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Abstract
Large Language Models (LLMs) have shown
remarkable capabilities in natural language
processing but exhibit significant performance
gaps among different languages. Most existing
approaches to address these disparities rely on
pretraining or fine-tuning, which are resource-
intensive. To overcome these limitations with-
out incurring significant costs, we propose
Inference-Time Cross-Lingual Intervention
(INCLINE), a novel framework that enhances
LLM performance on low-performing (source)
languages by aligning their internal represen-
tations with those of high-performing (target)
languages during inference. INCLINE ini-
tially learns alignment matrices using paral-
lel sentences from source and target languages
through a Least-Squares optimization, and then
applies these matrices during inference to trans-
form the low-performing language represen-
tations toward the high-performing language
space. Extensive experiments on nine bench-
marks with five LLMs demonstrate that IN-
CLINE significantly improves performance
across diverse tasks and languages, compared
to recent strong baselines. Our analysis demon-
strates that INCLINE is highly cost-effective
and applicable to a wide range of applications.
In addition, we release the code to foster re-
search along this line.1

1 Introduction

Large Language Models (LLMs) have achieved
remarkable success across a variety of natural lan-
guage processing tasks, demonstrating strong capa-
bilities in language understanding and generation
(OpenAI, 2023; Dubey et al., 2024; Mesnard et al.,
2024; Anthropic, 2024; OpenAI, 2024a,b). How-
ever, despite these advancements, most state-of-the-
art LLMs remain predominantly English-centric,
exhibiting significant performance gaps among dif-
ferent languages (Petrov et al., 2023; Kumar et al.,

† Equal contribution.
1https://github.com/weixuan-wang123/INCLINE
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Figure 1: Bivariate kernel density estimation plots dis-
playing the representations (hidden states of the last
token) from 100 random examples in English (blue)
and their Portuguese translations (orange) from XCOPA
(Ponti et al., 2020). After intervention using INCLINE,
the Portuguese representations are aligned closer to the
English representations.

2024), which can adversely affect user experience
and potentially exclude large portions of the global
population from accessing advanced AI services
(Lai et al., 2023a; Wang et al., 2024a).

Addressing the performance gaps across lan-
guages is highly challenging. Recent approaches
are mostly data-driven, such as multilingual super-
vised fine-tuning or continued pre-training (Üstün
et al., 2024; Cui et al., 2023; Kuulmets et al., 2024).
However, collecting and annotating large-scale
datasets for numerous underrepresented languages
is both time-consuming and resource-intensive
(Xue et al., 2021; Lai et al., 2023b). Further-
more, training LLMs on multilingual data re-
quires substantial computational resources, limit-
ing their practicality for widespread applications,
especially in resource-constrained settings (Muen-
nighoff et al., 2023; Li et al., 2023a). Given these
limitations, a natural question arises: How can
we bridge the performance gaps between high-
performing and low-performing languages without
incurring prohibitive costs?

Inspired by Lample et al. (2018) showing that
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word embeddings in different languages can be
aligned to a shared representation space through
learned rotations for word translation, we pro-
pose Inference-Time Cross-Lingual Interven-
tion (INCLINE). This novel framework utilizes
a group of learned alignment matrices that trans-
form the representations (e.g., hidden states) of
a low-performing (source) language into those of
a high-performing (target) language during infer-
ence. Our framework comprises two main steps.
First, we train the alignment matrices for each
layer of LLM using parallel sentences from the
source and target languages. The learning process
is formulated as a Least-Squares optimization prob-
lem, where these alignment matrices are learned
by minimizing the distance between the projected
source language representations and their corre-
sponding target language representations, without
the need for extensive retraining or fine-tuning the
LLM. Second, we apply the learned alignment ma-
trices to transform the source language input repre-
sentations into the target language representation
space at each layer during inference. By integrating
these steps, INCLINE leverages the rich represen-
tations learned from high-performing languages
to enhance performance on downstream tasks in-
volving low-performing languages. As shown in
Figure 1, INCLINE effectively aligns the input
representations in Portuguese to their parallel rep-
resentations in English.

In this study, we conduct extensive experiments
to validate the effectiveness of INCLINE on nine
widely used benchmarks using five LLMs. Our
results demonstrate that aligning internal represen-
tations using INCLINE significantly improves per-
formance on diverse tasks among languages.

Our contributions are summarized as follows:
• We propose INCLINE, a cross-lingual in-

tervention approach that enhances LLMs by
transforming source language representations
into a target language representation space
during inference without requiring additional
training of LLMs (see Section 3).

• We conduct extensive evaluations across five
discriminative tasks and four generative tasks,
covering 21 languages. Our experimental re-
sults show that INCLINE significantly im-
proves model performance, boosting average
accuracy by up to +4.96 compared to strong
baselines (see Section 4).

• Our detailed analysis indicates that INCLINE
is highly cost-effective, as it requires minimal

computational resources while delivering sub-
stantial performance improvements (see Sec-
tion 5). Moreover, we demonstrate that IN-
CLINE is effective with regard to LLM back-
bones, model sizes, and in-context learning,
underscoring its general applicability and po-
tential for broader use in enhancing LLMs for
underrepresented languages (see Section 6).

2 Related Work

Multilingual LLMs LLMs are pivotal in multi-
lingual NLP tasks, typically leveraging external par-
allel datasets for training (Xue et al., 2021; Muen-
nighoff et al., 2023; Chung et al., 2024; Li et al.,
2025). For low-resource languages, data augmen-
tation techniques generate parallel data by mining
sentence pairs or translating monolingual text us-
ing machine translation tools (Edunov et al., 2018;
Zhao et al., 2021; Ranaldi et al., 2023). However,
these methods heavily rely on robust parallel cor-
pora. To reduce data costs, studies have shifted to-
ward Parameter-Efficient Fine-Tuning (PEFT) tech-
niques (Pfeiffer et al., 2020; Parović et al., 2022;
Agrawal et al., 2023; Wu et al., 2024; Wang et al.,
2025) and cross-lingual embeddings mapping meth-
ods (Mikolov et al., 2013; Ormazabal et al., 2019;
Wang et al., 2022), which still demand considerable
computational resources.

