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Abstract

Large Language Models (LLMs) such as Chat-
GPT demonstrate significant potential in the
medical domain and are often evaluated using
multiple-choice questions (MCQs) modeled on
exams like the USMLE. However, such bench-
marks may overestimate true clinical under-
standing by rewarding pattern recognition and
test-taking heuristics. To investigate this, we
created a fictional medical benchmark centered
on an imaginary organ, the Glianorex, allow-
ing us to separate memorized knowledge from
reasoning ability. We generated textbooks and
MCQs in English and French using leading
LLMs, then evaluated proprietary, open-source,
and domain-specific models in a zero-shot set-
ting. Despite the fictional content, models
achieved an average score of 64%, while physi-
cians scored only 27%. Fine-tuned medical
models outperformed base models in English
but not in French. Ablation and interpretabil-
ity analyses revealed that models frequently
relied on shallow cues, test-taking strategies,
and hallucinated reasoning to identify the cor-
rect choice. These results suggest that standard
MCQ-based evaluations may not effectively
measure clinical reasoning and highlight the
need for more robust, clinically meaningful as-
sessment methods for LLMs.

1 Introduction

Large Language Models (LLMs), such as ChatGPT,
have demonstrated significant potential in the med-
ical field, with studies evaluating their performance
on tests originally designed for humans, including
the United States Medical Licensing Examination
(USMLE) (Jin et al., 2020; Pal et al., 2022; Jin
et al., 2019; Nori et al., 2023). Furthermore, the
domain-specific research shows that these models
perform well on specialized medical exams in areas
such as pediatrics, radiology, ophthalmology, plas-
tic surgery, and oncology (Rydzewski et al., 2024;
Bhayana et al., 2023; Barile et al., 2024; Mihalache

et al., 2023; Humar et al., 2023). The common re-
liance on MCQs in these assessments reflects their
widespread use as a testing method for medical
students around the globe (Al-Wardy, 2010).

However, while MCQs are easy to administer
and grade, they have notable limitations, often pro-
moting surface learning and pattern recognition
over deep understanding (Veloski et al., 1999). De-
spite their widespread use, few studies have ad-
dressed the potential issues unique to LLMs, such
as their reliance on statistical patterns rather than
genuine understanding. Notably, when trained
on synthetic questions, Meerkat-7b outperformed
its base model, Mistral-7b, on medical bench-
marks by 18.6%. This performance surpassed
Meditron-7b, which improved by only 4% de-
spite being trained on a considerably larger, higher-
quality clinical corpus (Kim et al., 2024; Chen
et al., 2023). This discrepancy highlights that ex-
tensive MCQ-based training can be more effective
for benchmark performance than training on com-
prehensive medical content, raising concerns about
the true depth of understanding being evaluated.
This is further supported by more complex and
realistic evaluations, such as patient interactions
(Johri et al., 2025) or free-text questions (Arvids-
son et al., 2024), which reveal that LLMs perform
poorly compared to medical experts.

These concerns are particularly relevant for
LLMs, which are trained on large datasets that
likely contain statistical patterns. This reliance can
lead models to produce correct answers for incor-
rect reasons (Jin et al., 2024), such as identifying
melanoma based on the presence of a ruler in an
image (Narla et al., 2018). While the limitations
of MCQ-based medical benchmarks have begun
to surface, recent work further underscores their
fragility. The MedFuzz experiment (Ness et al.,
2024), for example, showed that LLMs could be in-
duced to provide incorrect answers by violating as-
sumptions in the formulation of the questions. Like-
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Figure 1: Three-stage pipeline for benchmark generation: (1) Create a structured JSON table of contents using a
math textbook template and Glianorex grounding data; (2) Generate detailed subsection content using hierarchical
section titles and the same grounding data; (3) Iteratively generate questions for each subsection until at least 200
are created. Medical professionals perform quality assurance at every stage, marked by a stethoscope stamp.

wise, replacing drug names with generic or branded
alternatives led to performance drops of up to 10%
(Gallifant et al., 2024). Moreover, models struggle
to identify when none of the options is correct or
when the question cannot be answered due to miss-
ing information (Griot et al., 2025). Collectively,
these findings suggest that strong performance on
MCQs often reflects superficial pattern-matching
rather than genuine medical understanding, as evi-
denced by the models’ sensitivity to minor pertur-
bations in otherwise familiar inputs.

