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Abstract

Multilingual audio-text retrieval (ML-ATR) is
a challenging task that aims to retrieve audio
clips or multilingual texts from databases. How-
ever, existing ML-ATR schemes suffer from in-
consistencies for instance similarity matching
across languages. To address the inconsistency
issue in multilingual audio-text retrieval, we
first identify two intuitive factors that contribute
to inconsistency: misalignment between audio
and multilingual text embeddings, and error
propagation in model optimization. By system-
atically analyzing these factors, we derive theo-
retical weight error upper bounds for quantify-
ing their effects and find that the main source
of inconsistency is the data distribution error
during training. This finding motivates our so-
lution to reduce data distribution errors. We
propose a consistent ML-ATR scheme using
1-to-k contrastive learning and audio-English
co-anchor contrastive learning, aiming to mit-
igate the negative impact of data distribution
error on recall and consistency in ML-ATR.
Experimental results on the translated Audio-
Caps and Clotho datasets show that our scheme
achieves state-of-the-art performance on re-
call and consistency metrics for eight main-
stream languages, including English. Our code
will be available at https://github.com/ATRI-
ACL/ATRI-ACL.

1 Introduction

In an audio-text retrieval (ATR) task, the system
searches for matching audio clips or text captions
in a database based on cross-modality queries (Zhu
et al., 2024; Zhuang et al., 2024). With the conver-
gence of audio and text, ATR techniques have seen
significant advancements in recent years and are
widely applied in content retrieval and multimedia
information retrieval. However, most existing ATR
systems are designed for monolingual retrieval, and
research on multilingual audio-text retrieval (ML-
ATR) remains limited (Yan et al., 2024). The shift

* Yuexian Zou is the corresponding author.

to ML-ATR brings new challenges, particularly in
dealing with high multilingual recall and ensuring
the cross-lingual consistency (Nie et al., 2024) of
multilingual retrieval results.

N ENG I JPN

B DEU [ ZHO
Inconsistency in Rank
— = =
) () () (.
.
| . .
“H N ..
M I N .
N .
- - . . -
S SO N ok ]

Training Evaluate

Figure 1: An illustration of inconsistency issue in
current ML-ATR scheme.

To our knowledge, the existing mainstream ML-
ATR scheme has a model training process as shown
in Fig. 1, which pairs audio with randomly selected
linguistic text in each epoch. This may not allow
the model to learn the embedding space of audio
and multilingual texts very well, which reduces
retrieval recall and makes it difficult to obtain the
same retrieval results for audio and multilingual
text instances in different languages.

In this paper, we theoretically analyze the causes
of the inconsistency problem in ML-ATR. We first
visualize the inconsistency problem in terms of the
modal alignment direction error. The alignment
direction error leads to the gradient error, which
in turn invites the model weights to fail to con-
verge to the optimal weights for multilingual modal
alignment during the training process. We further
heuristically derive theoretical upper bounds on the
weight errors to quantify the adverse effects of in-
consistency on the model weights. We analyze the
composition of the weight error upper bound and
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conclude that the root cause of the error inconsis-
tency is the data distribution error in training.

Based on the theoretical analysis, we propose
a scheme to mitigate the inconsistency of ML-
ATR, called ATRI. ATRI consists of two training
strategies: 1-to-K Contrastive Learning (KCL) for
the retrieval-performance-first scenario, and Audio-
English Co-Anchor Contrastive Learning (CACL)
for the overhead-first scenario. KCL theoretically
eliminates the data distribution errors in each train-
ing epoch, thus achieving state-of-the-art perfor-
mance in recall and consistency metrics. CACL
aligns the other languages with audio and English
text to correct the modal alignment direction and
reduce the data distribution error. Compared to ex-
isting ML-ATR schemes, CACL improves retrieval
recall and consistency while offering advantages
in training time and GPU memory overhead over
KCL.

Our contributions are shown below:

* We analyze the inconsistency in terms of an-
alyzing the modal alignment direction error
and weighting error, and demonstrate an up-
per bound on the weighting error. We further
conclude that the root cause of the inconsis-
tency of existing ML-CLAP schemes lies in
the distribution error of the training data.

* We propose ATRI, which solves the cross-
lingual inconsistency problem in ML-ATR
by reducing the data distribution error and
correcting the modality alignment direction.
ATRI contains the CACL and KCL training
strategies for overhead-first and performance-
first requirements, respectively.

* We evaluate the proposed scheme using the
AudioCaps and Clotho datasets translated by
Deepseek. The results show that ATRI effec-
tively improves recall and consistency in both
monolingual English ATR and ML-ATR tasks,
achieving state-of-the-art performance.

2 Related Work

Audio-text retrieval (ATR) (Lou et al., 2022; Xie
et al., 2024; Xin et al., 2024) is a task that matches
audio with text, which has seen significant advance-
ments and widespread applications in recent years.
The prevailing approach involves constructing a
shared embedding space for audio and text, en-
abling seamless feature alignment and retrieving re-
sults based on similarity rankings. Widely adopted

methods include CLIP-inspired (Yu et al., 2022;
Li et al., 2022) contrastive language-audio per-
taining (CLAP) (Elizalde et al., 2023; Wu et al.,
2022; Guzhov et al., 2022). Wu et al. (Wu et al.,
2023) introduce a feature fusion mechanism and a
keyword-description enhancement strategy to en-
able the CLAP model to handle variable-length
audio inputs and improve performance. Silval et
al. (Silva et al., 2023) propose a framework that
learns an audio understanding model by locking
the language model parameters and employing an
audio-text alignment pretraining objective for fine-
grained audio comprehension. Ghosh et al. (Ghosh
et al., 2023) design modular contrastive loss for dif-
ficult negative samples to enhance the fine-grained
understanding of the CLAP model. In the next year,
Ghosh et al. (Ghosh et al., 2025) further enhance
the model’s understanding of real scene sounds by
rewriting audio description text.

