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Abstract

This paper introduces RULEARENA, a novel
and challenging benchmark designed to evalu-
ate the ability of large language models (LLMs)
to follow complex, real-world rules in rea-
soning. Covering three practical domains—
airline baggage fees, NBA transactions, and
tax regulations—RULEARENA assesses LLMs’
proficiency in handling intricate natural lan-
guage instructions that demand long-context
understanding, logical reasoning, and accurate
mathematical computation. Two key attributes
distinguish RULEARENA from traditional rule-
based reasoning benchmarks: (1) it extends
beyond standard first-order logic representa-
tions, and (2) it is grounded in authentic, prac-
tical scenarios, providing insights into the suit-
ability and reliability of LLMs for real-world
applications. Our findings reveal several no-
table limitations in LLMs: (1) they struggle to
identify and apply the appropriate rules, fre-
quently becoming confused by similar but dis-
tinct regulations, (2) they cannot consistently
perform accurate mathematical computations,
even when they correctly identify the relevant
rules, and (3) in general, they perform poorly in
the benchmark. We also observe a significant
performance boost when LLMs are provided
with external tools for oracle math and logic
operations. These results highlight significant
challenges and promising research directions
in advancing LLMs’ rule-guided reasoning ca-
pabilities in real-life applications. Our codes
and data are publicly available on GitHub.

1 Introduction

Recently, Large Language Models (LLMs) (Tou-
vron et al., 2023; OpenAI, 2023; Team, 2023; An-
thropic, 2024) have demonstrated remarkable capa-
bilities across many real-world applications. How-
ever, their limited domain-specific knowledge often
leads to unfaithful or misleading output, which can
cause significant risks and financial liabilities. For
example, Canadian airline was recently required

to compensate a customer who received incorrect
guidance from the airline’s chatbot1. These chal-
lenges highlight the need for robust, real-world
benchmarks that assess how faithfully and accu-
rately LLMs can follow real-life instructions and
adhere to relevant regulations, thereby ensuring
reliable and safe outputs for deployment.

Although several studies have examined LLMs’
instruction-following abilities (Chen et al., 2024a;
Jiang et al., 2024; Wen et al., 2024), they mainly fo-
cused on style constraints, such as the format (Zhou
et al., 2023), length, or topic of responses. Yet, the
significance of instruction-following extends well
beyond style compliance. In many problem-solving
scenarios, instructions function as rules: they im-
pose logical constraints on the reasoning process
and specify how answers should be derived from
given inputs. However, limited attention has been
paid to LLMs’ capacity to follow complex rules.

Existing research (Mu et al., 2023; Sun et al.,
2024) largely addresses only single-step, first-order
logic reasoning or artificially synthesized logical
tasks. In contrast, real-world rules frequently ap-
pear in diverse and nuanced natural language forms.
They may involve intricate logical structures, in-
cluding the need for parallel reasoning across multi-
ple rules or navigating interdependent rule sets. For
instance, to calculate the fees for checked luggage
when taking flights, one needs to consider the base
price for checking each item, the overweight and
oversize charges, and how these charges should be
aggregated together. The extent to which LLMs can
accurately follow these complex, real-world rules—
an ability we term rule-guided reasoning—remains
unknown. To better understand the complexity
and practical implications of rule-guiding reason-
ing, we introduce a new evaluation benchmark,
RULEARENA, grounded in realistic scenarios.

1https://www.theguardian.com/world/2024/feb/
16/air-canada-chatbot-lawsuit

550

https://github.com/skyriver-2000/rulearena
https://www.theguardian.com/world/2024/feb/16/air-canada-chatbot-lawsuit
https://www.theguardian.com/world/2024/feb/16/air-canada-chatbot-lawsuit


Task Instruction

Reference Rules

Assistant

User

Rule-Guided Reasoning
To calculate the total cost for Alice, we consider the 
flight ticket, checked bag fees, and overweight or 
oversize fees according to the given policies.
⋯⋯⋯⋯
Fees for Each Checked Bag:                                                 
1. Item 2 (Luggage box):           

- Total dimensions: 32 + 18 + 13 = 63 inches
- Over the standard size limit of 62 inches.
- Weight: 58 lbs (Over 53 lbs to 70 lbs).
- Checking Fee:
- For the first checked bag, the fee is $100.

- Overweight Fee:
- For bag over 53 lbs to 70 lbs, the fee is $100.

- Total Fee for Item 2: ⋯⋯
⋯⋯⋯⋯

You are given the information of a passenger, his / her items and the 
policies of American Airlines.
You should compute the total cost (including the flight ticket fee and
checked bag fees) according to the policies for the passenger.

Test Instance
Alice is a Main Cabin passenger flying from Paris to
Los Angeles with the following items:
1. A backpack: 20 x 12 x 6 inches, 10 lbs;
2. A luggage box: 32 x 18 x 13 inches, 58 lbs

⋯⋯⋯⋯
Carry-on bags
You're allowed 1 carry-on bag and 1 personal item in all cabins.

First checked bag

^Main Plus includes 1 extra free checked bag in addition to the Main 
Cabin allowance (max of 2).
⋯⋯⋯⋯

Airline NBA Tax

Challenging Real-World Scenarios

Figure 1: Overview of RULEARENA. RULEARENA contains 95 commonly used and moderately complex rules
and 816 test problems from three representative real-world scenarios - airline luggage fees, NBA transactions, and
taxation policies. LLMs are given a the task instruction, the reference rules in this scenario, and a user instance, and
required to conduct reasoning and computation for the user input under the guidance of reference rules.

As illustrated in Figure 1, RULEARENA is de-
veloped from three representative, real-world sce-
narios: (1) airline luggage fee policies, (2) NBA
transactions, and (3) taxation policies. From these
domains, we collect authentic rules currently im-
plemented by companies or government agencies.
For each domain, we construct a set of challenging
test problems, pairing each question with a ground-
truth solution, and then evaluate a range of state-
of-the-art LLMs on their ability to conform to the
rules. LLMs are provided with the domain-specific
task instructions and reference rules, and required
to resolve each test problem through reasoning ac-
cording to the question and reference rules.

Our contributions in this work can be summa-
rized in three main points:

• A diverse collection of real-world rules: We as-
semble a comprehensive set of 95 policies/rules
drawn from these three real-world scenarios.

• A challenging benchmark and novel evalu-
ation metrics: Using the collected rules, we
introduce RULEARENA, a new benchmark con-
taining 816 datapoints designed to test LLMs’
rule-guided reasoning ability. We further pro-
pose a suite of evaluation metrics for both rule
selection and rule application, providing fine-
grained insights into LLMs’ performance.

• A comprehensive analysis of prevalent chal-
lenges: By examining common failure cases,
identifying difficult rule types, and conducting
extensive controlled experiments, we uncover
several systematic issues that limit current LLMs’
rule-guided reasoning capabilities and promising
directions to improve.

2 Related Work

Complex Instruction-following Benchmarks A
wide range of benchmarks has been designed
to evaluate LLMs’ instruction-following abilities
from various perspectives, including semantics
(Zheng et al., 2023; Li et al., 2023; Liu et al.,
2023; Wu et al., 2024a,b), format (Xia et al., 2024;
Tang et al., 2023), and response length (Chen et al.,
2024b; Sun et al., 2023). To further probe com-
plexity, some works have introduced benchmarks
that construct complex instructions through com-
positional methods. For example, WizardLM (Xu
et al., 2023) generates intricate tasks by combin-
ing simpler instructions, while CELLO (He et al.,
2024) uses task descriptions and input texts to
create complex prompts grounded in real-world
scenarios. ComplexBench (Wen et al., 2024)
adopts multiple compositional structures to inte-
grate atomic requirements into more challenging
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instructions. In contrast, our work focuses on in-
structions derived directly from real-life scenarios,
where naturally occurring complexities arise from
multifaceted constraints incurred by inputs on the
set of instructions.

Logical Reasoning Benchmarks Extensive re-
search has explored benchmarks for mathematical
(Koncel-Kedziorski et al., 2016; Ling et al., 2017;
Amini et al., 2019; Cobbe et al., 2021; Hendrycks
et al., 2021) and logical (Mao et al., 2019; Gupta
et al., 2020; Tafjord et al., 2021; Zhong et al., 2022;
Han et al., 2022; Zhang and Ding, 2024) reason-
ing, evaluating LLMs’ abilities to solve math prob-
lems of varying difficulty, tackle coding challenges,
and engage in deductive logic. Although these
benchmarks test models’ reasoning skills, their log-
ical constraints are often represented in simplified,
formal systems, such as propositional (Hua et al.,
2024) or first-order logic (Zhu et al., 2023; Mu
et al., 2023; Sun et al., 2024). In contrast, our
benchmark deals with rules that arise in natural
language, capturing a richer, more realistic set of
constraints. Such natural language rules extend be-
yond neatly formalized logical representations, of-
ten express higher-order logic and more intricate re-
lationships than typical propositional or first-order
logic formalizations.

3 RuleArena

In this section, we present the RULEARENA bench-
mark and its construction process. We begin by
describing the domains we have chosen and the
corresponding regulations from which our rules are
collected. We then describe how problems with
varying difficulty levels are generated and how the
ground-truth solutions are computed. Finally, we
present the evaluation metrics we used to evaluate
whether correct rules are correctly applied.

