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Abstract

The rapid evolution of legal concepts over time
necessitates that legal language models adapt
swiftly accounting for the temporal dynamics.
However, prior works have largely neglected
this crucial dimension, treating legal adaptation
as a static problem rather than a continuous
process. To address this gap, we pioneer Lex-
Tempus, a dynamic mixture of experts model
that explicitly models the temporal evolution
of legal language in a parameter-efficient on-
line learning framework. LexTempus starts
with a single lightweight adapter expert and
dynamically expands by adding new experts
as significant deviations in the data distribu-
tion are detected. This self-expansion strategy
allows LexTempus to adapt to new informa-
tion without forgetting past knowledge, thereby
improving temporal generalization. We use
a a non-parametric similarity-based router to
merge relevant experts into a unified expert for
each test instance, ensuring efficient inference
without additional overhead. We validate the
effectiveness of LexTempus on ECHR and EU
case law datasets, demonstrating its superiority
in both perplexity and open-ended text genera-
tion quality metrics.

1 Introduction

The integration of language models into the le-
gal ecosystem marks a pivotal shift in how legal
tasks are approached, ranging from drafting legal
briefs to ensuring corporate compliance (Tiwari
et al., 2024; Ziffer, 2023), with the potential to
revolutionize the practice of law by aiding in un-
derstanding, analyzing, and generating legal doc-
uments (Frankenreiter and Nyarko, 2022; Santosh
et al., 2025a). Traditional static models, trained
on fixed corpora, may suffice in domains with sta-
ble knowledge, but legal systems are inherently
dynamic, with new statutes, regulations, and case

* Work done during his study at the Technical University
of Munich.

law constantly reshaping interpretative frameworks
(Santosh et al., 2024c). For instance, shifts in le-
gal frameworks occur through legislative changes
like the GDPR and California Consumer Privacy
Act, which have transformed data privacy practices;
landmark rulings such as Obergefell v. Hodges
and Brown v. Board of Education, which have
reshaped same-sex marriage rights and racial seg-
regation laws in the U.S.; regulatory updates from
entities like the SEC and Basel Accords, influenc-
ing corporate and banking regulations; emerging
issues such as autonomous vehicles and cryptocur-
rency, which prompt new legal standards; and in-
ternational treaties like the Paris Agreement and
the Convention on Cybercrime, impacting national
laws on environmental and digital crimes. Addi-
tionally, evolving societal attitudes have driven the
recognition of environmental rights and increased
concerns over digital privacy, while external events
like the COVID-19 have necessitated legal adapta-
tions in telehealth.

This evolving nature of legal concepts presents
a significant challenge for static models, which, if
not regularly updated, risk becoming obsolete or
providing inaccurate outputs based on outdated in-
formation (Dahl et al., 2024; Santosh et al., 2024a).
To address this, language models need to contin-
uously integrate and learn from new legal data to
remain aligned with the most recent legal develop-
ments. Such adaptive models would ensure that
legal practitioners have access to the most current
and relevant information, thereby enhancing the
reliability of AI-driven tools.

However, retraining solely on new data can
lead to overfitting on recent information and catas-
trophic forgetting of previously learned data (Mc-
Closkey and Cohen, 1989; Nguyen et al., 2019),
which undermines temporal generalizability (Yao
et al., 2022; Lin et al., 2021; Lazaridou et al., 2021),
a critical requirement in our dynamic and non-
stationary legal domain. To address these chal-
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lenges, the field of Continual Learning focuses on
developing algorithms that balance knowledge ex-
pansion (plasticity) with knowledge retention (sta-
bility), enabling models to robustly extrapolate into
the future in this temporal shift setting. Traditional
CL strategies include experience replay (Lopez-Paz
and Ranzato, 2017; Chaudhry et al., 2019; de Mas-
son D’Autume et al., 2019), parameter or repre-
sentation regularization (Kirkpatrick et al., 2017;
Schwarz et al., 2018; Chen et al., 2020), and modu-
lar or isolated architectures (Yoon et al., 2017; Rusu
et al., 2016; Qin et al., 2022b). These approaches
typically involve training models from scratch with
randomly initialized parameters, necessitating the
retraining of all model parameters. However, with
the growing trend of adapting pre-trained base mod-
els to new data, which already possess inherent gen-
eralization capabilities, a trade-off emerges: fully
fine-tuning the weights to accommodate new data
can erode the model’s generalizability, while fix-
ing the backbone prevents the integration of new
information. Moreover, as models grow in size,
fine-tuning all parameters becomes increasingly
computationally expensive.

To address these limitations, recent approaches
have adopted lightweight, parameter-efficient train-
able modules that allow for the interpolation of
generalization capabilities on newly learned data.
While these methods have proven effective in class-,
domain-, or task-incremental settings—where task
boundaries are clearly defined and known in ad-
vance—they often rely on explicit boundary sig-
nals to switch between classes, domains, or tasks,
and to train separate modules for each. However,
this assumption does not hold in more complex sce-
narios of temporal adaptation, where data is con-
tinuous and boundaries are neither predefined nor
explicitly supervised. Extending these approaches
to boundary-unaware, online settings presents two
key challenges: (i) determining when to add a new
module during training, ensuring timely expansion
without compromising past knowledge, and (ii) de-
ciding which module to use during inference, given
that no task signal is available.

To handle this boundary unaware, non-stationary
temporal shift in online setting, we propose Lex-
Tempus, a dynamic mixture of experts model that
initially starts with one lightweight adapter expert
module and progressively introduces additional ex-
pert blocks as needed throughout the training pro-
cess. This self-expansion strategy is triggered by
statistically significant deviations in the loss func-

tion of the current expert, signaling the onset of
data that cannot be effectively captured by exist-
ing experts due to a change in distribution, thus
warranting the addition of a new expert to the pool.
By continuously expanding the expert pool in re-
sponse to these shifts, the model can better capture
and adapt to the evolving distribution of data over
time without forgetting past knowledge, thereby
enhancing generalization. Furthermore, to compre-
hensively leverage the knowledge stored in differ-
ent experts, we employ a non-parametric similarity-
based router to estimate the relevance of each ex-
pert to a particular test instance. We then merge the
different expert modules into a unified expert, in-
spired by model merging literature, based on these
relevance probabilities. This approach tailors the
model to the specific test instance, facilitating ef-
fective knowledge sharing across different experts
and yielding more robust results. We demonstrate
the effectiveness of our dynamic mixture of ex-
perts algorithm on both ECHR and EU case law
documents, evaluating not only language modeling
perplexity performance but also open-ended text
generation metrics.