Existing ATR methods predominantly focus on
English-centric monolingual tasks, with few solu-
tions for multilingual scenarios (Yan et al., 2024).
The scarcity of large-scale, accurately annotated
non-English audio-caption datasets has led cur-
rent ML-ATR methods to rely heavily on machine
translation (Tiedemann and Thottingal, 2020; Team
et al., 2022) to convert English datasets into mul-
tilingual versions. This translation-based strategy
(Cousin et al., 2023; Yan et al., 2024) has demon-
strated its effectiveness in enhancing datasets for
multilingual use, significantly improving the recall
performance of ATR systems.

However, existing ML-ATR scheme (Yan et al.,
2024) uses audio-text pairs with randomly selected
languages for training. As analyzed in Sect. 3,
the training method employed presents significant
challenges in achieving convergence to the optimal
weights. This difficulty not only exacerbates issues
related to inconsistent cross-lingual retrieval result,
but also leads to a degradation in the retrieval per-
formance, particularly in terms of both recall and
accuracy.

3 Definition and Inconsistency Analysis

3.1 Formal Definition of ML-ATR

Audio-text retrieval is the task of learning cross-
modality alignment between audio and multilingual
text captions. Contrastive learning (Ru et al., 2023;
Zhuang et al., 2025) has become the most effec-
tive method for learning expressive cross-modality
embedding spaces.
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Denote a dataset D = {(a, ti1, ...tiK)}i]\Ll as
a multilingual audio text retrieval dataset, where
N denotes the size of dataset, K refers the total
language number in the dataset, a; denotes the au-
dio in ¢-th data, ¢;; denotes the k-th language in
i-th data. Given an audio encoder fy(-) and a mul-
tilingual text encoder g4(-), we denote the joint
probability distribution as:

exp (s(fo(ai), 9o (ti))/7) W
S exp (s(fo(az), go () /7))

p(ai, tix) =

exp (s(fo(ai), go(t:))/T)
SN exp (s(fa(ag), go(t5))/7)

plai, ti) = 2)
s(+) denotes the cosine similarity between au-

dio and text embedding. The ideal optimization

function of learning the embedding space is

N K
max Z Z plai, tir)Ea; ) [log p(ai tie)].  (3)
=1 k=1
However, instead of training all the languages of
a piece of data in an epoch, the existing ML-ATR
scheme randomly selects the text of a language to

do the training. For each epoch e, a set of random

numbers Q = {q1,....qn }, ¢ & {1,...K}. The
optimization function they used is formalized as:

Jo o exp(s(fo(ad). gs(tig)/7)
pelonbin) = S (s(Uo(ag). goltia /7). P

N
/ /
max > pe(aistia) ) Eqay 1,y ll0g pe(aistig,)]. (5

i=1

The probability distribution p,(a;, tiq,) of their
scheme is not the same as the original probabil-
ity distribution p(a;, t;x). This results in a model
that does not fit the training data perfectly, making
modality alignment ineffective, which in turn re-
sults in reduced recall and inconsistency problems.

3.2 Analysis of the Inconsistency Issue

We first analyze the issue of inconsistency from
the perspective of modality alignment directional
errors. As shown in Fig. 2, an intuitive example of
modality alignment error is illustrated. Consider
a simple case of bilingual audio-text retrieval, let
the embedding of an audio sample be @, and the

Figure 2: A visual illustration of inconsistency due to
modality alignment errors.

embeddings of the corresponding texts in two lan-
guages be ¢; and t5. Ideally, the audio embedding
a should be aligned with arithmetic mean embed-
ding %(t_{ + t5) (indicated by the green arrow). We
show why the arithmetic mean of multilingual em-
bedding is the optimal alignment direction in Ap-
pendix E. However, in existing ML-ATR schemes,
the audio embedding is only aligned with the text
embedding of a randomly selected language within
each epoch. For instance, if the selected language
is 2, the audio embedding @ will be aligned solely
towards t} (indicated by the red arrow). The angle
between the red and green arrows is the modality
alignment direction error, which makes the audio
and multilingual text modes not well aligned.

Incorrect alignment introduces noise to the gra-
dient, leading to errors between the model weights
and their optimal values, making the model’s re-
trieval recall and consistency metrics degrade. We
give a theoretical weight error upper bound and an-
alyze its composition to mitigate the inconsistency
problem and improve retrieval recall. The detailed
proof can be found in Appendix F.

We assume that the optimization algorithm is
stochastic gradient descent (SGD) (Ru et al., 2025)
to heuristically analyse the upper bound of the
weight error. Given that the number of training
steps per epoch 7', the data distribution obtained by
randomly sampling the language according to the
existing ATR scheme is denoted as pl,, and the orig-
inal data distribution is denoted as p. w’, denotes
the model weight in the 7-th step under the e-th
epoch trained with the data distribution p., whereas
wer denotes the weight that is trained with the data
distribution p. If the gradient VwE(, 4 [log p(a, t)]
is A(q,¢)-Lipschitz (Béthune et al., 2023), then we
have the following inequality for weight error up-
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per bound:

Iwer — wer||

SGT”W(efl)T = Wie—nrll+

n> lp(a,t)

— pe(a, )| Y (0’ gmaz(Wer-1-5)),

(at) =t
(6)
9mazx (W) = MAaZ(q,t) ‘ |VW]E(a,t) [lOg p(a’ t)] | |7 (7)
a=1+nY p(a,)Aay- ®)

(ast)

Note: The weight w consists of the parameter
0 for the audio encoder fy and the parameter ¢ for
the multilingual text encoder g4 in ML-ATR. The
data distributions p and p/, correspond to the Eq.
(2) and (4), respectively. For simplicity, we denote
(a,t) as all audio-text pairs in the batch of the 7T'-
th step, where the text ¢ can be in any one of the
languages. -, ;) |[p(a,t) — pe(a, t)|| denotes the
data distribution error in the batch at step 7.