3.1 Domains and Rule Collection

We select three real-life domains that all both fa-
miliar in everyday life and demonstrate a high level
of complexity:

Airline. It requires LLM to calculate the total
cost for one or more passengers, including their
flight ticket and checked baggage fees. The regu-
lations are extracted from policy of American Air-
lines2. The complexity stems from the fact that bag-

2https://www.aa.com/i18n/customer-service/
support/optional-service-fees.jsp

Airline NBA Tax

# Rules 10 54 31
Average # Tokens 376 398 359

Table 1: Statistics of rules in each domain.

gage costs vary according to factors such as cabin
class, flight origin and destination, the number of
checked bags, and the size of each bag. Conse-
quently, LLMs must carefully identify the correct
baggage-related rules and apply them accurately to
determine the final cost.

NBA transaction. It requires LLMs to determine
whether one or more specified transactions are al-
lowed. The regulations are extracted from the 2023
NBA Collective Bargaining Agreements3 (CBA)
and excerpt from the NBA Constitution and By-
Laws4. Complexity arises from the numerous fac-
tors influencing transaction eligibility, including
the player’s contract value, salary-matching con-
straints, and the specific transaction date. LLMs
must accurately identify and apply the relevant
rules from the agreement to determine whether a
given transaction can proceed.

Tax. It requires LLMs to calculate the income tax
for one person or family given their financial infor-
mation. The regulations are collected from Internal
Revenue Service5. Although taxes are a common
and universally encountered aspect of modern life,
they are also known for their complexity. This
complexity stems from a wide range of factors,
including salary income, investment gains, gifts,
home ownership and related expenses, as well as
the jurisdiction in which income is earned. To ar-
rive at the correct tax amount, LLMs must navigate
and apply the appropriate rules drawn from these
multifaceted conditions.

The statistics for the collected rules are summa-
rized in Table 1. Although the total number of rules
is relatively small, each rule averages just under
400 tokens in length, tokenized by Llama-3.1 to-
kenizer. This presents a substantial challenge for
both rule comprehension and the handling of long
contexts. For more details on how we collect our
rules, please refer to Appendix B.1.

3https://ak-static.cms.nba.com/
wp-content/uploads/sites/4/2023/06/
2023-NBA-Collective-Bargaining-Agreement.pdf

4https://ak-static-int.nba.com/
wp-content/uploads/sites/3/2015/12/
NBA-Constitution-and-By-Laws.pdf

5https://www.irs.gov/forms-instructions
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3.2 Problem Annotation

After gathering the relevant rules for each domain,
we construct challenging test problems designed to
evaluate whether LLMs can produce correct out-
puts from the provided rules.

Airline. The problems are generated by ran-
domly selecting passenger information (e.g., cabin
class, itinerary, ticket price) and their checked bag-
gage details (e.g., dimensions, weight). We convert
each regulation into a corresponding rule-based
script, enabling the direct calculation of ground-
truth answers by executing these scripts. LLM
performance is then assessed by comparing the
model’s computed solutions to the script-derived
ground truths, step by step.

NBA Transaction. The problems consist of pro-
posed trades that may or may not comply with NBA
regulations. Because these problems require a wide
variety of operations and rule sets, fully automated
generation and evaluation are difficult. Therefore,
we employ annotators familiar with NBA transac-
tion rules to curate complex test cases and identify
all the relevant rules needed to resolve each case
(further details in Appendix B.2). For each prob-
lem, we ask the LLM whether the transaction is
legit or not based on the regulations. If LLM thinks
the transaction is legit, it should generate “Yes”;
otherwise, it needs to identify the specific team and
transaction that violates the rules.

Tax. The problems are randomly generated from
hypothetical taxpayer profiles including informa-
tion such as income levels, filing status, etc. IRS
tax regulations are translated into rule-based scripts
to compute ground-truth tax obligations. As with
the airline scenario, we measure LLM accuracy by
comparing the model’s step-by-step calculations
with those derived directly from the scripts.

3.3 Difficulty control

To assess LLMs’ capabilities under varying levels
of complexity, we create problems with different
degrees of difficulty. We define three levels of
difficulties in each domain.

Airline. The difficulty is controlled by adjusting
the number of bags a passenger carries.

NBA Transaction. Complexity is determined by
increasing the number of teams, players, and trans-
actions involved in a scenario.

Tax. The level of difficulty is raised by progres-
sively introducing additional tax forms and thus
relevant regulations.

The statistics of problems at different difficulty
levels in each domain are listed in Table 2.

Airline NBA Tax

Level 1 100 81 100
Level 2 100 89 100
Level 3 100 46 100
In Total 300 216 300

Table 2: Number of test problems at different difficulty
levels in each domain.

3.4 Evaluation Metrics

To achieve a comprehensive evaluation of the
rule-following abilities of Large Language Models
(LLMs), we introduce a set of evaluation metrics.
Unlike existing benchmarks (Hua et al., 2024; Fan
et al., 2023; Zhu et al., 2023), which primarily
rely on simple metrics such as answer accuracy or
BLEU scores, our approach aims to conduct a more
detailed analysis of the step-by-step rule-guided
reasoning process. This analysis includes exam-
ining each rule application to determine whether
the rule should be applied, whether any rules are
missed, and whether the rule application computa-
tion process is accurate.

For each domain, assuming a set T of N prob-
lems and a set R of M . For each problem ti =
(qi, ai, Ri), we have a query qi, an answer ai, and a
set of relevant rules Ri, together with a rule-usage
matrix U ∈ RN×M , where each item Ui,r ∈ {0, 1}
indicates whether a rule r is used by an LLM in
problem ti. Matrix U can be approximately ob-
tained by parsing LLMs’ responses using an LLM,
which we will introduce in Section 4.1.

Now we introduce two groups of metrics:
The first group focuses on problem-level eval-

uations: for each problem, we examine whether
all necessary rules were applied, whether any ex-
traneous rules were applied, and whether the final
answer aligns with the ground-truth solution:
Problem-wise Recall: denoted as R(t), measures
whether LLMs apply all relevant rules for a prob-
lem t. For each problem ti, P(ti) is calculated as
the proportion of relevant rules that are applied by
LLMs:

R(ti) =

∑
r∈Ri

I(Ui,r = 1)∑
r I(r ∈ Ri)

(1)
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Problem-wise Rule Application Correctness: de-
noted as AC(t), measures whether LLMs apply
rules correctly for a problem t. For each problem
ti, AC is calculated as the proportion of correctly
applied rules that are relevant:

AC(ti) =

∑
Ui,r=1 I(r is correctly applied)

∑
r I(Ui,r = 1)

(2)

Problem-wise Precision: denoted as P(t), mea-
sures whether LLMs apply only relevant rules for a
problem t. For each problem ti, P(ti) is calculated
as the proportion of applied rules that are relevant:

P(ti) =

∑
Ui,r=1 I(r ∈ Ri)∑
r I(Ui,r = 1)

(3)

Problem-wise Accuracy: denoted as Acc(t), mea-
sures whether LLMs accurately answer the prob-
lem t comparing with ground-truth result. Assume
the LLM provides answer ãi for a problem ti, the
accuracy should be calculated as:

Acc(ti) = I(ãi = ai) (4)

The second group of metrics focuses on rules
rather than problems. For each rule in the do-
main, we assess whether it is applied to all prob-
lems that require it, and whether the problems it is
applied to are exactly those that necessitate it:
Rule-wise Recall, denoted as R(r), measures
whether LLMs decide to apply r when r is rele-
vant to a problem:

R(r) =

∑
i I(r ∈ Ri)I(Ui,r = 1)∑

i I(r ∈ Ri)
(5)

Rule-wise Rule Application Correctness, de-
noted as AC(r), measures whether LLMs correctly
apply r:

AC(r) =

∑
i I(Ui,r = 1)I(r is correctly applied)∑

i I(Ui,r = 1)
(6)

Rule-wise Precision, denoted as P (r), measures
whether r is relevant to the problem when LLMs
decide to apply r:

P(r) =

∑
i I(Ui,r = 1)I(r ∈ Ri)∑

i I(Ui,r = 1)
(7)

Problem Recall and Problem Accuracy are ap-
plied to all three domains to measure the ability of
LLMs to match and aggregate rules and to compre-
hensively follow the rules. Problem Application

Correctness is used on Airline and Tax tasks to
evaluate whether LLMs can operate correctly un-
der the guidance of rules, as these two tasks have
clear procedures without ambiguous rules, while
Problem Precision is used on NBA tasks to exam-
ine whether LLMs can differentiate similar rules
applicable to different situations.

4 Experiments

This section presents the experiments on bench-
mark. We first introduce the LLMs and prompting
strategies we use to evaluate, and then present the
evaluation result.

