
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 5580–5593
July 27 - August 1, 2025 ©2025 Association for Computational Linguistics

CORAL: Learning Consistent Representations across Multi-step Training
with Lighter Speculative Drafter

Yepeng Weng, Dianwen Mei, Huishi Qiu
Xujie Chen, Li Liu, Jiang Tian, Zhongchao Shi

AI Lab, Lenovo Research
{wengyp1, meidw1, qiuhs1, chenxj23, liuli16, tianjiang1, shizc2}@lenovo.com

Abstract

Speculative decoding is a powerful technique
that accelerates Large Language Model (LLM)
inference by leveraging a lightweight specula-
tive draft model. However, existing designs
suffers in performance due to misalignment
between training and inference. Recent meth-
ods have tried to solve this issue by adopting
a multi-step training strategy, but the complex
inputs of different training steps make it harder
for the draft model to converge. To address
this, we propose CORAL, a novel framework
that improves both accuracy and efficiency in
speculative drafting. CORAL introduces Cross-
Step Representation Alignment, a method that
enhances consistency across multiple training
steps, significantly improving speculative draft-
ing performance. Additionally, we identify
the LM head as a major bottleneck in the in-
ference speed of the draft model. We intro-
duce a weight-grouping mechanism that se-
lectively activates a subset of LM head pa-
rameters during inference, substantially reduc-
ing the latency of the draft model. We evalu-
ate CORAL on three LLM families and three
benchmark datasets, achieving speedup ratios
of 2.50×-4.07×, outperforming state-of-the-
art methods such as EAGLE-2 and HASS. Our
results demonstrate that CORAL effectively
mitigates training-inference misalignment and
delivers significant speedup for modern LLMs
with large vocabularies.

1 Introduction

Large Language Models (LLMs), such as GPT
(OpenAI, 2023) and Llama series (Touvron et al.,
2023a,b; Grattafiori et al., 2024), have demon-
strated exceptional capabilities in various natural
language processing tasks. However, achieving
stronger model performance often depends on in-
creasing the number of model parameters (Kaplan
et al., 2020; Hoffmann et al., 2022), which leads to
higher costs in both training and inference. Thus,
achieving strong performance while maintaining

2.04x

1.83x

2.4x 2.33x

2.62x
2.49x

2.68x
2.55x

2.87x
2.77x

1

1.5

2

2.5

3

Llama3-8B-Instruct Qwen2.5-7B-Instruct
S

pe
ed

up

EAGLE EAGLE-2 HASS Alignment
CORAL w/o router CORAL w/ router

Figure 1: Speedup ratios of different methods on
Llama3-8B and Qwen2.5-7B at temperature=0, aver-
aging on MT-bench, HumanEval, and GSM8K datasets.
We present full results in Table 2 and this chart is only a
subset of all comparisons.

quick response is a crucial part in LLM implemen-
tations. Under common hardware conditions, trans-
former decoder-based LLMs are memory-bound
(Dao et al., 2022), which means that the generation
speed is mainly determined by memory access and
bandwidth, rather than arithmetic computations.
This allows for the acceleration of generation using
speculative decoding (Chen et al., 2023; Leviathan
et al., 2023). The general idea of speculative de-
coding is to utilize one or multiple lightweight
draft models to predict the output of target LLM
for several upcoming timesteps, and then verify
the drafted predictions in parallel using the target
model. The memory-bound characteristic guaran-
tees that the parallel verification of multiple tokens
does not incur a significant increase in latency com-
pared to generating a single token.

Recently, autoregressive draft models, such
as EAGLE (Li et al., 2024b), have received
widespread attention for their excellent speedup
performance. For training, EAGLE uses not only
the output tokens but also the last hidden states
from target LLM as input to the draft model, while
during the drafting phase, the draft model uses
its own hidden states from the previous timestep,

5580

Model Hidden Inter. size Vocab Wd / Wt Ld / Lt

Llama2-7B 4096 11008 32000 350M/6301M(5.6%) 1.36ms/23.65ms(5.8%)
Llama3-8B 4096 14336 128256 741M/7157M(10.4%) 2.58ms/26.06ms(9.9%)

Qwen2.5-7B 3584 18944 152064 767M/6743M(11.4%) 2.69ms/24.58ms(10.9%)

Table 1: Parameters and latencies of Llama3-8B, Llama2-7B, and Qwen2.5-7B draft and target models. Wd, Wt and
Ld, Lt denote the parameter counts and latency of draft and target model. In the table, M represents 1024×1024.
Parameters of the embedding layer are not calculated because they do not participate in general matrix multiplication
(GEMM). Latencies are tested with one token on a single NVIDIA A6000 GPU.

1.51ms
(501M)

1.07ms
(240M)

LM head other

0.42ms
(125M)

0.94ms
(225M)

1.60ms
(520M)

1.09ms
(247M)

Llama3-8B-draftLlama2-7B-draft Qwen2.5-7B-draft

Figure 2: Parameters and latencies of Llama3-8B,
Llama2-7B, Qwen2.5-7B draft model. For a model
with large vocabulary, the LM head takes the majority
of the drafting latency.

which may contain biases. This misalignment leads
to a decrease in the prediction accuracy of the draft
model. HASS (Zhang et al., 2024) proposes a
multi-step training strategy, where the hidden states
output by the draft model are fed back into itself
multiple times during training, allowing the draft
model to learn the feature distribution of the in-
ference phase. In Section 2 we will provide more
detailed discussions on them.

Although HASS exhibits impressive perfor-
mance, there are still some limitations to multi-step
training. Specifically, their design causes the input
features at differrent training steps to vary, which
might be challenging for a lightweight draft model
to adapt to. The discrepancy of each training step
may also introduce potential gradient conflicts. Fur-
thermore, modern LLMs are increasingly moving
towards large vocabularies to obtain better perfor-
mance (Tao et al., 2024). For example, previous
model such as Llama2 has a small vocabulary size
of only 32000 (Touvron et al., 2023b), while the vo-
cabulary size of Llama3 (Grattafiori et al., 2024) is
128256, and that of Qwen2.5 (Yang et al., 2024) is
152064. Such large vocabularies lead to an increase
in the parameter size of the Language Model head
(LM head), resulting in increased overhead of draft-
ing, which is presented in Table 1. As demonstrated
in Figure 2, the heavy LM head could potentially
dominate the latency of draft model. However, few

studies have focused on this aspect.
In this paper, we introduce CORAL (learn-

ing COnsistent Representations Across multi-step
training with Lighter speculative drafter), a specula-
tive decoding method that improves the alignment
between the draft model and the target model while
maintaining high drafting speed. We first propose
Cross-Step Representation Alignment (CSRA),
which leverages the idea of contrastive learning
to enforce consistency among the output features
of each training step. The constraint on features
makes them more stable, and thus improves the
training efficiency and the performance of the draft
model. Furthermore, by grouping the LM heads,
we significantly reduce the activated parameters of
the draft model with large vocabulary size, thereby
decreasing the wall time of speculative decoding.

We evaluate acceleration capability of CORAL
on multi-turn conversation, code generation, and
mathematical reasoning tasks using the MT-Bench,
HumanEval and GSM8K datasets, respectively.
The results show that our method achieves 2.50×-
4.07× speedup over vanilla decoding at a tempera-
ture of 0, surpassing state-of-the-art methods such
as EAGLE-2 and HASS.

Our key contributions can be summarized as
follows.

1. We propose Cross-Step Representation Align-
ment, a technique that enables the draft model
to learn consistent representations across mul-
tiple timesteps.

2. We find that the vocabulary size can signifi-
cantly influence the latency of the draft model,
and propose a novel method which selectively
activates a subset of LM head parameters dur-
ing inference using a router.