Detailed proof of Eq (6) can be found in Ap-
pendix F. Based on Eq. (6), we have the following
results:

* Intuitively, the weight error ||[wer — W]
comes from two main sources. One is the
weight error after the (e — 1)-th epoch, i.e.
HW/(e_l)T — W(e—1)r||- The other is caused
by the probabilistic distances of the data distri-
butions, i.e. }_, 4 ||pc(a,t) —p(a, t)]|. Since
a > 1, the error from both sources increases
with epoch and step. In addition, the weight
error is also affected by the learning rate 7, the
number of training steps 7" and the maximum

gradient grax (WeT— 1—j ) .

* Further expansion of Eq. (6) shows that
the weighting error arises from the data
distribution error of each epoch. Expand-
ing Hw(e—l)T ~ Wie-1) TH in Eq. (6), we
find it consist of HW (e=2)T —
|p(a,t) —pl_;(a,t)||. Further expanding Eq.
(6) to the weight error in 1-th epoch, it can be
concluded that the weight error of the existing
ML-ATR scheme comes from the data distri-
bution error -5, (. [[p(a. £) — i(a. )]
due to the randomly selected languages in
each epoch. We can mitigate the inconsistency
problem and improve the recall by reducing
the weight error upper bound by reducing the
data distribution error for each epoch.

w(e_ +|| and

4 Proposed ML-ATR Scheme

We propose two methods to reduce the data distribu-
tion error during training. One is 1-to-K contrastive
learning, which has a higher memory overhead.
The other is audio-English co-anchor contrastive
learning, which achieves performance close to 1-to-
K Contrastive Learning while approximating the
memory overhead to the existing ML-ATR scheme.
Here are the details of the two methods.

4.1 1-to-K Contrastive Learning

Building on our theoretical analyses, we conclude
that reducing data distribution error is critical for
addressing the cross-lingual inconsistency problem
in multilingual audio-text retrieval. To achieve this,
we propose 1-to-K Contrastive Learning (KCL),
a training strategy that replaces random language
sampling with the simultaneous use of all K lin-
guistic texts corresponding to each audio instance.
This approach theoretically eliminates data distri-
bution error, corrects modal alignment direction,
and significantly enhances both the recall and con-
sistency of retrieval performance. The loss function
Ly for the proposed 1-to-K Contrastive Learning
in ML-ATR is defined as follows:

Liel = 2NK (szzt + 522(»7) )
a2t

The loss function £{%, consists of two parts, £/
and E',ﬁ‘;, and they are calculated as follows:

exp s5(fo(ai), go(tix))/T)

] 1exp(s(ﬂ)(az) gs(t Jk))/T)7
(10)

,ngf denotes the contrastive learning loss func-
tion from audio to multilingual text.

Liz = ZZ

k=11i=1

exp(s(ge(tin), fo(ai))/T)
S exp(s(gs(tin), fo(ag)) /)
an

,Cfc‘l‘ denotes the contrastive learning loss func-
tion from multilingual text to audio.

K is the number of languages and N is the num-
ber of data instances. As shown in Tab. 4, includ-
ing multiple multilingual texts in 1-to-K contrastive
learning increases GPU memory usage and train-
ing time. In practical ML-ATR applications, sup-
porting more languages amplifies these overheads
compared to existing schemes.

To address this, we further propose CACL,
which improves retrieval consistency and recall
without significantly increasing overhead.

L =— Z Zlog

k=11i=1
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4.2 Audio-English Co-Anchor Contrastive
Learning

To reduce the weighting error with as little increase
in training time and GPU memory consumption
as possible, we propose audio-English co-anchor
contrastive learning (CACL). During the training
process, each data takes its audio, English text, and
text in other random languages and does contrastive
learning with each other.

For each epoch, given a set of random numbers

Q= A{q,.--an},q ¥id {2,...K}, get the triplet
of the training data (a;, ti1, tig; ), Where a; denotes
i-th audio, ¢;; denotes the English text, and ;4,
denotes the text of ¢;-th language. We have the
training loss L., shown below:

‘C ‘C::L;cl + ﬁz;cl + ﬁcacl) (12)

1
cacl — ﬁ(
The loss function L.,.; consists of three compo-
nents £2¢,, L% ¢ . All three components are
based on the following general contrastive learning

loss formulation:

= ZZg (sl 00)/7

)
J 1exp( (ui,v;)/7) (13)
—Zlog exp(s fuz,uz)/T))

1exp( (vi,u; /T)

where wu; and v; represent input embeddings from
different modalities or languages. The three com-
ponents are defined as follows:

* Audio-English Alignment (L2° ,):

u; = fg(a;) represents audio embeddings,
and v; = g, (t;1) represents English text em-
beddings.

* Audio-Multilingual Alignment (Egécl):
u; = fg(a;) represents audio embeddings,
and v; = g¢(tiq,) represents text embeddings
in a randomly selected language.

* English-Multilingual Alignment (L% )):
u; = gg(ti1) represents English text embed-
dings, and v; = g¢(ti,) represents text em-
beddings in a randomly selected language.

The effectiveness of audio-English CACL can
be explained from two perspectives:

* From the perspective of modality alignment
(Fig. 2), the loss function ngwl in CACL

brings embeddings of English and other lan-
guages closer, reducing the distance between
the text embedding tl, t2 and the mean 3 (tl +
t2) and minimizing the deviation in the modal-
ity alignment direction of audio and text.

* From the perspective of data distribution error
> (o) [IP(a,t) =Pl (a, t)|| in Eq. (6), CACL’s
loss functlons L£oe ., L9 , ensures that the
model learns more pairs of audio texts in an
epoch. The text in them also contains a large
percentage of high-quality English text. It
makes the data distribution in CACL closer to
the original one, and reduces the weight error

of the model.

Note that in CACL, the number of texts used
for training in each epoch does not increase with
the number of languages, which effectively reduces
both GPU memory and time overhead in ML-ATR
scenarios with a large number of languages. Our
experimental results illustrate that CACL approxi-
mates the training time and explicit memory over-
head of existing ML-ATR schemes, yet achieves
recall and consistency metrics close to those of
1-to-K comparative learning.

