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Abstract

Readers can have different goals with respect
to the text that they are reading. Can these
goals be decoded from their eye movements
over the text? In this work, we examine for the
first time whether it is possible to distinguish
between two types of common reading goals:
information seeking and ordinary reading for
comprehension. Using large-scale eye tracking
data, we address this task with a wide range
of models that cover different architectural and
data representation strategies, and further in-
troduce a new model ensemble. We find that
transformer-based models with scanpath rep-
resentations coupled with language modeling
solve it most successfully, and that accurate
predictions can be made in real time, shortly
after the participant started reading the text.
We further introduce a new method for model
performance analysis based on mixed effect
modeling. Combining this method with rich
textual annotations reveals key properties of
textual items and participants that contribute to
the difficulty of the task, and improves our un-
derstanding of the variability in eye movement
patterns across the two reading regimes.1

1 Introduction

Reading is a ubiquitously practiced skill that is in-
dispensable for successful participation in modern
society. When reading, our eyes move over the text
in a sequence of fixations, during which the gaze
is stable, and rapid transitions between fixations
called saccades. This sequence contains rich in-
formation about language comprehension in real
time and the nature of the reader’s interaction with
the text (Rayner, 1998; Hyönä and Kaakinen, 2019;
Schotter and Dillon, 2025).

In daily life, a reader may have one or several
goals that they pursue with respect to the text. For

∗Equal contribution.
1Code is available at: https://github.com/lacclab/

Decoding-Reading-Goals-from-Eye-Movements.

example, they may read the text closely or skim
it to obtain the gist of the text’s content, they may
proofread it, or they may be seeking specific in-
formation of interest. Each such goal can impact
online linguistic processing and the corresponding
eye movement behavior while reading. Despite the
many reading goals readers pursue in everyday life,
research on eye movements in cognitive science, as
well as work that integrated eye movements data in
NLP and machine learning have primarily focused
on one reading regime, which can be referred to as
ordinary reading. In this regime, the reader’s goal
is general comprehension of the text. Although
widely acknowledged, other forms of reading re-
ceived much less attention and remain understudied
(Radach and Kennedy, 2004).

In this work, we go beyond ordinary reading and
ask whether broad reading goals can be reliably
decoded from the pattern of the reader’s eye move-
ments over the text. We focus on the distinction
between ordinary reading and information seek-
ing, a highly common reading regime in everyday
life, where the reader is interested in obtaining spe-
cific information from the text. Decoding reading
goals from eye movements has practical implica-
tions in several areas. In education, it can enable
real-time monitoring of students’ engagement, fa-
cilitating targeted interventions to support effective
reading and information-seeking strategies. For
user-centric applications, it allows dynamic con-
tent adaptation, such as highlighting relevant infor-
mation when users are seeking specific details. In
assistive technologies, it can provide real-time sup-
port for special populations, such as helping elderly
users navigate complex websites by identifying and
addressing their information-seeking needs.

Prior work suggests that on average across partic-
ipants and texts, there are substantial differences in
eye movement patterns between information seek-
ing and ordinary reading (Hahn and Keller, 2023;
Malmaud et al., 2020; Shubi and Berzak, 2023).
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However, it is currently unknown whether there is
sufficient signal in the eye movement record for
automatic decoding of the reading goal given eye
movements of a single participant over a single tex-
tual item. Furthermore, little is known about the
factors that contribute to the difficulty of this task.

In this work, we address this gap by conducting
a series of experiments on reading goal decoding.
Our main contributions are the following:

• Task: We introduce a new decoding task:
given eye movements from a single partici-
pant over a passage, predict whether they en-
gaged in ordinary reading for comprehension
or in information seeking.

• Modeling: We adapt and apply to this task 12
different state-of-the-art predictive models for
eye movements in reading. We further intro-
duce an ensemble model which leverages the
diversity of predictions from single models.

• Evaluation We systematically characterize
the generalization ability of the models across
new textual items and new participants. We
find that the models that perform best are
transformer architectures that use scanpath
sequence representations as well as the text.
We further demonstrate that it is feasible to
perform the task online and make accurate pre-
dictions long before the participant finished
reading the text.

• Error Analysis: We introduce mixed effects
modeling of model logits as a general method
for analyzing model performance as a func-
tion of different properties of the data. Differ-
ently from univariate error analyses common
in the literature, this method allows examining
each feature of interest while controlling for
all other features, and taking into account item
and subject dependencies in the data. Com-
bining this method with rich data annotations
reveals key interpretable axes of variation that
contribute to task difficulty, and provides new
insights on the data itself.

2 Task

We address the task of predicting whether a reader
is engaged in ordinary reading for comprehension
or in seeking specific information, based on their
eye movements over the text. Let S be a partici-
pant, P a textual passage, and ES

P the recording

of the participant’s eye movements over the pas-
sage. Given a ground-truth mapping C(S, P ) →
{Information Seeking,Ordinary Reading}, we
aim to approximate C with a classifier h:

h : (EP
S , P ) →

{
Information Seeking
Ordinary Reading

Where the passage P is an optional input, such
that the classifier can be provided only with the
eye movement data EP

S or with both the eye move-
ments and the underlying text. We assume that the
participant has not read the paragraph previously.

The information seeking regime is a general
framework for addressing goal based reading. It is
operationalized by presenting the participant with
an arbitrary question Q prior to reading the pas-
sage. This question prompts the participant to seek
specific information in the text. We assume that the
classifier does not receive the question nor any in-
formation on the participant, which makes the task
relevant for real-world scenarios where users are
anonymous and no information is available about
their specific information seeking goal. Figure 1
presents the task schematically.