3. CORAL achieves speedup ratios of 2.50×-
4.07× on various LLMs and datasets, outper-
forming existing speculative decoding meth-
ods such as EAGLE-2 and HASS.

5581

Cross-Step Consistency

𝑝2
𝑡

Distribution
Alignment

 𝑓1
𝑡 …

𝑝1
𝑡

Single transformer layer

LM head

 𝑒1

𝑓0
𝑡 𝑓1

𝑡 𝑓2
𝑡

 𝑓1
𝑑 𝑓2

𝑑 𝑓3
𝑑

 𝑝1
𝑑 𝑝2

𝑑 𝑝3
𝑑

…

…

…

Single transformer layer

LM head

𝑓0
𝑡

 𝑒2

 𝑓1
𝑑

 𝑓1
𝑑 𝑓2

𝑑′

 𝑝1 𝑝2

 𝑒3

 𝑓2
𝑑′

 𝑓3
𝑑′′

 𝑝3

𝑒2 𝑒3 𝑒1 …

…

…

Single transformer layer

LM head

 𝑓0
𝑡

𝑒2

𝑓1
𝑑

 𝑓1
𝑑 𝑓2

𝑑′

 𝑝1
𝑑 𝑝2

𝑑′

𝑒3

 𝑓2
𝑑

 𝑓3
𝑑′

 𝑝3
𝑑′

 𝑒1 …

…

…

Single transformer layer

LM head

𝑒1

 𝑓0
𝑡 𝑓1

𝑡 𝑓2
𝑡

 𝑓1
𝑑 𝑓2

𝑑 𝑓3
𝑑

 𝑝1
𝑑 𝑝2

𝑑 𝑝3
𝑑

…

…

…

𝑒2 𝑒3

Single transformer layer

LM head

 𝑓0
𝑡

𝑒2

𝑓1
𝑑

 𝑓1
𝑑 𝑓2

𝑑′

 𝑝1
𝑑 𝑝2

𝑑′

𝑒3

 𝑓2
𝑑′

 𝑓3
𝑑′′

 𝑝3
𝑑′′

 𝑒1 …

…

…

Training-inference gap

EAGLE inference Multi-step training with CSRA

Step1 Step3Step2

EAGLE training

𝑝3
𝑡

 𝑓2
𝑡 𝑓3

𝑡

𝑓1
𝑡 𝑓2

𝑡 𝑓3
𝑡 …

…
Training target

Representation
Alignment

Representation Alignment: Smooth L1

Distribution Alignment: Cross-entropy

Loss Function

Cross-step Consistency: InfoNCE

Figure 3: Demonstration of EAGLE training / inference and multi-step training with CSRA. f denotes feature
and e denotes embedding. Superscripts indicate the source of the variable, with t and d denoting the target model
and draft model. Subscripts index the position of a feature or embedding. For example, f t

3 means the feature in
position 3 and comes from the target model. For multi-step training, we use apostrophes to distinguish the outputs
of different training steps. Specifically, we denote the output feature of step 1 as fd, and for step 2 and 3 we use fd′

and fd′′
, respectively. Compared to HASS, CSRA introduces additional constraints on feature consistency. The

training target is applied at each step, and we only illustrate it once for the sake of clarity.

2 Preliminaries

In this section, we provide some background in-
formation related to speculative decoding and re-
view some existing methods, including EAGLE
and HASS.

2.1 Speculative Decoding
Speculative decoding (Chen et al., 2023; Leviathan
et al., 2023) aims to accelerate the generation speed
of autoregressive LLMs. Vanilla speculative decod-
ing employs a lightweight model (draft model) to
generate a chain of candidate tokens for the next γ
timesteps, which are then verified in parallel by the
original LLM (target model) and decide whether
to accept them or not. Since the latency of LLM
generation mainly lies in the memory access, par-
allel verification of multiple tokens does not sig-
nificantly impact the latency of the target LLM,
although the computational cost is multiplied.

The acceleration capability of speculative decod-
ing is typically evaluated using two metrics: av-
erage acceptance length τ and the actual Speedup
Ratio (SR). A drafting-verification cycle consists
of one token provided by the target model and mul-
tiple candidates generated by the draft model over
γ time steps. The average acceptance length τ is
defined as the number of new tokens generated in
a single drafting-verification cycle.

Ideally, we can estimate the speedup ratio using
τ and the latencies of draft and target model:

SR ≈ τ × L′
t

γ × Ld + Lt
, (1)

where Lt and Ld denote the latency of the target

model and draft model, respectively. L′
t denotes

the latency for evaluating multiple tokens one time,
it could be slightly different from Lt depending on
the hardware. Some additional overheads might
also contribute to latency, such as comparing the
probabilities of tokens from draft and target models
to determine acceptance. However, since these
overheads typically do not dominate the overall
latency, it is a good choice to ignore them when
estimating the speedup ratio.

From Equation (1) we can see the speedup ratio
is primarily influenced by two factors: the align-
ment between the draft model and the target model,
which mainly influences τ , and the ratio of their
latencies. Specifically, the lower the latency of the
draft model and the better alignment between the
two models, the higher the speedup ratio will be
achieved by speculative decoding.

2.2 EAGLE

EAGLE (Li et al., 2024b) is a lightweight autore-
gressive draft model that leverages a single trans-
former layer identical to that of the target model.
The LM head of draft model is reused directly from
the target model, with its parameters frozen. EA-
GLE discovers that utilizing the feature (i.e., the
last hidden states) of the target model can effec-
tively enhance the alignment between the draft and
target model. For training, the input of the draft
model at position s is the current token ts and the
feature of the target model at position s− 1. The
token ts will first be transformed into embedding
es, and then concatenated with the feature. A linear
layer is adopted to reduce the dimensions before

5582

the single transformer layer.
The training target of EAGLE is to align the fea-

ture (regression) and probability distribution (clas-
sification) of the draft and target model. EAGLE
uses smooth L1 as the regression loss and cross-
entropy as the classification loss.

EAGLE selects multiple candidates at each
timestep during drafting, resulting in a tree-shaped
structure rather than a chain. Tree decoding of-
fers more possible trajectories than chain decoding,
leading to a higher acceptance length. EAGLE-2
(Li et al., 2024a) improves the fixed tree structure
to a dynamic one and achieves better performance.

2.3 HASS

HASS (Zhang et al., 2024) addresses the inconsis-
tency between the training and inference phases of
EAGLE by introducing a multi-step training strat-
egy. As demonstrated in Figure 3, EAGLE uses the
feature of the target model for training, whereas
in inference, the draft model uses its own feature.
HASS solves this problem by feeding the output
feature of draft model back into itself for multi-
ple times. To expose the draft model to inference-
time conditions during training, attention masks
from different training steps require careful adjust-
ment. HASS also incorporates other improvements
on EAGLE, but they are orthogonal to multi-step
alignment. In this paper, we focus mainly on HASS
alignment, and all references to HASS in the re-
mainder of this paper denote HASS alignment un-
less otherwise specified.

While HASS improves the accuracy of draft
models in autoregressive generation, we argue that
there are still unresolved issues due to the discrep-
ancies between representations from multiple train-
ing steps (i.e., fd, fd′ and fd′′ in Figure 3). It is
harder for the draft model to adapt to more complex
inputs and the conflicting gradients from multiple
steps may hinder convergence speed.

3 Method

In this section, we first introduce Cross-Step
Representation Alignment, a method designed to
strengthen the alignment between the draft model
and the target model. We then analyze the speedup
ratio and identify the LM head of the draft model
as a bottleneck. To address this issue, we propose
the LM head router, a novel solution that aims to
reduce the latency of the draft model.