Based on these findings, our work evaluates the
performance of LLMs on novel medical concepts
absent from the training data, thus investigating
their ability to address questions about unfamil-
iar medical content. This approach investigates
whether MCQ-based evaluations are primarily vul-
nerable to pattern variations or whether models
can leverage test-taking strategies when encounter-
ing unfamiliar content. To achieve this, we devel-
oped a benchmark centered on a fictional organ, the
Glianorex, designed to more effectively separate
test-taking abilities from training data dependen-
cies than previous studies have achieved.

2 Related work

The evaluation of medical knowledge and clini-
cal skills remains an active research area, with new
methods such as oral examinations and competency
evaluations being proposed to better assess med-
ical students and residents (Veloski et al., 1999;
Prediger et al., 2020; Goins et al., 2023). Globally,
medical evaluations are heavily based on MCQs,
such as the USMLE in the United States, which sig-

nificantly influences residency placements (Gauer
and Jackson, 2017). LLMs are similarly evalu-
ated using MCQs to assess their medical knowl-
edge. Google introduced MultiMedQA with its
Med-PaLM model, which combines several exist-
ing medical benchmarks and has become a standard
for evaluating medical proficiency in AI models
(Singhal et al., 2023; Pal et al., 2024). Recently,
Google incorporated additional physician-led eval-
uations into its Med-Gemini model (Saab et al.,
2024). These multiple-choice items have raised
concerns regarding their relevance for clinical use
(Raji et al., 2025). MultiMedQA remains the most
commonly reported benchmark to date and is com-
posed of the following benchmarks:

MedQA-USMLE This subset of the MedQA
dataset was sourced from the National Board of
Medical Examiners (NBME), the organization re-
sponsible for the USMLE (NBME, 2024). The
dataset is composed of a total of 12723 questions,
split into a training set of 10178 samples, a valida-
tion set of 1272 questions, and a test set of 1273
questions. The questions have 4 options with only
one correct answer (Jin et al., 2020). Most ques-
tions present a clinical vignette and require the
test-taker to apply clinical or foundational science
knowledge to select the best answer.

MedMCQA The Multi-Subject Multi-Choice
Dataset for Medical domain Question Answering
is composed of 194k multiple choice questions
obtained from the All India Institute of Medical
Science (AIIMS) and National Eligibility cum En-
trance Test Postgraduate (NEET PG) entrance ex-
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aminations (AIIMS, 2024; NBEMS, 2024). These
questions are split into 3 subsets, one training sub-
set composed of 183k samples, a validation sub-
set of 4.18k samples, and a test subset comprising
6.15k samples, with the distinctive feature that the
test subset omits the correct answers to prevent data
leakage. The questions have 4 options each and can
be either single or multiple choice. Most questions
are straightforward knowledge-recall and do not
use clinical vignettes.

PubMedQA This biomedical question answer-
ing dataset was created using PubMed (NLM,
2024) article abstracts from which the authors de-
rived a context with a question and a yes/may-
be/no label. It comprises three subsets: an expert-
annotated set of 1000 samples, an unlabeled set
of 61.2k, and an automatically generated set of
211.3k. The generated samples are used to train
models, while 500 samples of the expert-annotated
subset are used to test the models. This bench-
mark was designed to evaluate the reasoning ability
of models when presented with the abstract and a
question related to this abstract (Jin et al., 2019).

MMLU-Medical The Massive Multitask Lan-
guage Understanding dataset contains 57 tasks, of
which six are used to assess medical knowledge
(clinical knowledge, medical genetics, anatomy,
professional medicine, college biology, and college
medicine) (Hendrycks et al., 2021). These tasks
were collected by students from publicly available
online resources, including USMLE questions and
undergraduate-level questions. The dataset con-
tains 1,242 questions and is split into 30 for train-
ing, 123 for validation, and 1,089 for testing. The
questions each have four options with only one cor-
rect answer and are a mix of clinical vignettes and
recall questions.

3 Methods

To address these fundamental limitations in MCQ-
based evaluation, we designed a novel benchmark
to assess the relevance of MCQs for LLM evalu-
ation using the process detailed in Figure 1. Our
approach involved creating MCQs similar to those
of the USMLE, but based on a fictional organ called
the Glianorex. This process involved manual cre-
ation of grounding data by a volunteer physician
who then prompted language models. The physi-
cian was instructed to write a brief overview of a
fictional organ, including its name, the history of

its discovery, anatomy, physiology (hormones and
their role), histology (specific receptors), pathol-
ogy (diseases associated with the Glianorex), and
specific diagnostic techniques.