Multilingual Prompting There is a growing in-
terest in methods that do not require parameter ad-
justments. Prompting techniques have emerged, uti-
lizing LLMs with multilingual prompts (Lin et al.,
2021c, 2022; Shi et al., 2022b; Huang et al., 2023).
However, these strategies face challenges like poor
translation quality and prompt framing interference
(Wang et al., 2024c). Additionally, their effective-
ness varies by task, as recent research indicates that
few-shot learning may not outperform zero-shot
learning in translation tasks (Hendy et al., 2023;
Wang et al., 2024d).

Intervention To address these challenges, we
explore inference-time intervention techniques as
cost-effective and efficient alternatives to tradi-
tional fine-tuning. Prior research in style trans-
fer (Subramani et al., 2022; Turner et al., 2023),
knowledge editing (Meng et al., 2022), and truth-
fulness shifting (Li et al., 2023b; Rimsky et al.,
2024; Wang et al., 2024e) demonstrates the poten-
tial of linear probe-based interventions. However,
these methods have been largely limited to mono-
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Figure 2: Framework of INCLINE. INCLINE involves two steps: (a) Learning the Cross-Lingual Alignment:
sentence representations from a parallel dataset are used to train alignment matrices that map source (Portuguese)
representations to the target (English) representations. (b) Inference-Time Transformation: this step adapts the
source representations from downstream tasks into the target representation space using the alignment matrices.

lingual contexts. Our goal is to design a novel
cross-lingual inference-time intervention that ef-
fectively aligns representations across languages,
aiming to improve performance across multiple
languages.

3 Methodology

In Figure 2, we illustrate the framework of IN-
CLINE, which enhances LLMs through inference-
time cross-lingual intervention. Our approach com-
prises two main steps:

• Learning the Cross-Lingual Alignment: Us-
ing parallel corpora, we train alignment ma-
trices for each layer to map source language
representations to target language representa-
tions (see Section 3.1).

• Inference-Time Transformation: During in-
ference, we utilize the learned alignment ma-
trices to transform input representations from
the source language into the target language
representation space, thereby improving the
LLM’s performance on tasks in the source
language (see Section 3.2).

By minimizing the distance between the source
language representations and their corresponding
target language representations, we effectively re-
duce cross-lingual representation gaps and align
representation spaces across languages.

3.1 Learning the Cross-Lingual Alignment

Inspired by Schuster et al. (2019) that align embed-
dings across languages with learned linear trans-

formations, we aim to learn a cross-lingual align-
ment matrix Wl that aligns sentence representa-
tions from the source language to the target lan-
guage at the l-th layer of LLM. Given a parallel
dataset D = {(xxxs

i,xxx
t
i)}Ni=1, where each xxxs

i is the
i-th source sentence and xxxt

i is its corresponding
translation in the target language. Both xxxs

i and xxxt
i

are sequences of tokens. From these sequences,
we extract sentence representations by taking the
hidden state of the last token in each sequence, de-
noted as hhhs

i,l ∈ Rd and hhht
i,l ∈ Rd for the source

and target sentence, respectively, where d is the
dimensionality of the hidden states.

To minimize the difference between the pro-
jected source sentence representations and the tar-
get sentence representations, our objective can be
defined as a Least-Squares optimization problem:

W ∗
l = argmin

Wl

N∑

i=1

∥∥Wlhhh
s
i,l − hhht

i,l

∥∥2 (1)

This problem seeks the optimal W ∗
l that aligns the

source representations with the target representa-
tions by minimizing the distance between them.
Hence, the closed-form solution to this optimiza-
tion problem is:

W ∗
l =

(
N∑

i=1

(hhhs
i,l)

⊤hhhs
i,l

)−1( N∑

i=1

(hhhs
i,l)

⊤hhht
i,l

)

(2)

By applying the learned alignment matrix W ∗
l to

the source sentence representations, we effectively
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map them into the target language’s representation
space. This alignment reduces cross-lingual rep-
resentation discrepancies, allowing the model to
leverage knowledge from the target language to im-
prove performance on tasks in the source language.

3.2 Inference-Time Transformation
With the learned alignment matrix W ∗

l , we can
enhance the LLM’s processing of source language
inputs by transforming their representations to the
target representation space during inference.

We denote the hidden state of the last token of
the test input qqqs in the source language at the l-
th layer of the LLM as hhhs

q,l and then project this
source language representation into the target rep-
resentation space using the alignment matrix W ∗

l :

ĥhh
t
q,l = W ∗

l hhh
s
q,l (3)

To perform the cross-lingual intervention at the l-th
layer using the intervention vector ĥhh

t
q,l, we adjust

the original hidden state in source language hhhs
q,l by

blending it with the projected hidden state in target
language ĥhh

t
q,l. This adjustment is controlled by a

hyperparameter α, which balances the influence
between the source and target hidden states:

hhhmix
q,l = hhhs

q,l + αĥhh
t
q,l (4)

Here, Equation 4 represents a shift of representa-
tion of source language towards target language
representation by a magnitude of α times.

Decoding with Minimal Intervention In this
work, we only conduct one single intervention on
the last token of qqqs by replacing hhhs

q,l with hhhmix
q,l for

the test input qqqs at the l-th layer of LLM. In such a
way, we can effectively intervene the model output
while preserve the features in the source language.

