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Abstract

This paper introduces F5-TTS, a fully non-
autoregressive text-to-speech system based on
flow matching with Diffusion Transformer
(DiT). Without requiring complex designs such
as duration model, text encoder, and phoneme
alignment, the text input is simply padded with
filler tokens to the same length as input speech,
and then the denoising is performed for speech
generation, which was originally proved fea-
sible by E2 TTS. However, the original de-
sign of E2 TTS makes it hard to follow due
to its slow convergence and low robustness.
To address these issues, we first model the
input with ConvNeXt to refine the text rep-
resentation, making it easy to align with the
speech. We further propose an inference-time
Sway Sampling strategy, which significantly
improves our model’s performance and effi-
ciency. This sampling strategy for flow step
can be easily applied to existing flow matching
based models without retraining. Our design
allows faster training and achieves an inference
RTF of 0.15, which is greatly improved com-
pared to state-of-the-art diffusion-based TTS
models. Trained on a public 100K hours multi-
lingual dataset, our F5-TTS exhibits highly nat-
ural and expressive zero-shot ability, seamless
code-switching capability, and speed control ef-
ficiency. We have released all codes and check-
points to promote community development, at
https://SWivid.github.io/F5-TTS/.

1 Introduction

Recent research in Text-to-Speech (TTS) has ex-
perienced great advancement (Shen et al., 2018;
Li et al., 2019; Ren et al., 2020; Kim et al., 2020,
2021; Popov et al., 2021; Wang et al., 2023b; Tan
et al., 2024). With a few seconds of audio prompt,
current TTS models are able to synthesize speech
for any given text and mimic the speaker of audio
prompt (Wang et al., 2023a; Zhang et al., 2023b).

*Corresponding author

The synthesized speech can achieve high fidelity
and naturalness that they are almost indistinguish-
able from human speech (Shen et al., 2023; Ju et al.,
2024; Chen et al., 2024; Le et al., 2024).

While autoregressive (AR) based TTS models
exhibit an intuitive way of consecutively predicting
the next token(s) and have achieved promising zero-
shot TTS capability, the inherent limitations of AR
modeling require extra efforts addressing issues
such as inference latency and exposure bias (Song
et al., 2024; Du et al., 2024a; Han et al., 2024; Xin
et al., 2024; Peng et al., 2024). Moreover, the qual-
ity of speech tokenizer is essential for AR models
to achieve high-fidelity synthesis (Zeghidour et al.,
2021; Défossez et al., 2022; Wu et al., 2023; Yang
et al., 2023; Zhang et al., 2023a; Bai et al., 2024;
Niu et al., 2024). Thus, there have been studies
exploring direct modeling in continuous space (Liu
et al., 2024a; Li et al., 2024; Meng et al., 2024) to
enhance synthesized speech quality recently.

Although AR models demonstrate impressive
zero-shot performance as they perform implicit du-
ration modeling and can leverage diverse sampling
strategies, non-autoregressive (NAR) models bene-
fit from fast inference through parallel processing,
and effectively balance synthesis quality and la-
tency. Notably, diffusion models (Ho et al., 2020;
Song et al., 2020) contribute most to the success of
current NAR speech models (Shen et al., 2023; Ju
et al., 2024). In particular, Flow Matching with Op-
timal Transport path (FM-OT) (Lipman et al., 2022)
is widely used in recent research fields not only
text-to-speech (Le et al., 2024; Guo et al., 2024b;
Mehta et al., 2024; Lee et al., 2024; Eskimez et al.,
2024) but also image generation (Esser et al., 2024)
and music generation (Fei et al., 2024).

Unlike AR-based models, the alignment mod-
eling between input text and synthesized speech
is crucial and challenging for NAR-based mod-
els. While NaturalSpeech 3 (Ju et al., 2024) and
Voicebox (Le et al., 2024) use frame-wise phoneme
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Figure 1: An overview of F5-TTS training (left) and inference (right). The model is trained on the text-guided
speech-infilling task and condition flow matching loss. The input text is converted to a character sequence, padded
with filler tokens to the same length as input speech, and refined by ConvNeXt V2 blocks before concatenation with
speech input. The inference leverages Sway Sampling for flow steps, with the model and an ODE solver to generate
speech from sampled noise.

alignment; Matcha-TTS (Mehta et al., 2024) adopts
monotonic alignment search (Kim et al., 2020) and
relies on a phoneme-level duration model; recent
works find that introducing such rigid alignment
between text and speech hinders the model from
generating results with higher naturalness (Eskimez
et al., 2024; Anastassiou et al., 2024).

E3 TTS (Gao et al., 2023a) abandons phoneme-
level duration and applies cross-attention on the
input sequence but yields limited audio quality.
DiTTo-TTS (Lee et al., 2024) uses Diffusion Trans-
former (DiT) (Peebles and Xie, 2023) with cross-
attention conditioned on encoded text from a pre-
trained language model. To further enhance align-
ment, it uses the pretrained language model to fine-
tune the neural audio codec, infusing semantic in-
formation into the generated representations. In
contrast, E2 TTS (Eskimez et al., 2024), based
on Voicebox (Le et al., 2024), adopts a simpler
way, which removes the phoneme and duration
predictor and directly uses characters padded with
filler tokens to the length of mel spectrograms as
input. This simple scheme also achieves very natu-

ral and realistic synthesized results. However, we
found that robustness issues exist in E2 TTS for
the text and speech alignment. Seed-TTS (Anas-
tassiou et al., 2024) employs a similar strategy and
achieves excellent results, though not elaborated
in model details. In these ways of not explicitly
modeling phoneme-level duration, models learn to
assign the length of each word or phoneme accord-
ing to the given total sequence length, resulting in
improved prosody and rhythm.

In this paper, we propose F5-TTS, a Fairytaler
that Fakes Fluent and Faithful speech with Flow
matching. Maintaining the simplicity of pipeline
without phoneme alignment, duration predictor,
text encoder, and semantically infused codec
model, F5-TTS leverages the Diffusion Trans-
former with ConvNeXt V2 (Woo et al., 2023) to bet-
ter tackle text-speech alignment during in-context
learning. We stress the deep entanglement of se-
mantic and acoustic features in the E2 TTS model
design, which has inherent problems and will pose
alignment failure issues that could not simply be
solved with re-ranking. With in-depth ablation stud-
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ies, our proposed F5-TTS demonstrates stronger ro-
bustness, in generating more faithful speech to the
text prompt, while maintaining comparable speaker
similarity. Additionally, we introduce an inference-
time sampling strategy for flow steps substantially
improving naturalness, intelligibility, and speaker
similarity of generation. This approach can be
seamlessly integrated into existing flow matching
based models without retraining.

