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Abstract

Using Large Language Models (LLMs) to gen-
erate training data can potentially be a prefer-
able way to improve zero or few-shot NLP
tasks. However, many problems remain to be
investigated for this direction. For the task of
Relation Extraction (RE), we find that sam-
ples generated by directly prompting LLMs
may easily have high structural similarities with
each other. They tend to use a limited variety of
phrasing while expressing the relation between
a pair of entities. Therefore, in this paper, we
study how to effectively improve the diversity
of the training samples generated with LLMs
for RE, while also maintaining their correctness.
We first try to make the LLMs produce dis-
similar samples by directly giving instructions
in In-Context Learning (ICL) prompts. Then,
we propose an approach to fine-tune LLMs for
diversity training sample generation through
Direct Preference Optimization (DPO). Our ex-
periments on commonly used RE datasets show
that both attempts can improve the quality of
the generated training data. We also find that
comparing with directly performing RE with
an LLM, training a non-LLM RE model with
its generated samples may lead to better perfor-
mance.

1 Introduction

Relation Extraction (RE) aims to identify and clas-
sify specific relation categories between pairs of
entities from text. It is an important task in in-
formation extraction and has been deeply used in
knowledge graph construction (Zhong et al., 2024),
question and answer systems (Srihari and Li, 2000)
and so on. Existing models (Chen et al., 2022b;
Zhou and Chen, 2022; Paolini et al., 2021) applied
to RE have achieved good results on many bench-
marks. However, since there are various types of
entity relations in different domains, data scarcity
is a common problem while developing RE models
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Ø John Smith died from heart attack at Hospital X on Monday.
Ø Emma Johnson passed away due to complications from 

pregnancy at age 27.
Ø Alice Green died from complications related to childbirth at 

Hospital X on Tuesday.
       ······
Ø Jane Doe passed away due to cancer.
Ø Emily Chen died from an allergic reaction.
Ø Karen Green passed away after a long illness.

Ø Republican Senator Johnson suffers heart attack and dies.
Ø Liberal Representative Garcia killed in shooting by 

domestic terrorist.
Ø Independent Mayor Ramos dies from falling off cliff while 

hike.
······

Ø Federalist Delegate Knight falls to death from high rise 
window jump.

Ø Libertarian Commissioner Wright fatally electrocuted by 
downed power line while investigating.

Ø Socialist Mayor Ramirez collapses from heat stroke brought 
on by extreme heat wave during summer victory speech.
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Figure 1: Training samples generated by LLMs for RE
before and after adopting our approach.

in practice. Existing studies typically address this
problem with techniques such as prototypical net-
works (Liu et al., 2022), meta-learning (Qu et al.,
2020) and prompt-tuning (Chen et al., 2022b) un-
der zero or few-shot settings.

Recently, the powerful generative capabilities of
Large Language Models (LLMs) (OpenAI, 2022,
2023; Brown et al., 2020) have made it possible
to alleviate the data scarcity problem with a new
way: using LLMs to generate extra training data
for the task. In this paper, we study the application
of this approach to relation extraction. We find that
directly prompting LLMs to obtain RE training
samples may easily lead to low diversity results.
An example is shown in the upper part of Figure 1,
the LLM repeatedly uses a limited number of key
verbs or phrases to indicate the relation between
the head and tail entities. The structures of the
sentences are also almost the same.

We therefore focus on how to improve the di-
versity of LLM generated training instances for
RE, while maintaining the correctness. To this end,
several approaches are proposed and tried. First,
we employ the In-Context Learning (ICL) (Wan
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et al., 2023; Dong et al., 2023; Brown et al., 2020)
technique. The most straightforward way to im-
prove diversity through ICL is to directly give the
model an extra instruction in the prompt, asking
it to generate dissimilar samples. In addition, we
also propose a one by one generation procedure,
where each time, the model is instructed to gener-
ate one more training sample that is different from
the given demonstrations.

Conducting ICL cannot change the inherent be-
havior of LLMs. Thus, we also propose an ap-
proach to fine-tune LLMs for diversity RE sample
generation. We adopt Direct Preference Optimiza-
tion (DPO) for fine-tuning, which has been veri-
fied to perform well on many tasks such as sum-
mary generation and single-round conversations
(Rafailov et al., 2023). RE samples that are sim-
ilar with existing ones and incorrect samples are
automatically generated to serve as dispreferred an-
swers to the DPO algorithm, thus training the LLM
to consider both diversity and correctness. The
lower part of Figure 1 is an example of the training
instances obtained through our approach. It can be
seen that these samples generated by the LLMs are
more diverse in terms of the verbs or phrases that
indicate relations, and the overall architectures of
the sentences.

Finally, we conduct extensive experiments on
commonly used RE datasets including three ver-
sions of TACRED and SemEval to evaluate the ef-
fectiveness of our method. We also show that com-
paring with directly performing RE with an LLM,
training a non-LLM RE model with its generated
samples can potentially lead to better performance.

Our main contributions as summarized follows:

• We investigate ICL-based methods for diverse
RE training sample generation with two dif-
ferent procedures: one by one and all at once.

• We propose an approach to fine-tuning LLMs
with DPO that aims for generating diverse and
correct RE training samples. The approach
uses automatically constructed dispreferred
answers, therefore reduces the requirement of
human annotation.

• We provide comprehensive experimental re-
sults to analyze the performance of the pro-
posed methods.

Our code is available at https://github.com/Lzx-
ZBC.

2 Related Work

2.1 Relation Extraction with LLMs
Relation Extraction (RE) aims to extract the rela-
tionship between head and tail entities based on
their relevant context. The task can be approached
by using traditional neural network models such
as CNN and RNN (Zeng et al., 2015; Zhang et al.,
2017; Zhou et al., 2016). Since the proposal of
Pre-Trained Language Models (PLMs) like BERT
(Devlin et al., 2019), PLMs-based RE models has
become the main solution due to their preferable
performance. Alternatively, graph neural networks
can also be employed for conducting RE (Guo et al.,
2020, 2019; Zhang et al., 2018).

Recently, there is an increasing interest in using
LLMs to perform RE directly. Xu et al. (2023) put
a list of all relation categories and concrete samples
in the prompt to make LLMs understand the exact
process of RE. Their experimental results show that
LLMs is capable of producing high quality RE pre-
dictions. Zhang et al. (2023) propose a framework
called QA4RE that coordinates RE with question
and answer (QA). Li et al. (2023) proposes a new
prompting method, SUMASK, which converts the
input into a valid QA format using LLMs by de-
composing RE into text summarization and QA.