Comparison with ITI and CAA Recently, ITI
(Li et al., 2023b) and CAA (Rimsky et al., 2024)
have been proposed as interventions in the model
behaviors by manipulating the selected attention
heads and hidden states, respectively. INCLINE
is distinct from ITI and CAA due to three pri-
mary differences. Firstly, ITI and CAA utilize a
learned static intervention vector to alter model
behaviors, whereas INCLINE leverages a set of
alignment matrices to dynamically align input rep-
resentations from the source language to the target
language. Secondly, ITI and CAA apply the inter-
vention vector across all token positions following

the instruction, potentially causing excessive per-
turbation during inference. In contrast, INCLINE
performs a single intervention solely on the last
token of the input. Additionally, unlike ITI and
CAA, which target on only a limited number of lay-
ers, INCLINE modifies the representations across
all layers. These modifications enable the LLMs
to comprehensively leverage their target language
capabilities for multilingual prediction.

4 Experiments

In this section, we introduce our experimental setup
(Section 4.1) and present our results in Section 4.2.

4.1 Experimental Setup

We present our evaluation tasks, model backbones,
implementation details of INCLINE, and baselines
in this section.

Evaluation Tasks We conduct extensive evalua-
tions across nine diverse downstream tasks, catego-
rized into two groups:

• Discriminative Tasks: XCOPA (Ponti et al.,
2020), XStoryCloze (Lin et al., 2021b),
XWinograd (Lin et al., 2021b), XCSQA (Lin
et al., 2021a), XNLI (Conneau et al., 2018);

• Generative Tasks: MZsRE (Wang et al.,
2024b), Flores (Goyal et al., 2021),
WMT23 (Kocmi et al., 2023), MGSM (Shi et al.,
2022a).

These tasks covers 21 languages including English
(en), Arabic (ar), German (de), Greek (el), Spanish
(es), Estonian (et), French (fr), Hindi (hi), Indone-
sian (id), Italian (it), Japanese (ja), Dutch (nl), Por-
tuguese (pt), Russian (ru), Swahili (sw), Tamil (ta),
Thai (th), Turkish (tr), Ukrainian (uk), Vietnamese
(vi), and Chinese (zh). We include more details of
these tasks in Appendix A.

Model Backbones In this work, we mainly
use BLOOMZ-7B1-MT as our model backbone
for all the baseline approaches, unless other-
wise specified. To demonstrate the effectiveness
of INCLINE across various model backbones,
we include four additional LLMs: LLAMA3.1-
8B-INSTRUCT (Dubey et al., 2024), LLAMA2-
7B-CHAT (Touvron et al., 2023), MISTRAL-7B-
INSTRUCT (Jiang et al., 2023), FALCON-7B-
INSTRUCT (Almazrouei et al., 2023). We present
these results in Section 6. For the MGSM task, we
employ the MATHOCTOPUS (Chen et al., 2023),2

2https://huggingface.co/Mathoctopus/Parallel_7B
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XCOPA XStoryCloze XWinograd XCSQA XNLI

µALL µSEEN µUNSEEN µALL µSEEN µUNSEEN µALL µSEEN µUNSEEN µALL µSEEN µUNSEEN µALL µSEEN µUNSEEN

BASELINE 61.62 69.00 52.40 74.96 77.83 57.78 57.05 59.71 53.06 47.35 55.31 34.62 46.48 50.04 41.48
MT-GOOGLE 73.31† 73.52 73.05† 76.63 76.05 80.08† 57.63 57.12 57.90† 58.52† 54.84 64.40† 50.72 49.80 52.00
MT-LLM 59.84 67.16 50.70 79.41 82.23 62.48 43.02 41.67 45.04 30.73 35.38 23.30 43.64 47.83 37.77
Intervention Methods
ITI 60.91 67.56 52.60 76.38 79.33 58.70 48.24 58.37 33.06 46.32 55.33 31.92 46.32 49.51 41.84
CAA 63.96 71.80 54.15 78.16 80.92 61.61 58.42 60.70 55.01 47.97 56.01 35.10 46.17 50.92 39.52

INCLINE 65.22
(+3.60)

72.56
(+3.56)

56.05
(+3.65)

79.92
(+4.96)

82.03
(+4.20)

67.24
(+9.46)

59.35†
(+2.30)

62.04†
(+2.33)

55.32
(+2.26)

48.45
(+1.10)

56.45†
(+1.14)

35.64
(+1.02)

48.12
(+1.64)

51.44
(+1.40)

43.47
(+1.99)

SFT 66.89 76.84 54.45 87.36 89.50 74.52 43.78 48.63 36.50 42.18 47.95 32.96 69.68 76.76 59.76

SFT +INCLINE 69.24
(+2.35)

79.28†
(+2.44)

61.22
(+6.77)

88.11†
(+0.75)

90.00†
(+0.50)

76.77
(+2.25)

49.84
(+6.06)

57.58
(+8.95)

38.24
(+1.74)

42.55
(+0.37)

48.38
(+0.43)

33.22
(+0.26)

71.17†
(+1.49)

77.83†
(+1.07)

61.84†
(+2.08)

Table 1: Main results of discriminative tasks. All the tasks are evaluated using accuracy. † denotes the best results.
µALL, µSEEN, and µUNSEEN indicate the macro-average of results across all the languages, the seen languages, and the
unseen languages, respectively.

a specialized model fine-tuned from LLAMA2-7B
for mathematical reasoning tasks, as the backbone.

INCLINE (Ours) In this work, we mainly focus
on aligning the low-performing language (source)
representations closer to the English (target) rep-
resentations, as LLMs are predominantly English-
centric. For training the alignment matrices be-
tween languages, we randomly sample 500 parallel
sentence pairs for each language pair involving En-
glish and other languages. These pairs are sourced
from the News Commentary v16 dataset (Barrault
et al., 2019), and for languages not covered by this
dataset, we use the CCAligned dataset (El-Kishky
et al., 2020). Following Rimsky et al. (2024), the
value of the α controlling the intervention strength
is in the range from -1 to 1 and determined by the
validation results for each language across tasks.
We use one A100 GPU (40G) for all experiments.

