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Abstract

Large Language Models (LLMs) have rapidly
become central to NLP, demonstrating their
ability to adapt to various tasks through prompt-
ing techniques, including sentiment analysis.
However, we still have a limited understanding
of how these models capture sentiment-related
information. This study probes the hidden lay-
ers of Llama models to pinpoint where senti-
ment features are most represented and to as-
sess how this affects sentiment analysis.

Using probe classifiers, we analyze sentiment
encoding across layers and scales, identifying
the layers and pooling methods that best cap-
ture sentiment signals. Our results show that
sentiment information is most concentrated in
mid-layers for binary polarity tasks, with de-
tection accuracy increasing up to 14% over
prompting techniques. Additionally, we find
that in decoder-only models, the last token is
not consistently the most informative for senti-
ment encoding. Finally, this approach enables
sentiment tasks to be performed with memory
requirements reduced by an average of 57%.

These insights contribute to a broader under-
standing of sentiment in LLMs, suggesting
layer-specific probing as an effective approach
for sentiment tasks beyond prompting, with
potential to enhance model utility and reduce
memory requirements.

1 Introduction

Sentiment analysis (SA), which classifies opinions,
emotions, and attitudes in text, is a cornerstone
of Natural Language Processing (NLP). SA has
enabled the development of several applications,
including social media monitoring (Camacho-
Collados et al., 2022), customer feedback analy-
sis (Lin et al., 2017), and opinion mining (Xia et al.,
2021). It comprises various tasks, such as polarity
detection (classifying text as positive, negative, or
neutral), emotion classification, and subjectivity
detection (Khan et al., 2014).

Earlier approaches for the sentiment classifica-
tion task relied on supervised learning algorithms
and extensive feature engineering (Al-Mannai et al.,
2014), requiring large annotated datasets and do-
main expertise to model sentiment effectively (Bor-
doloi and Biswas, 2023).

However, the advent of pre-trained models
such as GPT-2 (Radford et al., 2019) has trans-
formed NLP by enabling downstream tasks through
prompting techniques (Brown et al., 2020; Di
Palma, 2023), significantly reducing reliance on
extensive labeled data.

While prompting has enhanced the applicabil-
ity of LLMs for sentiment analysis (Deng et al.,
2023; Xing, 2024; Ahmed et al., 2024; Biancofiore
et al., 2025), these techniques have often lacked
fine-grained control of semantic features, such as
context-dependent sentiments or subtle emotional
tones. Moreover, the encoding of such features
within model representations has not been well un-
derstood, limiting efforts to optimize and interpret
sentiment analysis performance.

Efforts to interpret neural model representations
have advanced significantly over time. Building
on the linear representations hypothesis (Mikolov
et al., 2013), which suggests that high-level features
can be represented as linear directions, researchers
have explored where human-interpretable concepts
are encoded within LLMs. While previous stud-
ies have examined concepts such as truthfulness
(Burns et al., 2023), honesty (Azaria and Mitchell,
2023), and factual knowledge (Li et al., 2023), sen-
timent encoding remains relatively underexplored,
despite its importance in NLP applications.

This study aims to fill this gap by investigat-
ing where sentiment information is encoded within
Llama models (Touvron et al., 2023). We focus
on both binary polarity (positive or negative sen-
timent) and fine-grained emotion detection (joy,
sadness, anger, fear, love, and surprise), identifying
the model layers that most effectively capture these
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sentiment concepts. Specifically, we trained classi-
fiers to identify subspaces corresponding to specific
concepts, such as positive sentiment, within model
representations. We refer to these classifiers as
probes (Alain and Bengio, 2017).

Furthermore, unlike previous studies that rely
solely on the last token’s representation (as a
sentence summary) for probe training (Burns
et al., 2023; Azaria and Mitchell, 2023; Li et al.,
2023), we evaluate alternative pooling methods for
sentence-level sentiment detection.

Our extensive experiments reveal several key
insights into how sentiment and emotion are rep-
resented in LLMs. We find that (1) sentiment con-
cepts are most detectable in mid-layer representa-
tions, while (2) emotions are more discoverable in
early layers; (3) selecting the last token does not
consistently yield the best results for probe train-
ing; (4) representation quality improves with model
size; and (5) probe classifiers generally outperform
prompting techniques for accurate sentiment and
emotion classification.

In summary, our work makes the following con-
tributions:

• We perform a layer-wise analysis of sentiment
encoding in Llama models, identifying the lay-
ers that most effectively capture sentiment in-
formation.

• We evaluate six pooling methods to identify the
most effective approach for sentence represen-
tation in sentiment analysis.

• We investigate the impact of model size on senti-
ment representation by analyzing Llama-3 mod-
els of 1B, 3B, and 8B parameters.

• We show that Llama-based classifiers outper-
form Llama in zero-shot, few-shot, and Chain-
of-Thought settings while requiring fewer pa-
rameters.

• We propose SENTRILLAMA, a task-specific
adaptation of Llama that identifies and utilizes
the most representative layer for sentiment anal-
ysis, replacing the language modeling head with
a lightweight classification head to significantly
reduce inference costs while maintaining state-
of-the-art performance.

2 Related Work

In this section, we outline the evolution of senti-
ment analysis, trace the development of probing
research in neural models, focusing on LLMs, and
conclude by comparing our work to recent studies.

2.1 Sentiment Analysis Meets LLMs

Sentiment analysis, the task of classifying and
extracting subjective information from text, has
evolved from lexicon-based approaches using dic-
tionaries of positive and negative words (Hatzivas-
siloglou and McKeown, 1997; Wiebe, 2000) to
supervised learning methods employing n-gram
models and machine learning (Pang et al., 2002;
Chaovalit and Zhou, 2005). These early methods,
limited by their reliance on handcrafted features,
paved the way for feature engineering techniques
and eventually the deep learning revolution that
reshaped sentiment classification.