2 Related Work

Temporal Adaptation addresses the challenge of
model performance deterioration over time due
to naturally occurring distribution shifts (Schlim-
mer and Granger, 1986; Widmer and Kubat, 1993;
Jaidka et al., 2018; Yao et al., 2022; Gorman and
Bedrick, 2019). This can be caused due to (1) the
dynamic nature of language (Rosin et al., 2022;
Röttger and Pierrehumbert, 2021; Loureiro et al.,
2022; Agarwal and Nenkova, 2022; Amba Homba-
iah et al., 2021; Rijhwani and Preoţiuc-Pietro, 2020;
Luu et al., 2022; Jaidka et al., 2018) and (2) the up-
date of factual information (Margatina et al., 2023;
Jang et al., 2021, 2022; Lazaridou et al., 2021;
Dhingra et al., 2022; Liska et al., 2022).Temporal
generalization has been explored both in upstream
Language Model pre-training (Lazaridou et al.,
2021; Loureiro et al., 2022; Jang et al., 2021, 2022;
Dhingra et al., 2022; Jin et al., 2022; Amba Hom-
baiah et al., 2021) and in downstream tasks, such
as sentiment analysis (Lukes and Søgaard, 2018;
Agarwal and Nenkova, 2022; Guo et al., 2023b),
named entity recognition (Rijhwani and Preoţiuc-
Pietro, 2020; Onoe et al., 2022), question answer-
ing (Liska et al., 2022; Shang et al., 2022), headline
generation (Søgaard et al., 2021), rumor detection
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(Mu et al., 2023; Hu et al., 2023), spoken language
understanding (Gaspers et al., 2022). model ex-
plainability (Zhao et al., 2022), document classifi-
cation (Röttger and Pierrehumbert, 2021; Chalkidis
and Søgaard, 2022; Huang and Paul, 2018; Santosh
et al., 2024c), abusive language detection (Jin et al.,
2023; Florio et al., 2020), topic modeling (Zhang
et al., 2023b) and readmission prediction in the
health care context (Guo et al., 2022, 2023a).

In the legal domain, Chalkidis and Søgaard
(2022) and Santosh et al. (2024c) have examined
temporal generalization in downstream multi-label
legal classification tasks. Chalkidis and Søgaard
(2022) suggested that temporal drift arises from
shifts in label distribution over time, whereas San-
tosh et al. (2024c) emphasized that even label-
specific vocabulary undergoes temporal changes.
The latter proposed an incremental training frame-
work that respects the temporal order of data, in
contrast to previous approaches that treated the
entire training dataset as a homogeneous entity,
ignoring temporal shifts in input text distribution.

Our work extends this investigation to the up-
stream pre-training of language models on legal
corpora in an "online" fashion, addressing the
evolving legal context due to changes in interpre-
tation, legislation, and precedents—a topic that, to
the best of our knowledge, has not been previously
explored. We focus on a challenging online set-
ting, simulating real-world deployment scenarios
where the model is exposed to a continuous stream
of incrementally available legal information. The
model must adaptively learn over time, integrating
new legal developments while retaining previously
acquired knowledge.

Related work on Continual Learning & Model
Merging can be found in App. A.

3 Task & Datasets

We describe the task of online learning (Hazan
et al., 2016; Shalev-Shwartz et al., 2012) over a
distribution-varying stream S revealing data se-
quentially over steps t ∈ {1, 2, . . . ,∞}. At each
step t, the stream reveals data xt from S. The model
makes predictions for xt using the current model
mt−1. The stream reveals the true labels and then
the learner updates the model mt using a fixed
budget of computation and memory. The task of
language modeling is to estimate the probability of
next token given the context sequence of tokens.

We design our experiments to explore the online

adaptation of language models using the following
two legal judgments corpora from different juris-
dictions. These legal corpora inherently exhibit
distributional varying property of stream due to the
dynamic nature of the legal domain (Sec. 5.1)—a
result of the judiciary’s role in interpreting ambigu-
ous and vague legal formulations to settle open
questions through landmark cases, which then in-
fluence subsequent legal discourse (Santosh et al.,
2024a). This evolving legal landscape makes it
an ideal testbed for studying online language mod-
eling. In our setup, the data stream is naturally
ordered by the timestamps of the documents. At
each timestamp, the stream reveals an entire docu-
ment, which is then segmented into multiple data
instances to accommodate the context length of
the language model. Under this online setup, mod-
els will have their parameters updated before the
stream reveals document of the next step.
EU CaseLaw contains judgements of the Court of
Justice of the European Union that are accessible
via the EUR-Lex platform. We obtain this doc-
uments collection of Multi-EURLEX (Chalkidis
et al., 2021) and crawl EUR-Lex platex for the date
of the document. We filter the English portion of
this dataset, consisting of 29,856 documents span-
ning from 12 February 1952 to 9 June 2022.
ECHR CaseLaw comprises of case judgements
heard by the European Court of Human Rights
and is publicly accessible via HUDOC, the official
court database. These cases involve the adjudica-
tion of complaints by individuals against states for
alleged violations of their rights, as enshrined in the
European Convention of Human Rights. We obtain
the most recent cleaned version of the dataset from
Santosh et al. (2024b) which consists of 15,729
cases in English language from 14 November 1960
to 28 July 2022.