Baselines We compare INCLINE against sev-
eral established techniques on the zero-shot set-
ting: (1) BASELINE indicates the predictions
given by the original BLOOMZ-7B1-MT; (2)
MT-GOOGLE utilizes GOOGLE TRANSLATE to
translate non-English questions into English; (3)
MT-LLM leverages BLOOMZ-7B1-MT to trans-
late questions in non-English languages into En-
glish, employing the structured prompt template
“{Source Language}: {Inputs} English:”; (4)
SFT represents the task-specific supervised fine-
tuning (SFT) involving updating all parameters of
the LLM on the English training set for each down-
stream task individually with the hyperparameters
described in Appendix B and evaluating the result-
ing model on the multilingual test sets; (5) ITI
(Li et al., 2023b) is an intervention method that
identifies attention heads with high linear probing

accuracy for truthfulness and adjusts activations
along these truth-correlated directions during infer-
ence. Originally used to shift models from generat-
ing false statements to truthful ones, we adapt it to
encourage the generation of English text over non-
English text. (6) CAA (Rimsky et al., 2024) em-
ploys the mean difference in hidden states between
positive and negative examples from additional
training data as an intervention vector to adjust the
model’s behavior towards the desired direction. Ini-
tially designed for monolingual alignment-relevant
tasks, we utilize it to shift the model’s output from
non-English to English.

4.2 Results
In this section, we present our results on the dis-
criminative tasks (Table 1) and generative tasks
(Table 2). Furthermore, we also categorize the lan-
guages involved in the downstream tasks into two
groups based on the training data of BLOOMZ-
7B1-MT: seen languages (ar, es, fr, hi, id, pt, sw,
ta, vi, and zh) and unseen languages (de, el, et, it,
ja, nl, ru, th, tr, and uk). The breakdown results are
provided in Table 7 (see Appendix C).

INCLINE significantly improves discrimina-
tive task performance. The experimental re-
sults in Table 1 clearly demonstrate the effective-
ness of INCLINE. Although methods like SFT,
MT-GOOGLE, and MT-LLM achieve high perfor-
mance, they come with substantial costs, including
the need for extensive fine-tuning of LLMs and
reliance on third-party tools. Activation interven-
tion methods, such as ITI and CAA, offer a more
cost-effective solution but yield only minimal im-
provements, indicating a potential inadequacy in
capturing the complexities of multilingual tasks.
In contrast, INCLINE provides significant perfor-

5422



MZsRE Flores WMT23 MGSM

µALL µSEEN µUNSEEN µALL µSEEN µUNSEEN µALL µSEEN µUNSEEN µALL µSEEN µUNSEEN

BASELINE 39.96 45.79 32.67 46.09 58.57 21.12 13.78 14.39 13.63 39.35 39.80 38.90
MT-GOOGLE 73.56† 72.76† 74.56† - - - - - - 46.70† 47.70† 45.70†

MT-LLM 33.18 39.25 25.61 - - - - - - 21.40 30.00 12.80
Intervention Methods
ITI 36.31 41.72 29.54 2.85 2.97 1.95 2.34 3.16 2.13 40.50 41.90 39.10
CAA 42.88 50.17 33.78 47.87 60.63 16.75 13.74 14.86 13.46 39.43 40.85 38.00

INCLINE 43.22
(+3.26)

50.21
(+4.42)

34.49
(+1.82)

48.19†
(+2.10)

61.28†
(+2.71)

22.00†
(+0.88)

14.23†
(+0.45)

15.05†
(+0.66)

14.02†
(+0.39)

42.85
(+3.50)

43.30
(+3.50)

42.40
(+3.50)

Table 2: Main results of generative tasks. † denotes the best results. µALL, µSEEN, and µUNSEEN indicate the macro-
average of results across all the languages, the seen languages, and the unseen languages, respectively. We use
Exact Match (EM) to evaluate MZsRE, use BLEU to evaluate Flores and WMT23, and use accuracy to evaluate MGSM.

mance gains by enhancing multilingual representa-
tion alignment at inference time without requiring
extensive resources or dependencies. This results
in a more efficient improvement in multilingual
performance. For example, INCLINE increases
the average accuracy by +4.96 on XStoryCloze.
Additionally, it delivers improvements of +4.20
and +9.46 for seen and unseen languages, respec-
tively. Moreover, INCLINE can further improve
the performance of the task-specific SFT.

INCLINE significantly enhances generative
task performance. The experimental results pre-
sented in Table 2 suggest the effectiveness of IN-
CLINE in enhancing performance across gener-
ative tasks. Unlike ITI and CAA, which show
only marginal improvements similar to those ob-
served in discriminative tasks, INCLINE appears
to achieve substantial advancements. Notably, ITI
seems to struggle significantly in machine transla-
tion tasks, such as Flores and WMT23, highlighting
its limitations. Furthermore, INCLINE reportedly
boosts accuracy in the MGSM task by up to +3.50
across various languages. This finding suggests
that, although the mathematical capabilities are in-
dependent from the languages, understanding the
questions written in different languages still re-
quires language-specific knowledge. INCLINE
successfully transfers the LLMs’ natural language
understanding capabilities from English to other
languages. It is important to note that SFT is not
evaluated on generative tasks because there are no
training sets associated with these tasks.

In summary, these results demonstrate that IN-
CLINE offers a significant improvement in both
discriminative and generative tasks by effectively
aligning multilingual representations.
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Figure 3: (a) Training costs of INCLINE with regard
to the number of parallel sentences and time used for
training alignment matrices. INCLINE is evaluated on
XStoryCloze in Swahili. (b) Correct Prediction Con-
sistency (CPC) between non-English and English on
XStoryCloze for the model using INCLINE.