To improve feature identification, researchers
incorporated advanced techniques such as syn-
tactic dependencies (Yao et al., 2010), part-of-
speech tagging (Søgaard, 2011), and negation han-
dling (Morante and Blanco, 2012). The advent of
deep learning further transformed sentiment anal-
ysis, with models such as Recurrent Neural Net-
works (RNNs) (Socher et al., 2013) and Convo-
lutional Neural Networks (CNNs) (Kim, 2014),
achieving significant advancements by learning rep-
resentations directly from raw text.

However, the introduction of Transformer archi-
tectures (Vaswani et al., 2017) marked a paradigm
shift. Models like BERT (Devlin et al., 2019) lever-
age pretraining on vast datasets to extract con-
textualized representations, and they have been
widely used as encoding backbones for down-
stream tasks. Conversely, GPT (Radford et al.,
2019) employs the Transformer-decoder block
and frames language modeling as an autoregres-
sive task. Finally, inspired by the transfer learn-
ing paradigm, Raffel et al. (2020) introduced T5,
an encoder-decoder model for text-to-text tasks,
trained on vast amounts of data to capture general
language patterns and fine-tuned for a wide range
of specific applications.

The introduction of GPT-3 (Brown et al., 2020)
marked a turning point by introducing few-shot
learning and demonstrating the effectiveness of
prompt-based techniques, significantly reducing
the reliance on large labeled datasets for sentiment
analysis and other downstream tasks.

Modern models like GPT-4 (OpenAI, 2023) and
Llama (Touvron et al., 2023) achieve even greater
flexibility through instruction-following capabil-
ities, excelling in zero-shot settings (Qin et al.,
2023) and outperforming fine-tuned models in
sentiment-related tasks (Hasan et al., 2024).
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Nowadays, the latest models used for sentiment
analysis include DeBERTaV3 (He et al., 2023)
and RoBERTa-large (Liu et al., 2019), which have
demonstrated excellent performance when fine-
tuned. Additionally, models like GPT and Llama
have shown effectiveness in this domain, lever-
aging prompting techniques or instruction fine-
tuning (Stigall et al., 2024; Krugmann and Hart-
mann, 2024; Liu et al., 2023; Wei et al., 2023),
even in complex aspect-based scenarios (Bai et al.,
2024; Zheng et al., 2025).

2.2 Probing and LLMs
Probe classifiers, or probes (Alain and Bengio,
2017), are tools designed to extract specific proper-
ties from the intermediate representations of neu-
ral models. In LLMs, probing helps unveil the
semantics of their representations by identifying
fine-grained features encoded at different layers,
allowing researchers to systematically quantify and
compare model capabilities.

In the context of NLP, research has evolved
from early analyses of static word embeddings
like Word2Vec (Yaghoobzadeh et al., 2019) and
GloVe (Klubicka and Kelleher, 2022) to meth-
ods investigating the complex layered knowledge
within LLMs (Chen et al., 2023; Pirozelli et al.,
2024). Prior work has probed LLMs for various
fine-grained properties, including linguistic proper-
ties (Vulić et al., 2020), factual knowledge (Petroni
et al., 2019; Wu et al., 2023; De Bellis et al., 2024),
beliefs (Azaria and Mitchell, 2023), cross-lingual
alignment (Wang et al., 2024), logical reasoning
capabilities (Manigrasso et al., 2024), privacy leak-
ages (Kim et al., 2023; Di Palma et al., 2025), toxic-
ity (Wen et al., 2023; Roy et al., 2023). These stud-
ies approach probing either through a prompt-based
method, where the LLM’s performance is evalu-
ated using specifically designed prompts, or by
applying trained classifiers to analyze the model’s
intermediate layers.

2.3 Probing LLMs for Sentiment Analysis
Various studies have assessed the capabilities
of LLMs for sentiment analysis tasks. For in-
stance, Fatouros et al. (2023) analyzed the per-
formance of ChatGPT-3.5 in financial sentiment
analysis, demonstrating performance that exceeds
FinBERT (Araci, 2019). Similarly, de Araujo et al.
(2024) investigated ChatGPT’s effectiveness in Por-
tuguese sentiment analysis, highlighting its poten-
tial value in dataset annotation. Lyu et al. (2024)

investigates the application of causal inference to
sentiment analysis and introduces causal prompts
to enhance LLM performance in sentiment pre-
diction tasks. Furthermore, Zhang et al. (2024)
conducted a systematic evaluation across various
sentiment tasks using ChatGPT and different T5
model sizes. Their findings reveal that while LLMs
excel in simple (e.g. binary or trinary) zero-shot
sentiment classification tasks, they struggle with
complex ones (e.g. aspect-based).

While previous studies have primarily evaluated
LLMs as text-to-text models, focusing on zero- and
few-shot learning capabilities, our work takes a
different approach. We investigate the hidden rep-
resentations within the intermediate layers of trans-
former architectures to identify where sentiment
concepts are encoded and how these insights can
inform the development of more efficient and accu-
rate models.

Similar studies have investigated the represen-
tation of semantic concepts within LLMs (Anelli
et al., 2022), such as Burns et al. (2023) on truth-
fulness, Azaria and Mitchell (2023) on honesty,
Roy et al. (2023) on hate speech, and Li et al.
(2023) on factual knowledge. However, the in-
vestigation of sentiment within the hidden repre-
sentations of these models remains comparatively
underexplored.

3 Methodology

In this section, we detail the models used in the
experiments, the datasets, the probe classifiers, and
the experimental settings, with a focus on ensuring
the reproducibility of our work. Furthermore,
we have made all the code publicly available1

to enable systematic and efficient probing of LLMs.

