
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 6795–6815
July 27 - August 1, 2025 ©2025 Association for Computational Linguistics

BERT-like Models for Slavic Morpheme Segmentation

Dmitry Morozov1,2 Lizaveta Astapenka3 Anna Glazkova4,2

Timur Garipov1,2 Olga Lyashevskaya5,6

1The Artificial Intelligence Research Center of Novosibirsk State University
2Russian National Corpus 3St. Petersburg State University 4University of Tyumen

5HSE University 6Vinogradov Russian Language Institute RAS

Abstract

Automatic morpheme segmentation algorithms
are applicable in various tasks, such as building
tokenizers and language education. For Slavic
languages, the development of such algorithms
is complicated by the rich derivational capabil-
ities of these languages. Previous research has
shown that, on average, these algorithms have
already reached expert-level quality. However,
a key unresolved issue is the significant decline
in performance when segmenting words con-
taining roots not present in the training data.
This problem can be partially addressed by us-
ing pre-trained language models to better ac-
count for word semantics. In this work, we
explored the possibility of fine-tuning BERT-
like models for morpheme segmentation using
data from Belarusian, Czech, and Russian. We
found that for Czech and Russian, our models
outperform all previously proposed approaches,
achieving word-level accuracy of 92.5-95.1%.
For Belarusian, this task was addressed for the
first time. The best-performing approach for
Belarusian was an ensemble of convolutional
neural networks with word-level accuracy of
90.45%.

1 Introduction

Morpheme segmentation is the process of dividing
a word into substrings — morphemes — which
are the smallest indivisible meaningful elements
of a language: roots, prefixes, suffixes, and others.
This process can be essential for language learning,
particularly for languages with rich derivational
capabilities. For example, many orthographic rules
taught in Russian language school curricula rely
on the ability to identify and analyze the internal
structure of a word, such as the spelling of voiceless
and voiced consonants at the end of prefixes and the
verification of unstressed vowels in roots (Volskaya
et al., 2018).

Another potential use case for morpheme seg-
mentation is its application as a subword tokenizer

for language models. Using a morpheme tokenizer
as an alternative to the widely adopted Byte-Pair
Encoding (BPE) (Gage, 1994) has been shown by
several researchers (Matthews et al., 2018; Nzeyi-
mana and Niyongabo Rubungo, 2022) to improve
the quality of trained models. Finally, morpheme
annotation is used in large text corpora (Savchuk
et al., 2024), which are employed for linguistic
research, to enhance user search capabilities.

For all three scenarios mentioned above, the ex-
istence of an algorithm for constructing morpheme
segmentation — that is, mapping a word form or
lemma to its morphemes — is necessary. In some
cases, manually compiled and verified dictionaries
of morpheme annotations are used for this purpose.
This approach is often applied in school educa-
tion. For example, for the Belarusian language,
the School morpheme dictionary of the Belarusian
language (Mormysh et al., 2005) is used, while
for Russian, the Word Formation Dictionary of the
Russian language (Tikhonov, 1990) is employed.

A significant drawback of this approach is the
need for constant adaptation to the emergence
of new words in the language. For Slavic lan-
guages, with their extensive derivational capabilit-
ies, expanding and maintaining such dictionaries
requires regular, long-term work by expert linguists.
Moreover, the lack of a unified interpretation of the
term “morpheme segmentation” and clear criteria
for identifying morphemes (Iomdin, 2019) makes
it impossible to develop an analytical solution.

At the same time, machine learning-based
morpheme segmentation algorithms have demon-
strated high quality, including for Slavic languages
such as Czech (Peters and Martins, 2022) and Rus-
sian (Sorokin and Kravtsova, 2018; Peters and
Martins, 2022; Morozov et al., 2024). In partic-
ular, Morozov et al. (2024) found that for Russian,
the quality of automatic annotation on a random
sample, in terms of the number of fully correct seg-
mentations, is on par with expert annotation. In
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this case, the work of linguists in expanding morph-
eme dictionaries could be significantly accelerated
by creating automatic draft annotations and sub-
sequently correcting and validating them by the
experts.

A significant obstacle to this approach, however,
is the sharp decline in annotation quality when mod-
els encounter words containing roots not present
in the training data (out-of-vocabulary roots, OOV
roots) (Morozov et al., 2024). A potential solution
to this problem could be the use of pre-trained lan-
guage models. For example, Pranjić et al. (2024)
proposed a binary classifier for detecting morph-
eme boundaries in words based on fine-tuning the
Glot500 model (Imani et al., 2023). This approach,
however, is likely unsuitable for annotating large
dictionaries due to its computational complexity.
Meanwhile, Sorokin (2022) used BERT-like mod-
els to enrich the feature representation of words,
which improved segmentation quality.

Unlike previous work where BERT was used
only to obtain word embeddings, in our work we
test whether BERT-like models can be fine-tuned
for morpheme segmentation, outperform a high-
level baseline on Slavic language data, and address
the issue of OOV roots. We utilized a CNN en-
semble (Sorokin and Kravtsova, 2018), which out-
performs other algorithms on Russian language
(Morozov et al., 2024) as the baseline. We used
four datasets with morpheme annotations: two for
Russian and one each for Czech and Belarusian.
Russian and Czech were selected as languages with
sufficient representation and existing large BERT-
like models, while Belarusian was included as a
low-resource language. Unlike the problem state-
ment at the SIGMORPHON competition (Batsuren
et al., 2022), we considered the problem of surface
segmentation, i.e. dividing a word into morphemes
without restoring the original form of the morph-
eme. In addition, based on the potential application
of the algorithm in school education we included in
the problem the determination of the type of each
morpheme.

Our main contributions are as follows:

1. For Czech and Russian, our fine-tuned BERT-
like models outperformed the CNN ensemble.
We managed to achieve a share of completely
correct annotations of 92-95% in the case of a
random test sample, and 72-77% in the case
of testing on words with roots that were not
found in the training sample. The propor-

tion of erroneous segmentations on a random
sample decreased by 30-45%, and on words
with OOV roots by 9-15%. The results ob-
tained exceed all previously presented results
for these languages.

2. For Belarusian, the CNN ensemble showed
better performance in both types of testing,
achieving word accuracy of 90.5% in the case
of random split and 74.8% in the split-by-
roots case. To our knowledge, similar ex-
periments have not been conducted for this
language before, which allows us to consider
the presented result as a new state-of-the-art
baseline. We also publish the first publicly
available Belarusian morpheme dataset with
morpheme type annotation.

3. We found that when testing on words with
OOV roots, almost all roots can be divided
into two groups: “recognizable” and “com-
pletely unknown”. The first group includes
roots for which words are annotated com-
pletely correctly in 100% of cases, while
the second group consists of roots for which
words are never annotated completely cor-
rectly by the model.

2 Related Work

2.1 Morpheme Segmentation

Research on automatic morpheme segmentation
varies significantly in terms of problem formula-
tion. This is because morpheme segmentation al-
gorithms are typically developed for specific ap-
plications within larger tasks. One criterion that
differentiates approaches is the type of segmenta-
tion: surface or canonical (Cotterell et al., 2016).
Surface segmentation involves segmenting the ori-
ginal string, while canonical segmentation addition-
ally restores the original form of the morpheme.
This distinction becomes evident in cases where
language rules cause changes at morpheme bound-
aries. For example, the Belarusian word абаненцкi
‘subscription (adj.)’ is formed by adding the suffix -
ск- and the ending -i to абанент ‘subscriber’, with
the resulting combination -тс- at the morpheme
boundary transforming into -ц-. In this case, the
surface segmentation of this word might be either
абан-енц-к-i or абан-ен-цк-i, depending on the ad-
opted paradigm, while the canonical segmentation
would be абан-ент-ск-i.
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Another difference lies in the definition of
morpheme types. For many tasks, such as building
morpheme tokenizers, defining morpheme types is
not essential, whereas for others, such as language
education, specifying morpheme types is mandat-
ory.