5 Analysis

In this section, we conduct an in-depth analysis of
INCLINE, focusing on four key aspects: compu-
tational costs, enhanced consistency after interven-
tion, the impacts of the intervened components of
LLMs, and the choice of intervention strength α.
This analysis provides a comprehensive understand-
ing of how INCLINE operates and its implications
for model performance and efficiency.

INCLINE is highly efficient for training and in-
troduces only marginal overhead for inference.
To analyze the relationship between computational
costs and accuracy, we measure both the training
and inference costs of our method, INCLINE, us-
ing the XStoryCloze task in Swahili. As shown in
Figure 3(a), increasing the amount of training data
does not necessarily lead to improved accuracy,
even though the training time is directly propor-
tional to the number of samples. In our study, we
empirically determine that using 500 samples for
training the alignment matrices provides the best
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XCOPA XCSQA Flores MGSM

BASELINE 61.60 47.35 46.09 39.35
INCLINE

INCLINE-HIDDEN 65.22 48.45 48.19 42.85
INCLINE-ATTN 63.87 48.18 47.54 41.55
INCLINE-FFN 64.20 47.96 46.10 41.80
INCLINE-EMB 63.16 47.59 39.23 40.90

Table 3: The averaged results of XStoryCloze, XCSQA,
Flores, MGSM tasks with four configurations for IN-
CLINE given by BLOOMZ-7B1-MT.

balance between performance gains and compu-
tational costs. Consequently, the training process
takes only 172 seconds. During inference, our ap-
proach involves a single intervention at the last
token, resulting in a time complexity of O(1). This
method incurs only a 12% increase in inference
time, taking 0.80 seconds per item compared to
0.71 seconds without it, thereby maintaining a low
inference cost. More results are provided in Ap-
pendix G.

INCLINE effectively enhances the consistency
of correct predictions between non-English lan-
guages (source) and English (target). Recent
non-English test sets are commonly translated from
their English versions, either by humans or ma-
chines, creating parallel datasets. To quantify the
alignment between non-English languages (source)
and English (target), we propose using the Cor-
rect Prediction Consistency (CPC) rate. This met-
ric measures the proportion of questions correctly
answered in both languages, with a higher CPC
rate indicating better alignment. The results in
Figure 3(b) demonstrate that CPC significantly im-
proves after intervention by INCLINE, suggest-
ing that INCLINE effectively aligns non-English
representations with English ones for more accu-
rate predictions. Notably, CPC for Swahili (sw)
increases from 0.54 to 0.65 with INCLINE, show-
ing its effectiveness for low-resource languages.

Intervening on hidden states yields the great-
est performance improvements. We apply IN-
CLINE to various components of LLMs, including
the hidden states (INCLINE-HIDDEN), the outputs
of attention heads (INCLINE-ATTN), the outputs
of FFN blocks (INCLINE-FFN), and the embed-
dings (INCLINE-EMB). The results presented
in Table 3 indicate that intervening on the hidden
states (INCLINE-HIDDEN) leads to the most sig-
nificant improvements across multilingual tasks.
This finding suggests that hidden states can capture
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Figure 4: The accuracy changed with hyperparameter α
on the XStoryCloze task with BLOOMZ-7B1-MT.

ar es hi id ru sw zh AVG

BLOOMZ-7B1-MT
BASELINE 79.22 87.89 76.37 84.45 57.78 50.50 88.55 74.96
INCLINE 83.12 90.60 81.47 86.10 67.24 59.70 91.20 79.92

LLAMA3.1-8B-INSTRUCT
BASELINE 86.50 91.73 84.84 37.46 66.98 54.00 92.39 73.41
INCLINE 87.36 92.39 85.31 64.53 73.73 55.66 92.72 78.81

LLAMA2-7B-CHAT
BASELINE 49.37 47.25 39.25 48.18 34.94 0.93 55.53 39.35
INCLINE 51.42 56.65 47.25 49.97 41.03 17.67 60.69 46.38

MISTRAL-7B-INSTRUCT
BASELINE 18.33 81.34 24.95 76.64 83.65 2.58 90.07 53.94
INCLINE 36.71 84.23 35.77 80.18 85.13 25.71 90.34 62.58

FALCON-7B-INSTRUCT
BASELINE 53.61 58.31 53.21 55.59 54.60 51.16 54.00 54.35
INCLINE 54.33 61.81 54.33 58.04 57.91 53.47 59.70 57.09

Table 4: The results of XStoryCloze dataset with five
LLM backbones.

comprehensive semantic information that is cru-
cial for cross-lingual alignment. While INCLINE-
ATTN, INCLINE-FFN, and INCLINE-EMB also
enhance performance, their performance gains vary
across different tasks. These findings justify our
design choice of using hidden states in INCLINE.

The value of α varies across languages and de-
pends on language relatedness. In this study, we
introduce α to control the strength of intervention
in Equation 4. To investigate the impact of α, we
conduct a grid search to find the optimal α values
across the languages in XStoryCloze. We present
the results for Spanish and Chinese in Figure 4.
We observe that the optimal α values for these two
languages are opposite: positive for Spanish and
negative for Chinese. These findings suggest that
the value of α is likely to depend on language relat-
edness, as both Spanish and English belong to the
Indo-European language family, while Chinese be-
longs to the Sino-Tibetan language family. Results
for more languages are provided in Appendix D.

6 Discussions

In this section, we conduct a series of experiments
to investigate how variations in LLMs, model sizes,
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ar el es fr hi ru tr vi zh AVG

BASELINE 66.59 15.30 48.52 67.86 71.97 35.66 12.38 40.40 56.11 46.09
INCLINE 68.68 15.63 50.79 69.93 76.92 37.95 12.42 43.11 58.27 48.19
INCLINE-FDEV 73.95 15.76 56.11 75.84 77.85 39.33 12.92 46.49 60.19 50.94

Table 5: The BLEU results of Flores dataset with INCLINE and INCLINE-FDEV.

in-context learning, and the data used for training
alignment matrices affect our results. Additionally,
we also explore using French as the target language
(Appendix E).