Sentiment Detection in Hidden Space. We build
on the concept detection framework proposed by
von Rütte et al. (2024), adapting it specifically for
sentiment analysis. In this setup, we define a senti-
ment concept S and use a corresponding sentiment
analysis dataset D = {(xi, yi)}ni=1, where yi rep-
resents the labeled sentiment of sentence xi. Here,
repθ(xi) represents an intermediate representation
of xi, generated from a forward pass through the
LLMθ. The goal is to extract a collection of these
representations {repθ(xi)}ni=1. We therefore train
a classifier Cw on these representations to predict
the presence of the sentiment concept S (i.e., pos-

1Sentiment Probing Toolkit
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itive or negative sentiment within xi), effectively
predicting yi.

Implementing sentiment detection involves two
fundamental design choices: (1) The selection of
the intermediate representation repθ, which may
vary depending on the layers or pooling strategies
applied within the LLM. (2) The choice of classifier
Cw, which serves to distinguish between different
sentiment categories based on these embeddings.

In the following, we outline the fundamental
structure of Transformer architecture and highlight
common techniques for selecting representations.
Choice of Representation. Current state-of-the-
art LLMs are based on the Transformer architec-
ture (Vaswani et al., 2017), where sequential Trans-
former blocks generate intermediate hidden repre-
sentations (h), each with potentially distinct func-
tionalities. Let l ∈ N denote the l-th layer, and
x(l) ∈ RT×demb represent the output, where T is
the number of tokens and demb is the hidden di-
mension. A Transformer refines x(l) using multi-
head attention (MHA) and a feed-forward network
(FFN):

h
(l)
attn = MHA

(
LayerNorm

(
x(l)

))

h
(l)
resid = h

(l)
attn + x(l)

h
(l)
ffn = FFN

(
LayerNorm

(
h
(l)
resid

))

x(l+1) = h
(l)
ffn + h

(l)
resid

We exploit the Llama-3 architecture (Dubey et al.,
2024), leveraging its Grouped Query Attention
(GQA) and RMSNorm features to extract hidden
representations efficiently.

Previous studies have explored various represen-
tations, such as the residual stream (x(l+1)) (Marks
and Tegmark, 2023; Burns et al., 2023; Zou et al.,
2023; Gurnee and Tegmark, 2024), the normalized
residual stream (nostalgebraist, 2020), or attention
heads (Li et al., 2023; Arditi and Obeso, 2023).
Based on our preliminary experiments showing
marginally higher detection accuracy, we adopt the
residuals stream (repθ(x) = x(l+1)).

Instead of using the full prompt representation
(xrep ∈ RT×demb , where T is the token count), we
focus on a subset (xrep ∈ Rt×demb) with t ≤ T .
Each token representation (xrep[i, :] ∈ Rdemb , for
i = 1, . . . , t), is treated as an independent feature.
This approach focuses on the parts of the prompt
most likely to capture the sentiment concept. Prior
work has carefully selected a single token (Arditi

and Obeso, 2023; Zou et al., 2023; Gurnee and
Tegmark, 2024) or relied on the last token of the
prompt (Rimsky, 2023; Mallen and Belrose, 2023;
Marks and Tegmark, 2023; Li et al., 2023; Burns
et al., 2023).

In our experiments, we explore six methods for
selecting the representations:
(1) Mean Pooling (Fig. 2): Compute the mean ac-

tivation value across all tokens for each dembed
dimension, resulting in a single vector where
each element corresponds to the average activa-
tion of a particular feature (embedding dimen-
sion) over the entire sequence.

(2) Last-Token Pooling (Fig. 3): Uses the final to-
ken’s features of the last token in the sequence.

(3) Max Pooling (Fig. 4): Identifies the most
prominent feature across all tokens T for each
feature, outputting a vector representing the
most dominant features in the sequence.

(4) Min Pooling (Fig. 4): Complementary to Max
Pooling, producing a vector representing the
least dominant features in the sequence.

(5) Concat-Mean-Max-Min Pooling: Concate-
nates the mean, max, and min pooling, gen-
erating a representation of size 3× dembed that
encapsulates multiple aspects of the token em-
beddings.

(6) Attention Mean Pooling (Fig. 5): Given a to-
ken representation xrep[i, j], where i denotes
the token and j represents a specific embed-
ding dimension, this pooling method constructs
a representation by combining token embed-
dings with a corresponding importance score.
The importance score for each token i is com-
puted by applying the softmax function to the
mean of the token’s embedding values. This
assigns higher weights to tokens with larger
average values. These scores are multiplied
element-wise to each dimension of the token
embeddings, xrep[i, :], to adjust their contribu-
tion based on importance. The final pooled
representation, xpooled, is then computed as a
weighted sum of these adjusted embeddings,
emphasizing the most relevant tokens activa-
tions. Mathematically:

xpooled =
∑T

i=1 softmax
(

1
J

∑J
j=1 xrep[i, j]

)
· xrep[i, :]

A visual representation of the pooling strategies
can be found in Appendix D. These approaches of-
fer diverse strategies for selecting representations,
enabling a more nuanced understanding of how
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sentiment information is encoded. The choice of
tokens should ideally reveal whether sentiment is
distributed across the entire prompt or concentrated
in specific tokens. For instance, the sentences “My
name is XYZ and I’m happy” and “I’m happy be-
cause my name is XYZ” both convey positive sen-
timent. However, relying solely on the last token
could lead to a suboptimal representation, as it may
not adequately capture the sentiment expressed ear-
lier in the sequence.
Choice of Classifier. With the hidden represen-
tations selected, we can train our probing classi-
fier Cw on the sentiment labels. In our experi-
mental setup we include twelve distinct classifiers,
grouped into five categories based on their underly-
ing modeling approach, as summarized in Table 1.