Finally, a third important distinction is the com-
position of the dataset used. Typically, two types of
datasets are considered: lemma datasets and word
form datasets. Morpheme dictionaries compiled by
linguists usually work with lemmata, while tokeniz-
ation obviously requires algorithms that also handle
word forms.

Most early, relatively effective morpheme seg-
mentation algorithms belong to the Morfessor
family (Creutz and Lagus, 2002). This fam-
ily includes unsupervised and semi-supervised al-
gorithms, which have been tested on a variety
of languages, including English, Finnish, Ger-
man, Turkish, and others. In the SIGMORPHON
2022 competition (Batsuren et al., 2022), which
addressed the task of canonical segmentation of
word forms without specifying morpheme types,
the Morfessor2 algorithm (Smit et al., 2014) was
used as one of the baselines and outperformed the
other two baselines — ULM (Kudo, 2018) and
WordPiece (Schuster and Nakajima, 2012) — for 8
out of 9 languages.

However, the quality of algorithms in this fam-
ily remains relatively low. For instance, according
to the SIGMORPHON 2022 results, Morfessor2
achieved an F-score for correctly predicted morph-
emes ranging from 9% to 41%, while the best solu-
tions from competition participants exceeded 90%
for each language. Among the solutions presen-
ted at the competition, the DeepSPIN team (Peters
and Martins, 2022) achieved the best results for
all 9 languages. Their models rely on LSTM net-
works with a specific loss function (DeepSPIN-1
and DeepSPIN-2) and the Transformer architec-
ture (DeepSPIN-3). Among other approaches, the
solution by the CLUZH team (Wehrli et al., 2022),
an ensemble of neural character-level transducers,
deserves mention, as it trailed the leader by only a
small margin.

As in other areas of natural language processing,
there is significant interest in exploring the poten-
tial of large language models for solving morph-
eme segmentation tasks. For example, Pranjić et al.
(2024) presented a fine-tuned model for detecting
morpheme boundaries in words, which demon-
strated superior results for several low-resource

languages. A drawback of this work, however,
is the high computational complexity of the al-
gorithm, which sequentially iterates through all
possible morpheme boundary positions in a word.

2.2 Slavic Morpheme Segmentation

Among the three languages considered in this work,
Russian has been the most extensively studied in
terms of morpheme segmentation. Several research
teams (Sorokin and Kravtsova, 2018; Bolshakova
and Sapin, 2019, 2022; Morozov et al., 2024)
have explored segmentation algorithms based on
gradient boosting over decision trees, convolu-
tional neural networks, LSTM networks, and Trans-
formers networks. In most cases, the authors
addressed the task of surface segmentation with
morpheme type identification, using a dataset con-
sisting of lemmata. The best results across various
experiments involving different morpheme diction-
aries were achieved using a CNN ensemble, with
the proportion of fully correct annotations reaching
88-90% (Morozov et al., 2024).

In the case of the Czech language, most of
the research is related to the DeriNet database1.
Macháček et al. (2018) investigate the effectiveness
of two linguistically uninformed subword construc-
tion methods (Byte Pair Encoding and Subword
Text Encoder) in handling morphological variations
in Czech. Svoboda and Sevcíková (2022) explore
the possibility of automatic construction of word-
formation chains.

Finally, we were unable to find any relevant stud-
ies for Belarusian.

Among the languages represented at SIG-
MORPHON, Czech and Russian were also in-
cluded. For Czech, the best result was achieved us-
ing the DeepSPIN-2 model (F-score=93.88), while
for Russian, the DeepSPIN-3 model yielded the
highest performance (F-score=99.35). However,
Morozov et al. (2024) demonstrated that the quality
of DeepSPIN-3 drops sharply when transitioning
to surface segmentation, particularly when deal-
ing with OOV roots. Additionally, the dataset for
Russian in SIGMORPHON 2022 consisted of only
10% lemmata and 90% word forms, and according
to official results (Batsuren et al., 2022), the per-
formance of the DeepSPIN-3 approach on Russian
lemmata drops significantly below an F-score of
93 (a detailed analysis for Czech was not provided
in the paper).

1https://ufal.mff.cuni.cz/derinet
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Morozov et al. (2024) highlighted that the prob-
lem of recognizing OOV roots remains a key un-
resolved issue. While several algorithms achieve
85-90% fully correct annotations when tested on
random words, this figure drops to 67-72% when
tested on words containing OOV roots. In the case
of DeepSPIN-3, testing without morpheme type
identification showed 81% fully correct annotations
for a random sample of words, with 12% of seg-
mentations not matching the original word letter by
letter. However, when tested on words with OOV
roots, the proportion of fully correct annotations
dropped to 14.5%, with 74% of words having seg-
mentations that did not match the original word
letter by letter.

The problem of “recognizing” OOV roots can
be partially addressed by using embeddings from
BERT-like models, as demonstrated by Sorokin
(2022) and Morozov et al. (2024). However, it
remains an open question whether it is possible to
rely solely on BERT-like models for segmentation
without external models, by fine-tuning a BERT-
like model specifically for this task.

3 Data

3.1 Belarusian

Since no machine-readable annotated dataset for
the Belarusian language could be found, we pre-
pared such a dataset ourselves. As the source of
analyses, we used the School morpheme diction-
ary of the Belarusian language (Mormysh et al.,
2005). Since this dictionary does not include an-
notations for morpheme types, we conducted this
annotation ourselves with the involvement of native
Belarusian speakers with linguistic education. For
annotation, we used five types of morphemes: root
(ROOT), prefix (PREF), suffix (SUFF), ending
(END), and linking vowel (LINK). We decided not
to separate suffixes and postfixes, since the original
dictionary contains only a few dozen examples of
the use of postfixes. Zero endings and zero suf-
fixes were excluded from consideration. The final
dataset, Slounik, contains annotations for 31,057
words. The dataset is available for downloading
under the CC-BY-NC-SA 4.0 license2.

2https://huggingface.co/datasets/ruscorpora/
morphodict-bel

3.2 Czech
For the Czech language, we utilized the DeriNet
2.1 database3. It contains annotations for 1,248,572
words, with three annotated morpheme types: root,
prefix, and suffix. For the experiment, we excluded
proper nouns from consideration. The final dataset
contains annotations for 820,387 words.

3.3 Russian
For the Russian language, we used two data-
sets previously utilized by Morozov et al. (2024):
Morphodict-T, based on the “Word Formation
Dictionary of the Russian Language” (Tikhonov,
1990), and Morphodict-K, based on the “Dic-
tionary of Morphemes of the Russian Language”
(Kuznetsova and Efremova, 1986). These data-
sets contain annotations for 95,895 and 75,649
words, respectively, differing in both their vocabu-
lary and their approach to morpheme segmentation.
Morphodict-K uses an approach that emphasizes
strong but not maximal splitting of morphemes
and parallels to structurally similar words, while
Morphodict-T uses the so-called Vinokur criterion,
which requires the existence of a corresponding
word-formation chain in modern Russian to isolate
a morpheme. Both of these datasets use seven types
of morphemes: root, prefix, suffix, ending, postfix
(POST), linking vowel, and hyphen (HYPH).