INCLINE consistently enhances performance
across multiple LLMs. To demonstrate the ver-
satility of INCLINE across different LLMs, we
apply it to another four high-performing models on
the XStoryCloze task. As shown in Table 4, IN-
CLINE consistently enhances performance com-
pared to the BASELINE. Specifically, we observe in-
creases of +4.96 for BLOOMZ-7B1-MT, +5.40 for
LLAMA3.1-8B-INSTRUCT, +7.03 for LLAMA2-
7B-CHAT, +8.64 for MISTRAL-7B-INSTRUCT, and
+2.74 for FALCON-7B-INSTRUCT.

Larger LLMs benefit more from INCLINE.
Building on the work of Wang et al. (2024b), who
demonstrates a scaling relationship between the
size of backbone models and their performance,
we evaluate the impact of different model sizes
within the BLOOMZ series on the MZsRE dataset.
Our findings, illustrated in Figure 5(a), show that
the relative performance gain of INCLINE over
the baseline increases with the size of the back-
bone model. Specifically, the Exact Match (EM)
scores (in the stacked columns) and the improve-
ment percentages (in the line chart) indicate that
larger models in the BLOOMZ series exhibit more
significant enhancements when INCLINE is ap-
plied. This observation demonstrates that larger
LLMs can benefit more from INCLINE.

INCLINE can further enhance model perfor-
mance when combined with in-context learn-
ing. In-context learning (ICL) has been shown to
improve the performance of LLMs on the MZsRE
task (Wang et al., 2024b). Building upon this find-
ing, we evaluate the effectiveness of combining
INCLINE with ICL. As illustrated in Figure 5(b),
INCLINE demonstrates enhanced performance,
achieving an additional increase of +1.02 in aver-
age Exact Match (EM) score with four in-context
examples compared to the baseline using ICL alone.
While this improvement is smaller than the +3.26
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Figure 5: (a) Exact Match (left y-axis) and relative
improvements over the baseline (right y-axis) on MZsRE
with respect to various model sizes of BLOOMZ. (b)
Exact Match score for MZsRE dataset with INCLINE
based on the zero-shot setting and few-shot settings
given by BLOOMZ-7B1-MT.

increase observed in the zero-shot setting, it sug-
gests that the benefits of INCLINE and ICL are
complementary, with both methods capturing fea-
tures from different perspectives. This highlights
the versatility of INCLINE in various applications.

High-quality parallel sentences improve align-
ment in INCLINE. We explore how the qual-
ity of parallel sentences affects the performance
of INCLINE. By default, the alignment matri-
ces of INCLINE are trained using 500 random
samples from the News Commentary dataset. To
assess the impact of sentence quality, we also
train the alignment matrices using 500 high-quality
parallel sentences from the development set of
Flores, which are carefully translated by profes-
sional human translators. We refer to this vari-
ant as INCLINE-FDEV. In Table 5, INCLINE-
FDEV significantly outperforms both the standard
INCLINE and BASELINE, highlighting the impor-
tance of high-quality parallel sentences.

7 Conclusion

In this paper, we introduce Inference-Time Cross-
Lingual Intervention (INCLINE), an innovative
framework that bridges the performance gaps be-
tween high-performing and low-performing lan-
guages in LLMs. By training alignment matrices to
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transform source low-performing language repre-
sentations into the target high-performing language
representation space, INCLINE enhances perfor-
mance on underrepresented languages without re-
quiring additional training or fine-tuning of LLMs.
Extensive experiments across nine benchmarks and
five LLMs demonstrate that, INCLINE delivers
significant improvements by up to +4.96 in terms
of accuracy compared to strong baselines, while it
only requires minimal computational costs.

8 Limitations

While INCLINE demonstrates significant enhance-
ment for the multilingual tasks with cross-lingual
intervention, the alignment matrices are trained for
specific pairs of source and target languages. Fu-
ture work will focus on developing multilingual
alignment matrices that can accommodate multiple
languages simultaneously, reducing the need for
language pair-specific training and enhancing scal-
ability. Implementing INCLINE requires access
to the internal layers and representations of LLMs.
For proprietary or closed-source models, or models
accessible only through APIs without exposure of
internal representations (e.g., GPT-4o), applying
this method may not be feasible. How to perform
cross-lingual alignment as a plug-and-play tool for
all LLMs, including those with restricted access,
requires further investigation.
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A Details of Datasets

The tasks and the corresponding output format,
prompt template, evaluation metrics, the number
of languages are shown in Table 6.

B Hyperparameters for SFT

We fine-tune all parameters of LLMs using the
AdamW optimizer with a learning rate of 2× 10−6

and a batch size of 4. This process is conducted
over three epochs on four NVIDIA A100 GPUs
(80GB). During training, we use a linear learning
rate schedule with a warm-up phase that constitutes
10% of the total training steps.

C Detailed Results of Intervention

The detailed results of BASELINE, MT-GOOGLE,
MT-LLM, SFT, ITI, CAA, INCLINE and SFT
+INCLINE for each languages across discrimina-
tive and generative tasks are shown in Table 7.

D The value of α across languages

We explore the optimal value of α for each lan-
guage in XStoryCloze using grid search, as shown
in Figure 6.

E Projection to Non-English

We have demonstrated the effectiveness of IN-
CLINE in aligning representations from non-
English to English. To further prove the generaliz-
ability of INCLINE with another high-performing
language, we conduct an ablation study aligning
representations of various languages with French.
As shown in Table 8, INCLINE enhances transla-
tion performance to non-English languages, with
an average BLEU score increase of +5.35. This fur-
ther demonstrates that INCLINE can effectively
align representations across different languages.