(a) EAGLE Training (b) HASS Training

(c) CSRA

Figure 4: Comparison of EAGLE training, HASS train-
ing and CSRA. Here ⃝ denotes training target, △ de-
notes output features from different steps. Triangles
filled with darker colors represent the first step’s output.
Different colors represent outputs or targets of different
positions. Optimization direction is marked as →, and
the dashed ↔ means repulsion.

3.1 Cross-Step Representation Alignment
Cross-Step Representation Alignment (CSRA)
leverages the idea of contrastive learning (Chopra
et al., 2005; Schroff et al., 2015). Specifically, in
multi-step training, we treat the output features at
the same position in a sentence as positive views
of the same sample, while all other features are
considered negative samples.

Assuming current training step is t, the output
features of current step are Ft ∈ RB×S×D, where
B, S, and D represent the batch size, sequence
length, and hidden dimension, respectively. Natu-
rally, we regard them as B × S samples, and each
sample has t positive views, while all other features
are considered negative samples.

For each output feature f in current training step,
our objective is to minimize its distance to other
positive views while maximizing the distance to
negative samples. To achieve this, we normalize the
features and compute the InfoNCE loss (van den
Oord et al., 2018) as the objective function, which
encourages the feature to be closer to its positive
views and away from negative samples:

LCSRA = −log
exp(sim(q, f+)/τ)∑
f∈F exp(sim(q, f)/τ)

, (2)

5583

where q and f+ denotes the query feature and posi-
tive views, and F is the set of all features along with
the targets. The similarity function sim(·, ·) is de-
fined as cosine similarity. Here τ is the temperature
hyperparameter. Figure 4 shows the differences be-
tween EAGLE / HASS training and CSRA.

The training loss can be defined as:

L = wregLreg + wclsLcls + wCSRALCSRA, (3)

where Lreg and Lcls represent the regression loss
and classification loss, respectively. Since LCSRA

primarily affects representation learning, we main-
tain wcls consistent with EAGLE and adjust an-
other two weights according to different target mod-
els. For detailed parameter settings, please refer to
Appendix A.

3.2 Estimation of Speedup Ratio
As discussed in Section 2.1, the generation speed
is primarily constrained by memory bandwidth.
Therefore, the theoretical latency Ltheo. in genera-
tion phase is proportional to the LLM’s parameter
count WLLM :

Ltheo. ∝ WLLM . (4)

However, this estimation is not always accurate
due to the following factors: 1) Not all operators
and computing graphs are fully optimized. 2) The
latency of some element-wise operators (e.g., ac-
tivation, norm) is not reflected in the parameter
count. This issue is particularly noticeable for Py-
Torch, because it is not a framework optimized for
inference.

Luckily, the draft model and target one share the
same transformer structure, and the extra latency
caused by the aforementioned factors is relatively
consistent in both models. This allows us to esti-
mate the wall time and speedup ratio of speculative
decoding based on the parameters of draft model
and target model:

Ld

Lt
≈ Wd

Wt
, (5)

SR ≈ τ × Wt

γ ×Wd +Wt
, (6)

where Wd, Wt and Ld, Lt denote the parameter
counts and latency of draft and target model, respec-
tively. Note that the embedding layer does not par-
ticipate in general matrix multiplication (GEMM),
therefore its parameters should not be included in

latency estimation. Table 1 presents the latencies
and parameters of different LLMs, along with their
corresponding draft models. The results suggest
that estimating the latency ratio between the draft
and target models based on their parameter counts
is relatively accurate. Notably, for Llama3-8B and
Qwen2.5-7B, the latency of draft model is approxi-
mately 10% of that of target model. As the depth
of drafting increases, the latency of draft model is
expected to contribute significantly to the overall
wall time.

Furthermore, it is also possible to estimate the
latency of each component of the draft model based
on their parameter count. As shown in Figure 2, in
cases with large vocabularies, the latency of LM
head accounts for a significant proportion of the
total latency, which provides us with a valuable in-
sight: If we can reduce the activated weights of the
LM head, the overall speedup will be substantially
improved.

3.3 LM Head Router
As mentioned in Section 3.2, for draft models with
large vocabularies, LM head constitutes the major
part of drafting latency. We propose the LM head
router, aiming to group the LM head and then acti-
vate only a subset of LM head parameters during
drafting, as demonstrated in Figure 5.

Assuming a LLM with a vocabulary size V , we
divide the LM head equally into N groups, each
with a vocabulary size of v = V/N . We utilize a
router to select which group to activate. The output
of router can be outlined as follows:

prouter = Softmax(W2(act(W1h) + h)),

W2 ∈ RN×d,W1 ∈ Rd×d,
(7)

where h denotes the hidden states of draft model,
d is the hidden size.

Let p(x), q(x) denote the predicted and target
distribution, and pgroup(x

n) denote the probability
distribution within a specific group n. After select-
ing a particular group, the softmax probability is
calculated by logits in this group, independent of
the logits in other groups.

Then the final distribution with router should be

p(x) = prouter(n) · pgroup(xn). (8)

For each group,
∑

pgroup(x
n) = 1, and for router

we have
∑

prouter(n) = 1. Therefore, the final
p(x) is normalized.

5584

hidden states
probabilities

router

activated LM head params

non-activated params

(a) Vanilla LM head (b) LM head with router

…

Figure 5: Demonstration of LM head router in draft
model. With the router, we only output probabilities of
one or multiple subsets of vocabulary.

The training target of LM head router is the
sum of target probabilities in each group, namely
qrouter(n) =

∑
qgroup(x

n). We use cross-entropy
as the loss function:

Lrouter = −
∑

qrouter(n) log prouter(n). (9)

It is evident that, although the LM head router
reduces the latency of the draft model, it comes at
the cost of a slight decrease in acceptance length τ
due to imperfect routing accuracy. Based on Equa-
tions (5) and (6), the LM head router gets its best
performance when 1) the LM head accounts for
a significant portion of the latency of draft model
2) the latency ratio between the draft model and
the target model is substantial. Therefore, we only
apply the LM head router to models with large vo-
cabularies (Qwen2.5, Llama3) and relatively small
sizes (7B, 14B).

We adopt a two-stage training strategy, where
we first train the draft model following the standard
training procedure (either single-step or multi-step),
and then fix the weights of draft model and train
the router separately. For further discussion, please
refer to Appendix F.

4 Experiments

In this section, we first introduce the experimental
setup, then discuss the overall effectiveness of our
method, and finally present the ablation studies on
CSRA and LM head router.

4.1 Experimental Setup
Target LLMs. We choose Llama3-Instruct-
8B/70B(Grattafiori et al., 2024), Llama2-chat-
7B/13B(Touvron et al., 2023b) and Qwen2.5-
Instruct-7B/14B(Yang et al., 2024) as our target
models.

Tasks. We choose multiple datasets covering three
tasks, including MT-Bench(Zheng et al., 2023) for
multi-turn dialogue, GSM8K(Cobbe et al., 2021)
for mathematical reasoning, and HumanEval(Chen
et al., 2021) for code generation. For 7B/14B mod-
els, experiments are conducted with batch size of 1
on a single NVIDIA A6000 48G GPU. For Llama3-
70B-Instruct, we use 4×A6000 GPUs due to mem-
ory requirements.
Metrics. Since CORAL is a lossless speculative
decoding strategy, it is not necessary to measure
the generation quality. For acceleration, we use
two metrics to evaluate the performance:

• Speedup Ratio: the actual speedup ratio com-
pared to vanilla decoding.

• Acceptance Length τ : the average number of
new tokens generated per drafting-verification
cycle.