3.4 Datasets Statistics
A brief numerical description of the datasets used
is provided in Table 1.

4 Models and Experimental Setup

Our approach relies on character-level annotation.
For this purpose, each letter in a word is assigned
a label consisting of two elements: the position of
the letter within the morpheme (B for beginning, M
for middle, E for end, S for single-letter morpheme)
and the type of the morpheme itself. Thus, a total
of 22 different labels are possible during conver-
sion (LINK and HYPH can only be single-letter).
As a result, the Czech word šimlatost ‘shyness’
with the root šimlat- and the suffix -ost is mapped
to the sequence of labels [‘B-ROOT’, ‘M-ROOT’,
‘M-ROOT’, ‘M-ROOT’, ‘M-ROOT’, ‘E-ROOT’,
‘B-SUFF’, ‘M-SUFF’, ‘E-SUFF’]. We considered
two approaches. In the first case, the model was
fed a sequence of letters, and a sequence of labels
was expected as output. In the second case, we

3https://ufal.mff.cuni.cz/derinet
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Dataset Slounik DeriNet Morphodict-T Morphodict-K
Language Belarusian Czech Russian Russian
Unique words 31,057 820,387 95,895 75,649
Unique morphemes 6,350 109,208 15,899 8,079
Unique roots 6,095 102,889 15,253 7,148
Avg morphemes per word 3.74 4.64 3.86 4.12
Avg morpheme occur-
rence

18.31 34.89 23.29 38.56

Avg root occurrence 5.20 7.97 7.54 12.24
Avg characters in root 4.18 5.30 5.52 4.62
Morpheme types PREF, ROOT,

SUFF, END,
LINK

PREF, ROOT,
SUFF

PREF, ROOT,
SUFF, END,
LINK, POST,
HYPH

PREF, ROOT,
SUFF, END,
LINK, POST,
HYPH

Table 1: Brief characteristics of the datasets

prefixed the sequence of letters with the word it-
self, assigning it a special label ‘0’, that is, for the
word šimlatost the input sequence was equal to the
following: [‘šimlatost’, ‘š’, ‘i’, ‘m’, ‘l’, ‘a’, ‘t’,
‘o’, ‘s’, ‘t’], and the output one: [‘0’, ‘B-ROOT’,
‘M-ROOT’, ‘M-ROOT’, ‘M-ROOT’, ‘M-ROOT’,
‘E-ROOT’, ‘B-SUFF’, ‘M-SUFF’, ‘E-SUFF’].

We conducted two series of experiments: one
with random dataset train-test splitting and another
with splitting by roots. In both cases, we used 5-
fold cross-validation. In the first case, each dataset
was randomly divided into 5 nearly equal folds. In
the second case, we divided all roots mentioned
in the dataset into 5 nearly equal groups and then
included all words with roots from group k in fold
k. In this scenario, words containing two or more
roots were excluded from consideration. The sizes
of the folds in the second case were quite close but
not equal (see Table 2).

Dataset Min fold size Max fold size
Slounik 5,629 6,712
DeriNet 157,380 170,613
Morphodict-T 15,253 16,013
Morphodict-K 12,401 13,667

Table 2: Size of the folds in the split-by-roots experi-
ment (in words)

To evaluate the quality of annotation, we used
metrics previously employed in (Sorokin and Kravt-
sova, 2018; Morozov et al., 2024): F-score, Pre-
cision, and Recall for morpheme boundaries; F-
score, Precision, and Recall for root boundaries;
character-level Accuracy; and the proportion of

completely correct annotations (WordAccuracy).
In the case where the word itself was prefixed to
the sequence of letters, the label assigned to it was
not taken into account when calculating the met-
rics.

In experiments with a CNN ensemble, we used
the implementation by Sorokin and Kravtsova
(2018)4. We used 3 models in the ensemble, with
the window size set to 5. Each model was trained
for a maximum of 25 epochs, incorporating early
stopping with a patience of 10 epochs to prevent
overfitting. Model training was performed on an
AMD Ryzen 5 5600X CPU without the use of a
GPU. Each training epoch took up to 90 seconds
(in the case of the DeriNet dataset).

For implementation BERT-like models, we
used the simpletransformers5 framework. For
Russian and Czech, we selected models that
have demonstrated high quality in other tasks:
ruRoberta-large6 (355M parameters) (Zmitro-
vich et al., 2024) and Czert-B-base-cased7

(110M parameters) (Sido et al., 2021), respect-
ively. For Belarusian, we were unable to find a
model with similar characteristics. Therefore, we
decided to conduct experiments with two models:
a smaller one specifically tailored for Belarusian,
roberta-small-belarusian8 (16M parameters),

4https://github.com/AlexeySorokin/
NeuralMorphemeSegmentation

5https://simpletransformers.ai/
6https://huggingface.co/ai-forever/

ruRoberta-large
7https://huggingface.co/UWB-AIR/

Czert-B-base-cased
8https://huggingface.co/KoichiYasuoka/

roberta-small-belarusian
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and SlavicBERT9 (180M parameters) (Arkhipov
et al., 2019), which was trained on four other Slavic
languages: Bulgarian, Czech, Polish, and Russian.

The batch size during training was set to 16, and
the learning rate was set to 4e-6. The values of the
remaining parameters were set to default. We fine-
tuned the BERT-like models for 30 epochs. The
models were trained on an Nvidia RTX 4090 GPU.
Each training epoch took up to 18 minutes (in the
case of the DeriNet dataset). The fine-tuned models
are available on request from the corresponding
author.

5 Results

The averaged cross-validation results are presen-
ted in Tables 3, 4. Full experimental results for
each dateset, model, and fold can be found in Ap-
pendix E. The best results for each dataset are un-
derlined. F stands for F-score, P stands for Preci-
sion, R stands for Recall, Acc stands for character-
level accuracy, and WA stands for word-level ac-
curacy. The “+lex” models correspond to models
trained with the lemma added to the input sequence.

For three out of the four datasets, BERT-like
models lead across all metrics. In the case of
random split, the best results were achieved for
Czech: 95.4% fully correct annotations and 98.8%
character-level accuracy. For all datasets, a Wor-
dAccuracy greater than 90% and a character-level
accuracy greater than 95% were achieved. When
transitioning to testing on OOV roots, the annota-
tion quality, as expected, decreases. However,
similar to the random split scenario, BERT-like
models, particularly those trained with the addition
of the word lemma in the input sequence, outper-
formed others for Czech and Russian datasets. The
best result was achieved on the Morphodict-T data-
set: 77.2% fully correct segmetations and 92.82%
character-level accuracy. The superiority over the
CNN ensemble for Czech and Russian ranged from
2.2 to 4.5 percentage points in terms of WordAc-
curacy.

For Belarusian, the best result after the CNN
ensemble in the random split scenario was
achieved by the roberta-small-belarusian
model, trained without lemmata in the input se-
quence. This demonstrates that a model 10 times
smaller, trained on a low-resource language, can
be more effective for the given task than a lar-

9https://huggingface.co/DeepPavlov/
bert-base-bg-cs-pl-ru-cased

Figure 1: WordAccuracy values during model training

ger model trained on related languages. In the
split-by-roots case, the SlavicBert model, simil-
arly trained without lemmata, proved competitive:
it outperformed CNN for 4 out of 8 metrics and
trailed only slightly for the remaining four.

Four out of the five tested models showed im-
proved quality in the split-by-roots scenario when
lemmata were added to the training data. The ex-
ception was the SlavicBert model, which notably
lacked the target language in its training data. Thus,
it can be concluded that for models specifically
trained on the target language, adding lemmata to
the input sequence enhances the model’s ability to
annotate OOV roots. However, for two of these
four models, adding lemmata reduced recognition
quality in the random split scenario.

Comparing Precision and Recall for all morph-
emes and for roots only, it can be observed that
Recall for all morphemes is higher than Precision
across all datasets and models. For root morph-
emes, a similar pattern is observed for the CNN
ensemble, whereas for BERT-like models with ad-
ded lemmata, the situation is reversed.

Finally, the analysis of WordAccuracy dynamics
during training showed that for random split the
value steadily increases, especially in the first 10
epochs. At the same time, for split-by-roots the
changes are much less pronounced. An example
of WordAccuracy dynamics for the Morphodict-K
dataset and the RuRoberta+lex model is shown in
Figure 1.