2 Preliminaries

2.1 Flow Matching
The Flow Matching (FM) objective is to match
a probability path pt from a simple distribution
p0, e.g., the standard normal distribution p(x) =
N (x|0, I), to p1 approximating the data distribu-
tion q. In short, the FM loss regresses the vector
field ut with a neural network vt as

LFM(θ) = Et,pt(x) ∥vt(x)− ut(x)∥2 , (1)

where θ parameterizes the neural network, t ∼
U [0, 1] and x ∼ pt(x). vt is trained over the en-
tire flow step and data range, ensuring it learns to
handle the entire transformation process from the
initial distribution to the target distribution.

As we have no prior knowledge of how to ap-
proximate pt and ut, a conditional probability path
pt(x|x1) = N (x | µt(x1), σt(x1)2I) is considered
in actual training, and the Conditional Flow Match-
ing (CFM) loss is proved to have identical gradients
w.r.t. θ (Lipman et al., 2022). x1 is the random vari-
able corresponding to training data. µ and σ is the
time-dependent mean and scalar standard deviation
of Gaussian distribution.

Remember that the goal is to construct target dis-
tribution (data samples) from initial simple distri-
bution, e.g., Gaussian noise. With the conditional
form, the flow map ψt(x) = σt(x1)x + µt(x1)
with µ0(x1) = 0 and σ0(x1) = 1, µ1(x1) = x1
and σ1(x1) = 0 is made to have all conditional
probability paths converging to p0 and p1 at the
start and end. The flow thus provides a vector
field dψt(x0)/dt = ut(ψt(x0)|x1). Reparameter-
ize pt(x|x1) with x0, we have

LCFM(θ) = Et,q(x1),p(x0)∥vt(ψt(x0))−
d

dt
ψt(x0)∥2.

(2)
Further leveraging Optimal Transport (OT) form
ψt(x) = (1− t)x+ tx1, the OT-CFM loss is

LCFM(θ) = Et,q(x1),p(x0)∥vt((1− t)x0 + tx1)− (x1 − x0)∥2.
(3)

To view in a more general way (Kingma and Gao,
2024), if formulating the loss in terms of log signal-
to-noise ratio (log-SNR) λ instead of flow step
t, and parameterizing to predict x0 (ϵ, commonly
stated in diffusion model) instead of predict x1−x0,
the CFM loss is equivalent to the v-prediction (Sal-
imans and Ho, 2022) loss with cosine schedule.

For inference, given sampled noise x0 from ini-
tial distribution p0, flow step t ∈ [0, 1] and con-
dition with respect to generation task, the ordi-
nary differential equation (ODE) solver (Chen,
2018) is used to evaluate ψ1(x0) the integration
of dψt(x0)/dt with ψ0(x0) = x0. The number
of function evaluations (NFE) is the times going
through the neural network as we may provide mul-
tiple flow step values from 0 to 1 as input to ap-
proximate the integration. Higher NFE will pro-
duce more accurate results and certainly take more
calculation time.

2.2 Classifier-Free Guidance

Classifier Guidance (CG) is proposed by Dhariwal
and Nichol (2021), functions by adding the gradi-
ent of an additional classifier, while such an explicit
way to condition the generation process may have
several problems. Extra training of the classifier
is required and the generation result is directly af-
fected by the quality of the classifier. Adversarial
attacks might also occur as the guidance is intro-
duced through the way of updating the gradient.
Thus deceptive images with imperceptible details
to human eyes may be generated, which are not
conditional.

Classifier-Free Guidance (CFG) (Ho and Sali-
mans, 2022) proposes to replace the explicit classi-
fier with an implicit classifier without directly com-
puting the explicit classifier and its gradient. The
gradient of a classifier can be expressed as a com-
bination of conditional generation probability and
unconditional generation probability. By dropping
the condition with a certain rate during training,
and linear extrapolating the inference outputs with
and without condition c, the final guided result is
obtained. We could balance between fidelity and
diversity of the generated samples with

vt,CFG = vt(ψt(x0), c) + α(vt(ψt(x0), c)− vt(ψt(x0)))

(4)
in CFM case, where α is the CFG strength.1

1Note that the inference time will be doubled if CFG.
Model vt will execute the forward process twice, once with
condition, and once without.
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3 Method

This work aims to build a high-level text-to-speech
synthesis system. We trained our model on the text-
guided speech-infilling task (Bai et al., 2022; Le
et al., 2024). Based on recent research (Lee et al.,
2024; Eskimez et al., 2024; Liu et al., 2024b), it
is promising to train without phoneme-level dura-
tion predictor and can achieve higher naturalness in
zero-shot generation deprecating explicit phoneme-
level alignment. We propose our advanced archi-
tecture with faster convergence and more robust
generation. We also propose an inference-time
flow step sampling strategy, which significantly im-
proves our model’s performance in faithfulness to
reference text and speaker similarity.

3.1 Pipeline

Training The infilling task is to predict a segment
of speech given its surrounding audio and full text
(for both surrounding transcription and the part to
generate). For simplicity, we reuse the symbol x
to denote an audio sample and y the corresponding
transcript for a data pair (x, y). As shown in Fig.1
(left), the acoustic input for training is an extracted
mel spectrogram features x1 ∈ RF×N from the
audio sample x, where F is mel dimension and
N is the sequence length. In the scope of CFM,
we pass in the model the noisy speech (1− t)x0 +
tx1 and the masked speech (1 −m) ⊙ x1, where
x0 denotes sampled Gaussian noise, t is sampled
flow step, and m ∈ {0, 1}F×N represents a binary
temporal mask.

Following E2 TTS, we directly use alphabets
and symbols for English. We opt for full pinyin to
facilitate Chinese zero-shot generation. By break-
ing the raw text into such character sequence and
padding it with filler tokens ⟨F ⟩ to the same length
as mel frames, we form an extended sequence z
with ci denoting the i-th character:

z = (c1, c2, . . . , cM , ⟨F ⟩, . . . , ⟨F ⟩︸ ︷︷ ︸
(N−M) times

). (5)

The model is trained to reconstruct m ⊙ x1 with
(1−m)⊙x1 and z, which equals to learn the target
distribution p1 in form of P (m⊙x1|(1−m)⊙x1, z)
approximating real data distribution q.
Inference To generate a speech with the desired
content, we have the audio prompt’s mel spectro-
gram features xref , its transcription yref , and a
text prompt ygen. Audio prompt serves to provide

speaker characteristics and text prompt is to guide
the content of generated speech.

The sequence length N , or duration, has now
become a pivotal factor that necessitates informing
the model of the desired length for sample gener-
ation. One could train a separate model to predict
and deliver the duration based on xref , yref and
ygen. Here we simply estimate the duration based
on the ratio of the number of characters in ygen and
yref . We assume that the sum-up length of char-
acters is no longer than mel length, thus padding
with filler tokens is done as during training.