Comparisons. We use vanilla decoding as the
baseline (1.00×) to measure the speedup ratio. We
primarily compare CORAL with the latest lossless
speculative decoding methods, including EAGLE,
EAGLE-2, and HASS. Since EAGLE is already
one of the fastest speculative decoding methods,
we choose EAGLE as the speculative decoding
baseline and do not compare with other methods
with lower speedup ratios.
Implementation. Our implementation is based
on the open source repositories of HASS1 and
EAGLE-22, and the settings are primarily iden-
tical to those of them. All models are trained with
ShareGPT dataset for 20 epochs with batch size
of 2 per GPU. For HASS and CORAL, the default
step for training is set to 3. Our system prompt for
Llama3 is slightly different from that of EAGLE,
please refer to Appendix E for detailed discussion.
For inference, we employ a tree depth of 6 and
select 60 candidate tokens for all models.

4.2 Effectiveness and Ablation Studies

4.2.1 Effectiveness
We present the acceptance lengths τ and speedup
ratios of three datasets in Table 2. The results show
that CSRA achieves the best performance in both τ
and speedup ratio (SR) in all experiments we have
tested, surpassing EAGLE, EAGLE-2, and HASS.
The advantages of CSRA are more pronounced for

1https://github.com/HArmonizedSS/HASS
2https://github.com/SafeAILab/EAGLE

5585

MT-bench HumanEval GSM8K Average
τ / SR τ / SR τ / SR τ / SR

model method T=0 T=1 T=0 T=1 T=0 T=1 T=0

L2-13B

EAGLE 3.93/3.04× 3.64/2.65× 4.51/3.47× 4.24/3.13× 4.01/3.10× 3.84/2.83× 4.15/3.20×
EAGLE-2 4.80/3.16× 4.68/3.06× 5.59/3.75× 5.41/3.60× 4.98/3.38× 4.84/3.25× 5.12/3.43×

HASS 5.20/3.42× 5.02/3.26× 5.99/4.01× 5.79/3.86× 5.32/3.60× 5.24/3.51× 5.50/3.68×
CORAL 5.25/3.45× 5.10/3.32× 6.06/4.07× 5.90/3.93× 5.39/3.65× 5.25/3.51× 5.57/3.72×

L2-7B

EAGLE 3.80/2.67× 3.62/2.37× 4.29/3.04× 3.96/2.60× 3.84/2.73× 3.74/2.48× 3.87/2.81×
EAGLE-2 4.68/2.89× 4.45/2.70× 5.34/3.35× 5.02/3.11× 4.70/2.98× 4.67/2.89× 4.91/3.07×

HASS 5.02/3.09× 4.77/2.88× 5.71/3.58× 5.35/3.30× 5.11/3.25× 4.99/3.10× 5.28/3.31×
CORAL 5.09/3.13× 4.86/2.94× 5.73/3.58× 5.48/3.40× 5.12/3.25× 5.05/3.13× 5.31/3.32×

L3-70B

EAGLE 2.87/2.24× 2.67/2.06× 3.73/2.93× 3.53/2.74× 3.46/2.71× 3.26/2.52× 3.35/2.63×
EAGLE-2 4.08/2.70× 3.91/2.61× 4.95/3.31× 4.89/3.27× 4.03/2.70× 3.73/2.50× 4.35/2.90×

HASS 4.10/2.71× 4.00/2.65× 5.23/3.49× 5.10/3.40× 4.12/2.76× 3.83/2.56× 4.48/2.99×
CORAL 4.23/2.79× 4.13/2.72× 5.31/3.54× 5.19/3.46× 4.34/2.90× 3.91/2.61× 4.63/3.08×

L3-8B

EAGLE 2.63/1.65× 2.40/1.41× 3.65/2.29× 3.29/1.92× 3.47/2.18× 3.22/1.89× 3.25/2.04×
EAGLE-2 4.16/2.28× 3.84/2.08× 4.78/2.61× 4.64/2.50× 4.21/2.32× 3.94/2.13× 4.38/2.40×

HASS 4.48/2.45× 4.12/2.21× 5.31/2.89× 5.12/2.76× 4.56/2.51× 4.18/2.28× 4.78/2.62×
CORAL 4.57/2.50× 4.15/2.24× 5.43/2.95× 5.28/2.83× 4.70/2.58× 4.39/2.38× 4.90/2.68×

CORAL w/ r. 4.26/2.63× 3.92/2.39× 5.22/3.21× 5.03/3.07× 4.42/2.76× 4.12/2.53× 4.63/2.87×

Q2.5-14B

EAGLE 2.63/1.83× 2.44/1.62× 3.31/2.31× 3.12/2.10× 3.62/2.52× 3.46/2.33× 3.19/2.22×
EAGLE-2 4.08/2.36× 3.76/2.15× 5.01/2.89× 4.85/2.78× 4.62/2.69× 4.58/2.65× 4.57/2.65×

HASS 4.52/2.59× 4.12/2.35× 5.50/3.18× 5.37/3.07× 5.03/2.92× 4.91/2.83× 5.02/2.90×
CORAL 4.56/2.62× 4.13/2.35× 5.64/3.26× 5.40/3.09× 5.16/3.00× 5.12/2.95× 5.12/2.96×

CORAL w/ r. 4.26/2.74× 3.88/2.46× 5.31/3.44× 5.12/3.28× 4.80/3.14× 4.72/3.05× 4.79/3.11×

Q2.5-7B

EAGLE 2.53/1.56× 2.25/1.27× 3.04/1.87× 2.79/1.58× 3.32/2.05× 3.00/1.72× 2.96/1.83×
EAGLE-2 3.91/2.13× 3.45/1.86× 4.62/2.53× 4.36/2.35× 4.23/2.33× 4.07/2.21× 4.25/2.33×

HASS 4.15/2.26× 3.65/1.96× 4.96/2.71× 4.74/2.55× 4.53/2.49× 4.35/2.35× 4.55/2.49×
CORAL 4.22/2.30× 3.83/2.05× 5.09/2.78× 4.86/2.62× 4.67/2.57× 4.50/2.44× 4.66/2.55×

CORAL w/ r. 4.02/2.50× 3.62/2.21× 4.86/3.05× 4.57/2.81× 4.38/2.76× 4.16/2.58× 4.42/2.77×

Table 2: Acceptance lengths τ and speedup ratio (SR) of different methods on MT-bench, HumanEval, and GSM8K
datasets with temperature T ∈ {0, 1}. The best results are in bold, and some minor advantages may be obscured
due to rounding. We also calculate the average τ and SR under T = 0 for a more direct comparison. L2, L3,
Q2.5 represents Llama2-Chat, Llama3-Instruct, and Qwen2.5-Instruct, respectively. As clarified in Section 3.3,
we apply LM head router for relatively small LLMs with large vocabularies (denoted as CORAL w/ r.), such as
Qwen2.5-7B/14B and Llama3-8B. For Llama2 series and Llama3-70B, we use CSRA only.

LLMs with larger vocabularies, whereas the bene-
fits are less significant for earlier models such as
Llama2. For LM head router, we set the group num-
ber to 16 and choose the top-2 groups for the best
performance. Although the router sacrifices some
acceptance length, the overall speedup ratio bene-
fits from reduced latency and shows a considerable
increase.

4.2.2 Ablation Study on CSRA
We conduct a more detailed comparative analysis
with HASS under different training steps. Accord-
ing to HASS, further increases in the number of
training steps (i.e., training steps ≥ 5) do not nec-
essarily lead to improvements in acceptance length.
Therefore, we focus our comparison on the cases
where the number of training steps is set to 2, 3
(default), and 4.

62

64

66

68

70

0-α 1-α 2-α 3-α 4-α 5-α

Llama3-8B-Instruct T=0

HASS CSRA

59

61

63

65

67

0-α 1-α 2-α 3-α 4-α 5-α

Llama3-8B-Instruct T=1

HASS CSRA

Figure 6: Acceptance rates in MT-bench dataset. Here
n-α denotes the acceptance rate of the n-th token.