6 Error Analysis

A selective analysis of errors made by the models
revealed that two types of deviations from the tar-
get annotation occur most frequently: differences
in suffix segmentation and differences in extract-
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Model All morphemes boundaries Only roots boundaries Acc WAF P R F P R
Slounik

CNN 98.41 98.10 98.73 95.26 95.30 95.21 96.95 90.45
Roberta-bel 98.40 98.25 98.55 94.92 95.08 95.08 96.82 90.32
Roberta-bel+lex 98.09 97.88 98.30 94.01 94.13 93.88 96.21 88.86
SlavicBert 98.00 97.72 98.28 93.56 93.72 93.41 95.99 87.73
SlavicBert+lex 97.96 97.68 98.24 93.33 93.58 93.08 95.89 87.58

DeriNet
CNN 98.91 98.72 99.11 94.09 94.04 94.14 97.45 91.09
Czert 99.40 99.27 99.53 96.63 96.64 96.63 98.69 95.12
Czert+lex 99.44 99.33 99.55 96.78 96.79 96.78 98.76 95.39

Morphodict-T
CNN 98.09 97.79 98.38 94.08 94.19 93.99 96.61 88.49
ruRoberta 98.56 98.57 98.56 95.31 95.45 95.18 97.39 91.09
ruRoberta+lex 98.76 98.69 98.84 96.07 96.13 96.00 97.78 92.47

Morphodict-K
CNN 98.66 98.58 98.74 96.24 96.26 96.22 97.40 90.82
ruRoberta 99.09 99.05 99.14 97.43 97.44 97.43 98.19 93.61
ruRoberta+lex 99.10 99.04 99.17 97.36 97.37 97.35 98.19 93.54

Table 3: Average metric value during cross-validation, random split

Model All morphemes boundaries Only roots boundaries Acc WAF P R F P R
Slounik

CNN 95.44 94.88 96.00 83.98 83.97 83.98 91.24 74.78
Roberta-bel 95.36 95.51 95.21 83.60 83.67 83.53 90.80 73.55
Roberta-bel+lex 95.48 95.48 95.49 83.71 83.79 83.64 91.12 74.59
Slavic 95.59 95.29 95.89 84.28 84.49 84.06 91.17 74.74
Slavic+lex 95.49 95.49 95.73 83.70 83.84 83.56 91.03 74.33

DeriNet
CNN 96.30 96.42 96.18 80.07 79.98 80.16 91.38 70.35
Czert 96.32 96.91 95.74 79.26 79.31 79.22 91.42 70.39
Czert+lex 96.62 97.06 96.18 80.70 80.74 80.66 92.08 72.63

Morphodict-T
CNN 94.71 94.46 94.46 81.97 81.96 81.98 90.16 70.53
ruRoberta 94.98 94.67 95.31 82.08 81.91 82.26 90.15 71.10
ruRoberta+lex 95.59 96.09 95.08 84.34 84.37 84.30 91.70 74.95

Morphodict-K
CNN 95.19 95.35 95.04 82.50 82.46 82.54 91.30 72.63
ruRoberta 95.26 95.78 94.74 82.32 82.37 82.28 91.39 73.32
ruRoberta+lex 96.09 96.38 95.81 84.87 84.95 84.78 92.82 77.17

Table 4: Average metric value during cross-validation, split-by-roots

ing suffixes and prefixes from the root, with the
latter becoming more frequent when transitioning
from random split to split-by-roots. Some errors
can be explained by mistakes and inconsistencies
in dataset annotation (Table 5). This aligns with

previously obtained results for the Russian lan-
guage (Sorokin and Kravtsova, 2018; Bolshakova
and Sapin, 2019; Morozov et al., 2024).

The results of analyzing errors made by the mod-
els in the split-by-roots experiment proved to be
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Dataset Lemma Dataset segmentation Corrected segmentation
Slounik усынавiцель у-сын-ав-i:LINK-цель у-сын-ав-i:SUFF-цель
DeriNet pedopsychiatricky pedop-sychiatrick-y pedo-psychiatrick-y
Morphodict-T очевидный очевидн-ый очевид-н-ый
Morphodict-K растение рас-т-ени-е раст-ени-е

Table 5: Examples of mis-segmentation in datasets

particularly interesting. For each OOV root, we
calculated the root recognition: the proportion of
completely correctly segmented words among all
words containing that root. We found that the recog-
nition rate of the vast majority of roots is either 1
or 0 across all models and datasets (Figure 2). The
roots of the first type we termed “recognizable”,
while the roots of the second type were labeled
“completely unknown”. We found two features that
differed between these root groups:

1. Proximity to roots in the training sample.
For example, for the Morphodict-K dataset,
the average minimal Levenshtein distance
between recognizable roots and training roots
was 1.1, versus 1.5 for completely unknown
roots.

2. Shared derivation patterns. When
masking roots in Morphodict-K (e.g.
“игр:ROOT/а:SUFF/ть:END” ‘to play’ →
“[MASK]:ROOT/а:SUFF/ть:END”), 90%
of words with recognizable roots had a
training-set word with an identical masked
pattern, compared to only 73% for completely
unknown roots. A similar trend holds for
Belarusian – e.g., the erroneous segment-
ation “грукат:ROOT/а:SUFF/ць:SUFF”
‘to rumble’ (vs. the correct
“грук:ROOT/ат:SUFF/а:SUFF/ць:SUFF”)
likely arises because the pattern
“ат:ROOT/а:SUFF/ць:SUFF” appears
46 times in the training set, while
“/ат:SUFF/а:SUFF/ць:SUFF” occurs only 7
times.

Another interesting observation is that the seg-
mentation behavior (including root recognizability)
is stable across random seeds. For Morphodict-K,
three model reruns produced identical segmenta-
tions in 90% of cases (76% of segmentations were
fully correct for each of the models, 17% were
incorrect for each of the models). The overlap
of “recognizable root” sets across models reached
95% of each set’s size.

Figure 2: Histogram for the root recognition

Figure 3: Histogram of the difference in root recognition
for the Czert and Czert+lex models

When comparing this statistic for models trained
without adding lemmata to the input sequence
versus those trained with lemmata, it turns out that
roots most often do not transition between categor-
ies. However, for each pair of models, there are
roots that transition from “completely unknown”
to “recognizable” and vice versa. An example of
a histogram of such difference for the Czert mod-
els before and after adding a lemma to the input
sequence is shown in Figure 3. Unfortunately, we
were unable to identify clear patterns or dependen-
cies between the roots and this dynamic.
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7 Comparison with DeepSPIN-3

The models presented at the SIGMORPHON 2022
cannot be directly compared to our approach due
to differences in task formulation: the competition
focused on canonical segmentation, whereas our
work addresses surface segmentation. Neverthe-
less, the exceptionally high performance achieved
by the DeepSPIN-3 algorithm during the competi-
tion prompted our interest in conducting at least an
approximate comparison. Beyond a direct perform-
ance comparison, this would also help assess the
applicability of algorithms designed for canonical
segmentation task to the surface one.

Since DeepSPIN-3 does not involve morpheme
type labeling, types were removed. The results are
presented in Table 6. In addition to the Levenshtein
distance used in the competition, we included Wor-
dAccuracy — the proportion of fully correct seg-
mentations.

Dataset Levenshtein WordAccuracy
random split

Slounik 0.80 68.65
DeriNet 0.10 92.28
Morphodict-T 0.41 79.69
Morphodict-K 0.55 77.10

split by roots
Slounik 2.22 12.11
DeriNet 0.68 55.16
Morphodict-T 1.58 25.85
Morphodict-K 1.90 13.38

Table 6: Results obtained using the DeepSPIN-3 al-
gorithm

The results demonstrate that in most scenarios
DeepSPIN-3 underperforms not only pretrained
models but also the CNN ensemble baseline. The
sole exception is DeriNet dataset in the random-
split scenario, where DeepSPIN-3 achieved 92%
word-level accuracy (vs. 91% for CNN ensemble
and 95% for pretrained models). For other lan-
guages, DeepSPIN-3 is significantly inferior, which
we attribute to the size of the training sets.