5 Experiments

5.1 Dataset

We employ the AudioCaps (Kim et al., 2019), and
Clotho (Drossos et al., 2020) for our experiments.
AudioCaps includes around 49,000 audio samples,
each lasting about 10 seconds. Each audio is paired
with a single sentence in the training set, while in
both the validation and test sets, each audio has five
associated sentences. The Clotho dataset consists
of 6,974 audio samples, each ranging from 15 to 30
seconds long and annotated with five sentences. It
is splitinto 3,839 training samples, 1,045 validation
samples, and 1,045 test samples.

Additionally, to assess our scheme’s perfor-
mance in the ML-ATR task, we use the Deepseek
(Bi et al., 2024) API to translate the text from
AudioCaps and Clotho into seven widely spoken
languages, including French (fra), German (deu),
Spanish (spa), Dutch (nld), Catalan (cat), Japanese
(jpn), and Chinese (zho). We evaluate the degree
of disillusion in the test set in Appendix A.

5.2 Models

Audio Encoder: We utilize the recently proposed
CED-Base model (Dinkel et al., 2024), a vision
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transformer with 86 million parameters for the Au-
dio Encoder. Trained on Audioset through knowl-
edge distillation from a large teacher ensemble, the
model processes 64-dimensional Mel-spectrograms
derived from a 16 kHz signal. It then extracts non-
overlapping 16 x 16 patches from the spectrogram,
resulting in 248 patches over a 10-second input (4
x 62).

Text Encoder: The key to multilingual audio-text
retrieval is the text encoder’s ability to handle texts
in multiple languages. In this work, we focus solely
on the SONAR-TE model (Duquenne et al., 2023).
SONAR-TE model significantly outperforms the
LaBSE model (Feng et al., 2020) under the mul-
tilingual xsim and xsim++ tasks, and can extract
sentence embeddings more accurately. The fixed-
size text representation is derived by pooling the
token-level outputs from the encoder. In the follow-
ing sections, SONAR refers specifically to the text
encoder.

5.3 Setup

We use ML-CLAP (Yan et al., 2024) as the baseline,
which is state-of-the-art for ML-ATR tasks. To
have a fair comparison, the model is initialized
using the pre-trained weights of ML-CLAP and is
further fine-tuned on our multilingual AudioCaps
and Clotho datasets using three training methods:
ML-CLAP, proposed CACL, and proposed KCL.
All models were fine-tuned for 10 epochs on a
single A100 80GB PCle GPU with a batch size of
24, a learning rate of 5 x 1079, using the Adam
optimizer. The temperature hyperparameter 7 was
set to 0.07 for all configurations. The audio was
sampled at 1.6 x 10%. We selected the model with
the best recall performance during the fine-tuning
period for each scheme to perform the experiments.

5.4 Evaluation Metric

We use the recall of rank k (R@k) and the average
precision of rank 10 (mAP10) as the metrics for
the retrieval performance of the model to show that
reducing data distribution errors improves the re-
trieval performance in each language. R @k refers
to the fact that for a query, R@k is 1 if the target-
value item occurs in the first k retrieved items, and
0 otherwise. mAP10 calculates the average preci-
sion of all the queries among the first 10 retrieved
results. With these two metrics, we can compre-
hensively evaluate the retrieval performance of the
model on multilingual datasets.

To assess the consistency of the embedding
space across languages, we use three metrics: em-
bedding space gap Agap,k (Liang et al., 2022), av-
erage embedding distance &dis, &, mean rank vari-
ance (MRV). The computation of Agap’k, Adis’k
and MRV is shown below:

1 & 1 &
Lgapk = 3 Zg¢(tu) - ;%(tik% (14

N
= 1
Bais e = 55 D llgs(tin) = gy tar)l (15)

i=1

N K

MRV = ﬁ ;;1 |Ranki, — Rank;)?.  (16)
Agap,k and &dis’k denotes the embedding space
gap and average embedding distance between En-
glish and k-th language respectively. Rank;;, de-
notes the similarity ranking of the k-th language
under the ¢-th data, and Rank; denotes the average

similarity ranking under the i-th data.

5.5 [Evaluation Result of Recall and Precision

We present a detailed numerical comparison anal-
ysis of the experiment results in Tab 1, focusing
on the performance improvements of our proposed
methods, CACL and KCL, over the baseline ML-
CLAP across various languages and datasets. We
supplement evaluation with the LaBSE model as a
text encoder in Appendix B.

5.5.1 Analysis of Evaluation Results

Overall, the proposed CACL and KCL consistently
outperform ML-CLAP across the majority of lan-
guages and datasets in terms of recall at 1 (R@1),
recall at 5 (R@5), and mean average precision at
the top 10 results (mAP10) for both Text-to-Audio
(T2A) and Audio-to-Text (A2T) tasks. Notably,
our proposed KCL achieves state-of-the-art perfor-
mance, delivering a 5% improvement in R@1 for
the English-oriented monolingual ATR task and
a 4.3% improvement in R@1 for the multilingual
ATR task compared to ML-CLAP. This experimen-
tal result corroborates our theoretical analysis of
the weighting error in Sect. 3. Here is the detailed
analysis:

CACL’s average metrics across languages are
higher than ML-CLAP, while KCL’s average met-
rics across languages have further improvement
compared to CACL. Our theoretical analyses in
Sect can explain this phenomenon. 3:
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Table 1: Recall and precision results for baseline and our method under multilingual AudioCaps and Clotho dataset