Type Models

Linear Logistic Regression, Linear
SVM

Distance-based K-Nearest Neighbors

Tree-based Decision Tree, Random Forest,
XGBoost, LightGBM

Neural Network MLP, BiLSTM, CNN

Other Non-linear SVM, Gaussian
Naive Bayes

Table 1: Clusters of Classifiers Based on Model Type

These classifiers were chosen to balance sim-
plicity, interpretability, and the capacity to model
complex patterns. Linear models, such as Logistic
Regression and Linear SVM, serve as baselines
for probing tasks due to their simplicity and their
ability to identifying and leveraging linear relation-
ships. Non-linear and neural network models, on
the other hand, are included for their ability to cap-
ture intricate relationships within the hidden space.
BiLSTM and CNN, in particular, were selected for
their proven ability to generate effective hidden
representations (Ghafoor et al., 2023).

All models, except for BiLSTM and CNN, are
implemented using the scikit-learn library (Pe-
dregosa et al., 2011). While, BiLSTM and CNN
were implemented using PyTorch. For each classi-
fier, we employed the Optuna framework (Akiba
et al., 2019) for hyperparameter optimization, fo-
cusing on key parameters such as regularization
strengths, tree depths, and kernel types. Optimiza-
tion was performed over five trials (Paparella et al.,

2023), balancing computational efficiency with suf-
ficient exploration of the hyperparameter space.

To ensure reproducibility, we configured random
seed initialization and enforced deterministic be-
havior for CUDA operations. Details are provided
in Appendix B.
Datasets Details. Our experiments utilize three
benchmark datasets for sentiment classification:
IMDB (Maas et al., 2011), SST-2 (Socher et al.,
2013), and Rotten Tomatoes (Pang and Lee, 2005),
all of which contain movie reviews for binary po-
larity tasks (e.g., positive or negative sentiment).
Additionally, we extended the setup to a more com-
plex evaluation, conducting fine-grained sentiment
classification using the Emotion dataset (Saravia
et al., 2018), which categorizes sentiments into six
nuanced classes: joy, sadness, anger, fear, love,
and surprise. We only preprocessed the IMDB
and Emotion datasets because their original sizes,
50K for IMDB and 20K for Emotion, made them
impractical for the large number of experiments.
Details of the preprocessing steps are provided in
Appendix A. Table 2 provides details on the num-
ber of samples and the train-test splits used in the
experiments.

Dataset Train Test Labels Max Len

IMDB 7000 7000 pos/neg 132
SST-2 6920 1821 pos/neg 56
Rotten Tomatoes 8530 1066 pos/neg 59
Emotion 6000 2000 six labels 64

Table 2: Dataset statistics.

4 Experimental Results

We conduct our experiments on three Llama mod-
els, specifically testing the instruction-tuned vari-
ants of Llama 3.2-1B, Llama 3.2-3B, and Llama
3.1-8B, all sourced from Hugging Face2. For every
probing datasets we train the classifier Cw on the
training set, and evaluate its detection performance
by measuring the accuracy on the test set.
Sentiment detection results. In our first experi-
ments, we evaluate the detection performance of
the different classifier Cw. To extract the repθ, fol-
lowing prior work, we focus on the residual stream
using the Last-Token approach. We report detec-
tion accuracies for each layer in LLMθ and visual-
ize the results in Fig. 1.

2https://huggingface.co/meta-llama
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(b) Llama 3B on SST-2
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(c) Llama 8B on SST-2
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Figure 1: Layer-wise probing accuracy using the Last-Token approach on SST-2; Appendix E for additional dataset
results.

For sentiment detection in binary polarity tasks
(i.e., SST-2, IMDB, and Rotten Tomatoes), non-
linear SVM, linear SVM, and logistic regression
consistently outperform other probing techniques,
achieving approximately 90% accuracy in the mid-
dle layers across all model sizes. For fine-grained
emotion datasets, linear SVM demonstrates the
best performance, reaching around 70% accuracy
in the initial layers across all model sizes. This
indicates that Llama models have linear representa-
tions for binary sentiment (positive/negative) and
fine-grained emotions (joy, sadness, anger, fear,
love, and surprise). It is interesting to discover
that, although sentiment is not easily discernible
during direct interaction with Llama, sentiment and
emotion concepts can be linearly detected within
certain internal layers.

Furthermore, since prior work often use the last-
token representations, we also investigate the effect
of different token representation methods. Specifi-
cally, we compare the last-token approach with five
alternatives: mean, max, min, concatenation, and
attention, as previously described.

The results, summarized in Table 3, which shows
the top-3 performers by datasets, reveal that con-
catenating the mean, max, and min of repθ is often
the most effective method for detecting sentiment
concepts. Notably, mean and attention pooling also
perform strongly, achieving results comparable to
concatenation and consistently outperforming last-
token pooling. This indicates, that the last-token
representation is not always the optimal choice for
capturing sentiment concepts.

Furthermore, we discover that combining the
max pooling representation with LightGBM yields
particularly strong performance. Further investi-
gation reveals that tree-based models, including
Random Forest, Decision Tree, and XGBoost, also
perform better with max pooling. We hypothesize
that the synergy between max pooling and tree-
based models arises from max pooling’s ability to
emphasize dominant features, which, when com-
bined with tree-based models’ strength in exploit-
ing high-contrast, threshold-based partitions, leads
to an optimal combination. This alignment makes
max pooling particularly effective for tree-based
models, highlighting how the choice of classifier
should also influence the choice of representation,
and vice versa.

5 SENTRILLAMA for Efficient
Downstream Tasks

Sentiment analysis has been a fundamental task
since the inception of NLP. Traditionally, there
have been two primary approaches to accomplish
this task: (1) training a model from scratch or (2)
fine-tuning an existing model to meet specific re-
quirements. Recently, a third approach has gained
prominence: leveraging well-designed prompts in
conjunction with state-of-the-art large language
models (Deng et al., 2023; Xing, 2024; Ahmed
et al., 2024).