The results summarized in Table 3 demon-
strate that CSRA consistently outperforms HASS
with the same number of training steps. Further-
more, from the perspective of training cost, CSRA
achieves a performance comparable to HASS
(step=4) using only 2 training steps, demonstrat-
ing that CSRA offers a substantial advantage in

5586

MT-bench HumanEval GSM8K Average
step HASS CSRA HASS CSRA HASS CSRA HASS CSRA

2 4.41/2.41× 4.53/2.48× 5.24/2.86× 5.35/2.90× 4.50/2.47× 4.60/2.52× 4.72/2.58× 4.83/2.63×
3 4.48/2.45× 4.57/2.50× 5.31/2.89× 5.43/2.95× 4.56/2.51× 4.70/2.58× 4.78/2.62× 4.90/2.68×
4 4.46/2.44× 4.58/2.51× 5.39/2.93× 5.55/3.00× 4.58/2.54× 4.70/2.57× 4.81/2.64× 4.94/2.69×

Table 3: Acceptance length and speedup ratio of Llama3-8B under different alignment steps.

terms of training efficiency. We also compare the
acceptance rates α of HASS and CSRA at different
timesteps during inference, as shown in Figure 6.
The results show that CSRA generally outperforms
HASS at different timesteps.

4.2.3 Ablation Study on LM Head Router
The LM head router has two hyperparameters: the
total number of groups N , and the number of top-
n groups to activate during inference. A larger
group number, although leading to activating fewer
parameters, would increase the difficulty of training
and damage accuracy. Similarly, how many groups
to activate is also a trade-off between speed and
accuracy. We perform a grid search over these
two hyperparameters in the MT-bench dataset with
Llama3-8B, and the results are shown in Table 4.

CORAL T=0

N top1 top2 top3 top4 top6 top8

N/A 2.50× - - - - -
4 2.60× 2.46× - - - -
8 2.62× 2.61× 2.54× - - -
16 2.53× 2.63× 2.60× 2.57× - -
32 2.41× 2.59× 2.60× 2.61× 2.56× -
64 2.33× 2.51× 2.55× 2.57× 2.57× 2.53×

EAGLE-2 T=0

N top1 top2 top3 top4 top6 top8

N/A 2.28× - - - - -
4 2.44× 2.29× - - - -
8 2.40× 2.39× 2.33× - - -
16 2.30× 2.41× 2.39× 2.36× - -
32 2.24× 2.37× 2.40× 2.38× 2.35× -
64 2.18× 2.33× 2.37× 2.37× 2.37× 2.33×

Table 4: Speedup of Llama3-8B with LM head router on
MT-bench dataset. We group the LM head parameters
into N groups and selectively activate top-n of them.
N/A denotes the results without LM head router.

The results show that our method consistently
yields significant improvements, regardless of
whether multi-step training is employed. For
CORAL, dividing the LM head into 16 groups and
activating the top-2 groups during inference brings

the best speedup performance. Since the optimal
setting may vary across different LLMs and can-
not be easily estimated, we recommend empirical
studies to identify the optimal configuration.

Let us discuss the effectiveness of the LM head
router from another aspect using Llama3-8B. Since
the number of activated LM head groups may vary
due to tree decoding, we can estimate the latency of
the draft model based on the ratio between accep-
tance length and speedup. Specifically, according
to Table 1, the latency of the draft model is approxi-
mately 10% that of the target model. Therefore, ide-
ally (assuming L′

t = Lt in Equation 1), the ratio be-
tween acceptance length and speedup should be 1.6,
which means that within one drafting-verification
cycle, the target model is invoked once while the
draft model runs six times. However, in practical
scenarios, the latency of the target model increases
by approximately 19% (from 26ms to 31ms) when
inferring 60 tokens in parallel compared to gen-
erating a single token. Taking into account this
factor, the actual ratio between acceptance length
and speedup will increase to approximately 1.8.

Our experiments also confirm this estimation.
Without the LM head router, the ratio between
acceptance length and speedup is approximately
4.90/2.68 ≈ 1.83. In contrast, when the LM
head router is adopted, this ratio decreases to
4.63/2.87 ≈ 1.61. This indicates that the av-
erage latency of the draft model is only (0.6 −
0.22)/0.6 ≈ 63% of its original latency, demon-
strating the efficacy of the LM head router.

5 Related Work

There has been a significant amount of work in ac-
celerating LLMs. Some methods focus on reducing
the number of parameters or memory access, such
as low-bit quantization (Dettmers et al., 2022; Fran-
tar et al., 2023; Xiao et al., 2023; Lin et al., 2024),
and model distillation (Gu et al., 2024; Ko et al.,
2024; Zhong et al., 2024). Recently, some stud-
ies have also explored activating only a subset of
model parameters during inference to reduce mem-
ory access cost (Du et al., 2022; Fedus et al., 2022).

5587

Speculative decoding (Chen et al., 2023; Leviathan
et al., 2023) leverages the memory-bound nature of
decoder-only LLMs and achieves lossless accelera-
tion using a drafting-verification framework.

Research on speculative decoding has primarily
focused on two areas: 1) drafter design, 2) verifi-
cation strategy. For drafter design, Medusa (Cai
et al., 2024) attaches multiple heads to the origi-
nal LLM and predict multiple subsequent tokens
one time. Hydra (Ankner et al., 2024) improves
Medusa by enhancing correlations between draft
heads. Clover (Xiao et al., 2024) introduces an
RNN-based draft head. Some methods utilize more
information from target model to improve align-
ment, EAGLE (Li et al., 2024b) combines the out-
put token and last hidden states of target LLMs
to resolve the uncertainty in drafter’s prediction.
GLIDE (Du et al., 2024) reuses the KV cache of
target LLMs. For the verification strategy, Hu and
Huang (2024); Sun et al. (2024) find that the accep-
tance length of speculative sampling is not optimal
and take into account the probability of subsequent
tokens. SpecInfer (Miao et al., 2024) proposes de-
coding tree for verification. Sequoia (Chen et al.,
2024), EAGLE-2 (Li et al., 2024a), and OPT-tree
(Wang et al., 2024) adopts a dynamic tree structure.

6 Conclusion

This paper proposes CORAL, an efficient spec-
ulative decoding method. We introduce Cross-
Step Representation Alignment, which effectively
mitigates training-inference misalignment and im-
proves the accuracy of speculation. Additionally,
we propose the LM head router, a simple but effec-
tive module designed to reduce the latency of the
draft model. We compare CORAL with other state-
of-the-art methods on various LLMs and datasets,
and the results show that CORAL surpasses exist-
ing methods, such as EAGLE-2 and HASS, demon-
strating the effectiveness of our method.

Limitations

There are mainly two limitations in this work.
Firstly, the introduction of CSRA loss may lead
to a slight increase in regression loss, which re-
sults in a decrease in the acceptance length if the
draft model is trained with a single step. This issue
can be addressed by multi-step training. Secondly,
adopting a large vocabulary is a trend in the devel-
opment of modern LLMs, and our LM head router
is specifically designed for LLMs with large vocab-

ularies. It might not be suitable for models with
small vocabularies, as the computational overhead
of LM head is limited in the overall wall time of
speculative decoding. In this case, the time saved
by the draft model cannot compensate for the loss
in acceptance length.

Acknowledgments

We would like to thank Lenovo Model Factory
team for providing computing resources. Special
thanks to Xiaoyue Mi from the Institute of Com-
puting Technology, Chinese Academy of Sciences,
Penghui Yang from Nanyang Technological Uni-
versity, and Henry Zheng from Tsinghua University
for their valuable suggestions during the writing of
this paper.

References
Zachary Ankner, Rishab Parthasarathy, Aniruddha

Nrusimha, Christopher Rinard, Jonathan Ragan-
Kelley, and William Brandon. 2024. Hydra:
Sequentially-dependent draft heads for medusa de-
coding. arXiv preprint arXiv:2402.05109.