E AudioCaps Clotho
2 | Lang T2A A2T T2A A2T
* R@l R@5 mAPIO | R@l R@5 mAPI0 | R@l R@5 mAPIO | R@l R@5 mAPIO
eng | 47.31 80.65 61.44 | 6491 90.54  38.62 2598 545 38.15 34.03 61.05 21.19
fra 4588 78.92  60.01 61.65 89.39 3790 | 2442 5251 36.24 30.95 57.59 19.66
A, deu 45.60 79.49 59.93 62.65 88.76 37.88 24.08 52.61 36.40 31.62 57.40 19.39
5 spa | 45.00 7932  59.62 | 63.04 88.86 37.38 24.05 5275 36.22 3143 57.98 19.65
Q nld 45.88 79.64 59.92 62.50 90.33 37.72 23.88 51.53 35.73 31.40 5798 19.58
E cat 4436  77.89 58.58 61.65 87.60 36.43 22.83 50.84 34.80 | 3091 5643 18.26
jpn 43.04 76.86 57.54 5945 87.81 35.20 23.04 50.34 34.89 3143 56.55 18.77
zho | 41.70 7472 5574 | 53.67 84.76  33.38 21.65 48.84 33.53 2841 56.14 17.26
avg 44.84  778.43 59.09 61.19  88.50 36.81 23.84 51.74 35.74 31.27  57.64 19.22
eng 49.05 82.14 63.07 66.31 91.49 39.41 2636 55.19 38.68 34771  61.34 21.57
fra 46.86 79.97 60.83 63.23  89.48 37.92 | 2490 53.09 36.67 3240 58.55 19.85
| deu | 4621 80.08 60.62 | 63.13 89.91 38.14 | 2451 52.86 36.52 | 33.36 58.07 19.49
(<'t) spa | 46.68 80.52 60.90 | 63.23 90.12 37.45 2459 5271 36.72 3240 58.17 19.75
&) nld 4741 80.23 61.22 | 6323 90.86 3795 24.15 5175 36.05 3221 58.65 19.5
5 cat 4527 78.61 59.43 61.23 8844  36.49 23.28 51.42 35.17 30.67 56.05 18.67
° jpn 4476  78.50  58.97 61.55 88.67 3491 2336 51.53 35.28 31.82 58.26 18.99
zho | 42.01 76.02  56.23 56.40 86.65 33.93 22.50 49.42 34.01 27.69 57.59 17.48
avg | 46.03 79.50  60.15 62.28 89.45 37.02 | 2420 52.24 36.27 31.90 58.33 19.41
eng | 49.68 8244 6334 | 6659 9134  40.52 | 26.67 5546 3897 | 3634 64.13 21.36
fra 47.79 80.52 61.53 | 6341 89.57 39.21 24.61 52.73 36.79 31.82  60.76  20.02
deu | 47.81 80.81 61.78 | 63.34 89.28  39.02 | 2490 53.25  37.02 33.17  59.61 19.90
d spa 4733 80.67 6149 | 63.76 89.39  38.73 2431 5296  36.55 33.36  61.25  20.27
% nld 4792 80.76 61.70 | 63.55 90.52  39.14 | 24.53 5251 36.61 33.55 6230 19.98
3 cat 46.44 79.62 6042 | 62.71 8949 37.65 | 23.67 5186 3570 | 31.53 57.98 18.90
jpn 4527 7886 5949 | 62.28 89.16 36.81 23.65 52.17  35.68 31.25  57.50 19.49
zho | 42.25 7638 56.75 | 57.66 87.28 34.79 | 23.09 4990 34.60 | 3048 56.34 17.85
avg | 46.81 80.00 60.81 6291 8950 38.23 | 2442 52.60 3649 | 32.68 59.98 19.72

* CACL uses audio and text together as the an-
chor point for modality alignment in other
languages, which can effectively reduce the
data distribution error and modality alignment
error, thus achieving better modality align-
ment results and improved metrics compared
to ML-CLAP.

* Compared to CACL, which mitigates data dis-
tribution errors, KCL theoretically eliminates
these errors. As a result, KCL achieves supe-
rior modality alignment compared to CACL,
leading to further improvements in both recall
and precision.

5.5.2 Analysis of Special Situations

Occasional Metric Anomalies: We observed occa-
sional anomalies where a small proportion of KCL
metrics were lower than CACL metrics, and some
CACL metrics were lower than ML-CLAP met-
rics. We attribute these discrepancies to noise in
the dataset. Specifically, the weight error in Eq. (6)
represents the difference between the current and
optimal model weights for fitting the training data.
If the dataset is too noisy, the optimal weights may
not improve the test set’s performance. As a result,
KCL and CACL, which have lower weight errors,

may still underperform ML-CLAP on certain met-
rics. The higher frequency of such anomalies in
the noisier Clotho dataset, compared to Audiocaps,
supports this explanation. Given that these anoma-
lies are rare among the results in Tab. 1, we con-
sider them acceptable and conclude that they do
not impact the overall performance advantage of
CACL and KCL in the ML-ATR task.

Performance Gaps Across Languages: The
lower metrics for Japanese and Chinese in Tab. 1
are mainly due to their significant syntactic differ-
ences from other languages, making them harder
for the model to learn. Expanding the dataset for
these languages could improve the model’s perfor-
mance by providing more representative data.

Better Replicated Performance: Compared to
the original paper, our replicated ML-CLAP model
achieves significant improvements across all met-
rics, mainly due to differences in data quality. Com-
pared to the text translated by the SONAR model
(Duquenne et al., 2023) used by baseline, the mul-
tilingual text we translated with LLM is of higher
quality, which in turn can improve the retrieval
performance of the model.
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Table 2: Results of spatial differences in the embedding
of other languages and English

g AudioCaps Clotho
2 | Lang E2T E2T
R Gap Dis Gap Dis
fra | 0.199 0.094 | 0.120 0.301
deu 0.210 0.370 | 0.124 0.289
% spa | 0.147 0.290 | 0.117 0.284
d nld 0.204 0.346 | 0.121 0.274
5| cat | 0.151 0357 | 0.121 0.307
= | jpn | 0.237 0445 | 0.123 0.353
zho | 0.181 0.414 | 0.177 0.323
avg | 0.189 0330 | 0.129 0.304
fra | 0.160 0281 | 0.112 0.283
deu 0.194 0.334 | 0.103 0.261
d spa | 0.090 0.210 | 0.099 0.265
< nld 0.172  0.325 | 0.106  0.255
P cat | 0104 0252 0.108 0.280
2| jpn | 0217 0402 | 0.122 0.359
zho | 0.192 0.381 | 0.159 0.352
avg 0.161 0312 | 0.115 0.294
fra | 0.145 0.274 | 0.094 0.261
deu | 0.155 0.290 | 0.084 0.231
— | spa | 0.081 0.192 | 0.084 0.230
é‘é nld | 0.148 0.285 | 0.072 0.204
5| cat | 0092 0.245 | 0.087 0.243
© | jpn | 0.188 0.356 | 0.106 0.310
zho | 0.181 0.379 | 0.123 0.312
avg | 0.141 0.288 | 0.092 0.255

5.6 Evaluation Result of Consistency

5.6.1 Analysis of Embedding Space
Consistency

The results of the consistency metrics embedding
space gap Agap,k and average embedding distance
Adis,k are shown in Tab. 2. In addition, we give a
visualization of the embedding space in Appendix
C and case analysis in Appendix D to further il-
lustrate the effectiveness of ATRI in solving the
consistency problem.