We introduce SENTRILLAMA, a specialized
Llama model that leverages layers up to L≤i

for sentiment tasks, where i denotes the most
representative layer for the task. Based on our
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Model Dataset Layer Prober Pooling Accuracy

Llama 3.2 1B
(Instruct)

SST2
10 Non-linear SVM Attn 0.9450
10 Non-linear SVM Mean 0.9450
8 Non-linear SVM Last-Token 0.9352

IMDB
8 Logistic Reg. Mean 0.9400
8 Logistic Reg. Attn 0.9396
8 Linear SVM Last-Token 0.9009

Rotten
8 Linear SVM Concat 0.8939
8 Logistic Reg. Concat 0.8939
8 Non-linear SVM Last-Token 0.8789

Emotion
1 Linear SVM Concat 0.7880
10 LightGBM Max 0.7880
7 Linear SVM Last-Token 0.6830

Llama 3.2 3B
(Instruct)

SST2
5 Non-linear SVM Concat 0.9594
12 Non-linear SVM Concat 0.9577
13 Linear SVM Last-Token 0.9522

IMDB
4 Logistic Reg. Attn 0.9523
14 Logistic Reg. Mean 0.9522
13 Non-linear SVM Last-Token 0.9177

Rotten
3 Logistic Reg. Concat 0.9090
3 CNN Mean 0.9071
13 Linear SVM Last-Token 0.8949

Emotion
1 MLP Concat 0.8220
0 LightGBM Concat 0.8195
4 Linear SVM Last-Token 0.6940

Llama 3.1 8B
(Instruct)

SST2
3 Logistic Reg. Concat 0.9605
14 Logistic Reg. Concat 0.9599
14 Linear SVM Last-Token 0.9533

IMDB
4 Non-linear SVM Concat 0.9579
16 Non-linear SVM Mean 0.9576
11 Linear SVM Last-Token 0.9273

Rotten
9 MLP Mean 0.9203
14 CNN Mean 0.9203
14 Logistic Regression Last-Token 0.9183

Emotion
0 Linear SVM Concat 0.8685
0 LightGBM Max 0.8655
4 Linear SVM Last-Token 0.6885

Table 3: Probing Results Across Different Pooling Meth-
ods. See Appendix F for confidence level plots across
all layers and datasets.

earlier analysis, we identified the optimal layer
Li, which retains the most salient features for
downstream tasks. By attaching a lightweight,
task-specific classification head—such as a Lin-
earSVM—SENTRILLAMA efficiently repurposes
the expressive power of the Llama model while
discarding unnecessary layers. This approach sig-
nificantly reduces computational requirements for
inference, making it both efficient and task-specific
without compromising performance.

Specifically, the total model parameters are cal-
culated as the sum of the input embedding, N -layer,
and LM head parameters. The proposed SENTRIL-
LAMA approach reduces model complexity by re-
taining only the input embedding and the layers
up to the most representative layer (i), identified
in previous experiments, while replacing the LM
head with a lightweight classification head, such as
a linear SVM. This reduces parameter usage and
adapts the architecture for downstream tasks.

To benchmark the effectiveness of SENTRIL-

LAMA, we compare its performance against fine-
tuned DeBERTaV3-large3 and RoBERTa-large4

across all datasets. Additionally, we evaluate SEN-
TRILLAMA against Llama models under zero-shot,
few-shot, and Chain-of-Thought prompting sce-
narios using carefully designed templates inspired
by prior work (Deng et al., 2023). Details on the
prompt used are provided in Appendix C. Further-
more, to understand the effect of instruction fine-
tuning on the sentiment task, we also include in the
comparison the non-instructed version of Llama3.2
(1B). Table 4 presents a comparative analysis of the
accuracy of SENTRILLAMA, DeBERTa, RoBERTa,
and a prompt-based method. The best-performing
model is highlighted in bold, while the runner-up
is underlined.

Model SST2 IMDB Rotten Tomatoes Emotion

Instruct-Llama 3.2 (1B)
Zero-shot 0.7210 0.6898 0.6923 0.2140
Few-shot 0.6485 0.5994 0.5994 0.2885
Chain-of-Thought 0.4992 0.5000 0.5000 0.3475

Instruct-Llama 3.2 (3B)
Zero-shot 0.7759 0.8397 0.7279 0.3750
Few-shot 0.7606 0.8528 0.7176 0.3045
Chain-of-Thought 0.9154 0.9306 0.8743 0.4645

Instruct-Llama 3.1 (8B)
Zero-shot 0.9341 0.9461 0.9024 0.4455
Few-shot 0.9330 0.9411 0.8968 0.3340
Chain-of-Thought 0.9165 0.9363 0.8771 0.5605

SENTRILLAMA 3.2 (1B) 0.9308 0.9445 0.8912 0.8015
SENTRILLAMA 3.2 (1B) Instruct 0.9450 0.9400 0.8940 0.7880
SENTRILLAMA 3.2 (3B) Instruct 0.9594 0.9523 0.9090 0.8220
SENTRILLAMA 3.1 (8B) Instruct 0.9605 0.9579 0.9203 0.8685

DeBERTa V3 Large (418M) 0.9599 0.9534 0.8671 0.8765
RoBERTa Large (355M) 0.9038 0.9430 0.8808 0.8416

Table 4: Comparison of SENTRILLAMA against De-
BERTa, RoBERTa, and prompt-based method.

For the sentiment downstream task, SENTRIL-
LAMA 8B outperforms all other approaches, achiev-
ing approximately 96% accuracy on SST-2, 96%
on IMDB, 92% on Rotten Tomatoes, and 87% on
the Emotion dataset. Only DeBERTa surpasses
this performance on the Emotion dataset, with an
accuracy of 88%. The prompt-based approach
reveals the effectiveness of few-shot and Chain-
of-Thought (CoT), achieving comparable results
but falling short on the Emotion dataset. These
results align with expectations, revealing several
insights: (1) increasing the base model size im-
proves performance, (2) the non-instruction ver-
sion of the 1B model exhibits minimal differences
compared to the instructed ones, and (3) DeBERTa
and RoBERTa continue to lead the leaderboard in
sentiment analysis, outperforming prompt-based

3Microsoft/deberta-v3-large
4FacebookAI/roberta-large
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methods. However, it is worth noting that the ac-
tual size of SENTRILLAMA differs from the origi-
nal Llama model. We represent the effective sizes
in Table 5.