2.2 Data Generation with LLMs
Data generation is gradually becoming a new fo-
cus topic. There were already some studies on this
topic before instruction tuned LLMs become popu-
lar (Meng et al., 2022; Ye et al., 2022; Gao et al.,
2023). For example, Meng et al. (2022) gener-
ates training data for NLU tasks such as sentiment
classification through prompting PLMs. With in-
struction tuned LLMs, data generation becomes
more convenient. Chia et al. (2022) proposes a
framework to synthesize unseen relation types by
prompting language models to generate structured
text. Xu et al. (2023) use LLMs to generate data
to assist the models themselves on RE. They ac-
complish this by describing the data content and
samples in detail in the prompt so that LLMs can
generate reasonable data. Recently, as instruc-
tion tuned LLMs have entered the research field,
generating instruction tuned datasets requires care-
ful writing of instructions and input-output pairs,
which are usually written by humans, smaller in
size and less in diversity. To overcome this prob-
lem, self-instruct (Wang et al., 2023) proposes a
method for generating instruction tuned datasets by
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Below is an instruction that describes a task. Please generate appropriate content as 
required.

Definition : One sample in relation extraction datasets consists of a relation, a context, 
a pair of head and tail entities in the context, and their location information.

So please generate a sample for the relation 'XXX'. Please make the generated samples 
as different from the above demonstrations as possible.

### Response:

Task Description Module

Here is a brief explanation of a relationship type :
<concrete explanation>

Relation Explanation Module

Here are some examples:
<example 1>
······
<example n>

Sample Demonstration Module

Self-constructing 
Relation Explanation 

Datasets

"per:age": The age of a person.
······

SemEval

Re-TACRED

TACRED-Revisit

TACRED

Manually Labeled 
Relation Extraction 

Training Dataset

{"token": ["Actor", "Danny", "Glover", "is", "61", "."], 
"h": {"name": "Danny Glover", "pos": [1, 3]}, "t": 
{"name": "61", "pos": [4, 5]}, "relation": "per:age"}

                  ······TACRED

TACRED-Revisit

Re-TACRED

SemEval

Construction of Prompt

Training samples for RE

Output

Figure 2: Construction of Prompt, which consists of three modules: Task Description Module, Relation Explanation
Module and Sample Demonstration Module.

prompting available LLMs. The results show that
the data generated by LLMs can improve their clas-
sification ability on RE. However, they do not put a
specific focus on how the diversity and correctness
of the generated training samples can be improved.

3 Methodology

In this section, we first introduce how we generate
training samples for RE by directly performing in-
context learning with LLMs. Then, we describe our
approch to fine-tune LLMs for diverse and correct
sample generation with DPO.

3.1 Sample Generation with ICL

To apply in-context learning (ICL), we provide
sample demonstrations for LLMs in the prompt
to stimulate their understanding of the training in-
stances for the relation extraction task. With the
demonstrations, the straightforward way to prompt
LLMs is to instruct them to directly generate the
training samples all at once. Here, in addition,
we adopt an alternative way. We generate training
samples one by one instead of all at once. Doing
so enables the training samples generated by the
LLMs to be added back to the prompt, allowing us
to instruct the model not to generate new samples
similar with the already existing ones. Next, we
introduce this method in detail. The method of gen-
erating all at once will be explained in the experi-
mental Results and Analysis section. The prompt
for LLMs constructed by us are shown in Figure

2. It includes three modules: task description, rela-
tion explanation and sample demonstration. Their
specific contents are as follows:

Task Description Module. The Task Descrip-
tion Module covers the beginning and the end of
the full prompt. At the beginning of the prompt,
we tell LLMs that it will accomplish the task of
generating training samples for relation extraction,
and detail that a sentence-level training sample for
RE includes the key information of text, head and
tail entities with their locations, and the relation cat-
egory. At the end of the prompt, we order LLMs to
generate new training samples for the relation cate-
gory described in the Relation Explanation Module,
and require that the generated training samples be
as different as possible from the provided demon-
strations in the Sample Demonstration Module.

Relation Explanation Module. We construct a
corresponding explanation for each relation cate-
gory in the relation extraction dataset, and then put
them into the Relation Explanation Module to al-
low the LLMs to further understand the relation
type. The details of the explanations for all relation
categories are provided in Appendix A.2.

Sample Demonstration Module. For a specific
relation category, we randomly select a manually
labeled sample from the existing relation extraction
dataset and put it into the Sample Demonstration
Module for LLMs’ reference, so that LLMs can
further understand the structure and content of the
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"instruction": "Below is an instruction that describes a task. Please generate appropriate 
content as required.\n\nDefinition : ······Please make the generated samples as 
different from the above demonstrations as possible.\n\n### Response:\n",
        

instruction

  
"output": [
            "{"token": ["Zagat", "Survey", ",", "the", "guide", "empire", "that", ······, ",", 
"according", "to", "people", "briefed", "on", "the", "decision", "."], "h": {"name": "Zagat", 
"pos": [0, 1]}, "t": {"name": "1979", "pos": [17, 18]}, "relation": "org:founded"}",

            "{"token": ["The", "ABC", ",", ······, "-LRB-", "ACP", "-RRB-", "."], "h": 
{"name": "ABC", "pos": [1, 2]}, "t": {"name": "four months ago", "pos": [5, 8]}, "relation": 
"org:country_of_headquarters"}"
        ]

output

Non-preference data

Manually Labeled 
Relation Extraction 

Training Dataset

ICL Prompt

preference data
 

Figure 3: Construction of the DPO Fine-Tuning Training Dataset.

relation extraction training samples that need to be
generated. Once LLMs have completed one gen-
eration, the generated training instance is moved
back to the Sample Demonstration Module to form
a new Prompt. Under cyclic generation, the num-
ber of demonstration samples in this module will
increase one by one as the number of generated
samples increases.

3.2 Diversity Fine-tuning with DPO
Direct Preference Optimization (DPO) is an au-
tomated fine-tuning method that optimizes model
parameters by maximizing the rewards of a pre-
trained model on a specific task. Compared to
traditional fine-tuning methods, DPO bypasses the
step of modeling the reward function and instead
improves performance by optimizing the model
directly on the preference data. Given a human
preference dataset D = {(xi, yi,1, yi,2)}, where
yi,1 is preference data, yi,2 is non-preference data,
the following objective can be optimized:

max
π

Σi log σ

(
1

β
log

π(yi,1|xi)
π(yi,2|xi)

)
, (1)

where π(y|x) is the optimization strategy. Accord-
ing to this equation, the key to DPO fine-tuning is
to construct suitable preference and non-preference
data for LLMs to make comparisons.

Construction of the DPO Fine-Tuning Data.
Each training instance for DPO consists of an
input prompt ("instruction"), as well as two re-
sponses ("output"): a preferred response and an
non-preferred response. As shown in Figure 3, we

use the previously described ICL prompt as "in-
struction". Both the preference and non-preference
data will be placed in the "Output". The preference
data is a random sample of the target relation cate-
gory directly extracted from the manually labeled
dataset. The non-preference data is constructed
in the following three ways: (1) Use a manually
labeled training sample that belongs to another re-
lation category, and modify its label to the target
relation category. This constructs an sample that
is incorrectly annotated as the target relation. (2)
Choose a demonstration sample in the “Instruction”
item, then replace the head and tail entities, and add
or delete a few words in the context. This creates
an instance that is similar to one of the demonstra-
tion samples. (3) Use a sample that is exactly the
same as one of the demonstration samples in the
“Instruction” item.