Smaller values of Agap,k and &dis’k indicate
better alignment of a language’s embedding space
with English, leading to more consistent retrieval in
the ML-ATR task. Compared to the baseline ML-
CLAP, CACL achieves an average reduction of
12.9% in Gap and 4.4% in Dis, while KCL reduces
Gap by 19.1% and Dis by 14.3%, demonstrating
improved cross-language retrieval consistency.

Table 3: Results of Mean Rank Variance

Scheme AudioCaps | Clotho
MRV MRV

ML-CLAP 10.38 347.34

CACL 8.71 274.87

KCL 7.52 263.15

5.6.2 Analysis of Rank Consistency

MRV quantifies the consistency of search rank-
ings across languages, with lower values indicating
more consistent results across languages. Unlike
metrics based on embedding space, MRV offers a
more direct assessment of model consistency in the
ML-ATR task. As shown in Tab. 3, KCL achieves
the lowest MRV, representing a 25.9% reduction
compared to ML-CLAP, while CACL achieves a
22.3% reduction. This effectively shows that the
inconsistency issue can be effectively mitigated by
reducing the data distribution error.

We note that the MRV metrics under the Audio-
caps dataset are significantly lower than Clotho’s.
This is due to the fact that the Clotho dataset is
much noisier and more difficult to get consistent
retrieval results across languages.

Table 4: Evaluation results in GPU memory overheads
and time overheads

Scheme AudioCaps Clotho
GMOMB) TO(s) | GMO(MB) TO(s)
ML-CLAP 22172 3349 30912 1592
our CACL 26788 3745 31528 1714
our KCL 68256 4209 79480 1884

5.7 Evaluation Results about Training
Overhead

Tab.4 summarises the GPU memory overhead
(GMO) and time overhead (TO) during training
for three scenarios: ML-CLAP, CACL, and KCL.
KCL training requires simultaneous input of text
in eight languages, which significantly increases
overhead, resulting in a higher GMO of about 2.8
times and a 27% increase in TO compared to ML-
CLAP. In contrast, CACL inputs just twice as much
text as ML-CLAP, resulting in a modest increase of
about 10% in both overheads. This makes CACL
more suitable for scenarios that prioritize lower
training overheads, while KCL is more suitable for
applications that emphasize retrieval performance.

6 Conlusion

In this paper, we address the cross-lingual incon-
sistencies in ranking results observed in existing
ML-ATR schemes. Through an analysis of modal-
ity alignment errors and weighting errors, we iden-
tify data distribution errors during training as a key
factor impacting cross-lingual modality alignment,
ultimately leading to retrieval inconsistencies. To
address this, we propose two training strategies:

5498



KCL and CACL, designed for scenarios prioritiz-
ing retrieval performance and training overhead,
respectively. Experimental results demonstrate that
both CACL and KCL effectively enhance retrieval
performance and consistency in ML-ATR tasks.
Notably, KCL achieves state-of-the-art results in
both English-oriented monolingual ATR and ML-
ATR tasks. Furthermore, the proposed approach of
mitigating data distribution errors to reduce incon-
sistencies holds potential for broader applications,
including multilingual modality alignment in im-
age and video modalities.

Limitation

We acknowledge that the upper bound on the
weighting error in Eq. (6) is heuristically proven
for the SGD optimizer. For more complex opti-
mizers such as Adam, giving a direct upper bound
on the weighting error is difficult. But we provide
proof of momentum error upper bound for Adam in
the Appendix F.1, and show that our idea of reduc-
ing the data distribution error is still feasible under
the Adam optimizer by showing that momentum
error leads to weight error.
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A Multilingual Test Set Hallucination
Assessment

Since we conducted our experiments on a multi-
lingual audio text retrieval dataset translated with
a large language model, to further illustrate the
reliability of the experimental results, we evalu-
ated the level of illusions in the test set. We use
Deepseek V3 to re-translate the translated texts in
the test set into English. Then use the Roberta-large
model to evaluate the embedding average cosine
similarity between the re-translated texts and the
original English texts. The detailed experimental
results are shown in 5. It can be seen that the aver-
age similarity between each language and English
reaches above 90%, indicating that the semantics
of the translated text and the original English text
are very close, and that the illusions in the test set
are sufficiently small.

Table 5: Semantic Similarity between Re-translated Text
and Original English Text on Test Set

Language AudioCaps Clotho
French 94.5 93.5
Dutch 95.0 94.2
Spanish 94.8 94.0
German 95.6 94.2
Catalan 91.1 92.2
Japanese 91.7 90.9
Chinese 90.7 90.3
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B Supplemental Evaluation with LaBSE
Text Encoder

We conduct complementary experiments using
LaBSE (Feng et al., 2020) as a text encoder, fol-
lowing the same experimental setting as in our pa-
per, under the AudioCaps dataset using the Mul-
tilingual Contrastive Language-Audio Pretraining
(ML-CLAP), our Audio-English Co-Anchor Con-
trastive Learning (CACL), and our 1-to-K Con-
trastive Learnin (KCL) training methods, respec-
tively. The detailed experimental results are shown
in Tab. 6, 7, 8, where eng in parentheses indicates
the retrieval results of English text, while avg indi-
cates the average retrieval results of all languages.
KCL achieved the best retrieval performance, fol-
lowed by KCL and finally ML-CLAP. The experi-
mental results further illustrate the effectiveness of
our scheme in improving recall and mitigating the
inconsistency problem on the ML-ATR task.