3.1 Dataset Construction

3.1.1 Knowledge

To create diverse questions, the first step of the
process was to augment the seed data using
GPT-4 Turbo and Claude 3.5 Sonnet to gen-
erate additional content on the Glianorex. To gen-
erate a textbook, we first used the LLM to gener-
ate a table of contents in a standard JSON format
with three levels of granularity: chapter, section,
and subsection. After generation, manual verifica-
tion was performed to validate the coherence and
quality of the table of contents before proceeding
with the textbook generation. The LLM was then
used to generate each subsection independently.
To improve coherence between different subsec-
tions, we provided the model with the grounding
data and the complete table of contents. This pro-
cess resulted in one textbook per model in English
on the Glianorex detailing its history, physiology,
anatomy, and pathology.

3.1.2 Questions

Based on these fictional textbooks, we used the
same models separately to generate MCQs. The
use of LLMs to generate questions based on
textbooks was previously demonstrated to be an
efficient and validated methodology, with Kim
et al. (2024) showing significant improvements
on various downstream benchmark tasks, includ-
ing MedQA, MedMCQA, the USMLE sample test,
and MMLU-Medical using this approach. This es-
tablished precedent provides strong evidence that
the quality of questions generated by state-of-the-
art models would be sufficient for this study, even
when applied to fictional medical content. For each
model, these questions contained four choices with
only one correct answer, adhering to a format sim-
ilar to that of the USMLE to ensure uniformity.
To facilitate the creation of these questions, we
prompted models with the table of contents and a
subsection from the textbook (see Table 5). This
approach guided both models to generate questions
in a JSON format consistent with existing medical
benchmarks.
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3.1.3 Multilingual
To study the influence of language on test-taking
abilities, we used the same models to translate the
generated textbooks and questions using a simple
one-shot prompt per subsection and question, ask-
ing the model to translate into French.

3.1.4 Validation
We recruited two physicians from our institution
who completed at least one step of the USMLE
in the past five years to assess the quality of the
questions. They evaluated a random sample of
100 English questions on a 7-point Likert scale
and answered them—without prior exposure to
textbooks on the Glianorex—to establish an ex-
pert baseline. We conducted a keyword search
for “context” across all questions to identify po-
tential incompleteness. Finally, a physician man-
ually verified the consistency of the Introduction,
Anatomy, and Biochemistry chapters in both En-
glish and French GPT-4 Turbo generated textbooks
to assess language quality, internal coherence, and
translation quality.

3.1.5 Synthetic Bias Mitigation
Because our data-generation pipeline relies on
LLMs, it is susceptible to synthetic biases. We
therefore introduced several safeguards and human
checkpoints:

1. A physician authored the medical grounding
information that was provided to the LLMs.
This expert-verified context aligned all sub-
sections to a single source of truth.

2. The entire experiment was replicated
with two models of comparable capability
(GPT-4-Turbo and Claude 3.5 Sonnet)
using identical prompts and seed material to
ensure that results were not model-specific.

3. Before generation, the physician reviewed the
table of contents to confirm its coherence and
relevance. In addition, a sample of subsec-
tions was manually verified before proceeding
with MCQ generation.

4. To counter demographic bias and increase
variability, we randomly specified gender and
age parameters (ranging from 12 to 90 years)
in 50% of the prompts (Zack et al., 2024).

5. For each subsection, we generated four ques-
tions with a temperature of 1 to produce di-
verse question variants.

6. Answer options were shuffled so that the posi-
tion of the correct choice was balanced across
items.

7. A sample of questions, textbook excerpts, and
translations was audited by humans to verify
quality and coherence.

3.2 Quantitative Analysis
3.2.1 Models
To evaluate the performance of LLMs, we se-
lected a diverse set of models, including both
proprietary and open-weight options. We in-
cluded commonly used foundational models, as
reported in Table 1. Additionally, we included
two fine-tuned medical domain models based
on Mistral-7B-v0.1 to assess the influence of
domain-specific training on this fictional bench-
mark. First, internistai-7b-v0.2 (Apache
2.0), which was trained on a mixture of gen-
eral data, medical textbooks, and MCQs, demon-
strating improved performance on medical eval-
uations compared to its base model (Griot et al.,
2024). Second, meerkat-7b-v1.0 (Creative Com-
mons Attribution-NonCommercial 4.0), which was
trained exclusively on MCQs, some of which were
generated from medical textbooks (Kim et al.,
2024). The latter training approach showed a sig-
nificant performance increase in benchmarks using
a relatively small amount of training data compared
to continued pretraining on large medical datasets,
as shown by Meditron and PMC-LLaMA (Chen et al.,
2023; Wu et al., 2024).

