‘Diego Godinho’, 
‘Kwadwo Asamoah’, ‘Laurento Brozovic’, 
‘Marcelo Brozovic’, ‘Milan Skriniar’,
Brozovic’ ‘Nicolo Barrella’, ‘Romelu Lukaku’, 
‘Stefan De Vrij’]\nfollowers = [2.5, 0.7, 1.8, 
0.9, 1.9, 0.8, 0.6, 0.4, 5.4, 0.5] ……``` "

Figure 5: A case study comparing the outputs of utilizing image and image+code as the inputs

import matplotlib.pyplot as plt
import numpy as np
# Data
models = ['GPT4', 'GPT-few-shot', 'GPT3.5', 'StarCoder', 'Code Llama', 'NCL']
accuracy = [3.5, 3.0, 2.5, 3.0, 3.5, 2.0]
completeness = [3.0, 2.5, 2.0, 2.5, 3.0, 1.5]
conciseness = [2.5, 2.0, 1.5, 2.0, 2.5, 1.0]
readability = [3.0, 2.5, 2.0, 2.5, 3.0, 1.5]
barWidth = 0.2
r1 = np.arange(len(models))
r2 = [x + barWidth for x in r1]
r3 = [x + barWidth for x in r2]
r4 = [x + barWidth for x in r3]
# Create the figure and the axes
fig, ax = plt.subplots(figsize=(10.0, 5.0))
# Plot the bars
ax.bar(r1, accuracy, color='#4682b4', width=barWidth, label='Accuracy')
ax.bar(r2, completeness, color='#ff7f0e', width=barWidth, label='Completeness')
ax.bar(r3, conciseness, color='#d62728', width=barWidth, label='Conciseness')
ax.bar(r4, readability, color='#5f9ea0', width=barWidth, label='Readability')
# Add xticks on the middle of the group bars
ax.set_xlabel('Language Models', fontweight='medium')
ax.set_ylabel('Ratings', fontweight='medium')
ax.set_title('Ratings of Language Models on a Scale from 1-4', fontweight='medium')
ax.set_xticks([r + barWidth for r in range(len(models))])
ax.set_xticklabels(models)
# Create legend & Show graphic
ax.legend(loc='upper right', fontsize='large')
plt.tight_layout()

import matplotlib.pyplot as plt
import numpy as np
# Data
models = ['GPT4', 'GPT-few-shot', 'GPT3.5', 'StarCoder', 'Code Llama', 'NCL']
accuracy = [3.5, 3.0, 3.0, 3.0, 3.5, 2.5]
completeness = [3.0, 2.5, 2.5, 2.5, 3.0, 2.0]
conciseness = [2.5, 2.0, 2.0, 2.0, 2.5, 1.5]
readability = [3.0, 3.0, 2.5, 3.0, 3.0, 2.5]
x = np.arange(len(models)) # the label locations
width = 0.2 # the width of the bars
# Plot
fig, ax = plt.subplots(figsize=(9.0, 5.0))
rects1 = ax.bar(x - 1.5*width, accuracy, width, label='Accuracy', color='#4f81bd')
rects2 = ax.bar(x - 0.5*width, completeness, width, label='Completeness', color='#f79646')
rects3 = ax.bar(x + 0.5*width, conciseness, width, label='Conciseness', color='#c0504d')
rects4 = ax.bar(x + 1.5*width, readability, width, label='Readability', color='#9bbb59')
# Add some text for labels, title and custom x-axis tick labels, etc.
ax.set_xlabel('Language Models')
ax.set_ylabel('Ratings')
ax.set_title('Ratings of Language Models on a Scale from 1-4')
ax.set_xticks(x)
ax.set_xticklabels(models)
ax.legend()
fig.tight_layout()

import matplotlib.pyplot as plt

# Data for the bar chart
ratings = {
'GPT4': {'Accuracy': 3.5, 'Completeness': 3.0, 'Consensus': 2.5, 'Readability': 3.0},
'GPT-few-shot': {'Accuracy': 3.0, 'Completeness': 2.5, 'Consensus': 2.0, 'Readability': 2.5},
'GPT3.5': {'Accuracy': 2.5, 'Completeness': 2.0, 'Consensus': 1.5, 'Readability': 2.0},
'StarCoder': {'Accuracy': 3.0, 'Completeness': 2.5, 'Consensus': 2.0, 'Readability': 2.5},
'Code Llama': {'Accuracy': 3.5, 'Completeness': 3.0, 'Consensus': 2.5, 'Readability': 3.0},
'NCL': {'Accuracy': 2.0, 'Completeness': 1.5, 'Consensus': 1.0, 'Readability': 1.5}
}
# Set up the figure and axes
fig, ax = plt.subplots(figsize=(9.0, 5.0))
# Plot the bars
for model, ratings in ratings.items():
    accuracy = ratings['Accuracy’]
    completeness = ratings['Completeness’]
    consensus = ratings['Consensus’]
    readability = ratings['Readability’]
    ax.bar(model, [accuracy, completeness, consensus, readability])
# Set the x and y tick labels
ax.set_xticks(['Accuracy', 'Completeness', 'Consensus', 'Readability'])
ax.set_yticks(range(1, 4))
# Set the x tick labels
ax.set_xticklabels(['Accuracy', 'Completeness', 'Consensus', 'Readability'])
# Set the y tick labels
ax.set_yticklabels(['1', '2', '3', '4'])
# Set the title
ax.set_title('Ratings of Language Models on a Scale from 1-4')