3 Modeling

Eye movements during reading consist of fixations
and saccades (Rayner, 1998; Hyönä and Kaakinen,
2019; Schotter and Dillon, 2025), and present a
highly challenging case of temporally and spatially
aligned multimodal data, where fixations are both
temporal and correspond to specific words in the
text. Recently, a number of general purpose pre-
dictive models for eye movements have emerged,
each typically evaluated on a different task. Here,
we adjust and deploy them for a single task, which
allows a systematic comparison of architectural
and data representation strategies. The models can
be broadly divided along three primary axes, the
modalities used (eye movements-only, or eye move-
ments and text), how eye movement information is
represented (global feature averages across the text,
single word, single fixation or an image of the fixa-
tion sequence), and for the multimodal approaches,
the nature of the text representations and strategy
for combining them with eye movements.

3.1 Eye Movements-only Models

These models use only eye movement information,
without taking into account the text. Such models
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Figure 1: Proposed task: decoding whether a reader is seeking specific information or reading for general compre-
hension, given their eye movements over a single passage. In the eye movements image, circles represent fixations,
and lines represent saccades. Bounding boxes mark word Interest Areas (fixations within the box are assigned to the
respective word).

are valuable in common scenarios where the under-
lying text for the eye movement recording is not
available. It is also the go-to approach when the
eye-tracking calibration is of low quality, leading to
imprecise information on the location of fixations
with respect to the text. This is a highly common
situation, especially with web-based eye-tracking
and lower grade eye-tracking devices. Beyond prac-
tical considerations, the eye movements-only ap-
proach allows assessing the added value of textual
information for our task. The models include:

• Logistic Regression with 9 global eye movement
features capturing average fixation and saccade
metrics.

• BEyeLSTM - No Text, similar to BEyeLSTM
(Reich et al., 2022a) (see below), but without the
text features.

• Vision Models Following the approach of Bhat-
tacharya et al. (2020), we use two vision models,
ViT (Dosovitskiy et al., 2021) and ConvNext v2
(Woo et al., 2023), that represent the scanpath
as an image without the underlying text, where
fixations are depicted as circles with a diameter
proportional to the fixation duration. See exam-
ples of input images in Figure 4 in Appendix A.1.

3.2 Eye Movements and Text Models
We further adjust a number of recent multimodal
models that combine eye movements with textual
information. The models encode textual informa-
tion in two ways. The first is using contextual word
embedding representations commonly used in NLP.
The second is via linguistic word property features,
including word length, word frequency and sur-
prisal (Hale, 2001; Levy, 2008), which are moti-
vated by their ubiquitous effects on reading times
(Rayner et al., 2004; Kliegl et al., 2004; Rayner
et al., 2011, among others).

The models implement three primary strategies
for combining the two modalities at progressively
later stages of processing: (i) in the model input,
(ii) merging them within intermediate model repre-
sentations, or (iii) with architectures that fuse the
modalities using cross attention mechanisms after
each modality has been processed separately. Fur-
thermore, since eye movements in reading are both
temporally and spatially aligned with the underly-
ing text, the models can be categorized based on
how they capture this alignment: (i) by aggregating
eye movements for each word, thereby focusing
on spatial alignment; or (ii) by aggregating eye
movement information for each individual fixation,
which explicitly encodes both spatial and temporal
correspondences between eye movements and text.
We use the following models:

• RoBERTEye-W (Shubi et al., 2024): A multi-
modal transformer model that combines word
embeddings with word-level eye movement fea-
tures at the input layer.

• RoBERTEye-F (Shubi et al., 2024): similar to
the above, but with fixation-level representations.

• MAG-Eye (Shubi et al., 2024): Injects word-
level eye movement features into intermediate
transformer representations.

• PLM-AS (Yang and Hollenstein, 2023): Re-
orders word embeddings based on fixation se-
quences and processes them with an RNN.

• Haller RNN (Haller et al., 2022): Processes
fixation-ordered word embeddings with concate-
nated eye movement features via an RNN.

• BEyeLSTM (Reich et al., 2022a): Combines
fixation sequences and global features with an
LSTM and a linear projection layer.
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• Eyettention (Deng et al., 2023): Aligns word
and fixation sequences using cross-attention be-
tween a RoBERTa encoder and an LSTM fixation
encoder.

• PostFusion-Eye (Shubi et al., 2024): Combines
RoBERTa word representations and convolution-
based fixation features using cross-attention and
shared latent projection.

In Appendix A.1 we provide additional details
about each of the models, and Figures 5 and 6
in Appendix A.2 we include the model diagrams.

3.3 Logistic Ensemble
As shown in Figure 9 in Appendix F, the examined
models turn out to have diverse predictive behav-
iors. We therefore introduce a Logistic Ensemble:
a 12-feature logistic regression model that predicts
the reading goal from the probability outputs of our
12 models.

3.4 Baselines
When examining the utility of eye movements for a
prediction task, it is important to benchmark mod-
els against simpler approaches that do not require
eye movement information (Shubi et al., 2024). We
therefore introduce the following two baselines:

• Majority Class Assigns the label of the majority
class in the training set to all the trials in the test
set. Since our data is balanced (see below), this
baseline is equivalent to random guessing.

• Reading Time (per word) Total reading time
per word, computed by dividing the participant’s
total reading time of the paragraph by the number
of words in the paragraph. This behavioral base-
line does not require eye-tracking and is moti-
vated by the analyses of Hahn and Keller (2023),
Malmaud et al. (2020) and Shubi and Berzak
(2023), which indicate that on average, reading
is faster in information seeking compared to or-
dinary reading.

4 Experimental Setup

4.1 Data
Addressing the proposed task is made possible by
OneStop Eye Movements (Berzak et al., 2025),
the first dataset that contains broad coverage eye-
tracking data in both ordinary reading and infor-
mation seeking regimes. The textual materials

of OneStop are taken from OneStopQA (Berzak
et al., 2020), a multiple-choice reading compre-
hension dataset that comprises 30 Guardian arti-
cles from the OneStopEnglish corpus (Vajjala and
Lučić, 2018). Each article is available in the orig-
inal (Advanced) and simplified (Elementary) ver-
sions. Each paragraph has three multiple choice
reading comprehension questions that can be an-
swered based on any of the two paragraph difficulty
level versions. Each question is paired with a manu-
ally annotated textual span, called the critical span,
which contains the vital information for answering
the question. An example of a OneStopQA para-
graph along with one question and its critical span
annotation is provided in Table 3 in Appendix B.