To sample from the learned distribution, the con-
verted mel features xref , along with concatenated
and extended character sequence zref ·gen serve as
the condition in Eq.4. We have

vt(ψt(x0), c) = vt((1−t)x0+tx1|xref , zref ·gen),
(6)

See from Fig.1 (right), we start from a sampled
noise x0, and what we want is the other end of
flow x1. Thus we use the ODE solver to gradually
integrate from ψ0(x0) = x0 to ψ1(x0) = x1, given
dψt(x0)/dt = vt(ψt(x0), xref , zref ·gen). During
inference, the flow steps are provided in an ordered
way, e.g., uniformly sampled a certain number
from 0 to 1 according to the NFE setting. After
getting the generated mel with model vt and ODE
solver, we discard the part of xref . Then we lever-
age a vocoder to convert the mel back to waveform.

3.2 F5-TTS

E2 TTS directly concatenates the padded charac-
ter sequence with input speech sequence, deeply
entangling semantic and acoustic features with a
large length gap of effective information, which is
the underlying cause of hard training and poses sev-
eral problems in a zero-shot scenario (Sec.5.1). To
alleviate the problem of slow convergence and low
robustness, we propose F5-TTS which accelerates
training and inference and shows a strong robust-
ness in generation. Also, an inference-time Sway
Sampling is introduced, which allows inference
faster (using less NFE) while maintaining perfor-
mance. This sampling way of flow step can be
directly applied to other CFM-based models with-
out retraining.
Model As shown in Fig.1, we use latent Diffu-
sion Transformer (DiT) (Peebles and Xie, 2023)
as backbone. To be specific, we use DiT blocks
with zero-initialized adaptive Layer Norm (adaLN-
zero). To enhance the model’s alignment ability,
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we also leverage ConvNeXt V2 blocks (Woo et al.,
2023). Its predecessor ConvNeXt V1 (Liu et al.,
2022) is used in many works and shows a strong
temporal modeling capability in speech domain
tasks (Siuzdak, 2023; Okamoto et al., 2024).

As described in Sec.3.1, the model input is char-
acter sequence, noisy speech, and masked speech.
Before concatenation in the feature dimension, the
character sequence first goes through ConvNeXt
blocks. Experiments have shown that this way of
providing individual modeling space allows text
input to better prepare itself before later in-context
learning. Unlike the phoneme-level force align-
ment done in Voicebox, a rigid boundary for text is
not explicitly introduced. The semantic and acous-
tic features are jointly learned with the entire model.
Not directly feeding the model with inputs of sig-
nificant length gap as E2 TTS does, the proposed
text refinement mitigates the impact of using inputs
with mismatched effective information lengths, de-
spite equal physical length in magnitude as E2 TTS.

The flow step t for CFM is provided as the condi-
tion of adaLN-zero rather than appended to the con-
catenated input sequence in Voicebox. We found
that an additional mean pooled token of text se-
quence for adaLN condition is not essential for
the TTS task, maybe because the TTS task requires
more rigorously guided results and the mean pooled
text token is more coarse.

We adopt some position embedding settings in
Voicebox. The flow step is embedded with a sinu-
soidal position. The concatenated input sequence
is added with a convolutional position embedding.
We apply a rotary position embedding (RoPE) (Su
et al., 2024) for self-attention rather than symmet-
ric bi-directional ALiBi bias (Press et al., 2021).
And for extended character sequence z, we also add
it with an absolute sinusoidal position embedding
before feeding it into ConvNeXt blocks.

Compared with Voicebox and E2 TTS, we aban-
doned the U-Net (Ronneberger et al., 2015) style
skip connection structure and switched to using
DiT with adaLN-zero. Without a phoneme-level
duration predictor and explicit alignment process,
and nor with extra text encoder and semantically
infused neural codec model in DiTTo-TTS, we give
the text input a little freedom (individual modeling
space) to let it prepare itself before concatenation
and in-context learning with speech input.
Sampling As stated in Sec.2.1, the CFM could
be viewed as v-prediction with a cosine schedule.
For image synthesis, Esser et al. (2024) propose to

further schedule the flow step with a single-peak
logit-normal (Atchison and Shen, 1980) sampling,
in order to give more weight to intermediate flow
steps by sampling them more frequently. We spec-
ulate that such sampling distributes the model’s
learning difficulty more evenly over different flow
step t ∈ [0, 1].

In contrast, we train our model with traditional
uniformly sampled flow step t ∼ U [0, 1] but ap-
ply a non-uniform sampling during inference. In
specific, we define a Sway Sampling function as

fsway(u; s) = u+ s · (cos(π
2
u)− 1 + u), (7)

which is monotonic with coefficient s ∈ [−1, 2
π−2 ].

We first sample u ∼ U [0, 1], then apply this func-
tion to obtain sway sampled flow step t. With
s < 0, the sampling is sway to left; with s > 0, the
sampling is sway to right; and s = 0 case equals
to uniform sampling. Fig.3 shows the probability
density function of Sway Sampling on flow step t.

Conceptually, CFM models focus more on
sketching the contours of speech in the early stage
(t → 0) from pure noise and later focus more on
the embellishment of fine-grained details. There-
fore, the alignment between speech and text will be
determined based on the first few generated results.
With a scale parameter s < 0, we make model infer-
ence more with smaller t, thus providing the ODE
solver with more startup information to evaluate
more precisely in initial integration steps.

4 Experimental Setup

Datasets We utilize the in-the-wild multilingual
speech dataset Emilia (He et al., 2024) to train our
base models. After simply filtering out transcrip-
tion failure and misclassified language speech, we
retain approximately 95K hours of English and
Chinese data. We also trained small models for
ablation study and architecture search on Wenet-
Speech4TTS (Ma et al., 2024) Premium subset,
consisting of a 945 hours Mandarin corpus. Base
model configurations are introduced below, and
small model configurations are in Appendix B.1.
Three test sets are adopted for evaluation, which are
LibriSpeech-PC test-clean (Meister et al., 2023),
Seed-TTS test-en (Anastassiou et al., 2024) with
1088 samples from Common Voice (Ardila et al.,
2019), and Seed-TTS test-zh with 2020 samples
from DiDiSpeech (Guo et al., 2021)2. Most of the

2https://github.com/BytedanceSpeech/
seed-tts-eval
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previous English-only models are evaluated on dif-
ferent subsets of LibriSpeech test-clean while the
used prompt list is not released, which makes fair
comparison difficult. Thus we build and release a
4-to-10-second LibriSpeech-PC subset with 1127
samples to facilitate community comparisons.
Training Our base models are trained to 1.2M
updates with a batch size of 307,200 audio frames
(0.91 hours), for over one week on 8 NVIDIA A100
80G GPUs. The AdamW optimizer (Loshchilov,
2017) is used with a peak learning rate of 7.5e-
5, linearly warmed up for 20K updates, and lin-
early decays over the rest of the training. We
set 1 for the max gradient norm clip. The F5-
TTS base model has 22 layers, 16 attention heads,
1024/2048 embedding/feed-forward network (FFN)
dimension for DiT; and 4 layers, 512/1024 embed-
ding/FFN dimension for ConvNeXt V2; in total
335.8M parameters. The reproduced E2 TTS, a
333.2M flat U-Net equipped Transformer, has 24
layers, 16 attention heads, and 1024/4096 embed-
ding/FFN dimension. Both models use RoPE as
mentioned in Sec.3.2, a dropout rate of 0.1 for at-
tention and FFN, the same convolutional position
embedding as in Voicebox(Le et al., 2024).