4 LexTempus: Our Method

In this section, we introduce our Dynamic Mix-
ture of Experts (DMoE) algorithm which keep pre-
trained model frozen and only add trainable adapter
modules as experts. Our approach automatically
determine addition of new expert into the growing
pool of experts on demand for handling automati-
cally detected novel patterns and dynamically ag-
gregates experts tailored for each test instance. This
is achieved through the incorporation of two crucial
components: (1) Clustering based non-parametric
router for aggregation of experts: This router deter-
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mines the relevance of each expert to the current
test instance and use those probability weights to
merge these expert parameters into an unified ex-
pert. This enables different instances to activate
varying numbers of experts. (2) A self-expansion
strategy based on loss values to decide when to add
new expert to the pool of experts. Overall process
is illustrated in Algorithm 1.

Algorithm 1 Dynamic Mixture of Experts

1: Input: Pre-trained model Mfrozen, stream of
data S = {x1, x2, . . . }, initial expert pool
E = {e1}, clustering algorithm (DBSCAN),
expansion threshold τ

2: Output: Predictions ŷt for each test instance
xt

3: for each time step t do
4: Step 1: Embedding Generation
5: Compute the semantic embedding zt =

Mfrozen(xt)
6: Step 2: Expert Aggregation
7: for each expert ei ∈ E do
8: Retrieve cluster centroids Ci =
{ci1, ci2, . . . , cik} from DBSCAN on embed-
dings used to train ei

9: Compute distances di = minj ∥zt −
cij∥ for j = 1, . . . , k

10: end for
11: Normalize distances: wi =

1/di∑|E|
j=1 1/dj

for

each expert ei
12: Aggregate experts: emerged =

∑|E|
i=1wiei

13: Step 3: Prediction
14: Predict ŷt = Mfrozen ◦ emerged(xt)
15: Step 4: Self-Expansion Check
16: Compute perplexity Pt =

Perplexity(emerged, xt)
17: if Pt > z-score(Pt−window:t) + τ then
18: Add new expert: enew ←

Initialize with weights from previous expert
19: E ← E ∪ {enew}
20: end if
21: Step 5: Expert Training
22: Train only the current expert ecurrent with

new data (xt, yt)
23: end for

4.1 Dynamic Aggregation of experts

We start by obtaining semantic embeddings from
the frozen pre-trained model for the data that was
used to train each expert. These embeddings are

then clustered using a density-based clustering al-
gorithm, DBSCAN (Ester et al., 1996), to iden-
tify the nearest cluster centroids, which serve as
prototypes for each expert, capturing the essential
semantics of various inputs captured by each ex-
pert. Rather than relying on a single prototype,
we employ multiple prototypes for each expert,
inspired by Tyss et al. (2024). This approach is mo-
tivated by the observation that the training data for
each expert can exhibit significant variability, lead-
ing to diverse contextual embeddings distributed
across the embedding space. Averaging these em-
beddings into a single prototype could dilute their
specificity, so multiple prototypes per expert are
utilized to more effectively capture the diverse in-
stances within each expert’s data.

During inference, when a new test instance is pre-
sented, we compute the embedding for this instance
using the same frozen pre-trained model and mea-
sure the distance between this instance’s embed-
ding and the centroids corresponding to each expert.
The minimum distance among all the centroids cor-
responding to a particular expert is identified for
each expert and the inverse of these distances are
normalized across different experts to produce rel-
evance probabilities. These probabilities indicate
the degree to which each expert is pertinent to the
current test instance. Finally, based on these rele-
vance probabilities, the parameters of the relevant
experts are merged to create a unified expert, in-
spired by works from model merging (Wortsman
et al., 2022; Chronopoulou et al., 2023; Ainsworth
et al., 2022; Tam et al., 2024), which is then used
to make predictions for the test instance. Instead
of merging the output predictions similar to ensem-
ble, model merging directly enables element-wise
merging of all experts in their parameter space. to
create an into unified expert, reducing the inference
cost and enhancing generalization capabilites.

This approach dynamically adjusts the contribu-
tion of each expert based on the specific charac-
teristics of the test instance data, resulting in more
accurate and contextually appropriate predictions.
In the context of long legal documents, which may
need to be split into multiple input instances due to
context length limitations of langauge model, this
method further allows for the activation of differ-
ent experts for each instance within a document,
accounting for the varying arguments and distinct
allegations present in each document.
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4.2 Self-Expansion Strategy

During training, the addition of new experts to the
pool is crucial when a novel pattern in the data
stream indicates a shift or drift from prior data.
This is identified through a statistically significant
deviation in the perplexity (loss) value of the cur-
rent expert, beyond a predefined expansion thresh-
old. Such a deviation signals that the current expert
may struggle to accommodate the new data without
sacrificing previously learned information due to
its capacity limitations. To detect this expansion
signal, we maintain a sliding window or moving
average of perplexity values.

When an expansion signal is triggered, a new
adapter module is inserted into the transformer
block and since then, training of the new expert
begins. During this process, only the current ac-
tive expert is trained, while all previously learned
experts remain fixed. This strategy ensures that
each expert focuses on a specific subset of data,
which is beneficial for retaining past performance
and enhancing generalization.

Additionally, whenever a new expert is added
to the pool, it is initialized with the weights of
the last adapter trained in the preceding time step.
This helps the new expert inherit previously ac-
quired knowledge, particularly useful when there is
a limited number of training instances for the new
expert, ensuring it can generalize effectively to the
evolving data distribution.

5 Experiments

We use GPT-2 (Radford et al.), medium as a base
pre-trained model for all our experiments. Experi-
mental hyperparameters are presented in App. C.

5.1 Analyzing Temporal Drift Nature of data

We demonstrate the natural drift inherent in the data
by analyzing the model’s performance over time.
To showcase this, we chronologically split each
dataset into three sections: training, validation, and
test. For the ECHR dataset, the time splits for train-
ing, validation, and test are 1960-2016, 2017-2018,
and 2019-2022, respectively. For the EU dataset,
the time splits are 1953-2012 for training, 2012-
2015 for validation, and 2015-2022 for testing. We
further divide the training data into two versions:
(i) the first half of the chronologically sorted train-
ing data, referred to as Old, and (ii) the latter half,
referred to as Recent.