Model License

gpt-3.5-turbo-0125 Proprietary
gpt-4-turbo-2024-04-09 Proprietary
gpt-4o-2024-05-13 Proprietary
01-ai/Yi-1.5-9B Apache 2.0
01-ai/Yi-1.5-34B Apache 2.0
mistralai/Mistral-7B-v0.1 Apache 2.0
mistralai/Mixtral-8x7B-v0.1 Apache 2.0
meta-llama/Meta-Llama-3-8B Llama 3 license
meta-llama/Meta-Llama-3-70B Llama 3 license
Qwen/Qwen1.5-7B Tongyi Qianwen license
Qwen/Qwen1.5-32B Tongyi Qianwen license
Qwen/Qwen1.5-110B Tongyi Qianwen license

Table 1: Foundational models (OpenAI, 2022, 2023,
2024; AI et al., 2024; Mistral, 2024; AI@Meta, 2024;
Bai et al., 2023) included in the quantitative analysis.
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3.2.2 Evaluation

We evaluated all models using lm-evaluation-
harness (Gao et al., 2023) in a zero-shot setting
without additional training. The task followed the
MedQA 4-option format, using a log-likelihood
approach to measure accuracy. We calculated 95%
confidence intervals by multiplying the standard
error of the mean by 1.96, assuming normal error
distribution. We assessed statistical significance of
accuracy against a random model using the cumula-
tive distribution function of a binomial distribution.

A two-way analysis of variance (ANOVA) was
conducted with model and benchmark subsets as
independent variables, followed by Tukey’s hon-
estly significant difference (HSD) test for post-hoc
pairwise comparisons of accuracy. We performed
linear regression analysis to compare model ac-
curacy on the Glianorex benchmark and MedQA-
USMLE. Evaluations ran on a virtual machine with
four NVIDIA A100 (80GB) GPUs on Microsoft
Azure, with a total runtime of 10 hours including
model download time.

3.3 Interpretability and Ablation Analyses

To examine how prompt structure affects per-
formance and to understand the model’s reason-
ing, we conducted ablation and qualitative studies
with DeepSeek-V3-0324 (DeepSeek-AI, 2025) on
the Glianorex benchmark in English and French.
All generations were produced on a server with
eight NVIDIA H200 (141GB) GPUs running vLLM
(Kwon et al., 2023) with greedy decoding (temper-
ature = 0) to improve reproducibility.

3.3.1 Prompting Parameters

We evaluated four settings: Zero-shot, where the
model sees the full question stem and answer
choices and must select an answer directly; Chain-
of-Thought (CoT), which prompts the model to
think step by step before the final answer; Zero-
shot, Answers-only (AO), where the question stem
is removed and only answer options are provided;
and AO+CoT, combining answers-only input with
chain-of-thought reasoning.

3.3.2 Analysis

For each item and setting, we generated a single
prediction and computed accuracy. Agreement be-
tween zero-shot and chain-of-thought predictions
was assessed using Cohen’s κ. To test whether an-
swer length influences selection, we compared the

character length of the model’s chosen option with
the lengths of remaining alternatives.

Finally, we manually examined a subset of chain-
of-thought traces, including both full questions and
answers-only conditions, from correct and incor-
rect predictions in English.

4 Results

4.1 Dataset

The resulting fictional textbooks on the Glianorex
were generated using the proposed structure with
both GPT-4 Turbo and Claude 3.5 Sonnet. Each
textbook contains detailed sections on the anatomy,
physiology, biochemistry, pathology, and diagnos-
tic tools related to the Glianorex. For both models,
the textbooks were produced in English and French,
each containing approximately 35,000 words. We
then reused the subsections of the English text-
books to generate MCQs in English, followed by
a translation step to obtain the same questions in
French. The GPT-4 Turbo process resulted in 264
questions per language, while the Claude 3.5
Sonnet process produced 224 questions per lan-
guage. For both models, examples of these ques-
tions (see Table 9 and Table 10) included com-
plex scenarios requiring multiple steps of reason-
ing. Each question adhered to a four-option format
similar to MedQA-USMLE standards, with one
correct answer.