Eye movements data for OneStopQA were col-
lected in-lab from 360 adult native English speakers
using an EyeLink 1000 Plus eye tracker. Each par-
ticipant read a batch of 10 articles (54 paragraphs)
paragraph by paragraph. The experiment has two
between-subjects reading goal tasks: information
seeking and ordinary reading. In the information
seeking task, participants were presented with the
question (without the answers) prior to reading
the paragraph. In the ordinary reading task, they
did not receive the question prior to reading the
paragraph. In both tasks, after having read the
paragraph, participants proceeded to answer the
question on a new screen, without the ability to re-
turn to the paragraph. Each paragraph was read by
120 participants: 60 in ordinary reading and 60 in
information seeking (split equally between the Ad-
vanced and Elementary versions of the paragraph).

Overall, the data consists of 19,438 trials, where
a trial is a recording of eye movements from a sin-
gle participant over a single paragraph. The data
is balanced, with 9,718 trials in ordinary reading
and 9,720 in information seeking. Figure 7 in Ap-
pendix B shows example trials for both reading
regimes. Additional data statistics are described in
Appendix B.

4.2 Model Training and Evaluation Protocol

We use 10-fold cross validation, addressing three
levels of model generalization:

• New Textual Item: prior eye tracking data is
available for the participant but not for the para-
graph.

• New Participant: prior eye tracking data is avail-
able for the paragraph, but not for the participant.
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Train, Validation and Three Tests for one Batch

New Items & 
New Participants

Train New 
Parti-

cipants

120 
Participants

10 
Articles

10 
Articles

120 
Participants

120 
Participants

10 
Articles

Information Seeking

OneStop – 360 Participants over 30 Articles

Ordinary Reading

Validation 

New Items 

Figure 2: A schematic depiction of one of the 10 splits into train, validation, and the three test sets for one batch of
10 OneStopQA articles and 120 participants (left) and for all three batches (right). Dashed lines denote information
seeking trials. The full data split consists of the union of three such batches.

• New Item & Participant: No prior training data
for the participant nor the paragraph.

• All: aggregated results for the three regimes.

The New Item regime evaluates performance on
unseen paragraphs using eye movement data from
other texts, which is a relevant scenario for appli-
cations such as e-learning. The New Participant
regime tests predictions for unseen individuals on
passages for which data from other participants
was already collected, reflecting scenarios such as
exams where behavioral data for the given materi-
als exist, but not from the tested participant. The
New Item & New Participant evaluation, which ad-
dresses zero-shot prediction for an arbitrary unseen
reader on an arbitrary unseen passage, is the most
challenging and flexible regime.

The data is split into train, validation, and the
three test sets separately for each batch of 10 arti-
cles and the 120 participants who read the batch.
The three batch splits are then combined to form
the full split of the dataset. Paragraphs are allo-
cated to the train, validation, and test portions of
each batch split at the article level, such that all
the paragraphs of each article appear in the same
portion of the split. This ensures that items in the
test set are unrelated in content to items in training
and validation.

Each data split contains 64% of the trials in the
training set, 17% in the validation set and 19%
in the test sets (9% New Item, 9% New Partici-
pant and 1% New Item & Participant). Aggregated
across the 10 splits, 90% of the trials in the dataset

appear in each of the New Participant and New
Item evaluation regimes, and 10% in the New Item
& Participant regime. Figure 2 presents this break-
down for one batch split.

Model Hyperparameters We perform hyper-
parameter optimization and model selection sepa-
rately for each split. We assume that at test time, the
evaluation regime of the trial is unknown. Model
selection is therefore based on the entire valida-
tion set of the split. Further details regarding the
training procedure, including the full hyperparame-
ter search space for all the models are provided in
Appendix C.

Statistical Testing The samples in the OneStop
dataset are not i.i.d; each item is read by multiple
participants, and each participant reads multiple
items. To account for these dependencies when
comparing model performance, we fit linear mixed-
effects models with maximal random effects for
items and participants (Barr et al., 2013) using the
MixedModels package in Julia (Bates et al., 2024).

5 Results

Test set accuracy results are presented in Table 1.
In line with prior observations of faster reading
in information seeking compared to ordinary read-
ing (Hahn and Keller, 2023; Malmaud et al., 2020;
Shubi and Berzak, 2023), the Reading Time base-
line yields above chance accuracies (p < 0.01 in
all regimes), thus providing a strong benchmark
for the evaluation of eye tracking-based models.
Among the 12 examined models, RoBERTEye-F
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Model Gaze
Representation

Text
Representation

New
Item

New
Participant

New Item
& Participant All

Majority Class / Chance – – 50.0±0.0+++ 50.0±0.0+++ 50.0±0.0+++ 50.0±0.0+++

Reading Time – – 59.0±0.4+++ 58.9±1.0+++ 60.4±1.2+++ 59.0±0.5+++

Log. Regression Global – 62.4±0.3
∗∗
+++ 60.6±1.4+++ 60.8±1.6+++ 61.5±0.8

∗
+++

BEyeLSTM (Reich et al., 2022a) No Text Fixations – 71.5±0.6
∗∗∗
+++ 61.0±1.1+++ 61.5±1.5+++ 65.9±0.4

∗∗∗
+++

ConvNext v2 Scanpath Image – 70.4±0.5
∗∗∗
+++ 63.7±0.8

∗∗
+++ 64.0±0.7+++ 66.9±0.3

∗∗∗
+++

ViT Scanpath Image – 70.6±0.5
∗∗∗
+++ 64.4±0.8

∗∗∗
+++ 64.4±1.5

∗
+++ 67.3±0.4

∗∗∗
+++

RoBERTEye-W (Shubi et al., 2024) Words Emb+LF 64.6±0.7
∗∗∗
+++ 62.5±1.3

∗
+++ 62.0±1.3+++ 63.5±0.9

∗∗
+++

MAG-Eye (Shubi et al., 2024) Words Emb+LF 52.1±0.3+++ 52.3±0.4+++ 51.5±0.4+++ 52.1±0.2+++