The performance drops drastically in the split-by-
roots scenario — the average Levenshtein distance
increases by 0.5-1.5, with word-level accuracy
decreasing by more than 30 percentage points.
Draft error analysis reveals that the algorithm
consistently generates roots similar to training set
instances. For example, in Morphodict-K, the word
“отплатить” ‘to pay back’ with correct segment-

ation от:PREF/плат:ROOT/и:SUFF/ть:END
receives incorrect segmentation
от:PREF/лат:ROOT/и:SUFF/ть:END (miss-
ing the root letter -п-), where лат:ROOT appears
in training set words like “подлатать” ‘to
patch up’. Our analysis shows that generating
Levenshtein-close training set roots accounts for
two-thirds of all errors. A potential solution might
involve restricting model generation to non-root
morphemes while treating unmarked segments
as roots, though this would require substantial
algorithm modifications and warrants separate
investigation.

8 Conclusion

In this work, we investigated the applicability of
BERT-like models to the task of morpheme seg-
mentation using the material of the Belarusian,
Czech, and Russian languages. We used a CNN
ensemble as a baseline. For Czech and Russian,
our fine-tuned BERT-like models outperformed the
baseline. We managed to achieve a share of com-
pletely correct annotations of 92-95% in the case
of a random test sample, and 72-77% in the case
of testing on words with roots that were not found
in the training sample. The proportion of incor-
rect segmentations on a random sample decreased
by 30-45%, and on words with OOV roots by 9-
15%. The results obtained exceed all previously
presented results for these languages.

For Belarusian, the CNN ensemble showed bet-
ter performance in both types of testing, achieving
word accuracy of 90.5% in the case of random split
and 74.8% in the split-by-roots case. To our know-
ledge, similar experiments have not been conducted
for this language before, which allows us to con-
sider the presented result as a new state-of-the-art
baseline. We also prepared the first publicly avail-
able Belarusian morpheme dataset with morpheme
type annotation.

We also found that when testing on words with
OOV roots, almost all roots can be divided into two
groups: “recognizable” and “completely unknown”.
The first group includes roots for which words are
annotated completely correctly in 100% of cases,
while the second group consists of roots for which
words are never annotated completely correctly by
the model.
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9 Limitations

1. Significant computational power required
for training and inference BERT-like mod-
els. Unlike the CNN ensemble, fine-tuning
and inference of BERT-like models require
the use of sufficiently powerful GPUs (albeit
from the consumer segment). On the other
hand, preliminary testing indicated that using
large language models on this task would re-
quire significantly more computational time
and resources, so we decided not to conduct
full-scale experiments with LLMs. However,
automatic expansion of morpheme diction-
aries does not require frequent model runs,
since new words appear in the language relat-
ively rarely. In this case, the additional costs
of BERT-like models can be compensated by
higher quality of the labeling.

2. Separation of roots into “recognizable” and
“completely unknown” requires additional
linguistic research. We found that for both
CNN and BERT-like approaches, when testing
on words with OOV roots, two categories of
roots emerge: “recognizable” and “completely
unknown”. However, a detailed analysis of
why certain roots fall into one category or
another is planned for future work.

3. Lack of pre-trained Belarusian models and
small size of the morpheme dataset. Al-
though we were able to draw several conclu-
sions about morpheme segmentation for the
Belarusian language, the lack of relatively
large pre-trained models for this language
does not allow us to consider CNN as the un-
equivocal leader. On the contrary, the results
obtained for Czech and Russian suggest that
the absence of models and the small size of the
dataset were the reasons for the failure of the
BERT-like approach. With the emergence of
larger Belarusian models and annotated data-
sets, our study should be replicated to draw
more reliable conclusions.
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A Risks

Our research is primarily foundational. Despite
this, we can assume some risks associated with the
integration of our algorithm into language learning
processes. Although the obtained labeling quality
is quite high, the probability of errors is still signi-
ficant. The segmentations generated by the model
must be validated by a human expert before being
implemented in educational materials.

In addition, the datasets used may contain a
small number of examples of obscene and offensive
vocabulary. However, all the data used are based on
academic dictionaries and projects, so we believe
that such words are an integral part of the language,
and morpheme segmentation models should be able
to work with such words.

B Scientific Artifacts

Our work uses external datasets, pre-trained models
and software libraries. We created one scientific
artifact, the Slounik dataset10, publicly available
under the CC-BY-NC-SA 4.0 license.

B.1 Datasets
The datasets we utilized do not contain any per-
sonal information. The datasets may contain a
small number of examples of obscene and offens-
ive vocabulary. However, all the data used are
based on academic dictionaries and projects, so
we believe that such words are an integral part of
the language, and morpheme segmentation models
should be able to work with such words.

1. Slounik. As a basis for preparing the
Slounik dataset, we used the version of
the School morpheme dictionary of the Be-
larusian language (Mormysh et al., 2005)
available for non-commercial use in the re-
pository of the Belarusian State Pedago-
gical University named after Maxim Tank

10https://huggingface.co/datasets/ruscorpora/
morphodict-bel

(BSPU)11121314151617. According to the de-
scription of the repository, it is allowed to
copy and quote materials exclusively for non-
commercial purposes with the obligatory in-
dication of the author of the work and a hyper-
link to the BSPU Repository. We translated
the dictionary into a machine-readable form.
During the additional labeling, the annotat-
ors did not make changes to the morpheme
segmentation, but only marked the types of
segmented morphemes. The Slounik dataset18

is publicly available under the CC-BY-NC-SA
4.0 license, including mandatory mention of
the authors of the original dictionary and a
link to the BSPU repository.

2. DeriNet. Adapted from the DeriNet19 dataset,
which is available in the LINDAT/CLARIAH-
CZ digital library20 at the Institute of Farmal
and Applied Linguistics, Faculty of Mathem-
atics and Physics, Charles university under the
terms of the CC-BY-NC-SA 3.0 license.

3. Morphodict-T and Morphodict-K. The data-
sets were provided to us for use exclusively for
scientific purposes under a license agreement
with the Russian National Corpus21 (Savchuk
et al., 2024). A detailed description of the dif-
ferences in the markup between the datasets
can be found on the Corpus website22.

B.2 Pre-trained Models
We utilized four pre-trained models from Hugging-
Face23:

1. roberta-small-belarusian24. This model
is monolingual (Belarusian), has 16M para-
meters, and is available under the CC-BY-SA
4.0 license.

11http://elib.bspu.by/handle/doc/30574
12http://elib.bspu.by/handle/doc/30575
13http://elib.bspu.by/handle/doc/30576
14http://elib.bspu.by/handle/doc/30577
15http://elib.bspu.by/handle/doc/30578
16http://elib.bspu.by/handle/doc/30579
17http://elib.bspu.by/handle/doc/30580
18https://huggingface.co/datasets/ruscorpora/

morphodict-bel
19https://ufal.mff.cuni.cz/derinet
20https://lindat.mff.cuni.cz/repository/xmlui/

handle/11234/1-3765
21https://ruscorpora.ru/en
22https://ruscorpora.ru/en/page/

instruction-derivation
23https://huggingface.co/
24https://huggingface.co/KoichiYasuoka/

roberta-small-belarusian
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2. SlavicBERT25 (Arkhipov et al., 2019). This
model is multilingual (Bulgarian, Czech, Pol-
ish, and Russian), has 180M parameters, and
is available under the Apache 2.0 license.

3. Czert-B-base-cased26 (Sido et al., 2021).
This model is monolingual (Czech), has 110M
parameters, and is available under the CC-BY-
NC-SA 4.0 license.

4. ruRoberta-large27 (Zmitrovich et al.,
2024). This model is monolingual (Russian),
has 355M parameters, and is available under
the MIT license.

B.3 Software libraries
1. In experiments with a CNN ensemble, we

used the implementation by Sorokin and
Kravtsova (2018) from publicly available re-
pository28. Unfortunately, there is no in-
dication of licensing terms in the repository.
The code in the repository utilizes the keras
(Chollet et al., 2015) and tensorflow (Abadi
et al., 2016) libraries. We used version 2.12.0
of both libraries to run it. We used the follow-
ing parameters set by the configuration file:
models number — 3, number of convolutional
layers — 3, window size — 5, filters number —
192, dense output units — 64, validation split
ratio — 0.2, dropout ratio — 0.2.