We directly use alphabets and symbols for En-
glish, use jieba3 and pypinyin4 to process raw Chi-
nese characters to full pinyins. The character em-
bedding vocabulary size is 2546, counting in the
special filler token and all other language charac-
ters exist in the Emilia dataset as there are many
code-switched sentences. For audio samples we
use 100-dimensional log mel-filterbank features
with 24 kHz sampling rate and hop length 256. A
random 70% to 100% of mel frames is masked for
infilling task training. For CFG (Sec.2.2) training,
first the masked speech input is dropped with a rate
of 0.3, then the masked speech again but with text
input together is dropped with a rate of 0.2 (Le
et al., 2024). We assume that the two-stage control
of CFG training may have the model learn more
with text alignment.
Inference The inference process is mainly elab-
orated in Sec.3.1. We use the Exponential Mov-
ing Averaged (EMA) (Karras et al., 2024) weights
for inference, and the Euler ODE solver for F5-
TTS (midpoint for E2 TTS as described in Eskimez
et al. (2024)). We use the pretrained vocoder Vo-
cos (Siuzdak, 2023) to convert generated log mel

3https://github.com/fxsjy/jieba
4https://github.com/mozillazg/python-pinyin

spectrograms to audio signals.
Baselines We compare our models with lead-
ing TTS systems including, (mainly) autoregres-
sive models: VALL-E 2 (Chen et al., 2024),
MELLE (Meng et al., 2024), FireRedTTS (Guo
et al., 2024a) and CosyVoice (Du et al., 2024b);
non-autoregressive models: Voicebox (Le et al.,
2024), NaturalSpeech 3 (Ju et al., 2024), DiTTo-
TTS (Lee et al., 2024), MaskGCT (Wang et al.,
2024), Seed-TTSDiT (Anastassiou et al., 2024) and
our reproduced E2 TTS (Eskimez et al., 2024). De-
tails of compared models see Appendix A.
Metrics We measure the performances under
cross-sentence task (Wang et al., 2023a; Le et al.,
2024). We report Word Error Rate (WER) and
speaker Similarity between generated and the origi-
nal target speeches (SIM-o (Le et al., 2024)) for ob-
jective evaluation. For WER, we employ Whisper-
large-v3 (Radford et al., 2023) to transcribe English
and Paraformer-zh (Gao et al., 2023b) for Chinese,
following (Anastassiou et al., 2024). For SIM-o,
we use a WavLM-large-based (Chen et al., 2022)
speaker verification model to extract speaker em-
beddings for calculating the cosine similarity of
synthesized and ground truth speeches. We use
Comparative Mean Opinion Scores (CMOS) and
Similarity Mean Opinion Scores (SMOS) for sub-
jective evaluation. Details of subjective evaluations
can be found in Appendix C.

5 Experimental Results

Tab.1 and 2 show the main results of objective
and subjective evaluations. We report the average
score of three random seed generation results with
our model and open-sourced baselines. We use by
default a CFG strength of 2 and a Sway Sampling
coefficient of −1 for our F5-TTS.

F5-TTS achieves a WER of 2.42 on LibriSpeech-
PC test-clean with 32 NFE, demonstrating its ro-
bustness in zero-shot generation. Inference with
16 NFE, F5-TTS gains an RTF of 0.15 while still
supporting high-quality generation with a WER of
2.53. The reproduced E2 TTS shows an excellent
speaker similarity (SIM) but much worse WER
in the zero-shot scenario, indicating the inherent
deficiency of alignment robustness.

From the evaluation results on the Seed-TTS
test sets, F5-TTS behaves similarly with a close
WER to ground truth and comparable SIM scores.
It produces smooth and fluent speech in zero-shot
generation with a CMOS of 0.31 (0.21) and SMOS
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Model #Param. #Data WER(%)↓ SIM-o↑ RTF↓

LibriSpeech test-clean

Ground Truth (2.2 hours subset) 2.2 0.754 -

VALL-E 2 - 50K EN 2.44 0.643 0.732
MELLE - 50K EN 2.10 0.625 0.549
MELLE-R2 - 50K EN 2.14 0.608 0.276
Voicebox 330M 60K EN 1.9 0.662 0.64
DiTTo-TTS 740M 55K EN 2.56 0.627 0.162

Ground Truth (40 samples subset) 1.94 0.68 -

Voicebox 330M 60K EN 2.03 0.64 0.64
NaturalSpeech 3 500M 60K EN 1.94 0.67 0.296
MaskGCT 1048M 100K Multi. 2.634 0.687 -

LibriSpeech-PC test-clean

Ground Truth (1127 samples 2 hrs) 2.23 0.69 -
Vocoder Resynthesized 2.32 0.66 -

CosyVoice ∼300M 170K Multi. 3.59 0.66 0.92
FireRedTTS ∼580M 248K Multi. 2.69 0.47 0.84
E2 TTS (32 NFE) 333M 100K Multi. 2.95 0.69 0.68

F5-TTS (16 NFE) 336M 100K Multi. 2.53 0.66 0.15
F5-TTS (32 NFE) 336M 100K Multi. 2.42 0.66 0.31

Table 1: Comparison results on LibriSpeech(-PC) test-
clean. The Real-Time Factor (RTF) is computed with
the inference time of 10s speech on NVIDIA RTX 3090.
#Param. stands for the number of learnable parameters
and #Data refers to the used training dataset in hours.

of 3.89 (3.83) on Seed-TTS test-en (test-zh), and
surpasses some baseline models trained with larger
scales. As stated in Sec.3.1, we simply estimate
duration based on the ratio of the audio prompt’s
transcript length and the text prompt length, rather
than relying on an extra duration predictor. It is
also worth mentioning that Seed-TTS with the best
result is trained with orders of larger model size
and dataset (several million hours) than ours.

A robustness test on ELLA-V (Song et al., 2024)
hard sentences is further included in Appendix B.5.
The ablation of vocoders and additional evalua-
tion with a non-PC test set are in Appendix B.6.
An analysis of training stability with varying data
scales is in Appendix B.7.

5.1 Ablation of Model Architecture

To clarify our F5-TTS’s efficiency and stress the
limitation of E2 TTS. We conduct in-depth abla-
tion studies. We trained small models (all around
155M parameters) to 800K updates on the Wenet-
Speech4TTS Premium 945 hours Mandarin dataset
with half the batch size compared to base models.
Configuration details see Appendix B.1.