Tianle Cai, Yuhong Li, Zhengyang Geng, Hongwu Peng,
Jason D. Lee, Deming Chen, and Tri Dao. 2024.
Medusa: Simple LLM inference acceleration frame-
work with multiple decoding heads. In Proceedings
of the International Conference on Machine Learn-
ing.

Charlie Chen, Sebastian Borgeaud, Geoffrey Irving,
Jean-Baptiste Lespiau, Laurent Sifre, and John
Jumper. 2023. Accelerating large language model
decoding with speculative sampling. arXiv preprint
arXiv:2302.01318.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan,
Henrique Pondé de Oliveira Pinto, et al. 2021. Eval-
uating large language models trained on code. arXiv
preprint arXiv:2107.03374.

Zhuoming Chen, Avner May, Ruslan Svirschevski,
Yuhsun Huang, Max Ryabinin, Zhihao Jia, and
Beidi Chen. 2024. Sequoia: Scalable, robust, and
hardware-aware speculative decoding. arXiv preprint
arXiv:2402.12374.

Sumit Chopra, Raia Hadsell, and Yann LeCun. 2005.
Learning a similarity metric discriminatively, with
application to face verification. In Proceedings of the
Conference on Computer Vision and Pattern Recog-
nition.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, Christopher Hesse, and John Schulman.
2021. Training verifiers to solve math word prob-
lems. arXiv preprint arXiv:2110.14168.

5588

Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra,
and Christopher Ré. 2022. Flashattention: Fast and
memory-efficient exact attention with io-awareness.
In Advances in Neural Information Processing Sys-
tem.

Tim Dettmers, Mike Lewis, Younes Belkada, and Luke
Zettlemoyer. 2022. LLM.int8(): 8-bit matrix multi-
plication for transformers at scale.

Cunxiao Du, Jing Jiang, Yuanchen Xu, Jiawei Wu,
Sicheng Yu, Yongqi Li, Shenggui Li, Kai Xu, Liqiang
Nie, Zhaopeng Tu, and Yang You. 2024. GliDe with
a cape: A low-hassle method to accelerate specula-
tive decoding. In Proceedings of the International
Conference on Machine Learning.

Nan Du, Yanping Huang, Andrew M. Dai, Simon Tong,
Dmitry Lepikhin, Yuanzhong Xu, Maxim Krikun,
et al. 2022. GLaM: Efficient scaling of language
models with mixture-of-experts. In Proceedings of
the International Conference on Machine Learning.

William Fedus, Barret Zoph, and Noam Shazeer. 2022.
Switch transformers: Scaling to trillion parameter
models with simple and efficient sparsity. Journal of
Machine Learning Research.

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and
Dan Alistarh. 2023. GPTQ: Accurate post-training
quantization for generative pre-trained transformers.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri,
Abhinav Pandey, Abhishek Kadian, et al. 2024.
The llama 3 herd of models. arXiv preprint
arXiv:2407.21783.

Yuxian Gu, Li Dong, Furu Wei, and Minlie Huang.
2024. MiniLLM: Knowledge distillation of large
language models. In Proceedings of the International
Conference on Learning Representations.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch,
Elena Buchatskaya, et al. 2022. Training compute-
optimal large language models. arXiv preprint
arXiv:2203.15556.

Zhengmian Hu and Heng Huang. 2024. Accelerated
speculative sampling based on tree monte carlo. In
Proceedings of the International Conference on Ma-
chine Learning.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B.
Brown, Benjamin Chess, Rewon Child, Scott Gray,
Alec Radford, Jeffrey Wu, and Dario Amodei. 2020.
Scaling laws for neural language models. arXiv
preprint arXiv:2001.08361.

Jongwoo Ko, Sungnyun Kim, Tianyi Chen, and Se-
Young Yun. 2024. Distillm: Towards streamlined dis-
tillation for large language models. In Proceedings of
the International Conference on Machine Learning.

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Red-
field, Michael Collins, Ankur P. Parikh, Chris Alberti,

Danielle Epstein, Illia Polosukhin, Jacob Devlin, Ken-
ton Lee, Kristina Toutanova, Llion Jones, Matthew
Kelcey, Ming-Wei Chang, Andrew M. Dai, Jakob
Uszkoreit, Quoc Le, and Slav Petrov. 2019. Natu-
ral questions: a benchmark for question answering
research. Trans. Assoc. Comput. Linguistics.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying
Sheng, Lianmin Zheng, Cody Hao Yu, Joseph Gon-
zalez, Hao Zhang, and Ion Stoica. 2023. Efficient
memory management for large language model serv-
ing with pagedattention. In Proceedings of the29th
Symposium on Operating Systems Principles.

Yaniv Leviathan, Matan Kalman, and Yossi Matias.
2023. Fast inference from transformers via spec-
ulative decoding. In Proceedings of the International
Conference on Machine Learning.

Yuhui Li, Fangyun Wei, Chao Zhang, and Hongyang
Zhang. 2024a. EAGLE-2: Faster inference of lan-
guage models with dynamic draft trees. In Proceed-
ings of the Conference on the Empirical Methods in
Natural Language Processing.

Yuhui Li, Fangyun Wei, Chao Zhang, and Hongyang
Zhang. 2024b. EAGLE: Speculative sampling re-
quires rethinking feature uncertainty. In Proceedings
of the International Conference on Machine Learn-
ing.

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Wei-
Ming Chen, Wei-Chen Wang, Guangxuan Xiao,
Xingyu Dang, Chuang Gan, and Song Han. 2024.
AWQ: activation-aware weight quantization for on-
device LLM compression and acceleration. In Pro-
ceedings of the Annual Conference on Machine
Learning and Systems.

Xupeng Miao, Gabriele Oliaro, Zhihao Zhang, Xinhao
Cheng, Zeyu Wang, engxin Zhang, Rae Ying Yee
Wong, Alan Zhu, Lijie Yang, Xiaoxiang Shi, Chu-
nan Shi, Zhuoming Chen, Daiyaan Arfeen, Reyna
Abhyankar, and Zhihao Jia. 2024. SpecInfer: Accel-
erating large language model serving with tree-based
speculative inference and verification. In Proceed-
ings of the ACM International Conference on Archi-
tectural Support for Programming Languages and
Operating Systems.

Ramesh Nallapati, Bowen Zhou, Cícero Nogueira dos
Santos, Çaglar Gülçehre, and Bing Xiang. 2016.
Abstractive text summarization using sequence-to-
sequence rnns and beyond. In Proceedings of the
20th SIGNLL Conference on Computational Natural
Language Learning, CoNLL 2016, Berlin, Germany,
August 11-12, 2016.

OpenAI. 2023. GPT-4 technical report. arXiv preprint
arXiv:2303.08774.

Florian Schroff, Dmitry Kalenichenko, and James
Philbin. 2015. FaceNet: A unified embedding for
face recognition and clustering. In Proceedings of the
Conference on Computer Vision and Pattern Recog-
nition.

5589

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural machine translation of rare words with
subword units. In Proceedings of the Annual Meeting
of the Association for Computational Linguistics.

Ziteng Sun, Uri Mendlovic, Yaniv Leviathan, Asaf
Aharoni, Ahmad Beirami, Jae Hun Ro, and
Ananda Theertha Suresh. 2024. Block verification
accelerates speculative decoding. arXiv preprint
arXiv:2403.10444.