Here, note that since we focus on the data
scarcity scenario, there won’t be enough manu-
ally annotated data of the target relation types for
DPO fine-tuning. Thus, the source data for DPO
should come from other already existing datasets
that probably use different relation types or are of
different domains. In our experiments, to mimic
such a scenario, we split the datasets by relation
categories and use different parts for DPO and sam-
ple generation, respectively. This will be detailed
in the Experimental Settings section.

Imitating One by One Generation. As shown
in Figure 4, in order for the DPO fine-tuning to
reflect the one by one generation process, for each
relation category, we let the number of demonstra-
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{Content in Prompt above Sample Explanation Module}

{Content in Prompt below Sample Explanation Module}

[ Preferred data，

Non-preferred data]

                  

Instruction of current training data

Output of previous training data

Here are some examples:
<example 1>
 ······
<example n>
<example n + 1>

Sample Demonstration Module

Figure 4: Imitating one by one generation during Direct
Preference Optimization.

tion samples in the “Instruction” item of the DPO
fine-tuning training dataset increment, specifically
by placing the preferred manually labeled training
samples from the “Output” item of the previous
training data into the Sample Demonstration Mod-
ule of the current training data while forming the
“Instruction” item of new training data.

4 Experimental Settings

4.1 Datasets
We conduct experiments on SemEval and three
versions of TACRED: SemEval 2010 Task 8 (Se-
mEval) (Hendrickx et al., 2010), TACRED (Zhang
et al., 2017), TACRED-Revisit (Alt et al., 2020),
Re-TACRED (Stoica et al., 2021). Statistical de-
tails are given in Table 1 and Appendix A.1.

Dataset Train Val Test Relation
SemEval 6,507 1,493 2,717 19
TACRED 68,124 22,631 15,509 42
TACRED-Revisit 68,124 22,631 15,509 42
Re-TACRED 58,465 19,584 13,418 40

Table 1: Statistics of the RE datasets. Including the
numbers of instances in different splits and the numbers
of relations.

4.2 Evaluation
Considering that it is difficult to directly assess
the quality of the generated training samples, we
put the generated training samples into the Know-
Prompt (Chen et al., 2022b) and RetrievalRE (Chen
et al., 2022a) for training. KnowPrompt achieves
satisfying performance by Knowledge Injection
and Synergistic Optimization. RetrievalRE, on the

other hand, improves the generalization ability of
the model when dealing with difficult patterns by
combining retrieval enhancement and prompt tun-
ing. Their performance on the test dataset reflects
the quality of the generated training samples. The
better the performance of them, the higher the qual-
ity of the generated training samples.

Finally, we follow existing RE studies and adopt
Micro F1 as the evaluation metric.

4.3 Implementation Details
For KnowPrompt and RetrievalRE, we follow
(Chen et al., 2022b,a) and use RoBERTA_LARGE
(Liu et al., 2019) in all the experiments for a fair
comparison. For LLMs, considering the cost and
fine-tuning requirements, we used LLaMA2-7b-
Chat (Touvron et al., 2023) in our experiments. We
set temperature = 0.4, top_p = 0.9, top_k = 20, repe-
tition_penalty = 1.15. Meanwhile, we use LoRA to
accomplish DPO fine-tuning of LLMs. We set trun-
cation length = 1024, learning rate = 5e-5, batch
size = 4, epoch = 20.

In order to prevent the risk of “cheating” on
LLMs generation caused by DPO fine-tuning, we
separated the relation categories used for DPO fine-
tuning from those to be generated. Specifically,
for each dataset, we divide the relation categories
in half, thereby also partition the dataset into two
parts. Then one part is used for DPO fine-tuning,
and the other part is used for sample generation.
By swapping the two parts, we are able to complete
the sample generation of all relation categories.

5 Results and Analysis

5.1 Main Results
We compare with directly conducting RE using
the LLM through ICL, and directly training Know-
Prompt and RetrievalRE using only manually la-
beled data. The results are in Table 2. For Direct-
RE, 2 samples are used as demonstrations. For
our methods, 64 samples are generated for training.
Note that in practice, more generated samples can
be used if the performance can be further improved.
An analysis over the number of generated samples
is provided in Section 5.4.

Comparing to Manually Labeled Training Sam-
ples. In Table 2, Ours (pure) only uses the LLM-
generated samples for training, while KnowPrompt
and RetrievalRE only uses the manually labeled
samples. The performance of Ours (pure) is com-
parable to that of KnowPrompt and RetrievalRE on
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Method
TACRED TACRED-Revisit Re-TACRED SemEval

K=8 K=16 K=32 K=8 K=16 K=32 K=8 K=16 K=32 K=8 K=16 K=32

Direct-RE 21.17 21.82 33.30 25.55

Data Generation 21.67 24.71 26.19 23.14 27.89 29.80 28.52 32.21 32.04 - - -
KnowPrompt 22.07 30.00 36.33 26.31 30.76 34.61 44.77 56.51 62.34 61.39 74.08 81.06
Ours (pure) 22.48 27.99 30.41 23.04 29.25 31.12 34.77 40.33 50.72 42.02 45.05 47.70

Ours (mix-OBO) 33.48 34.93 36.25 34.33 34.39 35.27 57.41 61.09 64.58 67.92 75.36 80.40
Ours (mix-AAO) 34.30 35.56 35.66 34.15 34.77 35.65 56.01 59.97 63.55 70.32 76.36 80.46
Ours (constant) 17.39 21.71 - 18.39 22.22 - 36.01 39.53 - 22.32 30.53 -

Data Generation 24.97 30.54 25.99 27.67 28.46 29.48 31.21 35.03 35.94 - - -
RetrievalRE 32.04 35.16 37.07 28.95 32.34 37.26 33.73 55.79 61.80 72.53 81.42 83.93
Ours (pure) 25.20 29.63 30.29 28.55 31.73 31.51 27.92 39.21 50.05 45.13 47.20 49.22

Ours (mix-OBO) 33.75 35.83 37.46 33.81 34.15 36.90 58.60 62.61 65.15 74.20 80.84 84.01
Ours (mix-AAO) 34.91 36.57 37.23 35.06 35.64 36.77 55.43 61.15 64.85 73.36 78.90 81.22
Ours (constant) 22.48 25.31 - 23.99 26.38 - 33.28 41.48 - 36.65 39.47 -

Table 2: Micro F1 (%) of few-shot performance. Direct-RE means using LLMs directly for RE. KnowPrompt and
RetrievalRE means the performance of manually labeled training samples. Ours (pure) means the performance of
using LLM-generated training samples only. Ours (mix-OBO) and Ours (mix-AAO) mean the performance of
combining the use of manually labeled training samples and training samples generated by LLM based on the OBO
and AAO. Ours (constant) means the performance of LLMs-generated training samples with a fixed number of
demonstration samples in Prompt. Data Generation means the performance of training samples generated by (Xu
et al., 2023).