4.1 Experiment Settings

LLMs. Our rules, which are prompted directly
into LLMs, can be of a length up to 20,000 to-
kens. Therefore, we only consider LLMs that can
handle such long contexts, including Llama-3.1
70B, Llama-3.1 405B (Dubey et al., 2024), Qwen-
2.5 72B (Qwen Team, 2024), Claude-3.5 Sonnet
(Anthropic, 2024), GPT-4o (OpenAI, 2024a), and
o1-preview (OpenAI, 2024b).
Prompting Strategies. Since rule-guided reason-
ing can be an intricate multi-step reasoning process
in our three real-world scenarios, we use Chain-
of-Thought (CoT) (Wei et al., 2022; Kojima et al.,
2022) reasoning by default. To further study if
LLMs can learn to follow hard rules through in-
context examples, we also compare 0-shot with
1-shot CoT given an example including a task of
the lowest difficulty and its solution. Due to con-
text limit, we do not further increase the number of
in-context examples.
Output Parsing. To obtain the rule-usage matrix
U we mentioned in Section 3.4, we utilize the struc-
tured output mode of GPT-4o (OpenAI, 2024a) to
parse the raw textual responses from LLMs. Specif-
ically, for airline and tax problems we structuralize
the ground-truth calculation process and ask GPT-
4o to fill in problem-specific information according
to an LLM’s response, while for NBA problems
we enumerate a list of all rules and ask GPT-4o
to directly judge whether a specific rule is applied
in an LLM’s response. For details we refer our
readers to Appendix C.

4.2 Main Results

This section provides a comprehensive analysis of
benchmark results. The analysis is divided into
two parts: problem-wise analysis and rule-wise
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Models Settings Level 1 Level 2 Level 3

P(t) AC(t) R(t) Acc(t) P(t) AC(t) R(t) Acc(t) P(t) AC(t) R(t) Acc(t)

Airline

Llama-3.1 70B
0-shot 1.000 0.764 0.558 0.01 1.000 0.732 0.535 0.01 1.000 0.752 0.578 0.00
1-shot 1.000 0.809 0.787 0.17 1.000 0.827 0.801 0.07 1.000 0.769 0.815 0.01

Qwen-2.5 72B
0-shot 1.000 0.636 0.586 0.01 1.000 0.627 0.554 0.01 1.000 0.588 0.544 0.00
1-shot 1.000 0.836 0.908 0.19 1.000 0.818 0.901 0.10 1.000 0.801 0.904 0.01

Llama-3.1 405B
0-shot 1.000 0.854 0.604 0.03 1.000 0.844 0.587 0.06 1.000 0.845 0.570 0.01
1-shot 1.000 0.919 0.921 0.32 1.000 0.897 0.905 0.16 1.000 0.870 0.946 0.04

Claude-3.5 Sonnet
0-shot 1.000 0.930 0.702 0.04 1.000 0.876 0.669 0.00 1.000 0.888 0.646 0.01
1-shot 1.000 0.960 0.871 0.29 1.000 0.966 0.822 0.30 1.000 0.972 0.718 0.11

GPT-4o
0-shot 1.000 0.862 0.616 0.02 1.000 0.868 0.578 0.00 1.000 0.813 0.548 0.00
1-shot 1.000 0.922 0.885 0.32 1.000 0.875 0.853 0.16 1.000 0.835 0.798 0.05

o1-preview
0-shot 1.000 0.968 0.888 0.54 1.000 0.950 0.881 0.37 1.000 0.958 0.855 0.21
1-shot 1.000 0.971 0.911 0.63 1.000 0.963 0.901 0.55 1.000 0.961 0.929 0.46

NBA Transaction

Llama-3.1 70B
0-shot 0.579 – 0.428 0.40 0.498 – 0.246 0.36 0.540 – 0.250 0.22
1-shot 0.560 – 0.565 0.49 0.466 – 0.386 0.25 0.578 – 0.438 0.26

Qwen-2.5 72B
0-shot 0.556 – 0.409 0.44 0.537 – 0.339 0.43 0.592 – 0.305 0.30
1-shot 0.595 – 0.526 0.53 0.495 – 0.378 0.35 0.574 – 0.327 0.17

Llama-3.1 405B
0-shot 0.581 – 0.419 0.49 0.577 – 0.323 0.30 0.561 – 0.297 0.28
1-shot 0.608 – 0.550 0.56 0.559 – 0.439 0.29 0.575 – 0.461 0.10

Claude-3.5 Sonnet
0-shot 0.660 – 0.457 0.38 0.630 – 0.373 0.40 0.588 – 0.292 0.28
1-shot 0.676 – 0.528 0.58 0.676 – 0.410 0.47 0.650 – 0.371 0.26

GPT-4o
0-shot 0.650 – 0.446 0.40 0.570 – 0.327 0.26 0.603 – 0.291 0.24
1-shot 0.616 – 0.506 0.40 0.597 – 0.392 0.28 0.569 – 0.318 0.20

o1-preview
0-shot 0.742 – 0.502 0.44 0.707 – 0.430 0.47 0.747 – 0.415 0.24
1-shot 0.731 – 0.565 0.58 0.715 – 0.512 0.40 0.724 – 0.413 0.20

Tax

Llama-3.1 70B
0-shot 1.000 0.834 0.989 0.01 1.000 0.767 0.918 0.00 1.000 0.745 0.852 0.00
1-shot 1.000 0.923 0.998 0.11 1.000 0.895 0.941 0.00 1.000 0.873 0.910 0.00

Qwen-2.5 72B
0-shot 1.000 0.888 0.998 0.10 1.000 0.835 0.944 0.01 1.000 0.785 0.903 0.00
1-shot 1.000 0.931 1.000 0.17 1.000 0.919 0.934 0.00 1.000 0.921 0.868 0.00

Llama-3.1 405B
0-shot 1.000 0.923 0.999 0.16 1.000 0.876 0.964 0.02 1.000 0.797 0.926 0.00
1-shot 1.000 0.941 1.000 0.24 1.000 0.914 0.958 0.03 1.000 0.873 0.880 0.00

Claude-3.5 Sonnet
0-shot 1.000 0.964 1.000 0.32 1.000 0.934 0.940 0.02 1.000 0.887 0.866 0.00
1-shot 1.000 0.979 1.000 0.64 1.000 0.954 0.969 0.16 1.000 0.895 0.888 0.00

GPT-4o
0-shot 1.000 0.965 1.000 0.42 1.000 0.951 0.957 0.07 1.000 0.945 0.908 0.00
1-shot 1.000 0.975 1.000 0.57 1.000 0.975 0.944 0.07 1.000 0.982 0.893 0.00

o1-preview
0-shot 1.000 0.992 1.000 0.72 1.000 0.945 0.981 0.28 1.000 0.914 0.976 0.19
1-shot 1.000 0.994 1.000 0.68 1.000 0.960 0.994 0.33 1.000 0.894 0.939 0.24

Table 3: Main problem-wise evaluation results on airline, NBA, and tax domains. P(t) denotes problem-wise
precision, AC(t) denotes problem-wise rule application correctness, and R(t) denotes problem-wise recall. The
best and second best results in each column are rendered with orange and blue backgrounds respectively.

analysis. The problem-wise analysis evaluates the
performance of LLMs across different problems
and difficulty levels; the rule-wise analysis delves
into how effectively LLMs identify and apply spe-
cific rules, highlighting common failure modes and
the impact of rule complexity and similarity.

4.2.1 Problem-wise Analysis

Table 3 presents the evaluation results6. Notice
that the values of precision (P)(t), rule applica-
tion (AC(t)), and recall (R(t)) are much higher
than accuracy (Acc(t)). This is because solving a
problem requires using multiple rules, hence one
correct rule recall or application is insufficient for a

6In NBA domain, the problem-wise correctness (AC(t))
of rule application could not be computed due to the absence
of step-by-step computation annotations. Generating such
detailed annotations would require extensive human effort.

correct answer. For example, if a problem requires
10 rules and only one rule is missed, R(t) is high as
0.9 while very probably leading to mistaken final
answer (Acc(t) = 0).
Low Accuracy. Overall performance in problem
result accuracy (Acc(t)), as summarized in Table 3,
remains unsatisfactory across all three scenarios.
Under the 0-shot setting, non-reasoning LLMs such
as Llama 405B, Claude-3.5, and GPT-4o fail to
produce correct answers for the simplest test prob-
lems, and even advanced reasoning model like o1-
preview can solve only about 50%∼60% of Level 1
problems. For more challenging problems, par-
ticularly in the airline and tax domains, Acc(t)
of non-reasoning models rarely exceeds 10% and
o1-preview fails most of them as well. In 1-shot
setting, we notice marked improvements on the
easiest problems, yet the gains diminish as prob-
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lem difficulty increases. These persistently low
Acc(t) highlight the inherent complexity of the
RULEARENA benchmark and emphasize the need
for more robust LLM reasoning and rule-following
capabilities.
High Precision. In both the airline and tax sce-
narios, LLMs achieve 100% precision (P(t)) in
rule selection precision, consistently applying only
those rules that are required. We notice that high
P(t) stems from the relative clarity of the rules in
these domains; the rules are neither highly similar
nor ambiguous, making it straightforward to de-
termine which ones apply. In contrast, the NBA
scenario presents a more challenging environment,
leading to noticeably lower P(t) in rule selection.
Low Recall. Despite exhibiting high P(t) in cer-
tain domains, LLMs often struggle with rule recall
(R(t)). Low R(t) in the airline, NBA, and more
complex tax problems indicate that models do not
fully grasp the reasoning workflows required. Con-
sequently, they frequently fail to recall all neces-
sary rules, reflecting an incomplete or superficial
understanding of the underlying logic.
High Rule Application Correctness. While
LLMs demonstrate relatively high application cor-
rectness (AC(t)) on rule application computation
on average, AC(t) never reaches a perfect 100%.
Occasional errors in mathematical calculations or
logical operations emerge even under explicit rule
guidance. Although these mistakes are not perva-
sive, a single computational error can significantly
compromise the final output’s accuracy (Acc(t))
in many cases. This observation underscores the
importance of improving the reliability of math
computation abilities in LLMs.