Model SST2 IMDB Rotten Tomatoes Emotion

SENTRILLAMA 3.2 (1B) 810M 811M 811M 384M
SENTRILLAMA 3.2 (1B) Instruct 932M 810M 810M 384M
SENTRILLAMA 3.2 (3B) Instruct 2B 1.9B 1.8B 595M
SENTRILLAMA 3.1 (8B) Instruct 3.5B 3.8B 3.8B 743M

Table 5: Comparison of SENTRILLAMA Sizes Across
Datasets.

Model Peak GPU Avg. Time Throughput
Usage per Sample (Samples/sec)

Instruct-Llama 3.2 (1B) 2.4 GB 11.17 ms 90
Instruct-Llama 3.2 (3B) 6.2 GB 18.19 ms 55
Instruct-Llama 3.1 (8B) 15.4 GB 37.73 ms 48

SENTRILLAMA 3.2 (1B) 1.5 GB 6.08 ms 164
SENTRILLAMA 3.2 (1B) Instruct 1.7 GB 7.98 ms 125
SENTRILLAMA 3.2 (3B) Instruct 1.7 GB 5.09 ms 196
SENTRILLAMA 3.1 (8B) Instruct 3.2GB 5.31 ms 182

DeBERTa V3 Large (418M) 845 MB 22.03 ms 45
RoBERTa Large (355M) 692 MB 8.35 ms 120

Table 6: Computational efficiency comparison on the
SST-2 dataset. See Appendix G for additional dataset
results.

Using SENTRILLAMA reduces the size of the
models. For the 1B model (both the standard and
instruction-finetuned versions) on SST-2, IMDB,
and Rotten Tomatoes, approximately 19% of the
parameters are removed, while for the Emotion
dataset, the reduction is up to 61.6%. For the 3B
model on SST-2, IMDB, and Rotten Tomatoes, the
reduction is approximately 36.6%, and for the Emo-
tion dataset, it is 80%. For the 8B model on SST-2,
IMDB, and Rotten Tomatoes, approximately 53.7%
of the parameters are removed, while for the Emo-
tion dataset, the reduction is 90.7%. This result
indicates that the amount of parameters removed
depends heavily on the specific task and that it is
possible to reuse the highly relevant representa-
tions of Llama to improve downstream tasks, going
beyond prompting and resulting in a competitive
model.

Furthermore, we compare the computational
efficiency of SENTRILLAMA with DeBERTa,
RoBERTa, and a prompt-based method. In Table 6,
we present the results for SST-2.

Comparing GPU usage, SENTRILLAMA models
demonstrate greater memory efficiency than their
Instruct-Llama counterparts. SENTRILLAMA 3.2
(1B) uses 37.5% less GPU memory than Instruct-
Llama 3.2 (1B), while SENTRILLAMA 3.1 (8B)

reduces memory usage by 79.2% compared to
Instruct-Llama 3.1 (8B). However, DeBERTa and
RoBERTa remain the most memory-efficient, with
RoBERTa requiring only 692 MB.

In terms of inference speed, SENTRILLAMA

models exhibit a significantly lower average time
per sample, indicating they are faster than their
Instruct-Llama counterparts. Specifically, SEN-
TRILLAMA 3.2 (1B) is 45.5% faster than Instruct-
Llama 3.2 (1B), SENTRILLAMA 3.2 (3B) is 71.9%
faster than Instruct-Llama 3.2 (3B), and SENTRIL-
LAMA 3.1 (8B) is 85.9% faster than Instruct-Llama
3.1 (8B). Meanwhile, DeBERTa has a 75.9% longer
inference time compared to SENTRILLAMA 3.2
(8B), while RoBERTa is 36.4% slower.

Finally, SENTRILLAMA models achieve signifi-
cantly higher throughput (samples per second) than
Instruct-Llama, DeBERTa, and RoBERTa.

Overall, this analysis reveals that SENTRIL-
LAMA models are more efficient in terms of GPU
memory usage and inference speed, consistently
outperforming Instruct-Llama models across all as-
pects. Smaller models, such as SENTRILLAMA 3.2
(1B) and SENTRILLAMA 3.2 (3B), offer the best
trade-off between memory consumption and speed.
Meanwhile, RoBERTa Large provides competitive
throughput and latency compared to larger Llama-
based models, whereas DeBERTa struggles with
slower inference.

6 Discussion

Our results show that our method is still far from
providing a smaller Llama model that performs as
well as similarly sized models like DeBERTa or
RoBERTa. The primary limitation stems from the
need to retain all preceding layers up to the most
representative one. This limitation introduces an el-
ement of randomness: if circumstances align favor-
ably and the most representative layer is among the
early layers (as observed with the Emotion dataset),
the final model’s size becomes highly competitive
with DeBERTa and RoBERTa. However, if the
most representative layer is in the middle layers,
the number of parameters—although still lower
than the full model—can exceed those of the base-
line models.

While we have automated the discovery of the
most representative layer and pooling methods (see
Table 3), the dependence on preceding layers re-
sults in a suboptimal outcome. A more robust
solution could involve leveraging only the input
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embeddings and the most representative layer, po-
tentially complemented by layer compression or
pruning techniques to reduce computational over-
head while preserving performance.

Is this method generalizable for different down-
stream tasks beyond sentiment analysis? While
we cannot yet provide a definitive answer on the
method’s generalizability, prior studies have shown
that LLMs capture a broad range of semantic con-
cepts, such as truthfulness, honesty, and factual
knowledge (Burns et al., 2023; Azaria and Mitchell,
2023; Li et al., 2023). Our findings suggest that sen-
timent and emotion are similarly well-represented
in these models. We hypothesize that this approach
could extend to tasks requiring nuanced linguis-
tic analysis, such as sarcasm detection or intent
recognition, assuming the availability of labeled
datasets.