Fig.2 shows the overall trend of productive small
models’ WER and SIM scores evaluated on Seed-
TTS test-zh. F5-TTS (32 NFE w/o SS) achieves
a WER of 4.17 and a SIM of 0.54 at 800K up-

Model WER(%)↓ SIM-o↑ CMOS↑ SMOS↑

Seed-TTS test-en

Ground Truth 2.06 0.73 0.00 3.91
Vocoder Resynthesized 2.09 0.70 - -

CosyVoice 3.39 0.64 0.02 3.64
FireRedTTS 3.82 0.46 -1.46 2.94
MaskGCT 2.623* 0.717* - -
Seed-TTSDiT 1.733* 0.790* - -
E2 TTS (32 NFE) 2.19 0.71 0.06 3.81

F5-TTS (16 NFE) 1.89 0.67 0.16 3.79
F5-TTS (32 NFE) 1.83 0.67 0.31 3.89

Seed-TTS test-zh

Ground Truth 1.26 0.76 0.00 3.72
Vocoder Resynthesized 1.27 0.72 - -

CosyVoice 3.10 0.75 -0.06 3.54
FireRedTTS 1.51 0.63 -0.49 3.28
MaskGCT 2.273* 0.774* - -
Seed-TTSDiT 1.178* 0.809* - -
E2 TTS (32 NFE) 1.97 0.73 -0.04 3.44

F5-TTS (16 NFE) 1.74 0.75 0.02 3.72
F5-TTS (32 NFE) 1.56 0.76 0.21 3.83

Table 2: Results on two test sets, Seed-TTS test-en
and test-zh. The boldface indicates the best result, the
underline denotes the second best, and * denotes scores
reported in baseline papers.

Figure 2: Seed-TTS test-zh evaluation results of 155M
small models trained with WenetSpeech4TTS Premium
a 945 hours Mandarin Corpus.

dates, while E2 TTS is 9.63 and 0.53. We were first
faced with unsatisfactory results with reproduced
E2 TTS in Mandarin. On the one hand, E2 TTS
converges slowly; on the other hand, we found that
E2 TTS consistently failed (unable to solve with
re-ranking) on 7% test samples (WER>50%) all
along the training process, speculated of larger dis-
tribution gap with train set. To disclose the possi-
ble reasons for E2 TTS’s deficiency, we investigate
the models’ behaviors with different inputs. See
from Tab.4 in Appendix B.2, by dropping the audio
prompt, and synthesizing speech solely with the
text prompt, E2 TTS is free of failures (F5-TTS
also benefits but because of more standard output
that is easier to be recognized by the ASR model).
This phenomenon implied a deep entanglement of
semantic and acoustic features within E2 TTS’s
model design, and it greatly hinders real-world ap-
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plication as the failed generation cannot be solved
with re-ranking. Supervised fine-tuning facing out-
of-domain data or a tremendous pretraining scale
under the slow convergence speed is mandatory
for E2 TTS, which is inconvenient for industrial
deployment and a crushing burden for individuals.

From Tab.3 GFLOPs, structures without many
skip connections natively allow faster training
and inference. However, pure adaLN DiT (F5-
TTS−Conv2Text) failed to learn alignment given
simply padded character sequences, while MMDiT
(Esser et al., 2024) learned fast and collapsed fast,
resulting in severe repeated utterance with wild tim-
bre and prosody. We assume that the pure MMDiT
structure is far too flexible for TTS task that re-
quires faithful generation following guidance. Thus
we focus on enhancing the modeling ability of DiT.
Based on the concept of refining the input text rep-
resentation to better align with speech modality,
and keep the simplicity of system design, F5-TTS
is proven effective. F5-TTS easily handles zero-
shot generation, showing stronger robustness.

We further ablate with adding the same branch
for input speech (F5-TTS+Conv2Audio), and also
conduct experiments to figure out whether the long
skip connection and the refinement of input text
are beneficial to the counterpart backbone, i.e. F5-
TTS and E2 TTS, named F5-TTS+LongSkip and
E2 TTS+Conv2Text respectively. From Fig.2, F5-
TTS+Conv2Audio trades much alignment robust-
ness (+1.61 WER) with a slightly higher speaker
similarity (+0.01 SIM). The long skip connection
structure can not simply fit into DiT to improve
speaker similarity, while the ConvNeXt for input
text refinement can not directly apply to the flat
U-Net Transformer to improve WER as well, both
showing significant degradation of performance.

5.2 Ablation of Sway Sampling
It is clear from Fig.3 that a Sway Sampling with
more negative s value further improves perfor-
mance. Appendix B.3 with massive ablation re-
sults on base models, provides more evidence of
the effectiveness of the proposed strategy.

To be more concrete and intuitive, we conduct
a "leak and override" experiment. We first re-
place the Gaussian noise input x0 at inference
time with a ground-truth-information-leaked input
(1 − t′)x0 + t′x′ref , where t′ = 0.1 and x′ref is a
duplicate of the audio prompt mel features. Then,
we provide a text prompt different from the dupli-
cated audio transcript and let the model continue

Figure 3: The probability density function of Sway
Sampling with different coefficient s, and small models’
corresponding performance on Seed-TTS test-zh.

the subsequent inference (skip the flow steps be-
fore t′). The model succeeds in overriding leaked
utterances and producing speech following the text
prompt if Sway Sampling is used, and fails with-
out. Uniformly sampled flow steps will have the
model producing speech dominated by leaked in-
formation, speaking the duplicated audio prompt’s
context. Similarly, a leaked timbre can be overrid-
den with another speaker’s utterance as an audio
prompt, leveraging Sway Sampling.

The experiment result is a shred of strong evi-
dence proving that the early flow steps are crucial
for sketching the silhouette of target speech based
on given prompts faithfully, the later steps focus
more on formed intermediate noisy output, where
our sway-to-left sampling (s < 0) finds the prof-
itable niche and takes advantage of it. We empha-
size that our inference-time Sway Sampling can be
easily applied to existing CFM-based models with-
out retraining. And we will work in the future to
combine it with training-time noise schedulers and
distillation techniques to further boost efficiency.

6 Conclusion

This work introduces F5-TTS, a fully non-
autoregressive text-to-speech system based on flow
matching with diffusion transformer (DiT). With
a tidy pipeline, literally text in and speech out, F5-
TTS achieves state-of-the-art zero-shot ability com-
pared to existing works trained on industry-scale
data. We adopt ConvNeXt for text modeling and
propose the test-time Sway Sampling strategy to
further improve the robustness of speech genera-
tion and inference efficiency. Our design allows
faster training and inference, by achieving a test-
time RTF of 0.15, which is competitive with other
heavily optimized TTS models of similar perfor-
mance. We will open-source our code, and models,
to enhance transparency and facilitate reproducible
research in this area.
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Limitations

There are two limitations to this work. First, al-
though F5-TTS accelerates the training and infer-
ence while maintaining the simplicity of the system
through better structure design, the mel spectro-
gram sequence length is still much longer than the
text modality. Therefore, research and employ-
ment of a more efficient and hopefully universal
continuous representation compatible with highly
expressive speech synthesis remains a critical direc-
tion and can further improve efficiency and perfor-
mance. Second, although F5-TTS has great zero-
shot generation ability and can deeply mimic the
reference audio, it lacks fine-grained control of par-
alinguistic details, e.g. emotion, which is of great
research and practical application value.