PLM-AS (Yang and Hollenstein, 2023) Fixations Order Emb 58.6±0.4+++ 59.5±0.5+++ 57.5±0.9+++ 59.0±0.4+++

Haller RNN (Haller et al., 2022) Fixations Emb 61.7±0.6
∗
+++ 61.2±1.1+++ 60.8±1.5+++ 61.3±0.5+++

BEyeLSTM (Reich et al., 2022a) Fixations LF 71.4±0.9
∗∗∗
+++ 61.6±1.1+++ 62.2±1.3+++ 66.2±0.7

∗∗∗
+++

Eyettention (Deng et al., 2023) Fixations Emb+LF 55.8±0.8+++ 55.7±1.1+++ 55.4±1.8+++ 55.8±0.9+++

PostFusion-Eye (Shubi et al., 2024) Fixations Emb+LF 88.5±0.7
∗∗∗
+++ 90.3±0.6

∗∗∗ 86.0±1.1
∗∗∗
+ 89.3±0.4

∗∗∗
+++

RoBERTEye-F (Shubi et al., 2024) Fixations Emb+LF 89.9±0.6
∗∗∗ 90.9±0.4

∗∗∗ 88.2±0.8
∗∗∗ 90.3±0.3

∗∗∗

Logistic Ensemble 91.3±1.7
∗∗∗
&&& 91.6±1.6

∗∗∗
& 88.0±3.1

∗∗∗ 91.3±1.2
∗∗∗
&&&

Table 1: Test accuracy results aggregated across 10 cross-validation splits, with 95% confidence intervals. ‘Emb’
stands for word embeddings and ‘LF’ for linguistic word features such as word length, frequency and surprisal.
Model performance is compared to the Reading Time baseline using a linear mixed effects model. In R notation:
is_correct ∼ model + (model | participant) + (model | paragraph). Significant gains over this baseline are
marked with ‘*’ p < 0.05, ‘**’ p < 0.01 and ‘***’ p < 0.001 in superscript, and significant drops compared to
the best model are marked in subscript with ‘+’. The best performing single model is marked in bold. Significant
improvements of the Logistic Ensemble over this model are marked with the subscript ‘&’.

achieves the highest accuracy in all the evalua-
tion regimes. PostFusion-Eye comes second, well
ahead of the remaining 10 models. The top per-
forming models suggest that a combination of three
elements is key for our task: a transformer-based
architecture, fixation-level encoding of eye move-
ments, and explicit modeling of the text.

The 10 weaker models tend to perform better on
the New Item regime compared to the New Par-
ticipant regime. Due to the between-subjects de-
sign, where all the training and test examples for
a given participant have the same label, this could
reflect, at least in part, an ability of models to learn
participant-specific reading behavior without ex-
plicit information on the participant (i.e. identify
the participant), which is not directly pertinent to
the task at hand. The current experimental setup
makes it challenging to adjudicate between these
two possibilities. In either case, it is highly non-
trivial that models are able to generalize from prior
participant data to new items.

Finally, we find that the Logistic Ensemble im-
proves over the accuracy of the best performing
single model RoBERTEye-F in all the regimes,
with statistically significant improvements in all
but the New Item and Participant evaluation. These
performance improvements suggest that the infor-
mation encoded by the different models is to some

extent complementary, and that they likely capture
different aspects of the eye movement data and the
task. Further evidence for that can be obtained by
examining the agreement between the models. Fig-
ure 9 in Appendix F depicts the pairwise Cohen’s
Kappa (Cohen, 1960) agreement rates across mod-
els in the validation data, where we observe mostly
moderate agreement rates.

In Appendix D Figure 8, we present the Receiver
Operating Characteristic (ROC) curves across the
ten cross-validation splits and their correspond-
ing Area Under the ROC Curve (AUROC) scores
(Bradley, 1997). Validation set accuracies are re-
ported in Table 4. The outcomes of these evalua-
tions are consistent with the test results in Table 1.

6 How Quickly Can We Make Accurate
Predictions?

Thus far we examined predictions from a complete
recording of eye movements for a paragraph. Can
we make accurate predictions before the participant
finishes reading the paragraph?

Table 2 presents RoBERTEye-F All accuracy
given the first 1%, 5%, 10%, 25% and 50% of the
fixation sequence. While as can be expected, data
quantity does impact performance, relatively high
accuracy predictions can be obtained even with
only the initial 5% of the fixations, which on av-
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First % of Fixations 1% 5% 10% 25% 50% 100%
Average Time (sec) 0.5 1.5 2.7 6.3 12.4 24.3

Accuracy (All) 61.0±3.6 77.6±0.3 78.9±0.4 82.3±2.0 84.9±2.4 90.3±0.3

Table 2: RoBERTEye-Fixations accuracy with 95% con-
fidence intervals as a function of the % of scanpath data
used from the beginning of the paragraph reading.

erage corresponds to the first 1.5 seconds of the
eye movements recording. This is an important
outcome, which demonstrates the feasibility of per-
forming our task successfully online, long before
the participant finishes reading a passage.

7 What Makes the Task Easy or Hard?

Having established that the prediction task at hand
can be performed with a considerable degree of
success, we now leverage the best performing sin-
gle model RoBERT-Eye-F to obtain insights about
the task itself. To this end, we introduce a new
method for analyzing model performance that uses
mixed effects modeling of model logits from data
features. This method enables examining which
trial features, which were not given to the model
explicitly, affect the ability of the model to classify
trials correctly. Differently from univariate meth-
ods often used for model performance analyses,
our approach allows measuring the contribution of
each feature above and beyond all the other fea-
tures, while also taking into account the non-i.i.d
nature of the data, where multiple participants read
the same paragraph and multiple paragraphs are
read by the same participant. The analysis takes
advantage of the rich structure and auxiliary anno-
tations of the OneStop dataset.