TACRED and TACRED-Revisit, but is much worse
on Re-TACRED and SemEval. Therefore, the qual-
ities of the generated samples are good enough to
be beneficial for training. But they still cannot be
used to for the purpose of fully replacing manu-
ally labeled data, even when the number of training
samples is as small as 8.

Comparing to Generated Training Sample by
Another Way. As demonstrated in Table 2, Ours
(Pure) performs the baseline (Data Generation)
across most experimental settings on the three vari-
ants of TACRED, indicating the superior efficacy
of our sample generation methodology.

Comparing to Performing Relation Extraction
Directly with LLMs. As shown in Table 2, Ours
(pure) performs better than directly using LLM
to conduct relation extraction (Direct-RE) on all
four relation extraction datasets. This means that
when people employ LLMs for RE without any
manually labeled data, they can consider training a
non-LLM model with LLM-generated samples, in-
stead of directly prompting the LLMs. This would
also reduce the cost of repeatedly calling LLMs.
Moreover, the self-improvements of LLMs on the
RE task can also be an interesting direction.

Comparing to Mixed Training Samples. We
mix manually labeled training samples with LLMs-

generated training samples and use them for the
training of KnowPrompt and RetrievalRE. This cor-
responds to Ours (mix-OBO, mix-AAO) in Table 2,
where K denotes the number of manually labeled
training samples. The number of LLMs-generated
training samples varies dynamically, and we choose
the value in [8, 16, 32] that gives the best perfor-
mance for KnowPrompt and RetrievalRE. We find
that the model’s performance is higher than when
only pure LLM-generated training samples or only
pure manually labeled training samples are used
under most of the settings. This shows that the
generated samples can be combined with existing
human annotated data to help improve the final per-
formance of RE models. However, as the amount
of human annotated training data increases, the
generated samples become less beneficial.

Comparing to Using a Constant Number of
Demonstration Samples. We fixed the number
of samples in the Sample Demonstration Module to
4. When the LLMs generate a new training sample,
and if the number of samples demonstrated in the
Sample Demonstration Module does not reach 4,
the newly generated samples are directly added to
this Module. Conversely, if the number reaches
4, we let it randomly replace one of the samples
in the Sample Demonstration Module. As shown
in Table 2, after the training samples generated
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Method
TACRED TACRED-Revisit Re-TACRED SemEval

K=8 K=16 K=32 K=8 K=16 K=32 K=8 K=16 K=32 K=8 K=16 K=32

Ours (AAO) 21.86 26.91 26.39 23.17 27.97 28.50 38.00 45.68 46.50 41.49 54.53 56.34
Ours (AAO), w/o DPO 18.97 27.70 36.04 22.61 31.08 37.08 20.64 36.68 36.66 37.66 47.49 49.58

Ours (OBO) 22.48 27.99 30.41 23.04 29.25 31.12 34.77 40.33 50.72 42.02 45.05 47.70
Ours (OBO), w/o DPO 18.35 21.47 23.70 18.39 24.16 27.52 31.82 41.47 40.45 24.65 28.42 30.03

Ours (OBO), w/o DPO, w/o DI 21.86 21.75 25.66 21.90 24.11 27.90 33.50 33.55 32.74 20.97 27.01 25.88

Table 3: Micro F1 (%) of different variants of our approach on KnowPrompt. AAO means generating all training
samples at once. OBO means generating training samples one by one. DI means the instruction about “diversity”.
The best results in each column are indicated by bolding.

under this approach are used for KnowPrompt or
RetrievalRE training, the performance of the mod-
els drop substantially. We found by tracking the
generation process of LLMs that when a training
sample in the Sample Demonstration Module is
replaced, the LLMs have a high probability of gen-
erating instances similar or even identival to this
sample in the subsequent period, thus leading to a
poor overall quality of the generated samples.

5.2 Ablation Analysis
In order to verify the effectiveness of DPO, as well
as comparing with generating samples all at once,
we complete the ablation experiments for the fol-
lowing three different variants:

Generate all at once without DPO. We change
the key sentence in the Prompt for LLMs to “So
please generate 32 samples for the relation ‘R’.
Please make the generated samples as different
from the above demonstrations as possible.”.

Generate one by one without DPO. We change
the key sentence in the Prompt for LLMs to “So
please generate a sample for the relation ‘R’.
Please make the generated samples as different
from the above demonstrations as possible.”.

Generate one by one without DPO & diversity
instruction. We change the key sentence in the
Prompt for LLMs to “So please generate a sample
for the relation ‘R’.”.

As shown in Table 3, in most cases, either in
AAO or OBO generation mode, the performance of
the generated training samples on the KnowPrompt
mostly decrease after removing DPO fine-tuning,
which indicates that reasonable DPO fine-tuning
can help LLMs generate higher-quality training
samples. Furthermore, it can be seen that the sam-
ples generated by OBO perform better on the RE
models than those generated by AAO In most exper-
imental settings, indicating that our proposed OBO

generation mode is effective and can further im-
prove the quality of training samples. Meanwhile,
comparing the results of the experiments under the
“w/o DPO, AAO” and “w/o DPO, OBO” conditions,
it can be seen that the quality of the training sam-
ples under the former condition is higher. We think
it is because in the “OBO” condition, the number
of samples demonstrated in the Sample Demon-
stration Module in the Prompt increases, which
reduces the attention to “diversity instruction”, and
makes the LLMs show “Imitation Behavior” when
generating samples, resulting in higher similarity
and lower quality of the final generated training
samples. Finally, comparing the results of the ex-
periments in the “w/o DPO, OBO” and “w/o DPO,
w/o DI, OBO” conditions, it can be seen that the
quality of the generated training samples is higher
in the former condition, which suggests that the “di-
versity instruction” can remind the LLMs to take di-
versity into account when generating training sam-
ples. Also note that in the case of “Re-TACRED,
k=16”, the training samples generated by LLMs
without DPO fine-tuning have poor diversity, but
they perform better on Knowprompt model than
the training samples generated by LLMs with DPO
fine-tuning, which we think is related to the test
data of Knowprompt model. The training samples
generated by LLMs without DPO fine-tuning may
just be close to the test data, so there is a phe-
nomenon of low diversity but good training effect.