Table 6: Audio to Caption Retrieval Results using
LaBSE as Text Encoder

Method R@1 R@5 mAPI0
ML-CLAP (eng) 514 81.2 31.8
ML-CLAP (eng) 50.4 80.7 30.4
CACL (eng) 55.8 84.7 33.6
CACL (avg) 53.0 83.0 31.8
KCL (eng) 58.1 85.7 34.7
KCL (avg) 56.5 84.5 34.3

Table 7: Caption to Audio Retrieval Results using

LaBSE as Text Encoder
Method R@1 R@5 mAPI10
ML-CLAP (eng) 38.6 74.7 53.8
ML-CLAP (avg) 373 72.6 52.1
CACL (eng) 40.7 75.6 55.4
CACL (avg) 38.9 73.7 534
KCL (eng) 421 773 56.5
KCL (avg) 40.3 75.8 55.0

Table 8: Results of Mean Rank Variance (MRV) using

LaBSE as Text Encoder
Method MRV
ML-CLAP 14.73
CACL 11.13
KCL 9.46

C Embedding Space Visualisation

t-SNE Visualization of Audio and Multilingual Embeddings (ML-CLAP)

nnnnnnnnnn

Figure 3: Visualisation of the ML-CLAP embedding
space.

t-SNE Vi

(KCL)

nnnnnnnnnn

Figure 4: Visualisation of the KCL embedding space.

To further compare the multilingual embedding
alignment effects of KCL and ML-CLAP, we ran-
domly select 50 audio-text pairs from AudioCaps.
We visualize the embedding spaces of ML-CLAP
and KCL after TSNE dimensionality reduction, as
shown in Fig. 3 and Fig. 4, respectively. In KCL,
text embeddings with the same semantics across
different languages are more compactly clustered
compared to ML-CLAP. This indicates that KCL
achieves better alignment of multilingual text em-
beddings, resulting in more consistent retrieval per-
formance across languages.

D Case Analysis

In this section, we conduct a cross-lingual retrieval
analysis by selecting two groups of representative
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3VFIDIEKgY.wav

®  Aninsect buzzing followed by a man talking.

sqWyxUObwkw.wav
Aboat engine starts up and idles
®  Uninsecte bourdonnant suivi d'un homme parlant. Un moteur de bateau démarre et tourne au ralenti
Ein Insekt summt, gefolgt von einem Mann, der spricht. Ein Bootsmotor springt an und luft im Leerlauf.
Un insecto zumbando seguido de un hombre hablando. Un motor de bote arranca y ralenti,
Een bootmotor start en loopt stationair.
Un insecte brunzint seguit d'un home parlant.

BOT TV FICHENT. BOELE.
BREBEERE- M BARBENES.

Un motor de vaixell sengega i romandra al ralenti.
R—b DI HEBL. 7AF ) TRECRS.
AR5 BRI BHTHK

.
.
®  Eeninsect zoemend gevolgd door een man die praat
.
.
.

Figure 5: Two cases that were successfully retrieved.
The audio text pair on the left is Case 1 and the one on
the right is Case 2.

YBIbGXalLNVU.wav
A man talking as water splashes.

YK2KIOBeCfuo.wav

®  Aperson speaking and various laughter and clapping.
Un homme parle alors que I'eau éclabousse. ®  Une personne qui parle et divers rires et applaudissements.

Ein Mann spricht, wahrend Wasser spritzt. ®  Eine Person spricht und verschiedene Gelchter und Klatschen.

Un hombre hablando mientras el agua salpica. || ®  Una persona hablando y varias risas y aplausos.

Een man die praat terwijl water spettert. ®  Een persoon die spreekt en verschillende geluiden van gelach en geklap.
Un home parlant mentre I'sigua esquitxa. ®  Una persona parlant i diverses rialles i aplaudiments.

KBt PTHETB. .

—AMBALRIE, KEMH. .

ASEEL. B BRVELATFHFHMIAD.
—MABIE, HEREMRENEE,

Figure 6: Two cases that failed to be retrieved. The
audio text pair on the left is Case 3 and the one on the
right is Case 4.

cases from the AudioCaps test set: two success-
ful retrieval cases and two failed ones. The failed
and successful cases are shown in Fig. 5 and 6,
respectively.

Tab. 9 and 10 shows the results of the retrieval
rankings of audio-text pairs under the KCL and
ML-CLAP schemes. The retrieval rankings of KCL
are generally ahead of those of ML-CLAP, and the
difference in retrieval rankings across languages is
much smaller.

We further analyze the failed cases and found
one key commonality: they exhibited excessive
semantic overlap with other audio descriptions in
the embedding space. This phenomenon is particu-
larly evident in near-identical phrase pairs such as
"a person speaks..." versus "a man speaks," where
minimal semantic distinction creates challenges for
contrastive learning.

However, even with failed cases, experimental
results demonstrate that our proposed KCL method
achieves more precise cross-modal alignment be-
tween multilingual text and audio embeddings com-
pared to ML-CLAP. This performance advantage
substantiates the effectiveness of our approach in
handling semantically proximate cases.