We define 10 features that capture various as-
pects of the trial. These include the following par-
ticipant features over the item: Reading time be-
fore, within, and after the critical span, paragraph
position in the experiment (1-54), and whether af-
ter having read the paragraph, the participant an-
swered the given reading comprehension question
correctly. We further include the following item
(paragraph and question), reader-independent fea-
tures: Paragraph length (in words), paragraph dif-
ficulty level (advanced / elementary), critical span
start location (relative position, normalized by para-
graph length), critical span length (normalized by
paragraph length), and question difficulty (percent-
age of participants who answered the question in-
correctly). Further details about these features are
presented in Appendix E.
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Figure 3: Coefficients from a mixed-effects model that
predicts whether RoBERTEye-F’s prediction for a given
trial is correct from properties of the trial. CS stands
for the critical span, the portion of the paragraph that
contains the information that is essential for answering
the question correctly. Two models are fitted separately
for ordinary reading and information seeking trials. Pre-
dictors are z-normalized. Depicted are the coefficients
of the fitted models after a 10x Bonferroni correction,
to mitigate the risk of false positives when testing mul-
tiple hypotheses simultaneously. ‘*’ p < 0.05, ‘**’
p < 0.01, ‘***’ p < 0.001.

To establish the relation of these features to task
difficulty, we use a linear mixed effects model that
uses these features to predict the probability that the
model assigns to the correct label. In R notation:

P (correct) ∼ feat1 + · · ·+ feat10 + (1 | item)
+(1 | participant) + (1 | evaluation regime)

where the random effects account for correlations
in predictions within participants, items and evalu-
ation regimes2. We fit this model separately on the
information seeking and ordinary reading trials. To
make the contributions of the features to prediction
accuracy comparable, we normalize each feature
to be a z-score (zero mean and unit variance). We
then examine feature contribution via the statistical
significance, the magnitude and the sign of the cor-
responding coefficient. A significant coefficient for
a feature indicates that it correlates with task diffi-
culty, the absolute value determines its importance
relative to other features, and the sign indicates the
direction of the association.

The resulting feature coefficients are presented
in Figure 3. In line with the findings of Shubi and
Berzak (2023) on differences in reading speed be-
tween information seeking and ordinary reading
around the critical span, we observe that promi-
nent features for correctly classifying both infor-
mation seeking and ordinary reading trials are read-

2Random effects structure is simplified not to include
slopes due to model convergence issues.
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ing times before and after the critical span. Faster
readers before and after the critical span are easier
to correctly classify as information seeking and
harder to correctly classify as ordinary reading.
Additionally, although not reflected in the read-
ing speed analysis of Shubi and Berzak (2023),
slower reading within the critical span is also bene-
ficial for correct classification of ordinary reading
trials. Longer paragraphs are also beneficial for
classification of ordinary reading. We further find
that shorter critical spans facilitate correct classi-
fication of information seeking trials, presumably
by making information seeking more targeted and
the identification of task critical information easier.
Paragraph position is also significant in informa-
tion seeking, suggesting that readers develop more
efficient goal oriented reading strategies as they
progress through the experiment. Overall, this anal-
ysis provides a highly interpretable characterization
of both task difficulty and the underlying reading
behavior in both reading regimes.

8 Related Work

Although the large majority of literature on the
psychology of reading is concerned with ordinary
reading, several studies did address goal-oriented
(also referred to as task-based) reading. Most prior
work focused on a small number of canonical tasks:
skimming, speed reading and proofreading. Sev-
eral studies found different eye movement patterns
in these tasks as compared to ordinary reading (Just
et al., 1982; Kaakinen and Hyönä, 2010; Schotter
et al., 2014; Strukelj and Niehorster, 2018; Chen
et al., 2023), and used predictive modeling to dis-
tinguish ordinary reading from skimming (Kelton
et al., 2019). Rayner and Raney (1996) examined
differences between ordinary reading and searching
through the text for a target word. Prior work also
analyzed eye movements during human linguistic
annotation, often used for generating training data
for NLP tools, such as annotation of named enti-
ties (Tomanek et al., 2010; Tokunaga et al., 2017).
Differences in reading patterns were further found
when readers were asked to take different perspec-
tives on a given text (Kaakinen et al., 2002) or
given different sets of learning goals (Rothkopf
and Billington, 1979).

Our work is closest to Hahn and Keller (2023),
Malmaud et al. (2020) and Shubi and Berzak (2023)
who analyzed eye movement differences between
ordinary reading and information seeking, where

the information seeking goal is formulated using a
reading comprehension question. All three studies
found substantial differences in fixation and sac-
cade patterns in information seeking as compared
to ordinary reading, in particular before, within
and after the text portions that are critical for the
information seeking task. Here, we build on these
findings, and examine whether these differences
can be leveraged to automatically distinguish be-
tween these two reading regimes.

While the above studies focus primarily on de-
scriptive data analysis, Hollenstein et al. (2023)
took a predictive approach and attempted to auto-
matically classify the reading task from eye move-
ment features. In this study, 18 participants read
single sentences from the ZuCo corpus (Hollen-
stein et al., 2020), and engaged either in ordinary
reading or in an annotation of the presence of one
of seven semantic relations in the sentence. While
this benchmark is conceptually related to the cur-
rent work, it is limited by the nature of the tasks,
which focus on highly specialized linguistic annota-
tions that are not performed by readers in everyday
life. In the current study we take a different and
more general stance on task based reading, with
unrestricted questions that are more representative
of the tasks commonly pursued by readers. More
broadly, our work contributes to a nascent line of
work which uses eye movements in reading for
predicting properties of the reader’s cognitive state
with respect to the text, such as reading compre-
hension (Reich et al., 2022b; Shubi et al., 2024),
as well as properties of the text itself, including
document type (Kunze et al., 2013) and readability
level (González-Garduño and Søgaard, 2017).