5.3 Diversity of Generated Samples

We extract the value of the "token" key from the
sentence-level samples generated by LLMs, and
then restore the words into sentences to facilitate
similarity calculation. We calculate the average
cosine similarity between every two pairs of gener-
ated training samples through OBO for each rela-
tion category, and the results are shown in Figure 5.
The overall results show that the diversity of the
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Figure 6: Average repetition rate of words between generated training samples (K=32) for each relation category.

relation extraction training samples generated
by the LLMs after DPO fine-tuning training is
lower than that of the two cases of LLMs w/o
DPO, which again illustrates the effectiveness of
the DPO fine-tuning in the task of generating train-
ing samples. Furthermore, the instruction on “di-
versity” in the Prompt of the LLMs “Please make
the generated samples as different from the above
demonstrations as possible.” also plays an impor-
tant role, because the overall average diversity of
the generated training samples is 0.051 lower than
without this instruction.

To further analyze the diversity, we also calculate
the average repetition rate of words between every
two pairs of the generated samples, as shown in
Figure 6. It is apparent that the repetition rate of
words of training samples generated after DPO fine-
tuning is lower than both of other cases.

5.4 Number of Generated Samples

The generation of more training samples does
not always improve the performance of the
KnowPrompt, which has an upper limit. We
generated 8, 16, 32 and 64 samples on four relation
extraction datasets using LLMs with ICL and DPO.
From the results in Figure 7, we find that the per-
formance of the KnowPrompt increases and then
remains constant as the number of samples gener-
ated by the LLMs increases, while peaking near K
= 32. We argue that it is because the high-diversity
of training samples generated by LLMs reaches the
end point near K = 32 due to the limitation of the
corpus training database of LLMs. It is also for this
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Figure 7: Micro F1 (%) of KnowPrompt using different
numbers of training samples generated by LLMs.

reason that the research in this paper is centered
around 8-shot, 16-shot and 32-shot based.

5.5 Case Study

In response to the experimental phenomena in §5.3
Diversity between Training Samples and §5.4 Num-
ber of Generated Samples, we develop a specific
case study using generated training samples on the
“per:country_of_death” relation of TACRED.

As shown in Table 4, our method allows LLMs to
generate training samples with low similarity, and
to maintain diversity in the verbalized representa-
tion of relations. On the contrary, after removing
the “diversity instruction” and DPO, the generated
training samples have higher similarity and single
verbalized representation of relations, and even the
post-order samples appear to be exactly the same
as the pre-order samples. Meanwhile, we find that
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Method Step Generated Data

Ours

1 John Smithsubj died in Canadaobj after a long illness and was buried there.

4 Frank Oceansubj ended his life in Franceobj where he had lived for many years.

6 Bob Smithsubj expired in Chinaobj where he worked for decades.

9 Angela Davis
subj

passed away in Swedenobj where she fought for civil rights.

13 James Bondsubj ended his life in Monacoobj where he found himself unwanted.

16 Tupac Shakur
subj

passed away in Grenadaobj.

Ours,
w/o DI,

w/o DPO

1 Franceobj John F Kennedy
subj

American Kennedy family Assassination Dallas died.

4 Chinaobj Wang Zhiyuan
subj

computer scientist died Beijing age 62.

6 South Africaobj Nelson Mandelasubj died Johannesburg age 95.

9 Germany
obj

Heinrich Himmlersubj Nazi official died Berlin age 44.

13 China Wang Zhiyuan computer scientist died Beijing age 62.

16 Canadaobj Stephen Harper
subj

politician died Ottawa age 68.

Table 4: A case study of step-by-step generation of training samples on the “per:country_of_death” relation of
TACRED. We mark in red the content of the training samples generated in the post-order that are identical to the
content of the pre-order.

although our method enables LLMs to generate
training samples with high diversity, the training
samples generated by LLMs around Step = 16 also
appear to be similar in the verbalized representa-
tions of relations, indicating that the similarity of
the training samples generated later will increase.
This results in the performance of the KnowPrompt
peaking shortly after K = 16 and remaining largely
unchanged thereafter.

6 Conclusion

In this paper, we propose a method for generating
training samples for RE with LLMs. The method
optimizes the output of LLMs to generate high-
quality training samples for RE, especially in terms
of diversity, through ICL and DPO. ICL allows
LLMs to quickly learn the structure and content of
training samples by providing appropriate sample
demonstrations in the prompt; DPO allows LLMs
to generate training samples with both diversity
and correctness in mind through fine-tuning. Ex-
periments demonstrate the effectiveness of these
generated training samples in few-shot scenarios,
especially with greater advantages in diversity.

Limitations

Despite our best efforts, the method proposed in
this paper may still have some limitations.

LLMs: Although we have enabled the LLMs
to generate better quality training samples by fine-
tuning the training, the quality of these training
samples is also largely limited by the strength of
the open-source LLMs themselves.

Maximum Number: The maximum number
of valid training samples that can be generated by
LLMs is very limited, as performance does not
consistently improve after generating about 16 or
32 training samples.

Acknowledgements

This research is supported by the National Natu-
ral Science Foundation of China (No. 62306140,
No. 62476127), the Natural Science Foundation
of Jiangsu Province (No. BK20242039), the Ba-
sic Research Program of the Bureau of Science
and Technology (ILF24001), the Fundamental Re-
search Funds for the Central Universities (No.
NJ2023032), the Scientific Research Starting Foun-
dation of Nanjing University of Aeronautics and
Astronautics (No. YQR21022), the Key Project

721



of Jiangsu Collaborative Innovation Center of Chi-
nese Medicinal Resources Industrialization (No.
000003401025-6), the Open Project of Chinese
Materia Medica First-Class Discipline of Nanjing
University of Chinese Medicine (No. ZYXJC2024-
010) and the High Performance Computing Plat-
form of Nanjing University of Aeronautics and
Astronautics.

References
Christoph Alt, Aleksandra Gabryszak, and Leonhard

Hennig. 2020. TACRED revisited: A thorough eval-
uation of the TACRED relation extraction task. In
Proceedings of the 58th Annual Meeting of the As-
sociation for Computational Linguistics, ACL 2020,
Online, July 5-10, 2020, pages 1558–1569. Associa-
tion for Computational Linguistics.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei.
2020. Language models are few-shot learners. In Ad-
vances in Neural Information Processing Systems 33:
Annual Conference on Neural Information Process-
ing Systems 2020, NeurIPS 2020, December 6-12,
2020, virtual.

Xiang Chen, Lei Li, Ningyu Zhang, Chuanqi Tan, Fei
Huang, Luo Si, and Huajun Chen. 2022a. Rela-
tion extraction as open-book examination: Retrieval-
enhanced prompt tuning. In SIGIR ’22: The 45th
International ACM SIGIR Conference on Research
and Development in Information Retrieval, Madrid,
Spain, July 11 - 15, 2022, pages 2443–2448. ACM.

Xiang Chen, Ningyu Zhang, Xin Xie, Shumin Deng,
Yunzhi Yao, Chuanqi Tan, Fei Huang, Luo Si, and
Huajun Chen. 2022b. Knowprompt: Knowledge-
aware prompt-tuning with synergistic optimization
for relation extraction. In WWW ’22: The ACM Web
Conference 2022, Virtual Event, Lyon, France, April
25 - 29, 2022, pages 2778–2788. ACM.