4.2.2 Rule-wise Analysis
Here, we provide a detailed examination of the rule-
level evaluation. Figure 2 presents recall (R(r))
and application correctness (AC(r)) in airline do-
main and metrics for NBA transaction and tax do-
mains are presented in Figure 5 and Figure 6 in Ap-
pendix. Table 4 summarizes the metric results by
reporting the mean and variance of three key met-
rics across all rules: recall (R(r)), application cor-
rectness (AC(r)), and precision (P(r)). The low
variance observed in metrics such as P(r) within
the airline and tax domains suggests that certain
performance aspects are largely independent of the
specific rules being applied. In contrast, the high
variance seen in metrics like R(r) implies that re-
call performance is significantly influenced by the
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Rule 1
Rule 2
Rule 3
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Rule 5
Rule 6
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Rule 10
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Rule 1 -- overall fee aggregation
Rule 2 -- 1st check bag fee
Rule 3 -- 2nd check bag fee
Rule 4 -- overweight fee
Rule 5 -- 4+ check bag fee
Rule 6 -- main plus extra free bag
Rule 7 -- 3rd check bag fee
Rule 8 -- oversize fee
Rule 9 -- complementary overweight
Rule 10 -- maximum violation fee

(a) Recall
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Rule 9 -- overall fee aggregation
Rule 10 -- main plus extra free bag

(b) Correctness

Figure 2: Rule-wise metrics of rules in airline domain.

particular rules in question. Detailed analysis is
presented below in Table 4.

Airline NBA Tax

Mean(P(r)) 1.000 0.504 1.000
Var(P(r)) 0.000 0.110 0.000
Mean(Ac(r)) 0.798 – 0.828
Var(Ac(r)) 0.026 – 0.047
Mean(R(r)) 0.721 0.308 0.900
Var(R(r)) 0.109 0.082 0.050

Table 4: Statistics of our three rule-wise metrics.

Rules with Low Recall. Certain rules are sys-
tematically overlooked across multiple data points,
indicating that their neglect is not random but con-
centrated on specific rules. To understand which
rules are most frequently disregarded, we identify
the top-5 rules with the lowest recall (R(r)), as pre-
sented in Table 5. We find that most of these rules
are “non-essential,” meaning they apply only under
specific conditions. In contrast, “essential” rules
must be applied in every scenario. For example, in
the airline domain, essential rules define the base-
line costs for each piece of luggage and the flight
itself, making them relevant to all situations. Con-
versely, rules pertaining to overweight or oversized
baggage only apply when such conditions arise,
rendering them non-essential. Our observations in-
dicate that these scenario-dependent, non-essential
rules are more frequently neglected.
Rule with Low Application Correctness. We
also identified the top-5 rules with the lowest cor-
rectness (AC(r)), listed in Table 6. The majority
of these rules are “compositional” in nature, re-
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Airline NBA Tax

Rule essential Rule essential Rule essential

maximum violation fee salary space consumption of bird right education credits
complementary overweight salary space consumption of early bird right american opportunity credit
oversize fee sign and trade maximum salary ✓ net profit
3rd base check fee ✓ Arenas provision ctc or other dependent credit
main plus extra free bag over 38 rule taxes with qualified dividends ✓

Table 5: Top-5 rules of the lowest recall in ascent order of recall.

Airline Tax

Rule Composition Rule Composition

main plus extra free bag ✓ taxes with qualified dividends ✓
overall fee aggregation ✓ standard taxes
overweight fee matching itemized deductions ✓
3rd base check fee standard deductions ✓
oversize fee matching ✓ total income ✓

Table 6: Top-5 rules of the lowest correctness in ascent order of correctness.

quiring the aggregation of at least two previously
computed intermediate results. By contrast, “non-
compositional” rules demand at most a single math-
ematical operation involving a single intermediate
result. Our analysis shows that compositional rules
yield significantly lower AC(r) scores, indicating
that LLMs struggle more with problems involving
multiple reasoning steps than with straightforward,
one-step computations.

Rules with Low Precision. In both the airline
and tax scenarios, all rules exhibit high precision
(P(r)), indicating that LLMs rarely apply irrelevant
rules during the reasoning process. However, the
NBA domain presents a different challenge, where
multiple rules appear similar. As shown in Table 7,
rules with low precision in the NBA domain usually
have alternatives applicable under different condi-
tions in the same situation. This pattern suggests
that when rules are easily confused with one an-
other, LLMs struggle to consistently identify and
apply the correct one.

Rule Substitutable

higher max criterion
non bird right ✓
taxpayer mid level exception hard cap ✓
standard traded player exception ✓
salary increase ratio except bird right ✓

Table 7: Top-5 rules of the lowest precision in ascent
order of precision.

4.3 In-Depth Analyses

4.3.1 What Impacts Rule Following?

We study the factors influencing LLM performance,
as measured by Acc(t), and provide the complete
experiment results in Appendix D.2. The main
findings are:
Correlation between Acc(t) and other metrics.
We compare the correlation between problem-wise
metrics (i.e., P(t), AC(t), R(t)) and accuracy
Acc(t). The correlation is the most obvious and al-
most linear between R(t) and Acc(t), while highly
non-linear or unclear between other two metrics
and Acc(t).
The effect of in-context examples. We observe
that LLMs generally provide better performances
given 1-shot example on airline, tax, and (easy)
NBA problems. However, when tackling more chal-
lenging NBA problems (Levels 2 and 3), providing
an example increases P(t) and R(t) but leads to a
counterintuitive decrease in overall Acc(t).
Rule representation has a mild effect. In the air-
line and tax domains, some rules are represented
as Markdown tables. To test whether representa-
tion format affects performance, we convert these
tabular rules into textual “if-then” statements and
compare with original results. The comparison
shows that converting tabular rules into text im-
proves R(r), but has little impact on other metrics,
including Acc(t).
Distractive rules degrades LLM performance.
An essential aspect of rule-following involves iden-
tifying which rules are relevant to the current prob-
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Rule Recall

Relevant Rule:
More than one fee may apply per bag exceeding
standard dimensions for both weight and size. 
The higher between oversize and overweight 
applies, in addition to the checked bag fee.

Error Case:
- Bag 2: 36 x 14 x 14 inches, 98 lbs

- Dimensions: 64 inches (36 + 14 + 14)
- Weight: 98 lbs
- Overweight fee (over 70 lbs): $200
- Oversize fee (over 62 inches): $30
- Total fee for Bag 2: $200 + $30 = $230

Revision:
- Bag 2: 36 x 14 x 14 inches, 98 lbs

- Dimensions: 64 inches (36 + 14 + 14)
- Weight: 98 lbs
- Overweight fee (over 70 lbs): $200
- Oversize fee (over 62 inches): $30
- Total fee for Bag 2: Max($200, $30) = $200

Rule Misuse

Relevant Rule:
In the event the Team’s Team Salary is below 
the Salary Cap such that the Team is not 
entitled to use the Non-Taxpayer Mid-Level
Salary Exception, the Team may use the Mid-
Level Salary Exception for Room Teams.

Error Case:
Salary Cap Exception:
- Team C’s team salary is $140,000,000, below

the Salary Cap.
- They can use the Non-Taxpayer Mid-Level 

Salary Exception to sign Player E, as the 
first-year salary is within the limit of 
9.12% of the Salary Cap ($12,812,569).

Revision:
Salary Cap Exception:
- Team C’s team salary is $140,000,000, below

the Salary Cap.
- They can use the Mid-Level Salary Exception

for Room Teams to sign Player E, as the 
first-year salary is within the limit of 
5.678% of the Salary Cap ($7,982,587).

Computation

Relevant Rule:
If your taxable income is less than $100,000, 
you must use the Tax Table to figure your tax. 
If your taxable income is $100,000 or more, 
use the Tax Computation Worksheet right after 
the Tax Table.

Error Case:
Since the payer‘s taxable income is more than 
$100,000, and the filing status is is Married 
filing separately, we use the Tax Computation 
Worksheet to figure the tax.

Line 16 - Tax: $146,144 * 0.24 = $35,094.56

Revision:
Since the payer‘s taxable income is more than 
$100,000, and the filing status is is Married 
filing separately, we use the Tax Computation 
Worksheet to figure the tax.

Line 16 - Tax: $146,144 * 0.24 = $35,074.56

Figure 3: Failure Case Studies. Existing LLMs commonly fail due to inadequate rule recall, inappropriate usage of
similar rules, and computation errors.

lem. We assess the extent to which irrelevant rules
detrimentally affect performance, and notice that
the presence of distractive (irrelevant) rules signifi-
cantly degrades LLM performance.
Tool augmentation boosts overall performance.
Using external tools is a simple way to reduce math
and logic errors from LLMs. To study to what ex-
tent external tools can help LLM rule-guided rea-
soning, we ask our LLMs to write Python code and
use the execution result as solution, where Python
interpreter serves as an oracle math and logic cal-
culator. We observe that LLMs can achieve a sig-
nificant performance boost with tool augmentation
but are still far from perfect.