2. For implementation BERT-like models, we
used the simpletransformers29 framework,
which is available under Apache 2.0 license.
We used the NERModel class to load and fine-
tune the models. All models were loaded via
HuggingFace API30. The batch size during
training was set to 16, and the learning rate
was set to 4e-6. The values of the remaining
parameters were set to default.

C Computational Experiments

Training all 20 convolutional neural network en-
sembles together took less than 48 hours on an
AMD Ryzen 5 5600X CPU.

25https://huggingface.co/DeepPavlov/
bert-base-bg-cs-pl-ru-cased

26https://huggingface.co/UWB-AIR/
Czert-B-base-cased

27https://huggingface.co/ai-forever/
ruRoberta-large

28https://github.com/AlexeySorokin/
NeuralMorphemeSegmentation

29https://simpletransformers.ai/
30https://huggingface.co/

BERT-like models fine-tuning was performed
on a single Nvidia RTX 4090 GPU. Training
time depended on the specific dataset and, to a
lesser extent, the base model. Fine-tuning of a
single roberta-small-belarusian model on the
Slounik dataset took less than one hour, while fine-
tuning of the Czert model on the DeriNet dataset
required about nine hours. In total, 160 GPU hours
were used for fine-tuning the models, including
preliminary experiments.

D Human Annotation

We used human annotators only for additional la-
beling of the Slounik dataset. It should be noted
that during this process we did not change the seg-
mentation of morphemes in the source dictionary.
The task of type labeling is not complex, since
the main challenge in morpheme segmentation of
Belarusian (as well as other Slavic languages) is
precisely the division of the source string. In the
vast majority of cases, the morpheme type is eas-
ily determined unambiguously: prefixes, suffixes,
endings and connecting vowels can only be from
a fixed set of strings, and the intersection between
the set of roots and the rest of the morphemes is
extremely small (no more than two dozen strings).
In order to avoid potential discrepancies in labeling
between annotators, we decided not to separate
postfixes from suffixes, labeling all such morph-
emes as suffixes.

Preliminary labeling was carried out by a nat-
ive Russian speaker (as a morphologically close
language) with linguistic background, and valida-
tion of the labeling results was carried out by two
Russian- and Belarusian-speaking annotators with
linguistic education.

The annotators were instructed to assign each
morpheme of the word one of five possible types:
PREF (prefix), ROOT, SUFF (suffix), END (end-
ing), LINK (linking vowel). The primary annotator
received data as a json dictionary. Each lemma
in the dictionary corresponded to a list of several
morphemes. The concatenation of morphemes
coincided with the original lemma. The annot-
ator’s task was to add the type to each morpheme,
separating it with the ":" character, for example,
for the word абавязаць, the annotator received
the list ["абавяз", "а", "ць"], to which the annot-
ator matched the list ["абавяз:ROOT", "а:SUFF",
"ць:SUFF"]. The annotators were informed that
the labeled dataset would be used, among other
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things, to train morpheme segmentation models.

E Detailed Experimental Results

The results obtained during the experiments for
each of the folds are presented in Tables 7, 11,
and 12 for the Slounik dataset, in Tables 8 and
13 for the DeriNet dataset, in Tables 9 and 14 for
the Morphodict-T dataset, and in Tables 10 and 15
for the Morphodict-K dataset. Additionally, the
average value and standard deviation are presented.
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Metric Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Average StdDev
random split

Precisionall 97.92 98.20 98.24 98.09 98.04 98.10 0.13
Recallall 98.85 98.65 98.47 98.89 98.79 98.73 0.17
F1all 98.39 98.43 98.36 98.49 98.41 98.41 0.05
Precisionroot 95.03 95.36 95.12 95.60 95.39 95.30 0.23
Recallroot 95.08 95.29 95.03 95.42 95.26 95.21 0.16
F1root 95.05 95.32 95.08 95.51 95.32 95.26 0.19
Accuracy 96.85 96.96 96.93 97.11 96.90 96.95 0.10
WordAccuracy 90.41 90.23 90.18 90.87 90.55 90.45 0.28

split by roots
Precisionall 94.90 94.62 94.63 94.66 95.59 94.88 0.41
Recallall 96.01 96.14 96.20 95.73 95.93 96.00 0.18
F1all 95.45 95.37 95.41 95.20 95.76 95.44 0.20
Precisionroot 85.09 83.19 84.60 82.52 84.47 83.97 1.07
Recallroot 85.09 83.19 84.60 82.52 84.51 83.98 1.08
F1root 85.09 83.19 84.60 82.52 84.49 83.98 1.08
Accuracy 91.56 91.12 91.00 90.80 91.74 91.24 0.39
WordAccuracy 75.41 73.56 74.65 73.78 76.49 74.78 1.21

Table 7: Segmentation quality of the Slounik dataset using a CNN ensemble

Metric Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Average StdDev
random split

Precisionall 98.63 98.80 98.90 98.59 98.70 98.72 0.11
Recallall 99.20 99.07 98.96 99.17 99.12 99.11 0.09
F1all 98.92 98.94 98.93 98.88 98.91 98.91 0.02
Precisionroot 94.08 94.18 94.07 93.80 94.07 94.04 0.13
Recallroot 94.17 94.27 94.19 93.90 94.17 94.14 0.13
F1root 94.12 94.22 94.13 93.85 94.12 94.09 0.13
Accuracy 97.50 97.50 97.46 97.38 97.44 97.45 0.04
WordAccuracy 91.10 91.28 91.15 90.86 91.06 91.09 0.13

split by roots
Precisionall 96.10 96.49 96.17 96.71 96.63 96.42 0.24
Recallall 96.68 95.92 96.26 95.85 96.21 96.18 0.29
F1all 96.39 96.20 96.22 96.28 96.42 96.30 0.09
Precisionroot 80.07 79.70 80.36 79.59 80.20 79.98 0.30
Recallroot 80.13 79.89 80.57 79.79 80.40 80.16 0.30
F1root 80.10 79.79 80.47 79.69 80.30 80.07 0.30
Accuracy 91.47 91.29 91.36 91.39 91.38 91.38 0.06
WordAccuracy 70.52 69.85 70.16 70.72 70.51 70.35 0.31

Table 8: Segmentation quality of the DeriNet dataset using a CNN ensemble
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Metric Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Average StdDev
random split

Precisionall 97.79 97.76 97.76 97.64 98.00 97.79 0.13
Recallall 98.38 98.33 98.40 98.46 98.32 98.38 0.06
F1all 98.09 98.04 98.09 98.05 98.16 98.09 0.05
Precisionroot 94.02 94.17 94.07 93.98 94.69 94.19 0.29
Recallroot 93.80 93.97 93.88 93.93 94.35 93.99 0.21
F1root 93.91 94.07 93.97 93.95 94.52 94.08 0.25
Accuracy 96.57 96.55 96.63 96.53 96.77 96.61 0.10
WordAccuracy 88.22 88.35 88.56 88.39 88.94 88.49 0.28

split by roots
Precisionall 94.45 95.13 93.92 94.73 94.05 94.46 0.50
Recallall 95.46 95.20 94.78 94.28 95.09 94.96 0.45
F1all 94.95 95.16 94.35 94.51 94.57 94.71 0.34
Precisionroot 83.03 82.14 81.89 81.74 81.01 81.96 0.73
Recallroot 83.04 82.16 81.90 81.74 81.07 81.98 0.72
F1root 83.03 82.15 81.90 81.74 81.04 81.97 0.72
Accuracy 90.53 90.87 89.52 89.95 89.95 90.16 0.53
WordAccuracy 72.04 72.61 68.24 69.67 70.07 70.53 1.79

Table 9: Segmentation quality of the Morphodict-T dataset using a CNN ensemble

Metric Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Average StdDev
random split