To assess the impact of temporal drift, we train

two models separately in online fashion using the
Old and Recent splits of the training set and eval-
uate them on a fixed test set. To eliminate any
confounding effects due to the size of the dataset,
both models are trained on the same number of
instances. We report the perplexity values in Fig.
1b, where lower values indicate better performance.
We observe that the baseline-Recent consistently
outperforms (i.e., exhibits lower perplexity) the
baseline-Old across both datasets. This indicates
that models trained on data temporally closer to
the test set tend to yield superior results, thereby
confirming the presence of temporal drift in the
data and the need for temporal adaption of models.
Additionally, we train a model using the entire train-
ing set, referred to as Baseline-Full. This model
demonstrates enhanced performance across both
datasets, which suggests that while recent data pro-
vides an advantage, it is also crucial to retain older
data for better temporal generalizability. Overall,
the performance across all models degrades as we
progress through the years in the test split across
both datasets, affirming the presence of temporal
drift. This observation underscores the necessity
of regularly updating models with evolving data
to mitigate the effects of temporal degradation on
model performance.

To further characterize temporal drift, we mea-
sure distributional shifts using Jensen-Shannon di-
vergence, comparing the distribution of vocabulary
from the dataset across different time splits. As
shown in Table 1a, temporally closer splits exhibit
lower divergence scores compared to others, which
confirms that these datasets indeed experience tem-
poral drift. However, it is important to note that
this analysis might underestimate the full impact of
drift, as it focuses solely on lexical-level changes
without capturing semantic shifts over time—such
as changes in the associated meaning or contextual
usage of specific words.

5.2 Baselines & Comparison
FineTune: We initialize GPT-2 medium model and
continue fine-tuning whole model in online fashion
on incoming data throughout.

We leverage different continual learning algo-
rithms, which are proposed to accumulate knowl-
edge incrementally without forgetting information
from previous steps referred to as catastrophic for-
getting, to our framework of a boundary-unaware,
non-stationary temporal shift setting, treat each
new data instance as boundary.
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ECHR EU
Old 0.23 0.36
Recent 0.15 0.26

(a) Jensen–Shannon divergence
score between the split of train-
ing set (Old/Recent) and the test
set over the vocabulary distribution
(x). Higher Score indicates more
divergence from the test set distri-
bution. (b) Impact of temporal drift on the model performance.

Figure 1: Analysis of Temporal Drift Characteristics in the Data.

EWC: (Kirkpatrick et al., 2017) adds a temporal
regularization term to the actual loss so that the
parameter update from t-1 to t is restricted to avoid
over-fitting. It uses Fisher Information Matrices to
estimate the importance of parameters to apply a
weighted penalty such that the more important pa-
rameters to the previous timestamp will have larger
penalty weights, balancing the trade-off between
previous knowledge and new knowledge. We use
online version of EWC (Schwarz et al., 2018).
RecAdam: (Chen et al., 2020) is another regular-
ization technique which modifies Adam optimizer
by decoupling the gradient of the quadratic penalty
and the annealing coefficient, to preserve the mod-
els parameters when updating on new data.
ER: (Rolnick et al., 2019) Experience Replay falls
into the category of rehearsal-based methods that
stores samples from previous time stamps into a
growing memory module. We use a small subset
of data randomly sampled from the memory to
periodically (every k time steps) retrain the model.
Biased Reservoir Replay: (Lin et al., 2021) While
ER uniformly samples from all data encountered
in the stream to populate the memory, this strategy
biases to store recent samples to in the memory.
MaxLoss Replay: (Lin et al., 2022) Rather than
randomly sampling replay examples from memory
pool, they sub-sample the ones that have largest
losses on the current model, with intent to replay
the most forgettable examples, conditioning on the
current information (Aljundi et al., 2019).

While all these methods involving fine-tuning
the whole model, which turns infeasible with grow-
ing model sizes and parameter-efficient strategies
have been applied for continual learning, given
strong generalization capabilties of base model.
Adapters: (Houlsby et al., 2019) freezes the param-
eters of the pre-trained model and injects two small
modules with up- and down- projection between

the self-attention and the feed-forward sub-layers
inside each transformer layer sequentially.
LoRA: (Hu et al., 2021) freezes the original pa-
rameters of the pre-trained model and introduces
trainable low-rank matrices and combines them
with the original matrices in the multi-head atten-
tion and are updated during fine-tuning.
Prefix Tuning: (Li and Liang, 2021) injects train-
able prefix vectors into keys and values of the at-
tention head input and are optimized with reparam-
eterization via a multilayer perceptron.

We evaluate the perplexity score of each docu-
ment in an online setting before training, and report
the averaged scores across the entire corpus in Ta-
ble 1. A lower perplexity score indicates better
performance. All continual learning approaches
outperform standard fine-tuning (FT), suggesting
an effective balance between stability and plasticity
is essential for temporal generalization. Among the
regularization-based methods, no single approach
emerges as a clear winner, although they both sur-
pass standard fine-tuning, indicating that regular-
ization can mitigate catastrophic forgetting to some
extent. Rehearsal-based methods, however, demon-
strate superior performance compared to regular-
ization techniques, underscoring the importance
of retaining older documents to enhance temporal
generalization, as these methods effectively pre-
serve past knowledge. MaxLoss approach, which
focuses on replaying the most challenging forgot-
ten examples, further improves retention. BRR
method incorporates a recency bias in its sampling
strategy, showing that recent documents are particu-
larly valuable for interpolation into future contexts.
The success of these rehearsal-based approaches
highlights the potential for further research on more
effective strategies for selecting the most influential
memory pool and optimizing sampling techniques
for replay, to enhance temporal generalization.
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ECHR EU
FT 3.22 5.28
EWC 2.6 5.14
RecAdam 2.74 5.07
ER 2.52 4.77
BRR 2.45 4.63
MaxLoss 2.48 4.71
LoRA 2.63 4.82
PrefixTuning 2.6 4.86
Adapters 2.53 4.72
Ours (DMoE) 2.46 4.65

Table 1: Perplexity scores
of different approaches.