4.3.2 Case Studies

To gain an intuitive understanding of how and why
LLMs fail in complex rule-following problems,
we present representative failure cases in Figure
3. These examples highlight three frequently ob-
served failure modes:
LLMs fail to recall certain rules. As discussed
in Section 4.2, LLMs often neglect non-essential
rules. In airline problems, for instance, a crucial
requirement is to apply either the oversize fee or
the overweight fee (whichever is higher) and not
to sum them. However, LLMs frequently overlook
this instruction and incorrectly combine both fees,
resulting in an inflated, incorrect total cost.
LLMs get confused by similar rules. When mul-
tiple rules appear similar but are applicable un-
der different conditions, LLMs can misapply them.
For example, in the NBA domain, teams under the
Salary Cap should use the Mid-Level Exception
for Room Teams, whereas teams above the Salary

Cap should apply the Non-Taxpayer Mid-Level Ex-
ception. As illustrated in the second failure case of
Figure 3, LLMs sometimes conflate these excep-
tions. Similar confusion also arises with various
Traded Player Exceptions and differing types of
Bird Rights.7

LLMs compute incorrect results. Mathematical
and logical operations present ongoing challenges.
For example, in the tax scenario, LLMs must accu-
rately compute a series of values related to income,
tax brackets, and credits. Even a minor arithmetic
mistake compromises the final result, as shown in
the third failure case. Such computational errors
underscore the need for more precise and reliable
reasoning capabilities in LLMs.

5 Conclusions

In this paper, we introduce RULEARENA, a real-
world benchmark designed to evaluate the abili-
ties of LLMs on various rule-guided reasoning
tasks. We observe that existing LLMs face sig-
nificant challenges when they try to tackle prob-
lems on RULEARENA - even the strongest Claude-
3.5 and GPT-4o models can hardly succeed on
our hardest tasks. Our further analysis indicates
that LLMs struggle to integrate multiple rules or
facts cohesively and are prone to irrelevant distrac-
tions. RULEARENA poses fundamental challenges
in complex rule following, and provides a valuable
tool for understanding and enhancing the reasoning
abilities of LLMs. We envision RULEARENA as a
foundation for future research to improve LLM per-
formances in solving increasingly complex tasks.

7Explanations of these specific NBA terms can be found
in the Appendix A.
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Limitations

While this study provides a comprehensive evalua-
tion and analysis of LLMs’ rule-guided reasoning
capabilities, there remain some limitations and nu-
merous promising avenues for future research:

Automating Evaluation In this work, we only
rely on GPT-4o to parse textual responses into struc-
tured JSON, facilitating downstream analyses of
rule application. A logical next step would be to
investigate the use of LLMs for fully automated rea-
soning evaluations, including the identification of
intermediate errors. This direction aligns with the
concept of “LLM-as-a-judge” (Zheng et al., 2023),
which, despite potential bias or inaccuracies (Xu
et al., 2024), offers a scalable alternative to labor-
intensive human evaluation and could improve the
reliability and granularity of assessment metrics.

Training with Rule-Guided Reasoning Data
Supervised fine-tuning has proven effective in en-
hancing LLMs’ performance on tasks requiring
substantial domain knowledge (Jeong, 2024; Fu
et al., 2023; Wu et al., 2024a). While we did not
pursue fine-tuning in this study—given the high
cost of obtaining extensive rule-guided reasoning
data and the limited generalizability to unseen do-
mains—it remains a worthwhile direction. Investi-
gating whether training with datasets from related
domains, such as mathematical or logical reason-
ing tasks or code generation problems, can bolster
LLMs’ rule-following performance is an open ques-
tion worth exploring.

Sophisticated Rule Recall and Aggregation
Our experiments reveal that LLMs frequently strug-
gle with recalling and aggregating the correct rules,
and that problem-wise recall strongly correlates
with overall accuracy. Addressing these challenges
may involve refining rule retrieval mechanisms or
integrating structured reasoning frameworks. For
instance, approaches that retrieve relevant informa-
tion dynamically (Trivedi et al., 2023; Zhou et al.,
2024) and convert rules into structured data (Pan
et al., 2023; Wang et al., 2024) have shown promise
in reasoning tasks. Building on these insights, a
hybrid system that combines LLM-based reasoning
with symbolic reasoners may enhance both the con-
sistency and robustness of rule-guided reasoning in
real-world scenarios.
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A Terminology Explanation in NBA

We briefly explain the NBA terminologies mentioned in this paper as follows:

Salary Cap. The Salary Cap of NBA is a rule that limits how much money each team can spend on
player salaries. It is designed to keep teams on a level playing field financially, so wealthier teams cannot
just purchase all the best players. The league sets the cap based on its overall revenue.

(Salary Cap) Exceptions. The NBA uses a “soft” Salary Cap, meaning teams can exceed the limit
using certain Exceptions. Following are some commonly used Exceptions:

• Mid-Level Exception (MLE) allows teams to sign free players even if they are above the salary cap.
There are three types of MLEs, i.e. Non-Taxpayer MLE, Taxpayer MLE, and MLE for Room Teams,
applicable to teams in different salary situations.

• Traded Player Exceptions (TPE) is a tool that allows teams to make trades even if they are over the
salary cap. When a team trades a player for less salary than it gives away (or for nothing), it creates a
TPE, which is like a "credit" they can use later. If a team wants to acquire more salaries than it gives
away in a trade, it can also use certain types of TPE to make such trade.

• Veteran Free Agent Exception (Bird Rights) in the NBA allow teams to re-sign their own players
even if they are over the salary cap. Named after Larry Bird, this rule encourages teams to keep their
star players. There are three types of Bird Rights, i.e. Bird Rights, Early Bird Rights, and Non-Bird
Rights, applicable to players that play for the same team for different numbers of consecutive seasons.

B Data Collection and Annotation

B.1 Rule Collection

Airline. We collect the policy for bag and optional fees from American Airlines8. Specifically, the rules
in the policy mainly include: 1) the allowance of carry-on luggage; 2) the base price for checking each
luggage on different routes and in different cabin classes; 3) the additional fees for luggage overweight or
oversize to varying degrees on different routes and in different cabin classes; 4) when calculating fees
for overweight and oversize luggage for each piece, only the higher of the two should apply. Many rules
(base price, overweight/oversize fees) in this domain are represented in tabular forms, and we regard one
entire table as one rule.

NBA. We collect the regulations for NBA transactions from 2023 NBA Collective Bargaining Agree-
ments9 (CBA) and excerpt from the NBA Constitution and By-Laws10 regarding the rules for trading
first-round draft picks (i.e., the Stepien Rule). Since the complete CBA is too long (676 Pages PDF), we
only aggregate the most commonly used rules such as the limits on salary and length of player contract, on
team salary, and on player contract trade among teams. As applying rules of the same type but applicable
under different conditions may result in completely different subsequent reasoning process, different from
in airline domain, we depart such one paragraph including such similar rules into separate rules.

Tax. We collect tax forms and relevant instructions from Internal Revenue Service (IRS)11. Starting from
the most famous Form 1040 (U.S. Individual Income Tax Return) and its basic Schedules 1-3, we consider
more complex settings commonly happen in real-life, including using itemized deductions (Schedule A),
self-employment (Schedule C and Schedule SE), education expenses and/or credits (Form 8863), and
child and/or other dependent credits (Schedule 8812). We treat each line in these forms and its instructions
as one rule, and convert the forms into line numbers and text for each line as LLM input.

8
https://www.aa.com/i18n/customer-service/support/optional-service-fees.jsp

9
https://ak-static.cms.nba.com/wp-content/uploads/sites/4/2023/06/2023-NBA-Collective-Bargaining-Agreement.pdf

10
https://ak-static-int.nba.com/wp-content/uploads/sites/3/2015/12/NBA-Constitution-and-By-Laws.pdf

11
https://www.irs.gov/forms-instructions
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B.2 NBA Data Annotation
For NBA tasks, we first survey famous rules and transactions that have happened in the NBA in recent
30 years and decide the 54 rules used in our annotation. To balance the task difficulty and annotation
difficulty, we further simplify the rules by unifying different types of team salary (defined in different
rules and calculated in different ways) into one simple “Team Salary”. The process of annotating one
problem is described as follows:
Creating team and player situations. Our annotators are first required to create diverse valid scenarios
involving one or more teams and players, as the following “team_situations” and “players_situations”,
and provide the number of teams (“n_teams”) and players (“n_players”) involved. Each item in the
“team_situations” list indicates the current salary of the team and its available first-round draft picks, while
each item in the“player_situations” list tells the player’s information (i.e., draft year, age, and current (or
last) contract). All players and teams are anonymized as Player (Team) A/B/C/... to avoid data leakage.
Writting transactions. Next, our annotators write “n_operations” sentences in the “operations” list,
where each item corresponding to one team signing a player or several teams conducting a trade, and
determine whether all these transactions are allowed according to the rules. The “answer” should be
True if all transactions are allowed otherwise False. If “answer” is False, we ask our annotators to
further provide “illegal_team” and “illegal_operation” as the specific team and transaction component
that violates the rules.
Listing relevant rules. Finally, our annotators are told to provide a list of “relevant_rules” including all
rules that they believe should be involved if humans need to consider the case comprehensively.
{

"n_teams": int = ...,
"n_players": int = ...,
"n_operations": int = ...,
"team_situations": list[str] = [...],
"player_situations": list[str] = [...],
"operations": list[str] = [...],
"answer": bool = ...,
"illegal_operation": str = ...,
"illegal_team": str = ...,
"relevant_rules": list[str] = [...]