9 Summary and Discussion

Is it possible to decode reader goals from eye move-
ments? We address this question by examining
the possibility of automatically differentiating be-
tween ordinary reading and information seeking at
the challenging granularity level of a single para-
graph. We find that it is indeed possible to perform
this task successfully, even before the participant
finished reading. Model comparison reveals that
the architecture, the granularity level of the eye
movement representation and the inclusion of the
underlying text are all important for the task. Our
new error analysis method leverages the models
to further reveal new insights on the factors that
determine task difficulty.
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10 Limitations

Our study has a number of limitations. The in-
formation seeking tasks are over individual para-
graphs that span 3-10 lines of text. This leaves
out shorter texts (e.g. single sentences) as well as
longer texts. It is also restricted to newswire texts,
and does not include texts from other genres. New
datasets for the information seeking task, other
types of tasks, additional populations (e.g. second
language readers, younger and older participants),
and datasets in languages other than English are
all needed in order to study goal decoding more
broadly. We further note that data collected in-lab,
especially when the experiment involves frequent
reading comprehension queries, may deviate from
participants’ reading patterns in their daily lives
(Huettig and Ferreira, 2022). This can in turn limit
generalization to real-world scenarios.

While the current work takes a first step in
addressing the proposed task, considerable room
for performance improvements remains for future
work. New strategies for modeling eye movements
with text are likely needed to fully exploit the po-
tential of eye movements for this task. Furthermore,
the addressed task is fundamentally limited in that
it does not distinguish between different informa-
tion seeking tasks. A natural direction for future
work could address decoding of the specific ques-
tion that was presented to the participant in the
information seeking regime.

11 Ethics Statement

This work uses eye movement data collected from
human participants. The data was collected by
Berzak et al. (2025) under an institutional IRB pro-
tocol. All the participants provided written consent
prior to participating in the eye tracking study. The
data is anonymized. Analyses and modeling of eye
movements in information seeking are among the
main use cases for which the data was collected.

It has previously been shown that eye move-
ments can be used for user identification (e.g. Bed-
narik et al., 2005; Jäger et al., 2020). We do not
perform user identification in this study, and em-
phasize the importance of not storing information
that could enable participant identification in future
applications of goal decoding. We further stress
that future systems that automatically infer reader
goals are to be used only with explicit consent
from potential users to have their eye movements
collected and analyzed for this purpose.
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Appendix

A Models

A.1 Model Descriptions
Global Representation
Logistic Regression A logistic regression model
with global eye movement measures from Mézière
et al. (2023). The measures include averages of
word reading times, single fixation duration, for-
ward saccade length, the rate of regressions (sac-
cades that go backwards), and skips (words that
were not fixated) during first pass reading (i.e. be-
fore proceeding to the right of the word). All the
features are standard measures from the psycholin-
guistic literature.

Word-based Representations
RoBERTEye-W(ords) (Shubi et al., 2024) is a
RoBERTa transformer model (Liu et al., 2019) aug-
mented with eye movements. This model concate-
nates word embeddings and word-level eye move-
ment features in the model input.

MAG-Eye (Shubi et al., 2024) Integrates word-
level eye movement features into a transformer-
based language model by injecting them into in-
termediate word representations using a Multi-
modal Adaptation Gate (MAG) architecture (Rah-
man et al., 2020). The text is aligned with eye
movements by duplicating each word-level eye
movement feature for every sub-word token.

Fixation-based Representations
PLM-AS (Yang and Hollenstein, 2023) This model
represents the eye movements sequence by reorder-
ing contextual word embeddings according to the
order of the fixations over the text. This reordered
sequence is processed through a Recurrent Neural
Network (RNN), whose final hidden layer is used
for classification.

Haller RNN (Haller et al., 2022) This model
is similar to PLM-AS in that it receives word em-
beddings in the order of the fixations. Differently
from PLM-AS, each word embedding is further
concatenated with eye movement features.

RoBERTEye-F(ixations) (Shubi et al., 2024)
uses the same architecture as RoBERTEye-W, but
represents fixations rather than words. Each fixa-
tion input consists of a concatenation of the word
embedding and eye movement features associated
with the fixation.

BEyeLSTM (Reich et al., 2022a) represents
both the fixation sequence and textual features,

combining LSTMs (Hochreiter and Schmidhuber,
1997) and global features through a linear layer.

BEyeLSTM - No Text is a model that processes
raw fixation data using an LSTM. The final hid-
den state of the LSTM is combined with global
eye movement features to perform classification.
The model is inspired by BEyeLSTM (Reich et al.,
2022a), using the same eye movements feature set,
without the text representations.

Eyettention (Deng et al., 2023) is a model that
consists of a RoBERTa word sequence encoder
and an LSTM-based fixation sequence encoder. It
uses a cross-attention mechanism to align the input
sequences. We use the adaptation of this model by
(Shubi et al., 2024) for binary classification.

PostFusion-Eye (Shubi et al., 2024) is a model
that consists of a RoBERTa word sequence encoder
and a 1-D convolution-based fixation sequence en-
coder. It then uses cross-attention to query the word
representations using the eye-movement represen-
tations, followed by concatenation and projection
into a shared latent space.

Image Representations
We represent scanpaths as two-dimensional images,
as illustrated in Figure 4. In this visualization, fix-
ations are depicted as circles positioned at their
original x-y coordinates from the screen display,
with the entire representation cropped to maintain
consistent dimensions. The diameter of each cir-
cle corresponds to the duration of the fixation. To
indicate the sequential progression of the eye move-
ments, we employ a gradient shading scheme. Ad-
ditionally, we differentiate between saccade types
by color-coding them according to the five cate-
gories established by Schotter and Dillon (2025)
- forward saccade, skip, refixation, return sweep,
regression, and another for any saccade typethat
does not fall into this categorization. Note that
for these features knowledge about the existance
of text is needed, but not the textual content itself.
We use the convnextv2_base.fcmae_ft_in22k_in1k
and vit_base_patch14_dinov2 versions of the Con-
vNextv2 and ViT models respectively.