import matplotlib.pyplot as plt
import numpy as np

# Data
models = ['GPT4', 'GPT-few-shot', 'GPT3.5', 'StarCoder', 'Code Llama', 'NCL']
accuracy = [3.5, 3.0, 2.5, 3.0, 3.5, 2.0]
completeness = [3.0, 2.5, 2.0, 2.5, 3.0, 1.5]
conciseness = [2.5, 2.0, 1.5, 2.0, 2.5, 1.0]
readability = [3.0, 2.5, 2.0, 2.5, 3.0, 1.5]

# Plotting
fig, ax = plt.subplots(figsize=(9.0, 5.0))

x = np.arange(len(models))
width = 0.2

ax.bar(x - 1.5*width, accuracy, width, label='Accuracy', color='blue')
ax.bar(x - 0.5*width, completeness, width, label='Completeness', color='orange')
ax.bar(x + 0.5*width, conciseness, width, label='Conciseness', color='red')
ax.bar(x + 1.5*width, readability, width, label='Readability', color='green')

ax.set_ylabel('Ratings')
ax.set_title('Ratings of Language Models on a Scale from 1-4')
ax.set_xticks(x)
ax.set_xticklabels(models)
ax.legend()

InternVL2-Llama3-76B Output

ChartCoder OutputGPT-4o Output

InternVL2-B Output

You are an expert Python developer who specializes in 
writing matplotlib code based on a given picture. I 
found a very nice picture in a STEM paper, but there is 
no corresponding source code available. I need your 
help to generate the Python code that can reproduce the 
picture based on the picture I provide. Note that it is 
necessary to use figsize=(9.0, 5.0) to set the image 
size to match the original size. Now, please give me 
the matplotlib code that reproduces the picture below.

Instruction

Figure 6: A example of comparing the code corresponding to the bar chart generated by different models.

7346



Prompt for Code Readability Evaluation

Please score the code’s readability based on the following four aspects. Each aspect is worth 25
points, for a total of 100 points.
Naming Conventions (25 points)
Score: [X]/25
Explanation: [Provide a brief explanation of how well the variable, function, and class names
convey their purpose and whether the naming style is consistent across the codebase.]
Code Structure (25 points)
Score: [X]/25
Explanation: [Explain whether functions are concise, whether the code uses indentation and blank
lines appropriately, and whether the code is modularized effectively.]
Comments (25 points)
Score: [X]/25
Explanation: [Discuss the clarity and appropriateness of the comments, and whether func-
tions/methods have proper documentation comments explaining inputs, outputs, and functionality.]
Logical Clarity (25 points)
Score: [X]/25
Explanation: [Evaluate the intuitiveness of the code, whether it’s easy to understand, and whether
the control flow is simple and avoids unnecessary complexity.]
Total Score: [X]/100
Summary: [Provide a brief overall assessment of the code’s readability, pointing out strengths and
potential areas for improvement.]

Figure 7: Prompt for dataset quality evaluation.

7347



Prompt for Chart Quality Evaluation

You are a professional chart analyser. Please evaluate the image based on the following four
criteria: aesthetics, readability, reproducibility, and data presentation simplicity. Provide a score
for each criterion and include an overall score along with a brief evaluation.
Scoring Criteria and Requirements:
Aesthetics (25 points)
Requirements:
The chart design should be simple and clear, avoiding complex decorations, and should effectively
communicate information.
Colors should be harmonious and have high contrast, making it easy to differentiate between
different data groups.
Legends and labels should be clear, with appropriately sized fonts, avoiding visual clutter.
Scoring: [X]/25
Readability (30 points)
Requirements:
The chart should have clear titles, axis labels, and legends, enabling quick communication of the
main message.
Data curves or point annotations should avoid being overly dense or overlapping, maintaining
good readability.
The overall layout should follow a logical structure without any confusing elements.
Scoring: [X]/30
Reproducibility (30 points)
Requirements:
The chart design should be easy to replicate using common tools.
Data availability is critical: even if the design is simple, missing context or data should result in
point deductions.
Data should be provided with clear sampling methods, units, and formats, enabling others to
recreate the chart from scratch.
The presentation of data should align logically with the chart design, avoiding overly customized
or complex elements.
Scoring: [X]/30
Data Presentation Simplicity (15 points)
Requirements:
Data presentation should be concise, avoiding redundant information.
Data should be displayed in an intuitive way, without excessive curves, points, or annotations.
High-scoring charts should focus on the main data being presented, avoiding decorative or unrelated
information.
Scoring: [X]/15

Figure 8: Prompt for dataset quality evaluation.

7348