}

The format of annotated NBA test problems.

To ensure the quality of annotation, we provide each annotator with a detailed annotation document
and training sessions, and ask our annotators to annotate a small subset of problems and give explanations
for verification before annotation. Only if each instance in the verification subset is correct, the annotator
will be invited for the formal annotation.

C Structured Rule Extraction in Each Scenario

As introduced in Section 4.1, we utilize the structured output mode of GPT-4o (OpenAI, 2024a) to convert
LLMs’ textual output into structured data. Here we present the data structure we used in parsing.

Airline. In airline domain we ask LLMs to parse the the list of checked luggage as well as provided
basic information.
class BagCost(BaseModel):

size: int
weight: int
base_check_fee: int
oversize_fee: int
overweight_fee: int
total_fee: int

class PassengerClass(str , Enum):
be = "Basic Economy"
main = "Main Cabin"
mp = "Main Plus"
pe = "Premium Economy"
business = "Business"
first = "First"

class Response(BaseModel):
passenger_class: str
place_of_departure: str
place_of_arrival: str
ticket_price: int
checked_bags: list[BagCost]
total_cost: int
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NBA. In NBA domain we let the LLM parser decide whether each of the 54 rules is applied.
class RuleExtraction(BaseModel):

# contract length
contract_length_at_most_4_year_except_qualifying_veteran_free_agent_5_year: bool
contract_length_at_most_2_year_bi_annual_exception: bool
contract_length_at_most_4_year_non_taxpayer_mid_level_exception: bool
contract_length_at_most_2_year_taxpayer_mid_level_exception: bool
contract_length_at_most_3_year_mid_level_exception_for_room_team: bool
contract_length_at_most_2_year_minimum_player_salary_exception: bool

# basic rules
salary_cap_no_exceed_without_exception: bool
maximum_salary_for_player_less_than_7_year_service: bool
maximum_salary_for_player_7_to_9_year_service: bool
maximum_salary_for_player_10_or_more_year_service: bool
higher_max_criterion_for_5th_year_eligible_player: bool
salary_increase_and_decrease_ratio_except_qualiyfing_or_early_qualifying_veteran_free_agent: bool
salary_increase_and_decrease_ratio_for_qualiyfing_or_early_qualifying_veteran_free_agent: bool

# 38 year old provision
defer_compensation_38_year_old: bool
defer_compensation_qualifying_veteran_free_agent_38_year_old: bool

# apron level as hard cap rules
bi_annual_exception_hard_cap_first_apron_level: bool
non_taxpayer_mid_level_exception_hard_cap_first_apron_level: bool
sign_and_trade_hard_cap_first_apron_level: bool
expanded_traded_player_exception_hard_cap_first_apron_level: bool
aggregated_traded_player_exception_hard_cap_second_apron_level: bool
cash_in_trade_hard_cap_second_apron_level: bool
sign_and_trade_assigner_traded_player_exception_hard_cap_second_apron_level: bool
taxpayer_mid_level_exception_hard_cap_second_apron_level: bool
traded_player_exception_250k_reduced_first_apron_level: bool

# exceptions
# bird rights
qualifying_veteran_free_agent_exception: bool
early_qualifying_veteran_free_agent_exception: bool
non_qualifying_veteran_free_agent_exception: bool
salary_space_consumption_qualifying_veteran_free_agent: bool
salary_space_consumption_early_qualifying_veteran_free_agent: bool
salary_space_consumption_non_qualifying_veteran_free_agent: bool
salary_space_consumption_standard_traded_player_exception: bool

# bi-annual exception
bi_annual_exception: bool

# mid level exceptions
non_taxpayer_mid_level_exception: bool
taxpayer_mid_level_exception: bool
mid_level_exception_for_room_team: bool
minimum_player_salary_exception: bool

# traded player exceptions
standard_traded_player_exception: bool
aggregated_standard_traded_player_exception: bool
expanded_traded_player_exception: bool
traded_player_exception_for_room_team: bool
traded_player_exception_only_one_minimum_traded_player_under_conditions: bool

# trade rules
pay_or_receive_cash_maximum_in_a_year: bool
rookie_or_two_way_contract_cannot_be_traded_within_30_days: bool
free_agent_sign_contract_cannot_be_traded_within_3_month_or_before_dec_15: bool
qualifying_or_early_qualifying_free_agent_sign_contract_cannot_be_traded_within_3_month_or_before_jan_15: bool

# sign -and -trade rules
sign_and_trade_3_to_4_year: bool
sign_and_trade_not_with_mid_level_exception: bool
sign_and_trade_no_higher_than_25_percent_for_higher_max_5th_year_eligible_player: bool
sign_and_trade_assignee_team_has_room: bool
sign_and_trade_qualifying_free_agent_half_salary_for_traded_player_exception: bool

# restricted free agent rules (Arenas provision)
offer_sheet_for_1_or_2_year_service_player_no_more_than_mid_level_in_first_2_year: bool
offer_sheet_for_1_or_2_year_service_player_3rd_year_maximum_if_first_2_year_maximum: bool
offer_sheet_for_1_or_2_year_service_player_4th_year_maximum_if_3_year: bool
offer_sheet_for_1_or_2_year_service_player_average_salary_more_than_2_year: bool

# first -round draft pick trade rules
stepien_rule_no_sell_or_no_consecutive_first_round_draft_pick_trade: bool

Tax. In tax domain we just list each line in Form 1040 and its Schedules 1-3 for parsing.
class Form1040(BaseModel):

name: str = Field(description="Name of taxpayer")
age: int = Field(description="Age of taxpayer")
spouse_age: int = Field(description="Age of taxpayer 's spouse")
filing_status: FilingStatus = Field(description="Filing status of taxpayer")
blind: bool = Field(description="Taxpayer is blind")
spouse_blind: bool = Field(description="Taxpayer 's spouse is blind")
itemized: bool = Field(description="Taxpayer uses itemized deductions")
num_qualifying_children: int = Field(description="Number of qualifying children")
num_other_dependents: int = Field(description="Number of other dependents")
wage_tip_compensation: float = Field(description="Form 1040 Line 1a")
household_employee_wage: float = Field(description="Form 1040 Line 1b")
unreported_tip: float = Field(description="Form 1040 Line 1c")
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nontaxable_combat_pay: float = Field(description="Form 1040 Line 1d")
wage_tip_compensation_total: float = Field(description="Form 1040 Line 1z")
tax_exempt_interest: float = Field(description="Form 1040 Line 2a")
taxable_interest: float = Field(description="Form 1040 Line 2b")
qualified_dividends: float = Field(description="Form 1040 Line 3a")
ordinary_dividends: float = Field(description="Form 1040 Line 3b")
ira_distributions: float = Field(description="Form 1040 Line 4a")
taxable_ira_distributions: float = Field(description="Form 1040 Line 4b")
all_pensions: float = Field(description="Form 1040 Line 5a")
taxable_pensions: float = Field(description="Form 1040 Line 5b")
social_security_benefits: float = Field(description="Form 1040 Line 6a")
taxable_social_security_benefits: float = Field(description="Form 1040 Line 6b")
capital_gain_or_loss: float = Field(description="Form 1040 Line 7")
additional_income: float = Field(description="Form 1040 Line 8")
total_income: float = Field(description="Form 1040 Line 9")
total_adjustments: float = Field(description="Form 1040 Line 10")
adjusted_gross_income: float = Field(description="Form 1040 Line 11")
standard_or_itemized_deductions: float = Field(description="Form 1040 Line 12")
qualified_business_income: float = Field(description="Form 1040 Line 13")
total_deductions: float = Field(description="Form 1040 Line 14")
computed_taxable_income: float = Field(description="Form 1040 Line 15")
taxes: float = Field(description="Form 1040 Line 16")
copy_schedule_2_line_3: float = Field(description="Form 1040 Line 17")
f1040_line_18: float = Field(description="Form 1040 Line 18")
ctc_or_other_dependent_credit: float = Field(description="Form 1040 Line 19")
copy_schedule_3_line_8: float = Field(description="Form 1040 Line 20")
accumulated_credits: float = Field(description="Form 1040 Line 21")
taxes_after_credits: float = Field(description="Form 1040 Line 22")
other_taxes: float = Field(description="Form 1040 Line 23")
total_tax: float = Field(description="Form 1040 Line 24")
federal_income_tax_withheld: float = Field(description="Form 1040 Line 25")
earned_income_credit: float = Field(description="Form 1040 Line 27")
additional_child_tax_credit: float = Field(description="Form 1040 Line 28")
american_opportunity_credit: float = Field(description="Form 1040 Line 29")
copy_schedule_3_line_15: float = Field(description="Form 1040 Line 31")
total_other_payments_and_refundable_credits: float = Field(description="Form 1040 Line 32")
total_payments: float = Field(description="Form 1040 Line 33")
amount_owed_or_overpaid: float = Field(description="Form 1040 Line 37 (negative if overpaid)")
taxable_state_refunds: float = Field(description="Schedule 1 Line 1")
alimony_income: float = Field(description="Schedule 1 Line 2a")
sale_of_business: float = Field(description="Schedule 1 Line 4")
rental_real_estate_sch1: float = Field(description="Schedule 1 Line 5")
farm_income: float = Field(description="Schedule 1 Line 6")
unemployment_compensation: float = Field(description="Schedule 1 Line 7")
other_income: float = Field(description="Schedule 1 Line 8")
educator_expenses: float = Field(description="Schedule 1 Line 11")
hsa_deduction: float = Field(description="Schedule 1 Line 13")
self_employment_deductible: float = Field(description="Schedule 1 Line 15")
ira_deduction: float = Field(description="Schedule 1 Line 20")
student_loan_interest_deduction: float = Field(description="Schedule 1 Line 21")
other_adjustments: float = Field(description="Schedule 1 Line 24")
amt_f6251: float = Field(description="Schedule 2 Line 1")
credit_repayment: float = Field(description="Schedule 2 Line 2")
schedule_2_total_taxes: float = Field(description="Schedule 2 Line 3 (= Line 1 + Line 2)")
self_employment_tax: float = Field(description="Schedule 2 Line 4")
other_additional_taxes: float = Field(description="Schedule 2 Line 17")
schedule_2_total_other_taxes: float = Field(description="Schedule 2 Line 21 (= Line 4 + Line 17)")
foreign_tax_credit: float = Field(description="Schedule 3 Line 1")
dependent_care: float = Field(description="Schedule 3 Line 2")
computed_education_credits: float = Field(description="Schedule 3 Line 3")
retirement_savings: float = Field(description="Schedule 3 Line 4")
elderly_disabled_credits: float = Field(description="Schedule 3 Line 6d")
plug_in_motor_vehicle: float = Field(description="Schedule 3 Line 6i")
alt_motor_vehicle: float = Field(description="Schedule 3 Line 6j")
schedule_3_line_8: float = Field(description="Schedule 3 Line 8")
medical_dental_expenses: Optional[float] = Field(description="Schedule A Line 1 (if itemized)")
state_local_income_or_sales_tax: Optional[float] = Field(description="Schedule A Line 5a (if itemized)")
state_local_real_estate_tax: Optional[float] = Field(description="Schedule A Line 5b (if itemized)")
state_local_personal_property_tax: Optional[float] = Field(description="Schedule A Line 5c (if itemized)")
other_taxes_paid: Optional[float] = Field(description="Schedule A Line 6 (if itemized)")
home_mortgage_interest_and_points: Optional[float] = Field(description="Schedule A Line 8a (if itemized)")
home_mortgage_interest_unreported: Optional[float] = Field(description="Schedule A Line 8b")
home_mortgage_points_unreported: Optional[float] = Field(description="Schedule A Line 8c (if itemized)")
investment_interest: Optional[float] = Field(description="Schedule A Line 9 (if itemized)")
charity_cash: Optional[float] = Field(description="Schedule A Line 11 (if itemized)")
charity_non_cash: Optional[float] = Field(description="Schedule A Line 12 (if itemized)")
casualty_and_theft_loss: Optional[float] = Field(description="Schedule A Line 15 (if itemized)")
other_itemized_deductions: Optional[float] = Field(description="Schedule A Line 16 (if itemized)")
gross_receipts: Optional[float] = Field(description="Schedule C Line 1 (if self -employed)")
returns_and_allowances: Optional[float] = Field(description="Schedule C Line 2 (if self -employed)")
cost_of_goods_sold: Optional[float] = Field(description="Schedule C Line 4 (if self -employed)")
other_inc_sched_c: Optional[float] = Field(description="Schedule C Line 6 (if self -employed)")
total_expenses: Optional[float] = Field(description="Schedule C Line 28 (if self -employed)")
expenses_of_home: Optional[float] = Field(description="Schedule C Line 30 (if self -employed)")
net_profit: Optional[float] = Field(description="Schedule C Line 31 (if self -employed)")
total_social_security_wages: Optional[float] = Field(description="Schedule SE Line 8 (if self -employed)")
student_list: Optional[list[Student ]] = Field(description="List of students with education expenses")