Ethics Statements

This work is purely a research project. F5-TTS is
trained on large-scale public multilingual speech
data and could synthesize speech of high natural-
ness and speaker similarity. Given the potential
risks in the misuse of the model, such as spoofing
voice identification, it should be imperative to im-
plement watermarks and develop a detection model
to identify audio outputs.
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A Baseline Details

VALL-E 2 (Chen et al., 2024) A large-scale
TTS model shares the same architecture as
VALL-E (Wang et al., 2023a) but employs a
repetition-aware sampling strategy that promotes
more deliberate sampling choices, trained on
Libriheavy (Kang et al., 2024) 50K hours English
dataset. We compared with results reported
in Meng et al. (2024).

MELLE (Meng et al., 2024) An autoregressive
large-scale model leverages continuous-valued
tokens with variational inference for text-to-speech
synthesis. Its variants allow to prediction of
multiple mel-spectrogram frames at each time step,
noted by MELLE-Rx with x denotes reduction
factor. The model is trained on Libriheavy (Kang
et al., 2024) 50K hours English dataset. We
compared with results reported in Meng et al.
(2024).

Voicebox (Le et al., 2024) A non-autoregressive
large-scale model based on flow matching trained
with infilling task. We compared with the 330M
parameters trained on 60K hours dataset English-
only model’s results reported in Le et al. (2024)
and Ju et al. (2024).

NaturalSpeech 3 (Ju et al., 2024) A non-
autoregressive large-scale TTS system leverages
a factorized neural codec to decouple speech
representations and a factorized diffusion model
to generate speech based on disentangled at-
tributes. The 500M base model is trained on
Librilight (Kahn et al., 2020) a 60K hours English
dataset. We compared with scores reported in Ju
et al. (2024).

DiTTo-TTS (Lee et al., 2024) A large-scale non-
autoregressive TTS model uses a cross-attention
Diffusion Transformer and leverages a pretrained
language model to enhance the alignment. We
compare with DiTTo-en-XL, a 740M model
trained on 55K hours English-only dataset, using
scores reported in Lee et al. (2024).

FireRedTTS (Guo et al., 2024a) A foundation
TTS framework for industry-level generative
speech applications. The autoregressive text-to-
semantic token model has 400M parameters and
the token-to-waveform generation model has
about half the parameters. The system is trained
with 248K hours of labeled speech data. We use

the official code and pre-trained checkpoint to
evaluate5.

MaskGCT (Wang et al., 2024) A large-scale
non-autoregressive TTS model without pre-
cise alignment information between text and
speech following the mask-and-predict learning
paradigm. The model is multi-stage, with a 695M
text-to-semantic model (T2S) and then a 353M
semantic-to-acoustic (S2A) model. The model is
trained on Emilia (He et al., 2024) dataset with
around 100K Chinese and English in-the-wild
speech data. We compare with results reported
in Wang et al. (2024).

Seed-TTS (Anastassiou et al., 2024) A family of
high-quality versatile speech generation models
trained on unknown tremendously large data
that is of orders of magnitudes larger than the
previously largest TTS systems (Anastassiou
et al., 2024). Seed-TTSDiT is a large-scale fully
non-autoregressive model. We compare with
results reported in Anastassiou et al. (2024).

E2 TTS (Eskimez et al., 2024) A fully non-
autoregressive TTS system proposes to model
without the phoneme-level alignment in Voicebox,
originally trained on Libriheavy (Kang et al.,
2024) 50K English dataset. We compare with our
reproduced 333M multilingual E2 TTS trained on
Emilia (He et al., 2024) dataset with around 100K
Chinese and English in-the-wild speech data.

CosyVoice (Du et al., 2024b) A two-stage large-
scale TTS system, first autoregressive text-to-token,
then a flow matching diffusion model. The model
is of around 300M parameters, trained on 170K
hours of multilingual speech data. We obtain the
evaluation result with the official code and pre-
trained checkpoint6.

B Experimental Result Supplements

The UTMOS (Saeki et al., 2022) scores reported in
this section are evaluated with an open-source MOS
prediction model7. The UTMOS is an objective
metric measuring naturalness.

B.1 Small Model Configuration
The detailed configuration of small models is
shown in Tab.3. In the Transformer column, the

5https://github.com/FireRedTeam/FireRedTTS
6https://huggingface.co/model-scope/

CosyVoice-300M
7https://github.com/tarepan/SpeechMOS
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numbers denote the Model Dimension, the Number
of Layers, the Number of Heads, and the multiples
of Hidden Size. In the ConvNeXt column, the num-
bers denote the Model Dimension, the Number of
Layers, and the multiples of Hidden Size. GFLOPs
are evaluated using the thop Python package.

As mentioned in Sec.3.2, F5-TTS leverages an
adaLN DiT backbone with ConvNeXt V2 blocks,
while E2 TTS is a flat U-Net equipped Transformer.
F5-TTS+LongSkip adds an additional long skip
structure connecting the first to the last layer (Lee
et al., 2024) in the Transformer. For the Multi-
Model Diffusion Transformer (MMDiT) (Esser
et al., 2024), a double stream transformer, the set-
ting denotes one stream configuration.

Model Transformer ConvNeXt #Param. GFLOPs

F5-TTS 768,18,12,2 512,4,2 158M 173
F5-TTS−Conv2Text 768,18,12,2 - 153M 164
F5-TTS+Conv2Audio 768,16,12,2 512,4,2 163M 181
F5-TTS+LongSkip 768,18,12,2 512,4,2 159M 175
E2 TTS 768,20,12,4 - 157M 293
E2 TTS+Conv2Text 768,20,12,4 512,4,2 161M 301
MMDiT 512,16,16,2 - 151M 104

Table 3: Details of small model configurations.

B.2 Ablation study on Input Condition
The ablation study on different input conditions is
conducted with three settings:

• Common input with text and audio prompts.

• Providing ground truth duration information
rather than an estimate.

• Retaining only text input, dropping audio
prompt (using blank).

In Tab.4, all evaluations take the 155M small mod-
els’ checkpoints trained on WenetSpeech4TTS Pre-
mium at 800K updates. Analysis see Sec.5.1.

Model Common Input GT Duration Text-Only
WER↓ SIM↑ WER↓ SIM↑ WER↓ SIM↑

F5-TTS 4.17 0.54 3.87 0.54 3.22 0.21
F5-TTS+Conv2Audio 5.78 0.55 5.28 0.55 3.78 0.21
F5-TTS+LongSkip 5.17 0.53 5.03 0.53 3.35 0.21
E2 TTS 9.63 0.53 9.48 0.53 3.48 0.21
E2 TTS+Conv2Text 18.10 0.49 17.94 0.49 3.06 0.21

Table 4: Ablation study on different input conditions.
The boldface indicates the best result, and the underline
denotes the second best. All scores are the average of
three random seed results.