Yew Ken Chia, Lidong Bing, Soujanya Poria, and Luo
Si. 2022. Relationprompt: Leveraging prompts to
generate synthetic data for zero-shot relation triplet
extraction. In Findings of the Association for Com-
putational Linguistics: ACL 2022, Dublin, Ireland,
May 22-27, 2022, pages 45–57. Association for Com-
putational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: pre-training of

deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, NAACL-HLT 2019, Minneapolis, MN, USA,
June 2-7, 2019, Volume 1 (Long and Short Papers),
pages 4171–4186. Association for Computational
Linguistics.

Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Zhiyong
Wu, Baobao Chang, Xu Sun, Jingjing Xu, Lei Li, and
Zhifang Sui. 2023. A survey for in-context learning.
CoRR, abs/2301.00234.

Jiahui Gao, Renjie Pi, Yong Lin, Hang Xu, Jiacheng
Ye, Zhiyong Wu, Weizhong Zhang, Xiaodan Liang,
Zhenguo Li, and Lingpeng Kong. 2023. Self-guided
noise-free data generation for efficient zero-shot
learning. In The Eleventh International Conference
on Learning Representations, ICLR 2023, Kigali,
Rwanda, May 1-5, 2023. OpenReview.net.

Zhijiang Guo, Guoshun Nan, Wei Lu, and Shay B. Co-
hen. 2020. Learning latent forests for medical rela-
tion extraction. In Proceedings of the Twenty-Ninth
International Joint Conference on Artificial Intelli-
gence, IJCAI 2020, pages 3651–3657. ijcai.org.

Zhijiang Guo, Yan Zhang, and Wei Lu. 2019. Attention
guided graph convolutional networks for relation ex-
traction. In Proceedings of the 57th Conference of
the Association for Computational Linguistics, ACL
2019, Florence, Italy, July 28- August 2, 2019, Vol-
ume 1: Long Papers, pages 241–251. Association for
Computational Linguistics.

Iris Hendrickx, Su Nam Kim, Zornitsa Kozareva,
Preslav Nakov, Diarmuid Ó Séaghdha, Sebastian
Padó, Marco Pennacchiotti, Lorenza Romano, and
Stan Szpakowicz. 2010. Semeval-2010 task 8: Multi-
way classification of semantic relations between pairs
of nominals. In Proceedings of the 5th International
Workshop on Semantic Evaluation, SemEval@ACL
2010, Uppsala University, Uppsala, Sweden, July
15-16, 2010, pages 33–38. The Association for Com-
puter Linguistics.

Guozheng Li, Peng Wang, and Wenjun Ke. 2023. Re-
visiting large language models as zero-shot relation
extractors. In Findings of the Association for Compu-
tational Linguistics: EMNLP 2023, Singapore, De-
cember 6-10, 2023, pages 6877–6892. Association
for Computational Linguistics.

Yang Liu, Jinpeng Hu, Xiang Wan, and Tsung-Hui
Chang. 2022. Learn from relation information: To-
wards prototype representation rectification for few-
shot relation extraction. In Findings of the Associ-
ation for Computational Linguistics: NAACL 2022,
Seattle, WA, United States, July 10-15, 2022, pages
1822–1831. Association for Computational Linguis-
tics.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,

722

https://doi.org/10.18653/V1/2020.ACL-MAIN.142
https://doi.org/10.18653/V1/2020.ACL-MAIN.142
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://doi.org/10.1145/3477495.3531746
https://doi.org/10.1145/3477495.3531746
https://doi.org/10.1145/3477495.3531746
https://doi.org/10.1145/3485447.3511998
https://doi.org/10.1145/3485447.3511998
https://doi.org/10.1145/3485447.3511998
https://doi.org/10.18653/V1/2022.FINDINGS-ACL.5
https://doi.org/10.18653/V1/2022.FINDINGS-ACL.5
https://doi.org/10.18653/V1/2022.FINDINGS-ACL.5
https://doi.org/10.18653/V1/N19-1423
https://doi.org/10.18653/V1/N19-1423
https://doi.org/10.18653/V1/N19-1423
https://doi.org/10.48550/ARXIV.2301.00234
https://openreview.net/forum?id=h5OpjGd_lo6
https://openreview.net/forum?id=h5OpjGd_lo6
https://openreview.net/forum?id=h5OpjGd_lo6
https://doi.org/10.24963/IJCAI.2020/505
https://doi.org/10.24963/IJCAI.2020/505
https://doi.org/10.18653/V1/P19-1024
https://doi.org/10.18653/V1/P19-1024
https://doi.org/10.18653/V1/P19-1024
https://aclanthology.org/S10-1006/
https://aclanthology.org/S10-1006/
https://aclanthology.org/S10-1006/
https://doi.org/10.18653/V1/2023.FINDINGS-EMNLP.459
https://doi.org/10.18653/V1/2023.FINDINGS-EMNLP.459
https://doi.org/10.18653/V1/2023.FINDINGS-EMNLP.459
https://doi.org/10.18653/V1/2022.FINDINGS-NAACL.139
https://doi.org/10.18653/V1/2022.FINDINGS-NAACL.139
https://doi.org/10.18653/V1/2022.FINDINGS-NAACL.139


Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized BERT pretraining
approach. CoRR, abs/1907.11692.

Yu Meng, Jiaxin Huang, Yu Zhang, and Jiawei Han.
2022. Generating training data with language mod-
els: Towards zero-shot language understanding. In
Advances in Neural Information Processing Systems
35: Annual Conference on Neural Information Pro-
cessing Systems 2022, NeurIPS 2022, New Orleans,
LA, USA, November 28 - December 9, 2022.

OpenAI. 2022. Chatgpt: Optimizing language models
for dialogue.

OpenAI. 2023. Gpt-4 technical report. arXiv preprint,
abs/2303.08774.

Giovanni Paolini, Ben Athiwaratkun, Jason Krone,
Jie Ma, Alessandro Achille, Rishita Anubhai,
Cícero Nogueira dos Santos, Bing Xiang, and Ste-
fano Soatto. 2021. Structured prediction as transla-
tion between augmented natural languages. In 9th
International Conference on Learning Representa-
tions, ICLR 2021, Virtual Event, Austria, May 3-7,
2021. OpenReview.net.

Meng Qu, Tianyu Gao, Louis-Pascal A. C. Xhonneux,
and Jian Tang. 2020. Few-shot relation extraction
via bayesian meta-learning on relation graphs. In
Proceedings of the 37th International Conference
on Machine Learning, ICML 2020, 13-18 July 2020,
Virtual Event, volume 119 of Proceedings of Machine
Learning Research, pages 7867–7876. PMLR.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christo-
pher D. Manning, Stefano Ermon, and Chelsea Finn.
2023. Direct preference optimization: Your language
model is secretly a reward model. In Advances in
Neural Information Processing Systems 36: Annual
Conference on Neural Information Processing Sys-
tems 2023, NeurIPS 2023, New Orleans, LA, USA,
December 10 - 16, 2023.