ECHR EU
Stack 2.59 4.81
Fusion 2.62 4.84
Ensemble 2.52 4.71
Merge 2.5 4.69
Fixed Interval 2.5 4.69
Ada. self-exp. 2.48 4.67
Uniform 2.5 4.7
Exponential 2.48 4.67
DBSCAN 2.46 4.65

Table 2: Ablation Analysis
of DMoE: Perplexity Scores

FT BRR Adapters DMoE
R-1 24.8 32.8 29.7 31.6
R-2 6.6 17.8 12.6 16.2
R-L 16.4 31.5 25.3 29.3
AlignS 41.52 69.53 59.24 65.33
Coher. 42.4 57.5 54.1 56.2
Fluency 59.9 66.5 67.4 68.1

Table 3: Open-ended Generation Analysis on
ECHR

While rehearsal-based methods require complete
fine-tuning of all parameters, parameter-efficient
approaches prove competitive and often outperform
regularization methods. Notably, Adapters con-
sistently deliver strong performance across both
datasets, although they still lag behind rehearsal-
based methods. This suggests that Adapters may
suffer from a capacity bottleneck, limiting their
ability to accommodate new instances while retain-
ing past knowledge. Our self-expansion strategy
mitigates this limitation by dynamically adding
new experts as needed and leveraging all experts
through similarity-based routing for better aggre-
gation. This is reflected in the superior perfor-
mance of DMoE approach, competitive with the
best rehearsal-based method, BRR, but without the
need for storing past data. D-MoE achieves this
with minimal parameter updates—just 0.8% of the
total trainable parameters compared to the base
model or BRR—and avoids training overhead due
to BRR’s periodic rehearsal, which requires 30%
more training data with 100% parameter updates.
Despite a slight increase in inference latency (1.12x
compared to 1x for BRR), D-MoE strikes an effec-
tive balance between efficiency and performance,
making it a computationally lightweight yet robust
alternative. Moreover, BRR due to its strategy to
mix past data for generalization might hurt the cor-
rect temporal sequence of legal shifts and can fail to
capture evolving jurisprudence, instead reinforcing
older precedents that should have been superseded
as observed in our detialed case study in App. D.

5.3 Ablation Study

We conduct ablation studies to evaluate design
choices regarding when and how to add new ex-
perts, as well as to aggregate them for inference.

How to add experts? The modular nature of
Adapters allows for the utilization of multiple
adapters to capture distinct knowledge through
adapter compositions. We explore the follow-
ing approaches: (i) Stacking, as demonstrated in
MAD-X (Pfeiffer et al., 2020c), where multiple
adapters are stacked sequentially. This method
enables new adapters to learn from prior informa-
tion as it flows through the stacked adapters and
this helps in detecting potential drifts and accu-
mulating new knowledge while relying on older
adapters for unchanged information. (ii) Fusion
(Pfeiffer et al., 2020a), which involves learning in-
dependent adapters in parallel and then combining
them through a parametric key-value-based fusion
layer. This approach overcomes the limitation of
the stacking mechanism, where inference time in-
creases due to the sequential processing of adapters,
by expanding experts in parallel instead of in series.
(iii) Ensemble (Wang et al., 2021), which aggre-
gates the output predictions of multiple adapters to
improve performance, without any learnt fusion
layer. (iv) Merging Adapters (Wortsman et al.,
2022; Ainsworth et al., 2022; Ilharco et al., 2022),
which proposes merging adapters directly at the
parameter level to create a single adapter, thereby
eliminating the need for multiple inference steps.
In all these approaches, we add a new expert period-
ically after every 2000 timesteps. In both ensemble
and merging approaches, we preserve the tempo-
ral recency property by using exponentially decay-
ing weights for combining them. From Table 2,
we observe that stacking and fusion underperform
compared to single adapters, which undermines the
intended benefits of adding multiple experts. In
stacking, adding a new expert in series can lead to
overfitting to recent information, thereby overrid-
ing older knowledge. Fusion, on the other hand,
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tends to bias the learned layer towards newer data,
which can result in the complete forgetting of older
information. Although ensembling outputs show
some improvement, it still lags behind model merg-
ing, which effectively leverages prior experts to
form a unified expert.

When to add experts? Deciding when to add a
new expert is crucial for balancing model capacity
and efficiency. We explore two strategies to deter-
mine the optimal timing for expert expansion: (i)
Fixed interval where new experts are added after
every 2000 timesteps. (ii) Adaptive self-expansion
strategy that triggers the addition of new experts
based on drift detection, by monitoring changes in
the model’s perplexity. In both approaches, experts
are merged with exponentially decaying weights
at inference. Adding experts at fixed intervals may
lead to unnecessary expansion, resulting in either
underutilized experts if the addition frequency is
too high, or forgetting older knowledge if the fre-
quency is too low. In contrast, self-expansion strat-
egy ensures that new experts are added only when
necessary, effectively responding to real changes
in the data distribution. This approach optimizes
model capacity and performance, as reflected in the
superior results shown in Table 2.

How to aggregate experts? The aggregation of ex-
perts plays a crucial role in enhancing the model’s
performance by effectively directing it to the most
relevant experts. We explore three aggregation
strategies: (i) Uniform Aggregation, where all ex-
perts are combined with equal weights; (ii) Ex-
ponential Decay, which prioritizes recent experts
by assigning them greater importance; and (iii)
DBSCAN-Based Aggregation, where the relevance
of each expert to the current test instance is dy-
namically determined, rather than relying on static
weights. In all these approaches, our proposed self-
expansion strategy is employed to determine when
to add new experts. From Table 2, we see that
the uniform aggregation method dilutes the impact
of relevant experts, particularly as data evolves.
The exponential decay method improves this by
prioritizing recent experts, but it may still be sub-
optimal due to its fixed decay rate. In contrast, the
DBSCAN similarity-based routing method offers
context-sensitive aggregation, allowing the model
to focus on the most relevant experts, leading to
better adaptation and performance.