B.3 Sway Sampling Effectiveness on Base
Models

From Tab.5, it is clear that our Sway Sampling strat-
egy for test-time flow steps consistently improves
the zero-shot generation performance in aspects of
faithfulness to prompt text (WER), speaker similar-
ity (SIM), and naturalness (UTMOS). The gain of
applying Sway Sampling to E2 TTS (Eskimez et al.,
2024) proves that our Sway Sampling strategy is
universally applicable to existing flow matching
based TTS models.

Model WER(%)↓ SIM-o↑ UTMOS↑ RTF↓

LibriSpeech-PC test-clean

Ground Truth 2.23 0.69 4.09 -
Vocoder Resynthesized 2.32 0.66 3.64 -

E2 TTS (16 NFE w/ SS) 2.86 0.71 3.66 0.34
E2 TTS (32 NFE w/ SS) 2.84 0.72 3.70 0.68
E2 TTS (32 NFE w/o SS) 2.95 0.69 3.56 0.68

F5-TTS (16 NFE w/ SS) 2.43 0.66 3.87 0.26
F5-TTS (32 NFE w/ SS) 2.41 0.66 3.89 0.53
F5-TTS (32 NFE w/o SS) 2.84 0.62 3.70 0.53

Seed-TTS test-en

Ground Truth 2.06 0.73 3.53 -
Vocoder Resynthesized 2.09 0.70 3.33 -

E2 TTS (16 NFE w/ SS) 1.99 0.72 3.55 0.34
E2 TTS (32 NFE w/ SS) 1.98 0.73 3.57 0.68
E2 TTS (32 NFE w/o SS) 2.19 0.71 3.33 0.68

F5-TTS (16 NFE w/ SS) 1.88 0.66 3.70 0.26
F5-TTS (32 NFE w/ SS) 1.87 0.66 3.72 0.53
F5-TTS (32 NFE w/o SS) 1.93 0.63 3.51 0.53

Seed-TTS test-zh

Ground Truth 1.26 0.76 2.78 -
Vocoder Resynthesized 1.27 0.72 2.61 -

E2 TTS (16 NFE w/ SS) 1.80 0.78 2.84 0.34
E2 TTS (32 NFE w/ SS) 1.77 0.78 2.87 0.68
E2 TTS (32 NFE w/o SS) 1.97 0.73 2.49 0.68

F5-TTS (16 NFE w/ SS) 1.61 0.75 2.87 0.26
F5-TTS (32 NFE w/ SS) 1.58 0.75 2.91 0.53
F5-TTS (32 NFE w/o SS) 1.93 0.69 2.58 0.53

Table 5: Base model evaluation results on LibriSpeech-
PC test-clean, Seed-TTS test-en and test-zh, with and
without proposed test-time Sway Sampling (SS, with
coefficient s = −1) strategy for flow steps. All gen-
erations leverage the midpoint ODE solver for ease of
ablation.

B.4 Comparison of ODE Solvers

The comparison results of using the Euler (first-
order), midpoint (second-order), or improved Heun
(third-order, Heun-3) ODE solver during F5-TTS
inference are shown in Tab.6. The Euler is inher-
ently faster and performs slightly better typically
for larger NFE inference with Sway Sampling (oth-
erwise the Euler solver results in degradation).
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LibriSpeech-PC test-clean Seed-TTS test-en Seed-TTS test-zh
F5-TTS WER(%)↓ SIM-o↑ UTMOS↑ WER(%)↓ SIM-o↑ UTMOS↑ WER(%)↓ SIM-o↑ UTMOS↑ RTF↓

Ground Truth 2.23 0.69 4.09 2.06 0.73 3.53 1.26 0.76 2.78 -

s = −1
16 NFE Euler 2.53 0.66 3.88 1.89 0.67 3.76 1.74 0.75 2.96 0.15
16 NFE midpoint 2.43 0.66 3.87 1.88 0.66 3.70 1.61 0.75 2.87 0.26
32 NFE Euler 2.42 0.66 3.90 1.83 0.67 3.76 1.56 0.76 2.95 0.31
32 NFE midpoint 2.41 0.66 3.89 1.87 0.66 3.72 1.58 0.75 2.91 0.53
16 NFE Heun-3 2.39 0.65 3.87 1.80 0.66 3.70 1.55 0.75 2.88 0.44

s = −0.8
16 NFE Euler 2.82 0.65 3.73 2.14 0.65 3.70 2.28 0.72 2.74 0.15
16 NFE midpoint 2.58 0.65 3.86 1.86 0.65 3.68 1.70 0.73 2.83 0.26
32 NFE Euler 2.50 0.66 3.89 1.81 0.67 3.74 1.62 0.75 2.94 0.31
32 NFE midpoint 2.42 0.66 3.89 1.84 0.66 3.70 1.62 0.75 2.91 0.53
16 NFE Heun-3 2.40 0.65 3.85 1.78 0.66 3.68 1.56 0.74 2.84 0.44

Table 6: Evaluation results of F5-TTS on LibriSpeech-PC test-clean, Seed-TTS test-en and Seed-TTS test-zh,
employing the Euler, midpoint or Heun-3 ODE solver, and with different Sway Sampling s values.

B.5 ELLA-V Hard Sentences Evaluation

ELLA-V (Song et al., 2024) proposed a challenging
set containing 100 difficult textual patterns evalu-
ating the robustness of the TTS model. Following
previous works (Chen et al., 2024; Meng et al.,
2024; Eskimez et al., 2024), we include generated
samples in our demo page8. We additionally com-
pare our model with the objective evaluation results
reported in E1 TTS (Liu et al., 2024b).

StyleTTS 2 is a TTS model leveraging style dif-
fusion and adversarial training with large speech
language models. CosyVoice is a two-stage large-
scale TTS system, consisting of a text-to-token
AR model and a token-to-speech flow matching
model. Concurrent with our work, E1 TTSDMD is
a diffusion-based NAR model with a distribution
matching distillation technique to achieve one-step
TTS generation. Since the prompts used by E1
TTSDMD are not released, we randomly sample
3-second-long speeches in our LibriSpeech-PC test-
clean set as audio prompts. The evaluation result
is in Tab.7. We evaluate the reproduced E2 TTS
and our F5-TTS with 32 NFE and Sway Sampling
and report the averaged score of three random seed
results.