A.2 Model Diagrams
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Figure 4: An example of a scanpath as an image as used for the image classification models.
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Figure 6: Visualization of the different model architectures (Part 2). P represents the paragraph, EP
S the eye

movements of participant S on P . LM stands for a language model, and FC for fully connected layers. FFfi

stands for the fixation features and wfi for the word corresponding to the i-th fixation respectively.
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B OneStop Eye Movements Dataset -
Additional Details

The textual data of OneStop consists of 162 para-
graphs, 486 questions, and 972 unique paragraph–
level–question triplets. The mean paragraph length
is 109 words (min: 50; max: 165; std: 28). The
mean length of Elementary paragraphs is 97 words
(37 before the critical span, 30 inside it, and 30 af-
ter it), and of Advanced paragraphs 120 words (48
before the critical span, 34 inside it, and 38 after
it). Each question has 20 responses, 10 for the Ad-
vanced version and 10 for the Elementary version.
The mean experiment duration is approximately
one hour. The raw millisecond gaze location is
pre-processed into fixations and saccades using the
SR Data Viewer software (v4.3.210).
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Table 3: An example of a OneStopQA paragraph (Advanced and Elementary version) along with one of its three
questions. The critical span is marked in bold red. Adapted from Berzak et al. (2020).

Advanced A major international disagreement with wide-ranging implications for global drugs policy has erupted over
the right of Bolivia’s indigenous Indian tribes to chew coca leaves, the principal ingredient in cocaine. Bolivia
has obtained a special exemption from the 1961 Single Convention on Narcotic Drugs, the framework
that governs international drugs policy, allowing its indigenous people to chew the leaves. Bolivia had
argued that the convention was in opposition to its new constitution, adopted in 2009, which obliges it to
“protect native and ancestral coca as cultural patrimony” and maintains that coca “in its natural state ... is not
a dangerous narcotic.”

Elementary A big international disagreement has started over the right of Bolivia’s indigenous Indian tribes to chew coca
leaves, the main ingredient in cocaine. This could have a significant effect on global drugs policy. Bolivia
has received a special exemption from the 1961 Convention on Drugs, the agreement that controls
international drugs policy. The exemption allows Bolivia’s indigenous people to chew the leaves. Bolivia
said that the convention was against its new constitution, adopted in 2009, which says it must “protect native
and ancestral coca” as part of its cultural heritage and says that coca “in its natural state ... is not a dangerous
drug.”

Question What was the purpose of the 1961 Convention on Drugs?
Answers A Regulating international policy on drugs

B Discussing whether indigenous people in Bolivia should be allowed to chew coca leaves
C Discussing the legal status of Bolivia’s constitution
D Negotiating extradition agreements for drug traffickers

Ordinary Reading Information Seeking

Figure 7: Examples of eye movements over a single passage; left: ordinary reading, right: information seeking.
Circles represent fixations, and lines represent saccades.
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C Model Training and Hyperparameters

All neural network-based models were trained us-
ing the PyTorch Lighting (Falcon and team, 2024)
library on NVIDIA A100-40GB and L40S-48GB
GPUs.

Since the models we use were developed for
different tasks and datasets, we conducted a hy-
perparameter search for each model. The search
space for each model is described below. In all
cases, it includes the optimal parameters reported
in the work that introduced the model, extended to
provide a fair comparison between models.

For all neural models we train with learning
rates of {0.00001, 0.00003, 0.0001} and dropout
of {0.1, 0.3, 0.5} following Shubi et al. (2024). Ad-
ditionally, for all models that make use of word
embeddings, we include both frozen and unfrozen
language model variants in the search space.

• For Logistic Regression, the search space
for the regularization parameter C is
{0.1, 5, 10, 50, 100}, with and without an L2
penalty.

• Following (Reich et al., 2022a), for BEyeL-
STM and BEyeLSTM - No Text, the
search space consists of learning rates
{0.001, 0.003, 0.01}, embedding dimensions
{4, 8} and hidden dimensions {64, 128}.

• For MAG-Eye the search space for injection
layer index is: {0, 11, 23}.

• Following Yang and Hollenstein (2023), we
train PLM-AS and Haller RNN with dropout
rate search space of 0.1, and for PLM-AS,
we use LSTM layer counts of 1, 2. Addition-
ally, as in (Haller et al., 2022), we search over
LSTM hidden layer sizes of 10, 40, 70. For
PLM-AS, the LSTM hidden layer size is fixed
at 1024 to match the LM’s dimensionality in
Yang and Hollenstein (2023).

• For Eyettention, we also train with a learning
rate of 0.001 and dropout of 0.2, as done in
(Deng et al., 2023)

• For PostFusion-Eye, the 1D convolution lay-
ers have a kernel size of three, stride 1 and
padding 1.

We train the deep-learning based models for a
maximum of 40 epochs, with early stopping after
8 epochs if no improvement in the validation error

is observed. Following Liu et al. (2019); Mosbach
et al. (2021); Shubi et al. (2024) we use the AdamW
optimizer (Loshchilov and Hutter, 2018) with a
batch size of 16. MAG-Eye, RoBERTEye and
PostFusion-Eye use a linear warm-up ratio of 0.06,
and a weight decay of 0.1. We standardize each
eye movements feature using statistics computed
on the training set, to zero mean unit variance.

The code base for this project was developed
with the assistance of GitHub Copilot, an AI-
powered coding assistant. All generated code was
carefully reviewed.

D Additional Results

Below we present the test set ROC curves across
the ten cross-validation splits and their correspond-
ing AUROC scores (mean and standard deviation).
We also provide accuracy results for the validation
set.
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Figure 8: ROC Curves by model and evaluation regime. Each curve represents a different model across the ten
cross-validation splits, with the corresponding AUROC scores (mean and standard deviation) provided in the legend.