5.4 Analysis: Open-ended Text Generation

Although perplexity is commonly used to gauge
progress in language modeling, we also analyze
on open-ended generation using 750 ECHR judg-
ments collected from the HUDOC website, official
database of ECHR, after our corpus cut-off date
of July 2022 and use models that were trained in
an online fashion up until that point to generate
next paragraph given the previous paragraphs as
context that can fit into the length limitation of the
model. While generating entire sections would be
ideal, evaluating the quality of an entire section
against reference text poses significant challenges.
Thus, we opted for paragraph-level generation to
facilitate a more manageable and accurate evalu-
ation process. During the training process, each
paragraph was appended with an <|endoftext|>,
allowing to consider the generated content up to
this marker as the next paragraph.

We assess the quality of the generated para-
graphs using: ROUGE-1,2,L (Lin, 2004) for lexical
overlap with the reference paragraph, AlignScore
(Zha et al., 2023) for factual consistency based
on a unified alignment function between the refer-
ence and generated text and UniEval (Zhong et al.,
2022), a multi-dimensional metric that evaluates
coherence and fluency of the generated paragraph
with respect to the context. From Table 3, we ob-
serve that all continual learning approaches outper-
form fine-tuning (FT) in open-ended generation.
DMoE consistently outperforms single Adapters
across all metrics, underscoring the benefit of mul-
tiple experts. However, DMoE still underperforms
compared to the BRR approach, indicating the po-
tential for further improvements in open-ended gen-
eration, using parameter-efficient approaches.

6 Conclusion

We introduce LexTempus, a dynamic mixture of
experts model designed to adapt legal language
models to the rapidly evolving legal landscape,
characterized by frequent changes in statutes, rul-
ings, and societal shifts. LexTempus employs a
self-expansion strategy that dynamically adds ex-
perts in response to changes in data distribution,
with a similarity-based non-parametric router to
aggregate knowledge from multiple experts. Exper-
imental results show that LexTempus surpasses tra-
ditional fine-tuning, regularization, and parameter-
efficient approaches on ECHR and EU case law
datasets in both perplexity and text generation met-
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rics, while also competing well with replay-based
methods that involve full fine-tuning along with pe-
riodically replaying past instances. Future research
can explore removing experts when unnecessary
and pin-pointedly identify specific layers that that
necessitate new experts.

Limitations

The effectiveness of LexTempus is validated on
ECHR and EU case law datasets. Future research
should assess its generalizability across different
legal jurisdictions and languages. Due to computa-
tional constraints, we employed GPT-2 as the base
model, as full fine-tuning and continual learning
experiments require substantial resources. While
larger models could offer additional insights, such
experiments remain beyond our current capacity.
Importantly, our deliberate choice of GPT-2 rather
than more recent models that operate under simi-
lar computational budgets, was motivated by the
need to minimize the confounding effects of pre-
training memorization. By using an older, smaller
model with an earlier training data cut-off, we were
able to better isolate the contributions of our contin-
ual learning framework. GPT-2’s limited exposure
to legal materials during pretraining ensured that
observed performance gains were not artifacts of
memorized knowledge, but instead reflected the
model’s ability to adapt through structured, incre-
mental updates. This enabled a cleaner and more
controlled evaluation, where improvements could
be directly attributed to our method. Although
larger and more recent models may offer higher
absolute performance, they also carry an increased
risk of entangled pretraining knowledge, which
complicates attribution of learning effects. Future
work could explore scaling LexTempus to such
models, while developing methodologies to main-
tain controlled evaluation settings.

This work acknowledges temporal drift in legal
text but does not exhaustively analyze its character-
istics—such as gradual vs. abrupt shifts—or their
impact on model performance. A more detailed
study of these shifts could provide deeper insights
into legal language evolution. Attributing concept
drift in legal datasets to underlying causes is partic-
ularly challenging unless one explicitly examines
watershed events with substantial legal expertise.
For instance, in ECtHR jurisprudence, identifying
near-identical cases with different outcomes is dif-
ficult, yet such cases would be of great interest to

legal scholarship (Santosh et al., 2024c).
Model editing has recently emerged as a promis-

ing approach for updating models by directly mod-
ifying their parameters to incorporate new infor-
mation, offering potential relevance to temporal
generalizability (Meng et al., 2022; Mitchell et al.,
2021). While prior work has focused on inserting
discrete factual statements, these methods strug-
gle with context-dependent adaptations that go be-
yond simple fact updates (Li et al., 2024). Le-
gal language evolves through nuanced reinterpre-
tations, not explicit knowledge replacements, mak-
ing model editing insufficient for handling gradual
legal shifts driven by societal and jurisprudential
changes. Moreover, identifying which aspects of
prior knowledge require updating remains a fun-
damental challenge. In contrast, LexTempus em-
ploys continual learning, enabling structured and
frequent updates through incremental fine-tuning.
Unlike model editing, which assumes a clear dis-
tinction between old and new knowledge, LexTem-
pus dynamically integrates evolving patterns via
expert expansion.

Another class of approaches, such as retrieval-
augmented generation (RAG), enhances models by
providing relevant information at inference time
without modifying their parameters. While effec-
tive for real-time accuracy, these methods face sig-
nificant storage and retrieval challenges, particu-
larly in legal reasoning, which relies on evolving
precedent chains rather than static factual knowl-
edge. Unlike general information-seeking queries,
legal questions rarely have clear, unambiguous an-
swers, as case law develops through judicial opin-
ions that build upon one another. This complexity
complicates retrieval, especially when no single
document definitively answers a query. Addition-
ally, document relevance in law is not solely de-
termined by textual similarity; jurisdictional differ-
ences, temporal shifts, and conflicting rules further
complicate retrieval (Santosh et al., 2025b, 2024b).
Textually similar cases may still be misleading
or inapplicable, necessitating context-aware mech-
anisms (Magesh et al., 2024). Adapting RAG
for temporal generalizability in legal applications
would require a dedicated study on how to update
knowledge bases and ensure contextually relevant
retrieval over time.