We note that a higher WER compared to the re-
sults on commonly used test sets is partially due
to mispronunciation (yogis to yojus, cavorts to
caverts, etc.). The high Deletion rate indicates
a word-skipping phenomenon when our model en-
counters a stack of repeating words. The low Inser-
tion rate makes it clear that our model is free of end-
less repetition. We further emphasize that prompts
from different speakers will spell very distinct utter-

8https://SWivid.github.io/F5-TTS/

Model WER(%)↓ Sub.(%)↓ Del.(%)↓ Ins.(%)↓

StyleTTS 2 4.83* 2.17* 2.03* 0.61*
CosyVoice 8.30* 3.47* 2.74* 1.93*
E1 TTSDMD 4.29* 1.89* 1.62* 0.74*
E2 TTS 8.58 3.70 4.82 0.06
F5-TTS 4.40 1.81 2.40 0.18

Table 7: Results of zero-shot TTS WER on ELLA-V
hard sentences. The asterisk * denotes the score reported
in E1 TTS. Sub. for Substitution, Del. for Deletion, and
Ins. for Insertion.

ances, where the ASR model transcribes correctly
for one, and fails for another (e.g. quokkas to Co-
cos).

B.6 Comparison of Vocoders and between PC
and non-PC

The inference results with pretrained BigVGAN
(Lee et al., 2022) and Vocos (Siuzdak, 2023) respec-
tively as vocoder are shown in Tab.8, along with
additional evaluation on a non-Capitalized version
removing all Punctuations (non-PC) of the filtered
LibriSpeech-PC test-clean subset. The non-PC ver-
sion equals an ordinary LibriSpeech test-clean sub-
set, with which we provide more comprehensive
comparisons with previous works.

Moreover, we include WER scores measuring
with a Hubert-large-based (Hsu et al., 2021) ASR
model9 in Tab.8, with which our reproduced multi-
lingual E2 TTS with 32 NFE and Vocos as vocoder
achieves a WER of 2.92 on LibriSpeech-PC test-
clean and 2.66 if Sway Sampling applied.

9https://huggingface.co/facebook/
hubert-large-ls960-ft
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NFE steps LibriSpeech-PC test-clean LibriSpeech-non-PC test-clean Seed-TTS test-en Seed-TTS test-zh
& Vocoder WER(%)↓ SIM-o ↑ WER(%)↓ SIM-o ↑ WER(%)↓ SIM-o ↑ WER(%)↓ SIM-o ↑

Ground Truth 2.23 (1.89) 0.69 2.29 (1.86) 0.69 2.06 0.73 1.26 0.76

16 NFE - Vocos 2.53 (2.34) 0.66 2.72 (2.53) 0.66 1.89 0.67 1.74 0.75
16 NFE - BigVGAN 2.21 (1.96) 0.67 2.55 (2.34) 0.67 1.65 0.66 1.64 0.74
32 NFE - Vocos 2.42 (2.09) 0.66 2.44 (2.16) 0.66 1.83 0.67 1.56 0.76
32 NFE - BigVGAN 2.11 (1.81) 0.67 2.28 (2.03) 0.67 1.62 0.66 1.53 0.74

Table 8: F5-TTS Base model evaluation results on LibriSpeech-PC test-clean, LibriSpeech-non-PC test-clean,
Seed-TTS test-en and test-zh with BigVGAN and Vocos, default setting as in Sec.5. The WER scores in brackets
indicate results leveraging the Hubert-large-based ASR model.

Train Set LibriTTS - 585 hours LJSpeech - 24 hours

Test Set LibriSpeech-PC test-clean LJSpeech in-set tests
Model (#Param.) Update WER(%)↓ SIM-o ↑ UTMOS ↑ WER(%)↓ SIM-o ↑ UTMOS ↑

Ground Truth - 2.23 0.69 4.09 2.36 0.72 4.36
USLM (361M) - 6.1 0.43 - - - -

100K 29.5 0.53 3.78 5.64 0.72 4.17
200K 4.58 0.59 4.07 2.93 0.72 4.18

F5-TTS small 300K 2.71 0.60 4.11 3.26 0.71 4.12
(158M) 400K 2.44 0.60 4.11 3.90 0.70 4.05

500K 2.20 0.60 4.10 4.68 0.70 3.99
600K 2.23 0.59 4.10 5.25 0.69 3.93

Table 9: F5-TTS small models evaluation results on LibriSpeech-PC test-clean (model trained on LibriTTS 585
hours multi-speaker dataset), and on LJSpeech in-set test samples (model trained on 24 hours single-speaker
LJSpeech); Vocos as vocoder, Whisper-large-v3 as ASR model. The scores of USLM (Zhang et al., 2023a) are
evaluated with the official checkpoint pre-trained on LibriTTS.

B.7 Training and Inference Performance with
Different Dataset Scales

We train F5-TTS 158M small models on LibriTTS
(Zen et al., 2019) 585 hours and LJSpeech (Ito and
Johnson, 2017) 24 hours English datasets to pro-
vide insights on our model’s training stability with
different dataset scales, typically to see whether it
can maintain stable training on limited data. Both
training takes place with the same configuration as
described in Sec.5.1 and Appendix B.1 despite a
batch size of 307,200 audio frames (0.91 hours) as
base models. Every 100K update takes approxi-
mately 8 hours on 8 NVIDIA H100 SXM GPUs.

Same as Sec.5, we report the average score of
three random seed generation results, using a CFG
strength of 2, a Sway Sampling coefficient of −1,
and 32 NFE steps. Since LJSpeech is a single-
speaker dataset, we measure the metrics on in-set
tests (1000 samples organized with 4 to 7 seconds
to infer with an around 3-second prompt). It is
clear from Tab.9 (and Fig.2 in comparison with E2
TTS small) that our design enables stable training
to learn speech-text alignment (without grapheme-
to-phoneme) with varying data amounts.

C Subjective Evaluation Details

To evaluate speech quality, we conduct a CMOS
subjective evaluation. 20 natives were invited for
both English and Mandarin to evaluate 30 rounds
with randomly selected utterances for all three test
sets and all model variants. Evaluators were in-
formed in detail about the guidelines and scoring
criteria for the CMOS test, for example, the general
instruction part:

• Most important: use high-quality studio head-
phones and a good sound card!

• Listen through all test files and test sets before
you do any ratings to get used to the material.

• Rate the quality of the test items only com-
pared to the reference on top.

• Try to rate the overall impression of a test item
and don’t concentrate on single aspects.

For the CMOS test, the overall quality of a gen-
erated speech is first rated from −3 (bad quality
compared to the reference) to +3 (much better than
the reference) integer scale, then reported in aver-
age differentials with received scores of ground
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truth speech. For SMOS, a 1 to 5 with 0.5 as an
interval rating is employed (higher better). Judges
are to score the similarity between the synthesized
and prompt speech with clearly differentiated in-
structions mentioning:

• Try to rate concentrating on the speaker simi-
larity aspects with reference speech.

We encourage more rigorous and transparent
subjective evaluations, such as releasing used sam-
ples if not open-sourcing the model checkpoints.
Meanwhile inviting more evaluators leads to more
comprehensive and fair rating scores. Just for ref-
erence, DiTTo-TTS (Lee et al., 2024) received and
reported 6 and 12 ratings for SMOS and CMOS, re-
spectively, NaturalSpeech 3 (Ju et al., 2024) invited
12 natives to judge 20 samples for CMOS and 10
samples for SMOS.
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