F Details of Visualizing

Following Li et al. (2023b), we use Linear Regres-
sion to examine multilingual input representations.
For each English and corresponding Portuguese
sample from the News Commentary dataset (a total
of 500 items), we extract the hidden states at the
last token to create a probing dataset for each layer.
We randomly divide this dataset into training and
validation sets in a 4:1 ratio and fit a binary linear
classifier to the training set. Similar to principal
component analysis (PCA), we train a second lin-
ear probe on the same dataset, constrained to be

orthogonal to the first probe. This orthogonality
ensures that the two probes capture distinct aspects
of the data. Finally, we project the hidden states
of each sample in the MZsRE test set onto the di-
rections defined by the probes from the last layer,
allowing us to visualize and analyze the multilin-
gual representations effectively.

G Supplementary Results of Training
Data Volume

We find that increasing the amount of training data
for learning alignment matrices can unexpectedly
degrade performance in Figure 3(a). To investigate
this observation, we examine the learned alignment
matrices from the last layer, using varying numbers
of parallel sentences. Interestingly, as shown in
Table 9, the absolute values of the learned align-
ment weights consistently increase as the number
of parallel sentences increases. It is well known
that large weights provide the capacity for the net-
work to fit the training data closely. As a result, the
learned alignment matrices tend to fit more closely
to the distribution of the parallel sentences. Conse-
quently, the distribution shift between the parallel
sentences and downstream tasks is enlarged as the
number of parallel sentences grows.

Data 200 500 700 1000 1200 1400

max 0.57 0.84 1.01 1.31 1.43 1.57
min -0.54 -0.73 -0.88 -1.29 -1.49 -1.71
avg 2.9e-7 1.0e-6 1.4e-6 1.9e-6 2.9e-6 3.6e-6
std 0.005 0.009 0.011 0.014 0.016 0.019

Table 9: The learned alignment matrices from the last
layer with using varying numbers of parallel sentences.
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Dataset Output prompt Metric |L|

XCOPA 2-way class Here is a premise: "{premise}". A: "{choice1}" B: "{choice2}"
What is the {question}? "A" or "B"? acc. 10

XStoryCloze 2-way class {input} What is a possible continuation for the story given the
following options? A: {quiz1} B: {quiz2}’ acc. 8

XWinograd 2-way class {input} Replace the _ in the above sentence with the correct option:
- {option1} - {option2} acc. 6

XNLI 3-way class Take the following as truth: {premise} Then the following statement:
"{hypothesis}" is "true", "false", or "inconclusive"? acc. 13

XCSQA multi-choice Question: {question} {choice} Answer: acc. 14

MZsRE answer {context} Quesion: {question} Answer: EM 10

Flores answer Translate the following sentence from {language} to English: {input} BLEU 10

WMT23 answer Translate the following sentence from {language} to English: {input} BLEU 5

MGSM answer Write a response that appropriately completes the request in {language}.
Please answer in {language}. ### Instruction: {query}### Response: EM 9

Table 6: The nine datasets used to evaluate multilingual intervention. |L| indicates the number of languages. EM is
the Exact Match score and acc. represents the accuracy.
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Figure 6: The accuracy changed with hyperparameter α on the XStoryCloze task.
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Discriminative tasks

XCOPA en et id it sw ta th tr vi zh AVG
BASELINE 76.40 50.80 69.60 58.60 55.20 71.60 50.60 49.60 71.20 77.40 61.62
MT-GOOGLE - 75.40† 75.00 76.00† 76.20† 62.20 62.40† 78.40† 76.40 77.80 73.31†

MT-LLM - 44.80 69.80 59.40 60.20 71.20 47.40 51.20 61.60 73.00 59.84
SFT 86.40 50.60 78.40 67.80 59.00 77.20 47.60 53.00 83.00 84.60 66.80
ITI - 50.80 70.80 60.00 55.40 63.20 49.00 50.60 69.00 79.40 60.91
CAA - 51.20 72.20 61.20 59.20 73.00 52.20 52.00 74.80 79.80 63.96
INCLINE - 55.40 73.40 62.80 59.80 73.40 52.60 53.40 76.20 80.00 65.22
SFT +INCLINE - 53.20 81.20† 65.80 60.80 85.00† 54.40 53.40 84.40† 85.00† 69.24
XStoryCloze en ar es hi id ru sw zh AVG
BASELINE 91.46 79.22 87.89 76.37 84.45 57.78 50.50 88.55 74.96
MT-GOOGLE - 79.48 81.34 50.69 80.81 80.08† 77.04 86.96 76.63
MT-LLM - 81.80 86.83 82.59 83.59 62.48 73.66 84.91 79.41
SFT 94.11 90.47 92.85 88.22 91.59 74.52 81.14 92.72 87.36
ITI - 78.23 90.54 80.28 85.70 58.70 52.55 88.68 76.38
CAA - 86.04 90.47 79.15 88.22 61.61 52.61 89.01 78.16
INCLINE - 83.12 90.60 81.47 86.10 67.24 59.70 91.20 79.92
SFT +INCLINE - 90.93† 92.98† 89.08† 91.99† 76.77 81.93† 93.05† 88.11†

XWinograd en fr ja pt ru zh AVG
BASELINE 73.76 59.04 51.51 57.80 54.60 62.30 57.05
MT-GOOGLE - 61.45 58.39† 59.32† 57.41 50.60 57.63
MT-LLM - 54.22 47.86 33.08 42.22 37.70 43.02
SFT 78.06 62.65 14.91 43.35 58.09 39.89 43.78
ITI - 54.22 51.51 57.79 14.60 63.10 48.24
CAA - 60.24 52.87 58.17 57.14 63.69 58.42
INCLINE - 63.86† 53.18 58.56 57.46 63.69† 59.35†