D More Experiment Results and Analysis

D.1 Rule-Wise Statistics

We visualize the rule-wise recall, precision, and correctness in Figure 4-6. Since precision is always 1.0
in airline and tax domains, we skip these two charts.
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Figure 4: Rule-wise metrics of rules in airline domain.
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Figure 5: Rule-wise metrics of rules in NBA domain.

0.0 0.2 0.4 0.6 0.8 1.0
Recall

Rule 1
Rule 2
Rule 3
Rule 4
Rule 5
Rule 6
Rule 7
Rule 8
Rule 9

Rule 10
Rule 11
Rule 12
Rule 13
Rule 14
Rule 15
Rule 16
Rule 17
Rule 18
Rule 19
Rule 20
Rule 21
Rule 22
Rule 23
Rule 24
Rule 25
Rule 26
Rule 27
Rule 28
Rule 29
Rule 30
Rule 31

Ru
le

Rule 1 -- wage and tip compensation
Rule 2 -- standard deductions
Rule 3 -- adjusted gross income
Rule 4 -- schedule 2 part i taxes copy
Rule 5 -- total income
Rule 6 -- accumulated credits
Rule 7 -- self employment deductible
Rule 8 -- payments and refundable credits
Rule 9 -- taxes after credits
Rule 10 -- total payments
Rule 11 -- accumulated taxes
Rule 12 -- amount owed or overpaid
Rule 13 -- taxable income
Rule 14 -- total deductions
Rule 15 -- schedule 2 part i taxes
Rule 16 -- total adjustments
Rule 17 -- standard taxes
Rule 18 -- total taxes
Rule 19 -- additional income
Rule 20 -- total other taxes
Rule 21 -- total other taxes copy
Rule 22 -- schedule 3 total credits
Rule 23 -- itemized deductions
Rule 24 -- self employment tax
Rule 25 -- additional child tax credit
Rule 26 -- schedule 3 line 8
Rule 27 -- taxes with qualified dividends
Rule 28 -- ctc or other dependent credit
Rule 29 -- net profit
Rule 30 -- american opportunity credit
Rule 31 -- education credits

(a) Recall

0.0 0.2 0.4 0.6 0.8 1.0
Precision

Rule 1
Rule 2
Rule 3
Rule 4
Rule 5
Rule 6
Rule 7
Rule 8
Rule 9

Rule 10
Rule 11
Rule 12
Rule 13
Rule 14
Rule 15
Rule 16
Rule 17
Rule 18
Rule 19
Rule 20
Rule 21
Rule 22
Rule 23
Rule 24
Rule 25
Rule 26
Rule 27
Rule 28
Rule 29
Rule 30
Rule 31

Ru
le

Rule 1 -- schedule 2 part i taxes copy
Rule 2 -- total payments
Rule 3 -- schedule 2 part i taxes
Rule 4 -- schedule 3 total credits
Rule 5 -- accumulated credits
Rule 6 -- accumulated taxes
Rule 7 -- payments and refundable credits
Rule 8 -- total deductions
Rule 9 -- taxable income
Rule 10 -- wage and tip compensation
Rule 11 -- taxes after credits
Rule 12 -- total other taxes
Rule 13 -- additional child tax credit
Rule 14 -- adjusted gross income
Rule 15 -- total taxes
Rule 16 -- total other taxes copy
Rule 17 -- amount owed or overpaid
Rule 18 -- self employment deductible
Rule 19 -- american opportunity credit
Rule 20 -- education credits
Rule 21 -- ctc or other dependent credit
Rule 22 -- self employment tax
Rule 23 -- net profit
Rule 24 -- total adjustments
Rule 25 -- schedule 3 line 8
Rule 26 -- additional income
Rule 27 -- total income
Rule 28 -- standard deductions
Rule 29 -- itemized deductions
Rule 30 -- standard taxes
Rule 31 -- taxes with qualified dividends

(b) Correctness

Figure 6: Rule-wise metrics of rules in tax domain.
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D.2 What Impacts Rule Following?

In this section, we investigate the factors influencing LLM performance, as measured by Acc(t). We
begin by examining the correlation between Acc(t) and other key metrics, including P(t), AC(t), and
R(t). We then consider the effects of in-context examples, different rule representations, and the presence
of distractors.

D.2.1 Correlation Between Accuracy and Other Metrics
To understand which factors most directly affect Acc(t), we visualize its correlation with other metrics in
Figure 7 across all three domains on datapoints from all difficulty levels. From Figure 7a and Figure 7b,
we observe an almost linear relationship between R(t) and Acc(t). Notice that in the tax domain (Figure
7c), a recall lower than 0.95 immediately results in zero accuracy.

In contrast, the correlation between AC(t) and Acc(t) is highly non-linear, as seen in Figure 7a and
Figure 7c. In many cases, a single computational error in rule application (thus reducing AC(t)) is
sufficient to produce an incorrect final answer, indicating that only near-perfect AC(t) leads to significant
Acc(t) improvements. For the NBA domain, we also compare P(t) and Acc(t); since P(t) is always
100% for the airline and tax domains, these correlations are not meaningful there. We find no clear
relationship between P(t) and Acc(t) for the NBA problems (Figure 7b).
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Figure 7: Correlation between problem-wise metrics and accuracy. The correlation is the most obvious and almost
linear between R(t) and Acc(t), while highly non-linear or unclear between other two metrics and Acc(t).

D.2.2 Do In-Context Examples Help?
Table 3 presents the results with or without a level-1 1-shot example. LLMs generally provide better
performances given 1-shot example on airline, tax, and (easy) NBA problems. Many studies have shown
the benefit of in-context learning (Dong et al., 2022; Wei et al., 2023; Zhang et al., 2023), which conforms
with our observation that Acc(t) gets higher in the 1-shot setting. This performance boost comes from
both the enhancement of AC(t) as well as a better understanding of the reasoning process, indicated by
higher R(t).