Rohini K. Srihari and Wei Li. 2000. A question answer-
ing system supported by information extraction. In
6th Applied Natural Language Processing Confer-
ence, ANLP 2000, Seattle, Washington, USA, April
29 - May 4, 2000, pages 166–172. ACL.

George Stoica, Emmanouil Antonios Platanios, and
Barnabás Póczos. 2021. Re-tacred: Addressing short-
comings of the TACRED dataset. In Thirty-Fifth
AAAI Conference on Artificial Intelligence, AAAI
2021, Thirty-Third Conference on Innovative Ap-
plications of Artificial Intelligence, IAAI 2021, The
Eleventh Symposium on Educational Advances in Ar-
tificial Intelligence, EAAI 2021, Virtual Event, Febru-
ary 2-9, 2021, pages 13843–13850. AAAI Press.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton-
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu,

Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller,
Cynthia Gao, Vedanuj Goswami, Naman Goyal, An-
thony Hartshorn, Saghar Hosseini, Rui Hou, Hakan
Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa,
Isabel Kloumann, Artem Korenev, Punit Singh Koura,
Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Di-
ana Liskovich, Yinghai Lu, Yuning Mao, Xavier Mar-
tinet, Todor Mihaylov, Pushkar Mishra, Igor Moly-
bog, Yixin Nie, Andrew Poulton, Jeremy Reizen-
stein, Rashi Rungta, Kalyan Saladi, Alan Schelten,
Ruan Silva, Eric Michael Smith, Ranjan Subrama-
nian, Xiaoqing Ellen Tan, Binh Tang, Ross Tay-
lor, Adina Williams, Jian Xiang Kuan, Puxin Xu,
Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan,
Melanie Kambadur, Sharan Narang, Aurélien Ro-
driguez, Robert Stojnic, Sergey Edunov, and Thomas
Scialom. 2023. Llama 2: Open foundation and fine-
tuned chat models. CoRR, abs/2307.09288.

Zhen Wan, Fei Cheng, Zhuoyuan Mao, Qianying Liu,
Haiyue Song, Jiwei Li, and Sadao Kurohashi. 2023.
GPT-RE: in-context learning for relation extraction
using large language models. In Proceedings of the
2023 Conference on Empirical Methods in Natural
Language Processing, EMNLP 2023, Singapore, De-
cember 6-10, 2023, pages 3534–3547. Association
for Computational Linguistics.

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa
Liu, Noah A. Smith, Daniel Khashabi, and Hannaneh
Hajishirzi. 2023. Self-instruct: Aligning language
models with self-generated instructions. In Proceed-
ings of the 61st Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), ACL 2023, Toronto, Canada, July 9-14, 2023,
pages 13484–13508. Association for Computational
Linguistics.

Xin Xu, Yuqi Zhu, Xiaohan Wang, and Ningyu Zhang.
2023. How to unleash the power of large language
models for few-shot relation extraction? In Pro-
ceedings of The Fourth Workshop on Simple and Effi-
cient Natural Language Processing, SustaiNLP 2023,
Toronto, Canada (Hybrid), July 13, 2023, pages 190–
200. Association for Computational Linguistics.

Jiacheng Ye, Jiahui Gao, Qintong Li, Hang Xu, Jiangtao
Feng, Zhiyong Wu, Tao Yu, and Lingpeng Kong.
2022. Zerogen: Efficient zero-shot learning via
dataset generation. In Proceedings of the 2022 Con-
ference on Empirical Methods in Natural Language
Processing, EMNLP 2022, Abu Dhabi, United Arab
Emirates, December 7-11, 2022, pages 11653–11669.
Association for Computational Linguistics.

Daojian Zeng, Kang Liu, Yubo Chen, and Jun Zhao.
2015. Distant supervision for relation extraction via
piecewise convolutional neural networks. In Proceed-
ings of the 2015 Conference on Empirical Methods in
Natural Language Processing, EMNLP 2015, Lisbon,
Portugal, September 17-21, 2015, pages 1753–1762.
The Association for Computational Linguistics.

Kai Zhang, Bernal Jimenez Gutierrez, and Yu Su. 2023.
Aligning instruction tasks unlocks large language

723

http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
http://papers.nips.cc/paper_files/paper/2022/hash/0346c148ba1c21c6b4780a961ea141dc-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/0346c148ba1c21c6b4780a961ea141dc-Abstract-Conference.html
https://openai.com/blog/ chatgpt/
https://openai.com/blog/ chatgpt/
https://openreview.net/forum?id=US-TP-xnXI
https://openreview.net/forum?id=US-TP-xnXI
http://proceedings.mlr.press/v119/qu20a.html
http://proceedings.mlr.press/v119/qu20a.html
http://papers.nips.cc/paper_files/paper/2023/hash/a85b405ed65c6477a4fe8302b5e06ce7-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/a85b405ed65c6477a4fe8302b5e06ce7-Abstract-Conference.html
https://doi.org/10.3115/974147.974170
https://doi.org/10.3115/974147.974170
https://doi.org/10.1609/AAAI.V35I15.17631
https://doi.org/10.1609/AAAI.V35I15.17631
https://doi.org/10.48550/ARXIV.2307.09288
https://doi.org/10.48550/ARXIV.2307.09288
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.214
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.214
https://doi.org/10.18653/V1/2023.ACL-LONG.754
https://doi.org/10.18653/V1/2023.ACL-LONG.754
https://doi.org/10.18653/V1/2023.SUSTAINLP-1.13
https://doi.org/10.18653/V1/2023.SUSTAINLP-1.13
https://doi.org/10.18653/V1/2022.EMNLP-MAIN.801
https://doi.org/10.18653/V1/2022.EMNLP-MAIN.801
https://doi.org/10.18653/V1/D15-1203
https://doi.org/10.18653/V1/D15-1203
https://doi.org/10.18653/V1/2023.FINDINGS-ACL.50


models as zero-shot relation extractors. In Findings
of the Association for Computational Linguistics:
ACL 2023, Toronto, Canada, July 9-14, 2023, pages
794–812. Association for Computational Linguistics.

Yuhao Zhang, Peng Qi, and Christopher D. Manning.
2018. Graph convolution over pruned dependency
trees improves relation extraction. In Proceedings
of the 2018 Conference on Empirical Methods in
Natural Language Processing, Brussels, Belgium,
October 31 - November 4, 2018, pages 2205–2215.
Association for Computational Linguistics.

Yuhao Zhang, Victor Zhong, Danqi Chen, Gabor Angeli,
and Christopher D. Manning. 2017. Position-aware
attention and supervised data improve slot filling. In
Proceedings of the 2017 Conference on Empirical
Methods in Natural Language Processing, EMNLP
2017, Copenhagen, Denmark, September 9-11, 2017,
pages 35–45. Association for Computational Linguis-
tics.