However, significant challenges remain. Extend-
ing this method to more complex tasks may require
additional adaptations. Future research should sys-
tematically evaluate this approach across diverse
tasks and datasets to uncover its broader potential
and limitations.

7 Conclusion

In this work, we present a systematic analysis
of hidden representations in Llama for sentiment
analysis. Our findings demonstrate that for posi-
tive/negative sentiment, the middle layers are the
most representative across dimensions, whereas for
emotion analysis, the most representative layers are
found in the initial ones. Additionally, we show
that while the current standard for representing a
sentence involves using the last token, alternative
methods, such as concatenating the max, min, and
mean of the representations, yield better results.

Finally, we introduce a novel approach called
SENTRILLAMA, which utilizes only a subset of the
model’s parameters. This approach achieves results
comparable to state-of-the-art models and outper-
forms prompting-based methods. We hope that
the introduction of this layer selection approach
for Llama will inspire the development of more ro-
bust techniques, facilitating the reuse of these large
models for downstream tasks and extending their
usability beyond text generation.

Limitations

This work has two primary limitations. First, the
study does not evaluate the proposed approach on

domain-specific datasets, such as those from finan-
cial, healthcare, or social media domains, nor does
it address multilingual sentiment analysis. This
gap restricts the generalizability of the findings to
a broader range of real-world applications. Second,
while the study introduces a method for identify-
ing the most representative layer, there is scope
for exploring alternative methodologies within this
selection mechanism.
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Appendix

A Detailed Preprocessing Workflow

The IMDB and Emotion datasets were prepro-
cessed due to their original sizes—50K for IMDB
and 20K for Emotion—which made them imprac-
tical for the extensive number of experiments. To
address this, reduced versions of these datasets
were created while preserving their statistical prop-
erties. A structured preprocessing workflow was
used to prepare the datasets for the experiments,
ensuring statistical consistency and adherence to
specific constraints, such as sentence length and la-
bel distribution. The key steps are outlined below:

1. Initialize Random Seed: To achieve repro-
ducible datasets, we initialized a random seed
(Appendix B) at the beginning of the work-
flow, ensuring that the sampling process could
be replicated exactly in future runs.

2. Calculate Dataset Statistics:
(a) Compute the label distribution to main-

tain the proportion of samples for each
label in the original dataset.

(b) Compute the average sentence length
across all samples to preserve similar
statistics.

3. Generate the Dataset: For each label in the
dataset, we followed a sampling process as
follows:
(a) Filter samples by sentence length for the

given label.
(b) Random sample to select the required

number of samples for each label.
(c) Combine the selected samples for all la-

bels into a single dataset. To ensure ran-
domness, the combined dataset was shuf-
fled before saving.

4. Validate Reduced Dataset: The label dis-
tribution and average sentence length were
recalculated for the reduced dataset. If the av-
erage sentence length exceeded the specified
constraint, an error was raised, indicating the
need for further adjustments.

To provide transparency and facilitate analysis,
a summary of the preprocessing steps is reported:

1. The total number of samples in both the origi-
nal and reduced datasets.

2. The distribution of labels before and after re-
duction.

3. The average sentence length in both datasets.

This comprehensive preprocessing workflow en-
sured that the reduced datasets retained the sta-
tistical properties of the original datasets while
adhering to predefined constraints. The code
used to generate the datasets is provided in
‘dataset/reduce_dataset.py,‘ along with a de-
tailed PDF report containing all the statistics.

B Reproducibility and Determinism

To ensure reproducibility, we consistently set ran-
dom seeds to 42 across Python’s ‘random’, NumPy,
and PyTorch libraries. Furthermore, deterministic
behavior was enforced for CUDA-enabled opera-
tions by configuring PyTorch’s cuDNN backend
and settings environment variables. Further details
can be found by examining the set_seed() function
in utils.py. This rigorous control of randomness
and parallelism ensures consistent experimental re-
sults, addressing the stochastic nature of the work-
flows.

C Prompting Approach

In this section, we illustrate the prompts adopted
for the experiments with the Llama models, cov-
ering zero-shot, few-shot and Chain-of-Thought
prompting scenarios.

Zero-Shot Prompting for Binary Sentiment

System: "You are an assistant trained to perform
strict sentiment and emotion classification.
You MUST only respond with the numeric label
corresponding to the classification.
Do not provide any explanations, reasoning, or any
text other than the required numeric value."

User: "Classify the sentiment of the following text:
‘{text}’"

Assistant: "If the sentiment is positive, respond with
‘1’. If the sentiment is negative, respond with ‘0’.
No other text, explanation, or formatting."
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Zero-Shot Prompting for Emotion

System: "You are an assistant trained to perform
strict sentiment and emotion classification.
You MUST only respond with the numeric label
corresponding to the classification.
Do not provide any explanations, reasoning, or any
text other than the required numeric value."

User: "Classify the sentiment of the following text:
‘{text}’"

Assistant: "Classify the text into one of the following
emotions and respond only with the corresponding
number:
0: Sadness, 1: Joy, 2: Love, 3: Anger, 4: Fear, 5:
Surprise.
No explanation or additional text."

Few-Shot Prompting for Binary Sentiment

System: "You are an assistant trained for sentiment
and emotion analysis.
You MUST only respond with the correct numeric
label.
Do not provide explanations or any additional text."

User: "Examples:
‘I love this product!’ => 1
‘I am disappointed with the service.’ => 0
Classify the following text sentiment:‘{text}’"

Assistant: "If the sentiment is positive, respond with
‘1’. If the sentiment is negative, respond with ‘0’.
No other text, explanation, or formatting."

Few-Shot Prompting for Emotion

System: "You are an assistant trained for sentiment
and emotion analysis.
You MUST only respond with the correct numeric
label.
Do not provide explanations or any additional text."