Chaofan Tao, Qian Liu, Longxu Dou, Niklas Muen-
nighoff, Zhongwei Wan, Ping Luo, Min Lin, and
Ngai Wong. 2024. Scaling laws with vocabulary:
Larger models deserve larger vocabularies.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann
Dubois, Xuechen Li, Carlos Guestrin, Percy Liang,
and Tatsunori B. Hashimoto. 2023. Stanford alpaca:
An instruction-following llama model.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal
Azhar, Aurelien Rodriguez, Armand Joulin, Edouard
Grave, and Guillaume Lample. 2023a. Llama: Open
and efficient foundation language models. arXiv
preprint arXiv:2302.13971.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert,
Amjad Almahairi, et al. 2023b. Llama 2: Open foun-
dation and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Aäron van den Oord, Yazhe Li, and Oriol Vinyals. 2018.
Representation learning with contrastive predictive
coding. arXiv preprint arXiv:1807.03748.

Changhan Wang, Kyunghyun Cho, and Jiatao Gu. 2020.
Neural machine translation with byte-level subwords.
In Proceedings of the AAAI Conference on Artificial
Intelligence.

Jikai Wang, Yi Su, Juntao Li, Qingrong Xia, Zi Ye,
Xinyu Duan, Zhefeng Wang, and Min Zhang. 2024.
Opt-tree: Speculative decoding with adaptive draft
tree structure. arXiv preprint arXiv:2406.17276.

Bin Xiao, Chunan Shi, Xiaonan Nie, Fan Yang, Xi-
angwei Deng, Lei Su, Weipeng Chen, and Bin Cui.
2024. Clover: Regressive lightweight speculative
decoding with sequential knowledge. arXiv preprint
arXiv:2405.00263.

Guangxuan Xiao, Ji Lin, Mickaël Seznec, Hao Wu,
Julien Demouth, and Song Han. 2023. SmoothQuant:
Accurate and efficient post-training quantization for
large language models. In Proceedings of the Inter-
national Conference on Machine Learning.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui,
et al. 2024. Qwen2.5 technical report. arXiv preprint
arXiv:2412.15115.

Lefan Zhang, Xiaodan Wang, Yanhua Huang, and
Ruiwen Xu. 2024. Learning harmonized represen-
tations for speculative sampling. arXiv preprint
arXiv:2408.15766.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,
Zhuohan Li, Dacheng Li, Eric P. Xing, Hao Zhang,
Joseph E. Gonzalez, and Ion Stoica. 2023. Judging
llm-as-a-judge with mt-bench and chatbot arena. In
Advances in Neural Information Processing Systems.

Qihuang Zhong, Liang Ding, Li Shen, Juhua Liu, Bo Du,
and Dacheng Tao. 2024. Revisiting knowledge dis-
tillation for autoregressive language models. In Pro-
ceedings of the Annual Meeting of the Association
for Computational Linguistics.

A Hyperparameters in CSRA Loss

The temperature of LCSRA is set to 0.07, consistent
with some previous works such as CLIP (Zheng
et al., 2023).

Then we set wreg to 0.5, half of EAGLE’s origi-
nal setting. The weight of CSRA loss is adjusted
according to different target models, making the
values of wCSRALCSRA and wregLreg roughly the
same. In this way, the loss imposed on representa-
tion is approximately the same as EAGLE/HASS
training.

Based on the values of wregLreg, we choose
wCSRA = 0.2 for Qwen2.5-7B, wCSRA =
0.15 for Llama3-8B, wCSRA = 0.1 for Llama3-
70B, Qwen2.5-14B and Llama2-7B, and 0.05 for
Llama2-13B.

B Training Details

We use a fixed dataset of 68,000 examples from
ShareGPT3 as our training set, which is identical
to EAGLE and HASS. CORAL requires approx-
imately 2 days to train a 7B draft model under
default settings (training step=3, epoch=20). It
is worth noting that draft models with large vo-
cabularies such as Llama3 and Qwen2.5 require
more GPU memory compared to Llama2, so we use
4×NVIDIA H20-96G GPUs for training. Training
large draft models such as Llama3-70B on A100-
40G GPU may result in out-of-memory issues un-
der our experimental settings. We recommend us-
ing GPUs with larger memory capacities or choos-
ing other alternatives (e.g., reducing the batch size,
model parallelism).

3https://huggingface.co/datasets/Aeala/ShareGPT_Vicuna
_unfiltered

5590

C Single-step Training with CSRA

We do not recommend using the CSRA loss in the
context of single-step training. Our empirical find-
ings suggest that introducing the CSRA loss may
lead to a slight increase in regression loss, likely
due to the mismatch between the two optimization
objectives. Specifically, the CSRA loss focuses
solely on the angular relationships between the out-
put features, without imposing any constraints on
the feature norm, whereas the regression loss aims
to learn features that are identical to the target. The
increase in regression loss may damage the accep-
tance length. We present the results of CSRA with
single-step training in Table 5.

MT-bench HumanEval GSM8K
EAGLE-2 4.16 4.78 4.21

CSRA Step1 4.10 4.70 4.10

Table 5: Acceptance length of Llama3-8B EAGLE-2
and CORAL model with single-step training.

A plausible explanation for this phenomenon is
that in single-step training, the draft model lacks
exposure to subsequent steps, therefore the L1 dis-
tance between the prediction and target feature is
relatively more critical. In contrast, for multi-step
training, the draft model learns to adapt to subse-
quent steps, making the discriminative power of
different representations and the multi-step consis-
tency more crucial.

D Discussion on the discrepancies
between different training steps

To better illustrate the discrepancies between repre-
sentations from multiple training steps, we measure
the InfoNCE between features from different steps.
Please note that absolute distance metrics (such as
L1 or cosine distance) are not ideal measurements,
as absolute distances fail to represent the distin-
guishability between different features. In contrast,
InfoNCE transforms cosine similarity into a proba-
bility distribution, effectively reflecting the relative
distances between features, which is more crucial
for prediction accuracy. Therefore, InfoNCE serves
as a more appropriate metric.

We randomly select 100 samples from ShareGPT
and evaluate the differences in output features
across 4 steps. The following are the InfoNCE
between features of different steps for EAGLE-2,
HASS, and CSRA. For instance, the first column

EAGLE-2 step 0 step 1 step 2 step 3
step 0 - - - -
step 1 1.5668 - - -
step 2 1.8415 1.4843 - -
step 3 2.0391 1.6559 1.4876 -

HASS step 0 step 1 step 2 step 3
step 0 - - - -
step 1 1.4577 - - -
step 2 1.6117 1.3816 - -
step 3 1.7290 1.4876 1.3924 -

CSRA step 0 step 1 step 2 step 3
step 0 - - - -
step 1 0.9545 - - -
step 2 1.1044 0.8395 - -
step 3 1.2179 0.9381 0.8173 -

Table 6: InfoNCE between features from different train-
ing steps. The temperature is set to 0.07, which is
aligned with our setting in CSRA training.

represents the InfoNCE between the output fea-
tures of step 1 and step 2 to 4. Clearly, the differ-
ences in features between steps increase gradually
as the number of steps grows. Since HASS em-
ploys multi-step training, the differences between
steps are smaller compared to EAGLE-2. More-
over, our method significantly reduces the discrep-
ancies between different steps, achieves higher sim-
ilarity between positive features and enhances the
discriminative power of negative features, ensuring
relatively consistent performance across all steps
during inference.

E Discussion on System Prompt

EAGLE utilizes the system prompt from the official
Llama2-chat example4:

sys_p1 = You are a helpful, respectful and honest
assistant. Always answer as helpfully as possible,
while being safe. Your answers should not include
any harmful, unethical, racist, sexist, toxic, dan-
gerous, or illegal content. Please ensure that your
responses are socially unbiased and positive in na-
ture.\n\nIf a question does not make any sense, or
is not factually coherent, explain why instead of an-
swering something not correct. If you don’t know
the answer to a question, please don’t share false
information.