LexTempus represents a first step toward tempo-
rally adaptive legal language models, addressing
a critical gap in current approaches. Future re-
search could explore advanced expert aggregation,
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selective forgetting mechanisms, and hybrid mod-
els that combine continual learning with retrieval-
augmented strategies for more robust temporal gen-
eralization.

Ethics Statement

The datasets used in this study, specifically the
ECHR and EU case law datasets, are publicly avail-
able and commonly used for research in legal NLP.
Although these datasets are not anonymized and
contain real names, we do not anticipate direct
harm from our experiments. Nevertheless, the use
of such sensitive data necessitates careful consider-
ation of privacy, fairness, and ethical implications.

We emphasize that this research does not ad-
vocate for replacing legal professionals with AI
systems. Instead, our focus is on augmenting hu-
man expertise. AI technologies, while promising,
carry risks such as bias, misinformation, or stereo-
typing from datasets that may reflect historical and
societal biases. Additionally, AI-generated content
might include factual inaccuracies or misinterpreta-
tions, particularly in complex legal contexts. Thus,
it is crucial to apply rigorous vetting and maintain
human oversight when using AI outputs in legal
scenarios. Our findings aim to enhance legal text
processing for better efficiency and accuracy, but
AI should remain a supportive tool, complement-
ing, not replacing, human judgment.
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A Related Work

Continual Learning Most research in continual
learning (or lifelong learning) initially centered
around computer vision tasks, and more recently,
it has gained attention in the NLP field (Ke et al.,
2021b,a; Biesialska et al., 2020; Ke and Liu, 2022;
Sun et al., 2019; Wang et al., 2019). The majority
of these works adopted traditional task-incremental,
domain-incremental, or label-incremental settings.
While our temporal adaptation setting bears resem-
blance to the domain-incremental setting, a crucial
distinction lies in the assumption of strict bound-
aries in domain incremental settings, which is not
applicable to our temporal adaptation where the
boundaries between drifts are blurred (Prabhu et al.,
2020; Aljundi et al., 2019) and the assumption that
incoming samples are from disjoint data distribu-
tions is no longer valid (Al Kader Hammoud et al.,
2023). Generally, continual learning algorithms
can be categorized into (i) Rehearsal-based meth-
ods (Rolnick et al., 2019; Rebuffi et al., 2017),
which maintain a memory buffer of older data to
perform experience replay with actual data (de Mas-
son D’Autume et al., 2019), automatically gener-
ated data (Sun et al., 2019), or previously com-
puted gradients (Lopez-Paz and Ranzato, 2017),
(ii) Regularization-based approaches (Kirkpatrick
et al., 2017; Chen et al., 2020; Huang et al., 2021),
which regularizes neural network parameters from
drastic updates for new information to preserve the
information of older ones, preventing overfitting
to the newer data (iii) Network expansion methods
(Qin et al., 2022b; Gururangan et al., 2022; Yoon
et al., 2018) which dynamically grow branches to
accommodate for newer incoming data.

Traditionally, CL has been evaluated in offline
settings where models can revisit all samples within
the current task. However, recent advancements
in computer vision have shifted focus towards on-
line CL, aiming for rapid model adaptation with
new incoming single instance (Al Kader Hammoud
et al., 2023; Prabhu et al., 2020). Recent works
like CLOC (Cai et al., 2021) and CLEAR (Lin
et al., 2021) have explored CL in a streaming fash-
ion, where data arrives in a sequence ordered by
timestamps, creating a temporal stream of evolving
visual concepts with gradual, boundary-unaware
distribution shifts. They focus on the model’s abil-
ity to adapt quickly and extrapolate into the future
by evaluating its performance on future data. Our
work extends this temporal streaming setup in an
online fashion to legal language models, enabling
them to continuously adapt to new data distribu-
tions and improve generalization on future data.
Model merging combines multiple pretrained mod-
els into one model through a weighted averaging
of their parameters, giving it the combined abil-
ities of each individual model without any addi-
tional training. Unlike model ensembling, which
combines model outputs and typically increases in-
ference costs, model merging directly combines
parameters, maintaining performance across all
merged models without adding inference overhead.
Several weighting schemes have been explored
such as task arithmetic with simple averaging (Il-
harco et al., 2022; Wortsman et al., 2022), Fisher-
weighted merging (Matena and Raffel, 2022), Reg-
Mean (Tam et al., 2024), Git Re-Basin (Ainsworth
et al., 2022), TIES-Merging (Yadav et al., 2024),
Ada-merging(Yang et al., 2023), uncertainity based
merging (Daheim et al., 2023; Achituve et al.,
2024), PLeaS-Merging (Nasery et al., 2024), Zipit
(Stoica et al., 2023), OT-Fusion (Singh and Jaggi,
2020), DARE (Yu et al., 2024). While initially
developed for whole model merging, these tech-
niques have been extended to parameter-efficient
modules (Zhang et al., 2023a; Chronopoulou et al.,
2023; Qin et al., 2022a), which differs from ear-
lier approaches like AdapterFusion (Pfeiffer et al.,
2020a) and mixture-of-experts (Wang et al., 2022)
that combine module outputs with additional train-
ing. These prior methods have been studied in
multi-task setups to create one unified model with
improved cross-task generalization. In contrast, our
approach dynamically generates a merged model
for each test instance on the fly, using a non-
parameterized similarity-based router.
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B Dataset

Dataset ECHR EU
Train (Old) 5,808 11,352
Train (New) 5,807 11,352
Validation 1,688 2,237
Test 2,426 4,915
Total 15,729 29,856

Table 4: Dataset statistics for ECHR and EU case law.