User: "Examples:
‘This is the worst day of my life.’ => 0
‘I feel so joyful and alive!’ => 1
‘I feel so deeply connected and grateful for you in my
life.’ => 2
‘I am so angry right now.’ => 3
‘I’m really scared and worried about what might
happen next.’ => 4
‘Wow, I didn’t expect that at all! This is completely
unexpected!’ => 5
Classify the following text emotion:‘{text}’"

Assistant: "Respond only with one of the following
numbers: 0: Sadness, 1: Joy, 2: Love, 3: Anger, 4:
Fear, 5: Surprise.
No other text, explanation, or formatting."

Chain-of-Thought Prompting for Binary
Sentiment

System: "You are an assistant specialized in
sentiment and emotion analysis.
Think step-by-step through the reasoning process
(chain-of-thought) privately, but provide only the
final numeric classification as instructed.
Do not include reasoning steps in the output."

User: "Analyze the sentiment of the following text:
‘{text}’
Carefully reason step-by-step to determine the
sentiment.
Output only ‘1’ for positive sentiment or ‘0’ for
negative sentiment as your final response."

Assistant: "I will reason step-by-step internally to
determine the sentiment.
However, my final response will be ‘1’ for positive
sentiment or ‘0’ for negative sentiment, with no ex-
planation included in the output."

Chain-of-Thought Prompting for Emotion

System: "You are an assistant specialized in
sentiment and emotion analysis.
Think step-by-step through the reasoning process
(chain-of-thought) privately, but provide only the
final numeric classification as instructed.
Do not include reasoning steps in the output."

User: "Analyze the emotion of the following text:
‘{text}’
Carefully reason step-by-step to identify the
best-matching emotion.
Output only the corresponding number as your final
response: 0: Sadness, 1: Joy, 2: Love, 3: Anger, 4:
Fear, 5: Surprise."

Assistant: "I will reason step-by-step internally to
determine the most appropriate emotion.
My final response will be one of the following num-
bers: 0: Sadness, 1: Joy, 2: Love, 3: Anger, 4: Fear,
5: Surprise.
No reasoning will be included in the output."
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D Pooling Methods

In this section, we provide a visual clarification of
the different pooling strategies adopted in our work.
Further details can be found in Section 3.
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E Comprehensive Results for the Last-Token Approach
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Figure 6: Layer-wise probing accuracy using the last token on SST-2, IMDB, Rotten Tomatoes, and Emotion.
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F Layer-wise pooling methods confidence accuracy on SST-2, IMDB, Rotten Tomatoes,
and Emotion datasets.
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(j) 1B-Instruct on Emotion
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Figure 7: Layer-wise pooling methods confidence accuracy on SST-2, IMDB, Rotten Tomatoes, and Emotion.
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G Compuattional Efficiency of
SENTRILLAMA in SST-2, IMDB,
Rotten Tomatoes, and Emotion
datasets.

Model Peak GPU Avg. Time Throughput
Usage per Sample (Samples/sec)

Instruct-Llama 3.2 (1B) 4.8GB 11.33 ms 88
Instruct-Llama 3.2 (3B) 9 GB 20.83 ms 48
Instruct-Llama 3.1 (8B) 18.6 GB 35.33 ms 28

SENTRILLAMA 3.2 (1B) 3.8 GB 7.13 ms 140
SENTRILLAMA 3.2 (1B) Instruct 3.7 GB 6.56 ms 152
SENTRILLAMA 3.2 (3B) Instruct 3.8 GB 4.73 ms 211
SENTRILLAMA 3.1 (8B) Instruct 3.6GB 6.31 ms 158

DeBERTa V3 Large (418M) 2.7 GB 22.79 ms 44
RoBERTa Large (355M) 2.6 GB 8.90 ms 119

Table 7: Computational efficiency comparison of SEN-
TRILLAMA, DeBERTa, RoBERTa, and a prompt-based
method on the IMDB dataset.

Model Peak GPU Avg. Time Throughput
Usage per Sample (Samples/sec)

Instruct-Llama 3.2 (1B) 2.4 GB 12.01 ms 83
Instruct-Llama 3.2 (3B) 6.2 GB 18.41 ms 54
Instruct-Llama 3.1 (8B) 15.4 GB 21.17 ms 50

SENTRILLAMA 3.2 (1B) 1.6 GB 7.08 ms 141
SENTRILLAMA 3.2 (1B) Instruct 1.5 GB 6.42 ms 156
SENTRILLAMA 3.2 (3B) Instruct 1.4 GB 4.80 ms 208
SENTRILLAMA 3.1 (8B) Instruct 5.7GB 19.30 ms 97

DeBERTa V3 Large (418M) 845 MB 23.32 ms 43
RoBERTa Large (355M) 692 MB 9.05 ms 118

Table 8: Computational efficiency comparison of SEN-
TRILLAMA, DeBERTa, RoBERTa, and a prompt-based
method on the Rotten Tomatoes dataset.

Model Peak GPU Avg. Time Throughput
Usage per Sample (Samples/sec)

Instruct-Llama 3.2 (1B) 2.4 GB 10.97 ms 91
Instruct-Llama 3.2 (3B) 6.2 GB 17.42 ms 57
Instruct-Llama 3.1 (8B) 15.4 GB 20.53 ms 49

SENTRILLAMA 3.2 (1B) 673 MB 2.70 ms 370
SENTRILLAMA 3.2 (1B) Instruct 673 MB 2.07 ms 483
SENTRILLAMA 3.2 (3B) Instruct 1 GB 2.76 ms 363
SENTRILLAMA 3.1 (8B) Instruct 2.6GB 3.84 ms 260

DeBERTa V3 Large (418M) 844 MB 22.52 ms 44
RoBERTa Large (355M) 692 MB 8.50 ms 120

Table 9: Computational efficiency comparison of SEN-
TRILLAMA, DeBERTa, RoBERTa, and a prompt-based
method on the Emotion dataset.
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