Model Gaze
Representation

Text
Representation

New
Item

New
Participant

New Item
& Participant All

Majority Class / Chance – – 50.0±0.0+++ 50.0±0.0+++ 50.0±0.0+++ 50.0±0.0+++

Reading Time – – 58.9±0.5+++ 58.9±1.0+++ 60.4±1.3+++ 58.9±0.5+++

Log. Regression (Mézière et al., 2023) Global – 62.6±0.3
∗∗
+++ 60.6±1.5+++ 61.0±1.8+++ 61.6±0.8

∗
+++

BEyeLSTM - No Text Fixations – 73.2±0.6
∗∗∗
+++ 64.9±1.0

∗∗∗
+++ 65.1±1.4

∗
+++ 68.8±0.5

∗∗∗
+++

ConvNext v2 Image of Scanpath – 71.2±0.5
∗∗∗
+++ 65.3±0.9

∗∗∗
+++ 65.3±1.3

∗
+++ 68.0±0.5

∗∗∗
+++

ViT Image of Scanpath – 71.7±0.3
∗∗∗
+++ 65.8±0.9

∗∗∗
+++ 67.4±0.7

∗∗∗
+++ 68.6±0.5

∗∗∗
+++

RoBERTEye-W (Shubi et al., 2024) Words Emb+LF 65.1±0.6
∗∗∗
+++ 64.9±1.1

∗∗∗
+++ 65.2±1.4

∗
+++ 65.1±0.6

∗∗∗
+++

MAG-Eye (Shubi et al., 2024) Words Emb+LF 53.7±0.2+++ 53.5±0.5+++ 52.6±0.6+++ 53.5±0.2+++

PLM-AS (Yang and Hollenstein, 2023) Fixations Order Emb 59.1±0.5+++ 61.1±0.7+++ 58.6±0.9+++ 60.1±0.4+++

Haller RNN (Haller et al., 2022) Fixations Emb 62.3±0.6
∗∗
+++ 62.9±1.2

∗∗
+++ 63.4±1.3+++ 62.5±0.6

∗∗
+++

BEyeLSTM (Reich et al., 2022a) Fixations LF 72.3±0.6
∗∗∗
+++ 65.0±1.3

∗∗∗
+++ 66.1±1.2

∗∗
+++ 68.5±0.6

∗∗∗
+++

Eyettention (Deng et al., 2023) Fixations Emb+LF 56.4±0.8+++ 56.6±0.9+++ 58.6±1.1+++ 56.6±0.5+++

RoBERTEye-F (Shubi et al., 2024) Fixations Emb+LF 90.7±0.3
∗∗∗ 91.9±0.5

∗∗∗ 88.7±0.9
∗∗∗ 91.2±0.3

∗∗∗

PostFusion-Eye (Shubi et al., 2024) Fixations Emb+LF 89.2±0.4
∗∗∗
+++ 91.3±0.5

∗∗∗ 87.8±0.6
∗∗∗ 90.1±0.4

∗∗∗
+++

Logistic Ensemble 92.3±0.9
∗∗∗ 93.2±1.2

∗∗∗ 89.6±2.3
∗∗∗ 92.6±0.8

∗∗∗

Table 4: Validation accuracy results aggregated across 10 cross-validation splits. ‘Emb’ stands for word embeddings,
‘LF’ for linguistic word features such as word length, frequency and surprisal. Model performance is compared to
the Reading Time baseline using a linear mixed effects model. In R notation: is_correct ∼ model + (model |
participant) + (model | paragraph). Significant gains over this baseline are marked with ‘*’ p < 0.05, ‘**’
p < 0.01 and ‘***’ p < 0.001 in superscript, and significant drops compared to the best model in each regime are
marked in subscript with ‘+’.

E Feature Descriptions

We define 10 features that capture various aspects
of the trial. These include the following reader
features over the item:

1-3. Reading time before, within, and after criti-
cal span: These features are motivated by the
findings of Malmaud et al. (2020) and (Shubi
and Berzak, 2023) regarding faster reading
times in information seeking compared to or-
dinary reading, primarily before and after the
critical span, as well as the reported classifica-
tion results of the Reading Time baseline.

4. Paragraph position (1-54): Each participant
reads 54 paragraphs, in a random article or-

der. This feature captures the position of the
paragraph in the experiment’s presentation se-
quence. It is included as reading strategies
can change as the experiment progresses (e.g.
Meiri and Berzak (2024) show that readers
become faster as the experiment progresses).

5. Answered correctly: this feature encodes
whether after having read the passage, the
participant answered the given reading com-
prehension question correctly. It captures
participant-specific task difficulty and the ex-
tent to which the participant read the passage
attentively.

We further include the following item (paragraph
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and question), reader-independent features:

6. Paragraph length (in words): this feature
is chosen as we hypothesize that more data
could lead to more accurate predictions for
the item.

7. Paragraph level (Advanced / Elementary): is
chosen as eye movements could be influenced
by the difficulty level of the text, for example
through differences in word frequency and
surprisal (Singh et al., 2016; Hollenstein et al.,
2022).

8. Critical span start location (relative position,
normalized by paragraph length): Shubi and
Berzak (2023) showed skimming-like reading
patterns after processing task critical informa-
tion in information seeking. We thus hypoth-
esize that earlier appearance of task critical
information could facilitate the ability to cor-
rectly identify information seeking reading.

9. Critical span length (normalized by para-
graph length): we also hypothesize that less
task critical information during information
seeking could further aid distinguishing it
from ordinary reading.

10. Question difficulty (percentage of partici-
pants who answered the question incorrectly):
estimated from the train data. We include this
feature as it can influence eye movements in
information seeking, with harder questions po-
tentially obscuring patterns of goal oriented
reading.

F Pairwise agreement between models by
evaluation regime
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Figure 9: Pairwise Cohen’s Kappa agreement between model predictions on the validation set by evaluation regime.
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