E Analysis Optimal Alignment Directions
for Audio Embedding

Given the audio embedding @ and the text em-
bedding vectors of K languages {t_i, ey fK}, we
need to minimize the total distance between the
audio embedding and each language embedding,
so that the embedding spaces of different languages

Table 9: Retrieval similarity ranking of successful cases

Lang ML-CLAP KCL
Casel Case2 | Casel Case?2
eng 5 2 1 0
fra 4 4 1 0
deu 5 4 0 0
spa 2 7 0 0
nld 4 12 0 2
cat 5 12 0 4
jpn 8 0 0 0
zho 13 3 2 0

Table 10: Retrieval similarity ranking of failed cases

Lang ML-CLAP KCL
Case3 Case4 | Case3 Case4d
eng 22 14 10 12
fra 18 14 8 13
nld 33 47 9 17
spa 17 20 8 16
deu 20 66 7 32
cat 24 17 5 14
jpn 11 6 11 2
zho 26 8 12 3

are similarly aligned to the audio embedding, and
achieve consistent cross-lingual retrieval results.
The loss function for minimizing total distance is
computed as follows:

K
L=Y"|la— 1l
k=1

Derive the loss function £ with respect to em-
bedding a:

(17)

K
oL
= 2(ad—t 18
or = D 2(d— 1) (18)
k=1
Making the derivative a zero vector gives:
K
> (@—1) =0, (19)
k=1
T
i= > (20)

k=1
Therefore, the optimal alignment direction for the
audio embedding @ is the arithmetic mean of all
language text embeddings.

F Proof of Weight Error Upper Bound

We analyze the upper bound on the weighting er-
ror heuristically based on the stochastic gradient
descent (SGD) optimization algorithm. The fol-
lowing is a detailed theoretical proof of the upper
bound on the weighting error in Eq. (6).
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Proof. Based on the definition of the SGD
optimization algorithm, we have:

WeT = WeT—1 — 1) Z p(a7 t)VWeT_lE(a,t) [lOg p(a7 t)]:
(a,t)

w:zT = wéTfl -n Z p/e (aa t)vw’eTilE(a,t) [lOg p(a7 t)]
(a,t)

@n

|IWer — werll
=|lwer—1 =1 D> P(a,)Vew,r 1 Eanllog pla, t)]
(at)
—Wir1 40 Y Pe(a, )V B llog pla,t)]]|
(art)
/
- weT71H

+0ll Y Pe(a, )V Eiap[log pla,t)]
(

a,t)

§1||W6T—1

= > 2(a,)Vwr Eqan)[log pla t)]]

(at)
’
— Wer—1 | |
+0ll Y pe(a,t)Ver . Eapllog p(a, )]
(a,t)
=D Pe(a, )V, Eap llog pa, )]

(a,t)

+ Z p/e (a‘v t)vWeT—l E(a,t) [log p(av t)]

(ast)

- Z p(a, t)VWeT—l]E(aat) [log p(a, t)]|

(a,t)

:HWeT—l

<|lwer—1 — wer||
+0ll Y pe(a, ) (Var . Eapllog p(a,t)]
(a,t)
— Vw1 By [log p(a,t)])]|
0l Y (pe(ast) = p(a, 1) Vewer 1 Ea,n [log pla, 1)]]|
(a,t)
<P+ Y pe(a ) M) [Wer—1 — Wir_1 ||

(a,t)

+ Ngmaz(wer—1) Y |lpe(a, t) = p(a, 1)]].

(a:t)
(22)

The inequality 1 and 2 hold because the Triangle
Inequality |a + b|] < |a| 4 |b|. The inequality 3
holds because

Gmaz(Wer—1) = max IVwer_1Eanllog pla, DIl (23)

and we assume that VB, [log p(a, )]
and V. E, 4)[log p(a,t)] are A, »)-Lipschitz,
Gradient trimming can be used in the code imple-
mentation to a certain extent to reduce the gradient
change in the training process, indirectly reduce the
excessive growth of Lipschitz constant, as far as
possible to meet the Lipschitz continuity condition.

Based on Eq. (22), let

a = (1 + n Z p;(av t)A(a,t))7 (24)
(at)

we have

lwer — werl|
<a||wer—1 — Wep_4]|
+ngmaz(Wer-1) Y |lpe(a, t) = pla, t)]|
(a,t)
<a®||Wer—2 — Wip_s]|
1Y lpa,t) — pla o)
(a,t)
(gmaz (WeTfl) + agmaz (WGT72))

SaTHW(efl)T - W2571)T||

S 10 1) — pla D 7 goman (Wer—1-3))).
(a,t) j=0

(25)
Thus Eq. (6) is proved successfully.
F.1 Migrating to Adam Optimizer

We first give the parameter update computation
procedure for the Adam optimizer:

9= p(a,)Vw,_ Egqypllog pla,t)] (26)
(ar)

mer = Pimer—1 + (1 — B1)g (27)
Ver = Baver—1+ (1 —B2)gog (28)
R m
Mer = — (29)
1 - M
R v,
by = — (30)
1- 2
Wer = Wer_1 — ——tier.  (31)
V VeT

mer 18 the first-order momentum and v is the
second-order momentum.

We illustrate that the data distribution error also
causes weight error in the Adam optimizer by ana-
lyzing momentum. The error upper bound of the
first-order momentum m,7 can be inferred as fol-
lows:
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||mer — m;T||
=[|Bimer—1 — Bimer—1

— (1= 51) Y p(a,)Vawor 1 B [log pla, t)]

(a,t)
+ (1 - ﬁl) Z p/e (a7 t)vw'eTilE(a,t) [lOg p:z (av t)})”
(a,t)
<||Bimer—1 — Bimor_1||

+ (1= Bl D p(a,)Vewor_ Eqany[log pla t)]
(at)

- Z p;(a’ t)vw;T_lE(aﬂt) [log p/e(a7 DI
(at)
<||Bimer—1 — Bimor_1||
+ (1= B Y Pela,t)(Var . Eian[log pla,t)]
(a,t)
- vWeT—l]E(avt) [lOg p(a, t)])”

+ (1 - ﬂl)” Z (p;(% t) - p(a, t))VWeT—l]E(a,t)[log p(a, t)]H
(a,t)

S+ (1= B) Y Pla DA Wer—1 — wir_y|

(a,t)

+ (1= B1)gmaz(wer—1) Y |Ip-(a, 1) = p(a, t)]].
(a0
t (32)

Eq. (32) shows that data distribution error still
influences the upper bound on the first-order mo-
mentum error in the Adam optimizer. Similarly, the
second-order momentum error is also affected by
this error. These momentum errors accumulate in
the weight errors, which makes our theoretical error
upper bounds applicable under the Adam optimizer
as well.
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