Precisionall 98.57 98.61 98.74 98.50 98.47 98.58 0.11
Recallall 98.77 98.80 98.59 98.76 98.79 98.74 0.09
F1all 98.67 98.71 98.66 98.63 98.63 98.66 0.03
Precisionroot 96.26 96.33 96.41 96.25 96.05 96.26 0.13
Recallroot 96.23 96.40 96.19 96.23 96.06 96.22 0.12
F1root 96.24 96.37 96.30 96.24 96.06 96.24 0.11
Accuracy 97.40 97.45 97.41 97.38 97.38 97.40 0.03
WordAccuracy 90.85 91.01 90.76 90.66 90.84 90.82 0.13

split by roots
Precisionall 95.23 95.06 95.25 95.27 95.92 95.35 0.33
Recallall 95.36 94.75 94.72 95.16 95.22 95.04 0.29
F1all 95.30 94.90 94.98 95.21 95.57 95.19 0.27
Precisionroot 84.46 80.51 80.38 81.72 85.23 82.46 2.26
Recallroot 84.53 80.59 80.44 81.85 85.30 82.54 2.25
F1root 84.50 80.55 80.41 81.78 85.26 82.50 2.25
Accuracy 91.50 90.80 90.92 91.30 91.98 91.30 0.47
WordAccuracy 73.33 69.75 71.14 73.45 75.48 72.63 2.22

Table 10: Segmentation quality of the Morphodict-K dataset using a CNN ensemble
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Metric Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Average StdDev
random split

Precisionall 98.14 98.24 98.19 98.32 98.39 98.25 0.10
Recallall 98.60 98.55 98.53 98.56 98.50 98.55 0.04
F1all 98.37 98.39 98.36 98.44 98.45 98.40 0.04
Precisionroot 94.83 95.18 95.04 95.18 95.20 95.08 0.16
Recallroot 94.56 94.91 94.83 94.74 94.70 94.75 0.13
F1root 94.69 95.04 94.93 94.96 94.95 94.92 0.13
Accuracy 96.76 96.74 96.85 96.87 96.89 96.82 0.07
WordAccuracy 90.16 90.20 90.07 90.53 90.63 90.32 0.25

split by roots
Precisionall 95.42 95.46 95.28 95.58 95.80 95.51 0.19
Recallall 95.19 95.39 94.98 95.33 95.13 95.21 0.16
F1all 95.31 95.42 95.13 95.46 95.46 95.36 0.14
Precisionroot 84.55 83.11 84.04 83.47 83.18 83.67 0.62
Recallroot 84.35 82.86 84.07 83.32 83.05 83.53 0.65
F1root 84.45 82.99 84.05 83.39 83.11 83.60 0.63
Accuracy 90.82 90.79 90.41 91.00 90.99 90.80 0.24
WordAccuracy 73.37 72.97 72.99 73.85 74.57 73.55 0.67

random split (+lex)
Precisionall 97.77 98.05 97.75 97.88 97.96 97.88 0.13
Recallall 98.34 98.24 98.18 98.48 98.24 98.30 0.12
F1all 98.05 98.15 97.97 98.18 98.10 98.09 0.08
Precisionroot 93.94 94.42 93.88 94.28 94.15 94.13 0.23
Recallroot 93.87 94.24 93.73 93.92 93.62 93.88 0.24
F1root 93.90 94.33 93.81 94.10 93.88 94.01 0.21
Accuracy 96.10 96.35 96.07 96.33 96.20 96.21 0.13
WordAccuracy 88.39 88.97 88.57 89.44 88.92 88.86 0.40

split by roots (+lex)
Precisionall 95.49 95.33 95.51 95.54 95.51 95.48 0.08
Recallall 95.67 95.47 95.47 95.49 95.36 95.49 0.11
F1all 95.58 95.40 95.49 95.51 95.44 95.48 0.07
Precisionroot 84.63 83.38 84.45 83.47 83.04 83.79 0.70
Recallroot 84.29 83.32 84.47 83.34 82.78 83.64 0.71
F1root 84.46 83.35 84.46 83.40 82.91 83.71 0.70
Accuracy 91.45 91.09 90.95 91.11 91.01 91.12 0.20
WordAccuracy 75.64 73.98 74.30 74.67 74.34 74.59 0.64

Table 11: Segmentation quality of the Slounik dataset using a fine-tuned roberta-small-belarusian model
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Metric Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Average StdDev
random split

Precisionall 97.69 97.69 97.74 97.78 97.69 97.72 0.04
Recallall 98.22 98.36 98.30 98.22 98.31 98.28 0.06
F1all 97.95 98.02 98.02 98.00 98.00 98.00 0.03
Precisionroot 93.21 94.08 94.03 93.84 93.42 93.72 0.38
Recallroot 92.70 93.77 93.75 93.72 93.10 93.41 0.48
F1root 92.96 93.92 93.89 93.78 93.26 93.56 0.43
Accuracy 95.79 95.92 96.10 96.12 96.01 95.99 0.14
WordAccuracy 87.22 87.52 87.92 88.23 87.73 87.73 0.38

split by roots
Precisionall 95.28 95.20 95.00 95.17 95.79 95.29 0.30
Recallall 96.16 95.72 95.89 95.75 95.91 95.89 0.17
F1all 95.72 95.46 95.45 95.46 95.85 95.59 0.19
Precisionroot 85.85 83.94 84.78 83.55 84.32 84.49 0.89
Recallroot 84.99 83.73 84.14 83.28 84.18 84.06 0.63
F1root 85.42 83.83 84.46 83.42 84.25 84.28 0.75
Accuracy 91.64 90.93 90.74 90.86 91.71 91.17 0.46
WordAccuracy 76.09 73.75 74.03 73.60 76.22 74.74 1.30

random split (+lex)
Precisionall 97.51 97.64 97.70 97.73 97.83 97.68 0.12
Recallall 98.35 98.14 98.20 98.27 98.22 98.24 0.08
F1all 97.93 97.89 97.95 98.00 98.02 97.96 0.05
Precisionroot 93.47 93.39 93.81 93.58 93.67 93.58 0.17
Recallroot 93.06 92.88 93.27 93.12 93.06 93.08 0.14
F1root 93.27 93.13 93.54 93.35 93.37 93.33 0.15
Accuracy 95.80 95.72 96.03 95.96 95.93 95.89 0.13
WordAccuracy 87.67 86.85 87.62 87.88 87.91 87.58 0.43

split by roots (+lex)
Precisionall 95.32 94.99 95.09 95.16 95.73 95.26 0.29
Recallall 96.04 95.73 95.46 95.81 95.60 95.73 0.22
F1all 95.68 95.36 95.27 95.48 95.67 95.49 0.18
Precisionroot 84.94 82.98 83.44 83.81 84.05 83.84 0.73
Recallroot 84.54 82.85 83.26 83.32 83.83 83.56 0.65
F1root 84.74 82.92 83.35 83.56 83.94 83.70 0.69
Accuracy 91.48 90.89 90.63 90.88 91.27 91.03 0.34
WordAccuracy 75.41 73.31 73.65 74.01 75.28 74.33 0.96

Table 12: Segmentation quality of the Slounik dataset using a fine-tuned SlavicBert model
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Metric Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Average StdDev
random split