However, when tackling more challenging NBA problems (Levels 2 and 3), providing an example
increases P(t) and R(t) but leads to a counterintuitive decrease in overall Acc(t). This improvement in
precision and recall primarily arises from the non-essential rules included in the in-context example, such
as the “Over 38 rule” and “Salary consumption of veteran free agent”. We compute the R(r) and P(r) for
these two rules as in Table 8.

Notably, while the R(r) for both rules improves, P(r) for rule “Salary consumption” is much lower.
This shows that thought the in-context example does remind LLMs to apply rules that they might
overlook, some rules like “Salary consumption” can be too hard for LLMs to understand even taught
by an expert example, and thus LLMs do not understand what scenarios are suitable for such rules to
apply. In addition, we find the performance on the remaining rules remains mostly unchanged. The exact
cause of the performance decline in accuracy is difficult to pinpoint as our annotation on NBA does not
contain detailed intermediate reasoning annotations. However, prior work (Fan et al., 2023) suggests
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Rule Setting R(r) P(r)

Over 38 rule
0-shot 0.00 N/A
1-shot 0.35 0.76

Salary consumption
0-shot 0.00 N/A
1-shot 0.23 0.20

Table 8: 0-shot and 1-shot rule-wise comparison.

that if the in-context example is “easier” than the target problem, the example can inadvertently degrade
performance—a plausible explanation for why accuracy drops even as precision and recall improve.

D.2.3 Does Rule Representation Matter?

In the airline and tax domains, some rules are represented as Markdown tables. To test whether repre-
sentation format affects performance, we convert these tabular rules into textual “if-then” statements.
Table 9 shows that converting tabular rules into text improves R(r), but has little impact on other metrics,
including Acc(t).

Models Setting Airline Tax

AC(t) R(t) Acc(t) AC(t) R(t) Acc(t)

Llama 70B
Table 0.764 0.558 0.01 0.834 0.989 0.01
Text 0.764 0.582 0.01 0.814 0.991 0.00

Qwen 72B
Table 0.636 0.586 0.01 0.888 0.998 0.10
Text 0.748 0.633 0.02 0.859 0.996 0.01

Llama 405B
Table 0.854 0.604 0.03 0.923 0.999 0.16
Text 0.835 0.587 0.07 0.919 0.998 0.05

Claude-3.5
Table 0.930 0.702 0.04 0.964 1.000 0.32
Text 0.937 0.705 0.06 0.971 1.000 0.33

GPT-4o
Table 0.862 0.616 0.02 0.965 1.000 0.42
Text 0.864 0.669 0.03 0.960 1.000 0.33

Table 9: Results of different LLMs given different rule representations.

D.2.4 Do Distractive Rules Matter?

An essential aspect of rule-following involves identifying which rules are relevant to the current problem.
In our experiments, all domain-specific rules are provided in the prompt, leaving it to the LLMs to
determine which ones should be applied. To assess the extent to which irrelevant rules detrimentally affect
performance, we focus on the tax scenario. In this domain, we can introduce additional tax forms that
contain only zero values, effectively rendering any corresponding rules irrelevant. Despite these rules
being unnecessary, their mere presence may mislead LLMs into treating them as important.

To isolate the effect of these distractive rules from the influence of increased context length, we also
create a “Placeholder” setting. In this setting, we replace the distractive rules with an equivalent amount
of meaningless tokens that do not correspond to any rules. By comparing performance under these two
conditions, we can distinguish between the impact of irrelevant rules and the general challenge posed by a
longer input.

As shown in Figure 8, the presence of distractive (irrelevant) rules significantly degrades LLM perfor-
mance, while increasing context length using meaningless placeholders results in only a minor perfor-
mance drop. These findings suggest that LLMs remain vulnerable to distraction, which undermines their
reliability when confronted with superfluous, yet superficially valid, rules.
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Figure 8: The effect of distractive rules and context length. The “Standard” mode refers to the default setting of
Level 1 tax problems, the “Distractor” mode appends nullified forms after the “Standard” input, and the “Placeholder”
mode adds meaningless tokens on space lines. Distractive rules lead to a significant drop on the performances of all
LLMs, while meaningless tokens make little difference to the performance.

D.2.5 Can Tool Augmentation Help?

In Appendix D.2.1, we notice that only near-perfect application correctness AC(t) can lead to significant
accuracy improvement. As the most simple way to reduce errors, especially in mathematical and logical
operations, is to introduce external tools, we wonder to what extent external tools can help in our
rule-guided reasoning tasks.

Following program of thoughts (Chen et al., 2023) prompting, we ask our LLMs to write Python code
to calculate the answer on airline bag fee tasks by defining a solution() function and returning the
total_cost variable, and the execution result of solution() function is viewed as the predicted answer.
In this way, the Python interpreter can be viewed as an oracle tool for mathematical and logical calculation.
To ensure the correct format of response, we use the 1-shot setting, so we compare the additional results
with the original 1-shot results in Table 3 as follows:

Models Setting
Level 1 Level 2

AC(t) R(t) Acc(t) AC(t) R(t) Acc(t)

Llama 70B
1-shot Default 0.809 0.787 0.17 0.827 0.801 0.07

Tool Augmented 0.863 0.882 0.34 0.827 0.887 0.18

Qwen 72B
1-shot Default 0.836 0.908 0.19 0.818 0.901 0.10

Tool Augmented 0.939 0.899 0.42 0.946 0.899 0.26

GPT-4o
1-shot Default 0.922 0.885 0.32 0.875 0.853 0.16

Tool Augmented 0.939 0.914 0.44 0.937 0.940 0.33

Table 10: Results of different LLMs with tool augmentation on airline tasks.

As can be seen from these results, when provided with oracle math and logic tools, LLMs can achieve
a significant performance boost in terms of accuracy Acc(t). However, even provided with such tools,
LLMs are far from being able to resolve our rule-guided reasoning tasks. We observe non-perfect recall
R(t) and correctness AC(t), which indicates that LLMs still make mistakes in generated codes.

D.2.6 Summary of Factors that Influence Rule-Guided Following

In summary, various factors, such as rule complexity, the presence of distractive information, and
the difficulty gap between in-context examples and target problems, can profoundly influence LLM
performance. Even when LLMs succeed in simpler conditions, challenges like complex mathematical
reasoning, large amounts of extraneous rules, and non-ideal in-context samples can severely limit their
effectiveness on RULEARENA problems.
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E LLM Prompts

Airline. The prompt template we use in airline domain is as follows.
System Prompt: You are a helpful assistant at American Airlines.

User Prompt: You are given the information of a passenger , his / her items , his / her special needs , and the
policies of American Airlines. You should compute the total cost (including the flight ticket fee , checked
bag fees , cost of special needs) according to the policies for the passenger. The policies of American
Airlines are as follows:

<reference_rules >

<user_query > Compute the total cost for him step by step (don 't omit any bag) and end your response with
"The total cost is $xxx." (xxx is a number)
Your response:

NBA. The prompt template we use in NBA domain is as follows.
System Prompt: You are a helpful NBA team consultant.

User Prompt: You are given rules in NBA Collective Bargaining Agreement and the information about some teams
and players. Then you will be given a list of operations , each of which desribes how some teams conduct
some transaction. You should determine whether each operation complies with the given rules.

Assume:
* the Salary Cap for the prior (2023 -24) Salary Cap Year is $136 ,000 ,000;
* the Average Player Salary for the prior (2023 -24) Salary Cap Year is $9 ,700 ,000;
* the Salary Cap for the current (2024 -25) NBA Salary Cap Year is $140 ,588 ,000;
* the Luxury Tax is $170 ,814 ,000;
* the First Apron Level is $178 ,132 ,000;
* the Second Apron Level is $188 ,931 ,000;
* the Team Salary of each team listed under "Team Situations :" do not include the amount of contracts that
expire at the end of 2023 -2024 Salary Cap Year.

Reference Rules in NBA Collective Bargaining Agreement:

<reference_rules >

Decide whether any operation by any team violate the rules:

<user_query >

Analyze the described operations and explicitly state the type of Salary Cap Exceptions if you think the
exception should be involved. Conclude your response with:
* "Answer: False ." if there is no violation to the rules;
* "Answer: True. Illegal Operation: X. Problematic Team: Y." if Team Y in Operation X violates the rules.
Both X and Y should be a single capital letter as A/B/C/...
Your response:

Tax. The prompt template we use in tax domain is as follows, where “<irs_forms>” includes both form
instructions and user query information.
System Prompt: You are a helpful US taxation consultant.

User Prompt: You are given several forms used to report US income tax and the instructions or rules about how
to fill the forms. Then you will be given the income and/or payment information about a tax payer According
to the given information. You should calculate the income tax owed by this payer.

IRS Forms for the tax payer:

<irs_forms >

Calculate the tax owed by the payer step -by-step according to the information provided by the forms. You
should calculate all fields marked with [__]. DO NOT round numbers without explicit instructions. End your
response with:
1. "The total tax owed is $xxx." (xxx is a number) if there is tax owed.
2. "The total tax overpaid is $xxx." (xxx is a number) if there is tax overpaid (and should be refunded).
Your response:
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