Lingfeng Zhong, Jia Wu, Qian Li, Hao Peng, and Xin-
dong Wu. 2024. A comprehensive survey on auto-
matic knowledge graph construction. ACM Comput.
Surv., 56(4):94:1–94:62.

Peng Zhou, Wei Shi, Jun Tian, Zhenyu Qi, Bingchen
Li, Hongwei Hao, and Bo Xu. 2016. Attention-based
bidirectional long short-term memory networks for
relation classification. In Proceedings of the 54th
Annual Meeting of the Association for Computational
Linguistics, ACL 2016, August 7-12, 2016, Berlin,
Germany, Volume 2: Short Papers. The Association
for Computer Linguistics.

Wenxuan Zhou and Muhao Chen. 2022. An improved
baseline for sentence-level relation extraction. In Pro-
ceedings of the 2nd Conference of the Asia-Pacific
Chapter of the Association for Computational Lin-
guistics and the 12th International Joint Conference
on Natural Language Processing, AACL/IJCNLP
2022 - Volume 2: Short Papers, Online only, Novem-
ber 20-23, 2022, pages 161–168. Association for
Computational Linguistics.

A Experimental Details

A.1 Datasets
For comprehensive experiments, we conducted ex-
periments on four relation extraction datasets: TA-
CRED, TACRED-Revisit, Re-TACRED and Se-
mEval 2010 Task 8 (SemEval). A brief introduc-
tion to these data is given below:

TACRED: a large-scale sentence-level relation
extraction dataset from the annual TACBP4 chal-
lenge, containing over 106,000 sentences. It in-
volves 42 different relation categories, including
41 common relation categories and a special “no
relation” relation category.

TACRED-Revisit: a dataset constructed on the
basis of the TACRED dataset. The researchers

found errors in the development and test sets of
the original TACRED dataset and corrected them
while keeping the training set intact.

Re-TACRED: another version of the TACRED
dataset, which addresses some of the shortcomings
of the original TACRED dataset by reconstructing
the training, validation and test sets. Meanwhile,
this dataset removes the original 6 relation cate-
gories and adds 4 new relation categories to the
TACRED dataset, so that a dataset with 40 relation
categories is finally obtained.

SemEval: a traditional relation extraction
dataset, containing 10,717 annotated samples, cov-
ers 9 bi-directional relation categories and a special
“no relation” relationship category.

A.2 Relation Explanation
We give explanations for each relation in the four
datasets. The detailed explanation for each relation
is shown in Table 5.
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Relation Explanation
Component-Whole (e2,e1) Tail entity e2 is the component of head entity e1, and head entity e1 is

the whole of tail entity e2

Instrument-Agency (e2,e1) Tail entity e2 is the instrument of head entity e1, and head entity e1 is
the agency of tail entity e2

Member-Collection (e1,e2) Head entity e1 is the member of tail entity e2, and tail entity e2 is the
collection of head entity e1

Cause-Effect (e2,e1) Tail entity e2 is the cause of head entity e1, and head entity e1 is the
effect of tail entity e2

Entity-Destination (e1,e2) Head entity e1 is the entity of tail entity e2, and tail entity e2 is the
destination of head entity e1

Content-Container (e1,e2) Head entity e1 is the content of tail entity e2, and tail entity e2 is the
container of head entity e1

Message-Topic (e1,e2) Head entity e1 is the message of tail entity e2, and tail entity e2 is the
topic of head entity e1

Product-Producer (e2,e1) Tail entity e2 is the product of head entity e1, and head entity e1 is the
producer of tail entity e2

Member-Collection (e2,e1) Tail entity e2 is the member of head entity e1, and head entity e1 is the
collection of tail entity e2

Entity-Origin (e1,e2) Head entity e1 is the entity of tail entity e2, and tail entity e2 is the
origin of head entity e1

Cause-Effect (e1,e2) Head entity e1 is the cause of tail entity e2, and tail entity e2 is the
effect of head entity e1

Component-Whole (e1,e2) Head entity e1 is the component of tail entity e2, and tail entity e2 is
the whole of head entity e1

Message-Topic (e2,e1) Tail entity e2 is the message of head entity e1, and head entity e1 is the
topic of tail entity e2

Product-Producer (e1,e2) Head entity e1 is the product of tail entity e2, and tail entity e2 is the
producer of head entity e1

Entity-Origin (e2,e1) Tail entity e2 is the entity of head entity e1, and head entity e1 is the
origin of tail entity e2

Content-Container (e2,e1) Tail entity e2 is the content of head entity e1, and head entity e1 is the
container of tail entity e2

Instrument-Agency (e1,e2) Head entity e1 is the instrument of tail entity e2, and tail entity e2 is
the agency of head entity e1

Entity-Destination (e2,e1) Tail entity e2 is the entity of head entity e1, and head entity e1 is the
destination of tail entity e2

Other Tail entity e2 is the component of head entity e1, and head entity e1 is
the whole of tail entity e2

org:founded The founding relationship of an organization

org:subsidiaries The subsidiaries of an organization

per:date_of_birth The date of birth of a person

per:cause_of_death The cause of death of a person

per:age The age of a person

per:stateorprovince_of_birth The state or province of birth of a person

per:countries_of_residence The countries where a person resides
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Relation Explanation
per:country_of_birth The country of birth of a person

per:stateorprovinces_of_residence The states or provinces where a person resides

org:website The website of an organization

per:cities_of_residence The cities where a person resides

per:parents The parents of a person

per:employee_of The organization where a person is employed

NA/no_relation Unknown relation

per:city_of_birth The city of birth of a person

org:parents The parent company of an organization

org:political/religious_affiliation The political or religious affiliation of an organization

per:schools_attended The schools attended by a person

per:country_of_death The country where a person died

per:children The children of a person

org:top_members/employees The top members/employees of an organization

per:date_of_death The date of death of a person

org:members The members of an organization

org:alternate_names The alternate names of an organization

per:religion The religion of a person

org:member_of The organization to which a member belongs

org:city_of_headquarters The city where the headquarters of an organization is located

per:origin The origin of a person

org:shareholders The shareholders of an organization

per:charges The charges against a person

per:title The title of a person

org:number_of_employees/members The number of employees/members in an organization

org:dissolved The date of dissolution of the organization

org:country_of_headquarters The country where headquarters of an organization is located

per:alternate_names The alternate names of a person

per:siblings The siblings of a person

org:stateorprovince_of_headquarters The state or province where headquarters of an organization is
located

per:spouse The spouse of a person

per:other_family Other family members of a person

per:city_of_death The city where a person died

per:stateorprovince_of_death The state or province where a person died

org:founded_by The founder of an organization

org:country_of_branch The country where a branch of an organization is located

org:city_of_branch The city where a branch of an organization is located

org:stateorprovince_of_branch The state or province where branch of an organization is located

per:identity The identity information or characteristics of a person

Table 5: Explanation of each relation in the four datasets.
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