SFT +INCLINE - 63.86† 16.48 46.39 60.00† 62.50 49.84
XCSQA en ar de es fr hi it ja nl pt ru sw vi zh AVG
BASELINE 76.50 52.40 33.90 64.30 63.30 48.50 41.30 36.00 28.70 61.30 33.20 40.50 55.20 57.00 47.35
MT-GOOGLE - 61.60† 65.00† 68.00† 67.20† 32.10 68.70† 57.30† 66.50† 66.90† 64.50† 19.60 62.90† 60.40† 58.52†

MT-LLM - 32.30 26.30 42.70 42.30 30.40 25.60 25.60 17.40 39.90 21.60 24.00 31.60 39.80 30.73
SFT 65.70 48.20 32.90 54.10 53.60 43.10 40.40 32.60 29.00 53.60 29.90 31.80 48.40 50.80 42.18
ITI - 52.10 34.20 64.50 63.70 48.10 40.00 25.90 26.00 61.20 33.50 40.90 54.90 57.20 46.32
CAA - 52.80 34.10 64.50 63.30 48.40 42.20 36.40 29.30 62.80 33.50 41.90 56.00 58.40 47.97
INCLINE - 53.20 34.90 65.00 63.80 48.80† 42.90 36.80 29.80 62.60 33.80 42.20† 57.30 58.70 48.45
SFT +INCLINE - 48.50 33.30 54.40 53.70 43.90 40.60 33.00 29.30 53.70 29.90 32.50 49.10 51.20 42.55
XNLI en ar de el es fr hi ru sw th tr vi zh AVG
BASELINE 54.81 53.63 43.33 41.04 51.36 50.54 50.16 47.80 45.01 40.32 34.93 49.68 49.92 46.48
MT-GOOGLE - 51.46 53.13 52.71 51.84 50.82 41.58 51.68 50.54 50.50 52.00 51.94 50.42 50.72
MT-LLM - 46.87 43.25 36.29 52.12 51.40 45.31 42.08 43.43 34.07 33.17 47.23 48.42 43.64
SFT 86.37 77.17 68.10 59.48 82.71 81.48 72.42 66.87 67.15 54.55 49.80 77.62 78.76 69.68
ITI - 53.69 45.37 41.36 50.18 51.20 50.34 47.74 43.35 38.98 35.77 48.96 48.86 46.32
CAA - 53.59 44.67 41.62 52.83 52.75 50.28 34.40 45.75 40.48 36.41 50.32 50.92 46.17
INCLINE - 53.89 47.74 41.96 54.33 53.11 50.50† 49.22 45.99 41.28 37.17 51.12 51.16† 48.12
SFT +INCLINE - 78.44† 71.02† 61.22† 83.07† 82.14† 73.85† 69.68† 69.14† 55.69† 51.60† 78.64† 79.52† 71.17†

Generative tasks

MZsRE en de es fr pt ru th tr vi zh AVG
BASELINE 96.23 55.05 48.86 49.53 45.49 30.55 6.33 38.76 51.68 33.38 39.96
MT-GOOGLE - 78.73† 76.18† 75.50† 71.74† 63.66† 78.47† 77.39† 60.97† 79.41† 73.56†

MT-LLM - 49.13 54.78 51.28 6.86 2.69 9.69 40.92 34.72 48.59 33.18
ITI - 53.84 44.41 43.34 41.99 19.11 6.59 38.63 46.70 32.17 36.31
CAA - 57.07 53.30 52.36 52.76 31.49 7.13 39.43 55.05 38.36 42.99
INCLINE - 57.20 53.30 51.82 52.09 31.49 7.40 41.86 55.32 38.49 43.22
Flores en ar el es fr hi ru tr vi zh AVG
BASELINE - 66.59 15.30 48.52 67.86 71.97 35.66 12.38 40.40 56.11 46.09
ITI - 2.39 2.34 3.71 4.40 3.31 2.44 3.03 3.64 0.37 2.85
CAA - 67.88 15.92 54.85 68.16 72.98 38.99 12.09 43.01 56.93 47.87
INCLINE - 73.95† 15.79† 56.11† 75.84† 77.85† 39.33† 12.92† 48.62† 60.19† 51.18†

WMT23 en de ja ru uk zh AVG
BASELINE - 18.26 10.17 14.73 11.36 14.39 11.78
ITI - 2.75 1.79 2.32 1.66 3.16 2.34
CAA - 16.96 10.22 15.11 11.54 14.86 13.74
INCLINE - 18.85† 10.30† 15.24† 11.71† 15.05† 14.23†

MGSM en de es fr ja ru sw th zh
BASELINE 51.20 46.40 42.40 42.40 35.20 38.40 34.80 35.60 39.60 39.35
MT-GOOGLE - 46.00 50.40† 47.20† 44.40† 46.80† 45.60† 45.60† 47.60† 46.70†

MT-LLM - 20.40 38.80 32.40 10.80 18.40 22.00 1.60 26.80 21.40
ITI - 46.00 43.20 44.80 35.60 40.00 36.80 34.80 42.80 40.50
CAA - 42.40 42.00 40.00 34.40 40.80 36.20 34.40 45.20 39.43
INCLINE - 48.40† 46.80 45.20 37.60 44.80 38.00 38.80 43.20 42.85

Table 7: The overall results of nine NLP tasks with multilingual intervention. † denotes the best results.

en ar el es hi ru tr vi zh AVG

BASELINE 45.11 44.70 15.37 39.37 50.18 36.99 10.51 38.77 42.20 35.91
INCLINE 52.36 52.33 15.62 51.37 55.40 39.69 10.94 46.48 47.14 41.26

Table 8: INCLINE on the Many-to-French translation task.
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