C Implementation Details

Baseline FT models We train the models using neg-
ative log-likelihood loss using AdamW optimizer
(Loshchilov and Hutter, 2017) and with a learning
rate of 5e-5, momentum of 0.9, and weight decay of
3e-7. We employ a sliding window of 1024 tokens
with a stride of 512 where the first 512 tokens as
context. We use a batch size of 4 for both datasets.
We use 16-bit automatic mixed precision and gra-
dient accumulation to accelerate training and save
memory. All the experiments were performed on a
GPU cluster with NVIDIA A40 48GB PCIe 4.0.
EWC (Kirkpatrick et al., 2017) We use the online
version of EWC training to avoid memory overflow
in the computation of Fischer information matrices,
as detailed in (Kirkpatrick et al., 2017). We set λ
of 0.5 which controls the strength of regularization-
based EWC loss with a decay term for older data γ
set to default of 1.0.
RecAdam (Chen et al., 2020) We use Adam’s ep-
silon of 1e-6 and sigmoid as the annealing function
ER (Rolnick et al., 2019) We replay a set of 3
documents by random sampling from an evolving
memory module after every 10 training documents.
Biased Reservoir Replay (Lin et al., 2021) Our
reservoir is populated based on recency bias with
10%, 20%, 30%, 40% from the time-based quartiles
of the previous data.
MaxLoss Replay (Lin et al., 2021) It replays 3
examples with highest losses from 10 random sam-
pled examples.

We use AdapterHub framework (Pfeiffer et al.,
2020b) to implement Adapters, LoRA, and Prefix
Tuning.
Adapters (Houlsby et al., 2019) We use bottleneck
adapters with a reduction factor of 64.
LoRA (Hu et al., 2021) We set the rank r to 16.
Prefix Tuning (Li and Liang, 2021) We use a prefix
length of 30.

DMoE: The running statistics of mean and stan-
dard deviation of test loss are maintained with
sliding windows of length 100 to compute z-score
statistic. We set threshold for drift trigger to be -1.4
in ECHR and -1.15 in EU. We use 100 as neigh-
boring data points to form a cluster and maximum
distance value to be 10 in EU and 4 in ECHR.

D Case Study

Case Study A: Temporal Adaptation in Gender
Identity Jurisprudence To demonstrate the effec-
tiveness of our model, we analyze L. v. Lithuania
(no. 27527/03), an ECHR case concerning the le-
gal recognition of transgender individuals’ gender
identity. This case arose amid evolving societal
and medical perspectives on gender, reflecting a
broader shift in human rights jurisprudence. Ear-
lier rulings, such as Rees v. UK (1986), Cossey
v. UK (1990), and Sheffield and Horsham v. UK
(1998), upheld a biological definition of gender,
deferring to States’ margin of appreciation in reg-
ulating marriage and identity laws. However, in
Christine Goodwin v. UK (2002), the Court over-
turned this stance, ruling that denying legal gender
recognition violated Articles 8 and 12 in light of
contemporary medical and societal developments.
This decision marked a turning point, emphasiz-
ing individual rights over state discretion in gender
identity recognition.

When generating reasoning for L. v. Lithua-
nia, LexTempus correctly prioritized the updated
precedent from Christine Goodwin (2002): "In
light of Christine Goodwin v. UK (2002), the re-
fusal to provide a clear legal framework for gender
reassignment violates Articles 8 and 12, as it no
longer reflects contemporary societal and medical
standards." By contrast, the Replay-Based Model
(BRR) failed to account for this legal shift, produc-
ing: "The refusal to establish a clear legal frame-
work for gender reassignment falls within the re-
spondent State’s margin of appreciation, as upheld
in Cossey v. UK (1990)." This discrepancy arises
because ER-based models (including Biased Reser-
voir Replay) mix past and present case law without
maintaining the correct temporal sequence of le-
gal shifts. By over-relying on uniform or biased
sampling strategies, replay-based methods risk re-
inforcing outdated precedents, failing to capture
the progressive nature of jurisprudence. LexTem-
pus, by contrast, maintains jurisprudential con-
sistency, ensuring alignment with modern human
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rights interpretations. This case study underscores
the necessity of adaptive, non-replay-based contin-
ual learning strategies in legal AI, ensuring models
accurately reflect temporal legal shifts rather than
perpetuating outdated legal standards.
Case Study B: Evolving Hate Speech Jurispru-
dence Under Article 10 The European Court of
Human Rights (ECHR) has progressively refined
its stance on freedom of expression (Article 10) and
the prohibition of hate speech, adapting to shifting
societal norms. Early cases, such as Jersild v. Den-
mark (1994), prioritized journalistic freedom, rul-
ing that a journalist who broadcast racist remarks
was not liable, as his intent was to report rather than
endorse the statements. Similarly, in Perinçek v.
Switzerland (2015), the Court ruled that a Turkish
politician’s denial of the Armenian genocide did
not constitute hate speech under Article 10, as it did
not incite violence or hatred. However, a stricter
standard emerged in Lilliendahl v. Iceland (2020),
where a man was convicted for homophobic re-
marks, with the Court holding that statements “pro-
moting intolerance” could be lawfully restricted.
This shift reflects the Court’s increasing recogni-
tion of the harm caused by discriminatory speech,
particularly in the context of marginalized groups.

To evaluate temporal generalizability, we tested
LexTempus and a Replay-Based Model (BRR) on
a hypothetical case where a politician made in-
flammatory anti-LGBTQ+ statements in a public
speech. LexTempus correctly prioritized the most
recent precedent, aligning with Lilliendahl v. Ice-
land (2020) by reasoning: "Under Lilliendahl v.
Iceland (2020), public statements promoting intol-
erance can justify legal restrictions under Article
10." By contrast, the BRR model incorrectly refer-
enced older jurisprudence, generating: "Following
Perinçek v. Switzerland (2015), political speech
enjoys strong protections, even when controver-
sial." This discrepancy highlights a fundamental
challenge in legal NLP—models that rely on replay-
based learning risk blending outdated and current
case law inconsistently, leading to erroneous legal
conclusions. LexTempus, by dynamically adapt-
ing to evolving legal interpretations, ensures its
reasoning aligns with the most relevant legal stan-
dards, demonstrating the critical need for adaptive
learning in legal language models.
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