Precisionall 99.27 99.26 99.28 99.25 99.28 99.27 0.01
Recallall 99.54 99.53 99.52 99.53 99.53 99.53 0.01
F1all 99.41 99.40 99.40 99.39 99.41 99.40 0.01
Precisionroot 96.66 96.64 96.67 96.61 96.62 96.64 0.03
Recallroot 96.66 96.62 96.65 96.60 96.60 96.63 0.03
F1root 96.66 96.63 96.66 96.61 96.61 96.63 0.03
Accuracy 98.71 98.68 98.69 98.67 98.70 98.69 0.01
WordAccuracy 95.17 95.14 95.14 95.03 95.13 95.12 0.05

split by roots
Precisionall 96.96 96.99 96.78 96.98 96.87 96.91 0.09
Recallall 96.02 95.43 95.63 95.72 95.87 95.74 0.22
F1all 96.49 96.20 96.20 96.35 96.37 96.32 0.12
Precisionroot 80.18 78.63 79.49 78.93 79.29 79.31 0.59
Recallroot 80.01 78.55 79.50 78.92 79.11 79.22 0.56
F1root 80.10 78.59 79.50 78.92 79.20 79.26 0.57
Accuracy 91.78 91.17 91.35 91.44 91.36 91.42 0.22
WordAccuracy 71.43 69.51 70.01 70.92 70.08 70.39 0.77

random split (+lex)
Precisionall 99.32 99.32 99.33 99.32 99.34 99.33 0.01
Recallall 99.56 99.56 99.54 99.55 99.57 99.55 0.01
F1all 99.44 99.44 99.43 99.43 99.45 99.44 0.01
Precisionroot 96.79 96.79 96.77 96.77 96.80 96.79 0.01
Recallroot 96.79 96.79 96.76 96.76 96.78 96.78 0.01
F1root 96.79 96.79 96.77 96.76 96.79 96.78 0.01
Accuracy 98.76 98.76 98.75 98.75 98.79 98.76 0.02
WordAccuracy 95.36 95.43 95.34 95.35 95.48 95.39 0.06

split by roots (+lex)
Precisionall 97.20 97.03 97.04 97.00 97.03 97.06 0.08
Recallall 96.52 95.92 96.13 96.10 96.21 96.18 0.22
F1all 96.86 96.47 96.58 96.55 96.62 96.62 0.15
Precisionroot 81.88 79.98 81.16 80.24 80.43 80.74 0.77
Recallroot 81.79 79.98 81.11 80.15 80.26 80.66 0.77
F1root 81.83 79.98 81.13 80.20 80.34 80.70 0.77
Accuracy 92.51 91.84 92.25 91.96 91.85 92.08 0.29
WordAccuracy 74.40 71.49 73.04 72.41 71.81 72.63 1.15

Table 13: Segmentation quality of the DeriNet dataset using a fine-tuned Czert model
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Metric Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Average StdDev
random split

Precisionall 98.72 98.41 98.77 98.41 98.54 98.57 0.17
Recallall 98.76 98.36 98.71 98.57 98.38 98.56 0.18
F1all 98.74 98.38 98.74 98.49 98.46 98.56 0.17
Precisionroot 95.91 94.91 95.88 95.21 95.31 95.45 0.44
Recallroot 95.78 94.47 95.74 95.05 94.87 95.18 0.57
F1root 95.85 94.69 95.81 95.13 95.09 95.31 0.50
Accuracy 97.71 97.05 97.74 97.21 97.25 97.39 0.31
WordAccuracy 92.12 89.97 92.19 90.63 90.52 91.09 1.01

split by roots
Precisionall 93.80 94.80 94.25 95.89 94.60 94.67 0.78
Recallall 96.30 95.68 95.31 93.85 95.44 95.31 0.90
F1all 95.03 95.24 94.78 94.86 95.01 94.98 0.18
Precisionroot 81.98 81.49 81.67 82.71 81.69 81.91 0.48
Recallroot 82.53 82.29 82.21 82.47 81.81 82.26 0.28
F1root 82.25 81.89 81.94 82.59 81.75 82.08 0.34
Accuracy 90.28 90.63 89.90 89.66 90.30 90.15 0.38
WordAccuracy 71.40 72.85 69.78 69.68 71.81 71.10 1.36

random split (+lex)
Precisionall 98.66 98.67 98.67 98.70 98.73 98.69 0.03
Recallall 98.86 98.79 98.90 98.85 98.81 98.84 0.04
F1all 98.76 98.73 98.79 98.77 98.77 98.76 0.02
Precisionroot 95.95 96.13 96.07 96.18 96.34 96.13 0.14
Recallroot 95.90 95.94 96.02 96.08 96.08 96.00 0.08
F1root 95.92 96.03 96.05 96.13 96.21 96.07 0.11
Accuracy 97.75 97.70 97.83 97.82 97.80 97.78 0.05
WordAccuracy 92.31 92.35 92.58 92.64 92.48 92.47 0.14

split by roots (+lex)
Precisionall 96.34 96.37 95.63 96.30 95.83 96.09 0.34
Recallall 95.39 95.17 95.09 94.63 95.13 95.08 0.28
F1all 95.86 95.77 95.36 95.46 95.48 95.59 0.22
Precisionroot 84.91 84.31 84.78 84.50 83.35 84.37 0.62
Recallroot 84.85 84.28 84.75 84.32 83.32 84.30 0.61
F1root 84.88 84.29 84.76 84.41 83.33 84.34 0.61
Accuracy 92.13 91.99 91.32 91.49 91.59 91.70 0.34
WordAccuracy 76.73 76.01 73.15 74.19 74.65 74.95 1.43

Table 14: Segmentation quality of the Morphodict-T dataset using a fine-tuned RuRoberta-large model
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Metric Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Average StdDev
random split

Precisionall 99.07 99.06 99.10 99.03 98.97 99.05 0.05
Recallall 99.12 99.16 99.18 99.14 99.11 99.14 0.03
F1all 99.10 99.11 99.14 99.08 99.04 99.09 0.04
Precisionroot 97.42 97.55 97.65 97.47 97.12 97.44 0.20
Recallroot 97.45 97.45 97.56 97.44 97.23 97.43 0.12
F1root 97.43 97.50 97.61 97.45 97.17 97.43 0.16
Accuracy 98.18 98.19 98.25 98.22 98.09 98.19 0.06
WordAccuracy 93.52 93.72 93.76 93.65 93.38 93.61 0.16

split by roots
Precisionall 96.27 95.44 95.50 95.47 96.23 95.78 0.43
Recallall 95.13 94.90 94.24 94.53 94.89 94.74 0.35
F1all 95.69 95.17 94.86 95.00 95.56 95.26 0.36
Precisionroot 85.01 81.29 79.82 80.92 84.81 82.37 2.38
Recallroot 85.15 81.26 79.54 80.82 84.62 82.28 2.47
F1root 85.08 81.28 79.68 80.87 84.71 82.32 2.42
Accuracy 92.15 91.25 90.70 90.96 91.90 91.39 0.62
WordAccuracy 75.66 71.74 70.65 73.03 75.53 73.32 2.24

random split (+lex)
Precisionall 99.02 99.14 99.00 99.00 99.03 99.04 0.06
Recallall 99.20 99.21 99.14 99.18 99.14 99.17 0.03
F1all 99.11 99.17 99.07 99.09 99.09 99.10 0.04
Precisionroot 97.23 97.53 97.40 97.25 97.41 97.37 0.12
Recallroot 97.26 97.46 97.33 97.29 97.39 97.35 0.08
F1root 97.25 97.49 97.37 97.27 97.40 97.36 0.10
Accuracy 98.20 98.29 98.15 98.17 98.15 98.19 0.06
WordAccuracy 93.52 93.80 93.54 93.34 93.51 93.54 0.16

split by roots (+lex)
Precisionall 96.64 95.72 96.29 96.33 96.90 96.38 0.44
Recallall 95.82 95.99 95.37 95.83 96.03 95.81 0.26
F1all 96.23 95.85 95.83 96.08 96.46 96.09 0.27
Precisionroot 85.74 83.58 82.84 84.60 87.96 84.95 2.01
Recallroot 85.64 83.28 82.84 84.53 87.64 84.78 1.93
F1root 85.69 83.43 82.84 84.57 87.80 84.87 1.97
Accuracy 92.91 92.50 92.46 92.77 93.49 92.82 0.42
WordAccuracy 77.95 75.05 75.32 77.85 79.70 77.17 1.96

Table 15: Segmentation quality of the Morphodict-K dataset using a fine-tuned RuRoberta-large model
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