The same system prompt is also used in Llama3
drafter training. However, it appears that Llama3

4https://huggingface.co/blog/llama2

5591

Train Test MT-bench HumanEval GSM8K

sys_p2
sys_p2 4.16 4.78 4.21
sys_p1 4.11(-0.05) 4.73(-0.05) 4.27(+0.06)

sys_p1
sys_p1 4.18 4.78 4.38
sys_p2 3.87(-0.31) 4.17(-0.61) 3.93(-0.45)

open source
(sys_p1)

sys_p1 4.24 4.92 4.34
sys_p2 3.94(-0.30) 4.67(-0.25) 3.91(-0.43)

Table 7: Acceptance lengths of EAGLE-2 for Llama3-8B-Instruct with different system prompts.

does not have a default system prompt. Never-
theless, we find the system prompt in the offi-
cial Llama3.3 example5 is simpler and also widely
adopted:

sys_p2 = You are a helpful assistant

The system prompt has a certain impact on the
acceptance length and speedup ratio. To investigate
this, we compared the open-source Llama3-8B-
Instrct draft model in EAGLE official repository
(trained with sys_p1) and draft models trained by
ourselves using sys_p1 and sys_p2. Our results in
Table 7 show that switching between different sys-
tem prompts might lead to a decrease in speedup
and acceptance length on the MT-Bench and Hu-
maneval datasets, while GSM8K is an exception.

Upon closer inspection of the GSM8K results,
we find that when using sys_p1, most responses
start with a sentence similar to "Let’s break this
down step by step", whereas when using sys_p2,
the beginning if outputs will be more diverse. This
suggests that the speedup ratio using sys_p1 might
be artificially inflated in some cases.

Furthermore, since longer system prompts pro-
vide the draft model with more context, we suppose
that detailed prompts and increased information
could potentially improve the performance of draft
model when the system prompt of training and
inference is aligned. However, when the system
prompts are not consistent, training the model with
a more detailed system prompt may lead to greater
performance degradation.

To obtain a more generalizable draft model, we
use sys_p2 in all experiments with Llama3-Instruct
8B/70B. We believe a more general and simple
system prompt would reflect the draft model’s true
capabilities more accurately.

5https://github.com/meta-llama/llama-
models/blob/main/models/llama3_3/prompt_format.md

F Discussion on LM Head Router

In this section, we will discuss some issues of LM
head router.
Tree decoding. In tree decoding, each timestep
contains multiple candidate tokens. Since each can-
didate requires a different set of LM head groups,
we need to activate all the involved groups, which
may bring additional latency. In some cases, we
even need to activate the entire LM head parame-
ters (e.g., if we take the top two groups and top 10
candidates, the worst-case scenario might require
activating 20 groups).

This issue can be addressed through appropri-
ate grouping strategies. First, dividing the tokens
into more groups helps alleviate the problem. For
instance, with a total of 32 groups, selecting the
top 10 candidates from the top 2 groups ensures
that the LM head parameters are not fully activated,
even in the worst-case scenario. Second, modern
LLMs utilize BPE (Sennrich et al., 2016) or BBPE
(Wang et al., 2020) for tokenization, where higher-
frequency tokens tend to be concentrated in groups
with smaller indices. As a result, such an extreme
scenario is unlikely to occur in practice.
Two-stage training. There are mainly two reasons
for adopting two-stage training. Firstly, the two-
stage training strategy ensures that the router serves
as a plug-and-play module, without affecting the
standalone usage of the first-stage model, thereby
providing greater flexibility. Secondly, since the
number of groups is a hyperparameter that may
require multiple experiments to determine the op-
timal setting, two-stage training allows us to store
the output of draft model and train the router only,
making it easier for parameter tuning.
Backends. Although many researches on specu-
lative decoding measure the speedup ratio on Py-
Torch, we do not consider PyTorch to be a good
backend. For example, as shown in Table 2, the
FP16 latency of Llama3-8B-draft head on RTX
A6000 GPU is 1.51ms, which is close to the the-

5592

Alpaca Natural Q. CNN/DM
model method τ SR τ SR τ SR

L2-7B
EAGLE-2 4.51 2.88× 4.10 2.61× 4.12 2.40×

HASS 4.87 3.11× 4.41 2.80× 4.44 2.57×
CORAL 4.96 3.15× 4.44 2.84× 4.54 2.62×

L3-8B

EAGLE-2 4.33 2.39× 3.37 1.86× 3.82 1.98×
HASS 4.77 2.56× 3.59 1.98× 4.06 2.16×

CORAL 4.79 2.58× 3.63 2.00× 4.16 2.20×
CORAL w/ r. 4.49 2.74× 3.28 2.06× 3.61 2.16×

Q2.5-7B

EAGLE-2 3.93 2.17× 3.13 1.73× 3.33 1.78×
HASS 4.19 2.31× 3.30 1.82× 3.57 1.90×

CORAL 4.29 2.35× 3.38 1.86× 3.72 1.97×
CORAL w/ r. 4.11 2.60× 3.15 1.99× 3.28 1.99×

Table 8: Additional results on Alpaca, Natural Questions and CNN/DM dataset. We provide the results on Llama2-
7B-chat, Llama3-8B-Instruct and Qwen2.5-7B-Instruct. The temperature is set to 0.

oretical time of 1.3ms (1002M memory access
with 768GB/s bandwidth). However, for other
parts, which mainly consists of transformer, the
actual time is much higher than the theoretical time
(1.07ms vs 0.63ms), achieving only about 60% of
the theoretical performance.

This is a problem inherent to PyTorch. For in-
stance, in Qwen2 speed benchmark6, the inference
speed of 7B model on A100 80G GPU is only 38
token/s (i.e., 26ms/token), which is far from the
theoretical time of about 7ms (estimated by 14G
memory access with 2TB/s bandwidth). This prob-
lem can be mitigated by using a more optimized
backend, such as vLLM (Kwon et al., 2023).

Therefore, the performance of the LM head
router may be affected by the hardware and back-
end conditions. In a well-optimized backend, the
router’s performance will be better than reported
in this paper, as the latency of the LM head will
occupy a larger proportion in the draft model.
Small vocabulary and super large LLMs. Let’s
take Llama3-70B on MT-bench as an example. In
our experiments on CORAL, the time consumption
of the target/draft model is 4105s/561s, meaning
that the draft model accounts for only 12% of the
entire drafting-verification cycle (for Llama3-8B,
this figure is approximately 33%). Although the
LM head of the draft model still constitutes a sig-
nificant portion of the drafting latency, its overall
contribution to the entire cycle is only 5–6% (while
for Llama3-8B, it is nearly 20%). If a router is used,
the time consumption of the target/draft model be-

6https://qwen.readthedocs.io/en/v2.0/benchmark/speed_be
nchmark.html

comes 4477s/440s, resulting in only a 3% reduction
in the entire cycle. However, the acceptance length
decreases from 4.23 to 3.93, a drop of 9.3%, and
the speedup decreases from 2.79× to 2.69×.

A similar conclusion applies to Llama2-7B.
Since the latency of the LM head does not consti-
tute a large part of the total latency, using a router
on Llama2 is not a good choice.

G Additional Experiments

Here we present some additional experimental re-
sults on Alpaca (Taori et al., 2023), Natural Ques-
tions (Kwiatkowski et al., 2019) and CNN/DM
(Nallapati et al., 2016) datasets.

H Licenses of Artifacts

We present the licenses of artifacts related to this
paper in table 9.

models
Llama3 llama3 license
Llama2 llama2 license

Qwen2.5 apache-2.0

datasets

ShareGPT apache-2.0
MT-bench CC-BY-4.0

HumanEval MIT
GSM8K MIT
Alpaca CC-BY-NC-4.0

Natural Questions apache-2.0
CNN/DM apache-2.0

codes
EAGLE/EAGLE2 apache-2.0

HASS not provided

Table 9: Licenses of artifacts

5593