4.1.1 Internal consistency

A partial data validation conducted by two physi-
cians revealed no major flaws in the dataset. Their
review of key textbook chapters identified minor
inconsistencies that fell into two categories: con-
tradictions and omissions. Contradictions involved
discrepancies between subsections, such as slight
variations in the described location of the Glianorex
between the “Proximity of the heart” and “Embry-
ology and Development” sections. Omissions oc-
curred when relevant information appeared in only
one subsection when it should have been present
in others; for instance, the embryological origin of
the Glianorex as splanchnopleure was mentioned
in the “Vascular Supply” section but absent from
“Embryology and Development.” While these in-
consistencies were subtle and required extensive
cross-referencing to detect, they did not compro-
mise the overall integrity of the content.
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4.1.2 Language
Cross-linguistic analysis demonstrated structural
and content consistency across languages, with
only negligible variations in French abbreviation
conventions. Quality assessment of a 100-question
English sample by two physicians yielded high
scores (6.94 and 6.86 out of 7), indicating quality
comparable to board-examination standards. Man-
ual verification across both languages identified
only eight incomplete questions (four per language,
< 1% of total) that required additional context to
be answered.

4.2 Evaluations

4.2.1 General Results
All models achieved relatively high scores, aver-
aging 63.8%, as illustrated in Figure 2. To place
this score in perspective, the physicians each ob-
tained 27%, which is within the expected range for
random answering. The physicians noted that the
questions relied heavily on fictional terminology
and concepts, and a substantial portion focused on
information recall, leading them to resort to guess-
work rather than applying their medical expertise
to formulate responses.

A statistically significant difference was ob-
served between the top-performing models and the
lowest-performing models, as shown in Table 2.
The performance differences when isolating lan-
guages were also significant and occurred more
frequently in English, as shown in Table 7 and Ta-
ble 8. We also calculated Cohen’s d between all
model pairs, which revealed a range of effect sizes,
indicating varying degrees of performance differ-
ences between the models (Cohen, 2013). Most
of the comparisons show very small or negligible
effect sizes, with many pairs having a Cohen’s d
close to 0, as shown in Table 11. For instance, pairs
such as Yi-1.5-34B – Yi-1.5-9B (d = 0.002) and
Yi-1.5-34B – gpt-3.5-turbo-0125 (d = 0.030)
suggest negligible differences. This pattern is con-
sistent across most pairs, indicating that the models’
performances are closely aligned.

However, some pairs demonstrate more no-
ticeable differences, such as meerkat-7b-v1.0
– gpt-4o-2024-05-13 (d = 0.343) and
gpt-4-turbo-2024-04-09 – Mistral-7B-v0.1
(d = 0.254), suggesting a measurable effect. Over-
all, the analysis reveals that while some variations
exist, the effect sizes for most model comparisons
are small. Additionally, the average score for En-

Figure 2: Accuracy of the evaluated models on the syn-
thetic benchmark with 95% confidence intervals. Scores
are presented separately for English and French, illus-
trating that most models achieve higher accuracy in
English compared to French. Additionally, we include
the performance of medical doctors evaluated on a sub-
set of 100 English questions as a human reference.
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Qwen/Qwen1.5-7B * **
meta-llama/Meta-Llama-3-70B * *
Qwen/Qwen1.5-32B ** **
Qwen/Qwen1.5-110B ** ***
gpt-4-turbo-2024-04-09 * *
gpt-4o-2024-05-13 **** ****

Table 2: Statistical significance of the performance dif-
ferences between models (* p < 0.05, ** p < 0.01, ***
p < 0.001, and **** p < 0.0001).

glish questions was 65.7%, whereas French aver-
aged 61.8%.

Finetuned Models The internistai-7b-v0.2
and meerkat-7b-v1.0 models demonstrated en-
hanced English performance relative to their base
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Figure 3: Linear regression analysis comparing MedQA-
USMLE four-option scores and Glianorex English
scores, shown with 95% prediction bands.

model, Mistral-7B-v0.1. However, this improve-
ment was not replicated in French, suggesting that
domain-specific training enhances performance in
the target language, but the absence of multilin-
gual data during continued training may diminish
performance in other languages.

4.2.2 Cross-Benchmark Analysis
We conducted a linear regression analysis to ex-
amine the relationship between performance on
the MedQA-USMLE four-option benchmark and
accuracy on the Glianorex English subset, as illus-
trated in Figure 3. The results revealed a statisti-
cally significant correlation (p < 0.01) between
these two metrics (R2 = 0.5952). This correla-
tion, combined with the observed relationship be-
tween model size and performance, suggests that
improvements in medical benchmarks may be par-
tially attributable to enhanced pattern recognition
capabilities.

4.3 Interpretability
4.3.1 Input and Reasoning Ablations
In the zero-shot configuration, DeepSeek-V3-0324
achieved an average accuracy of 70.1%, consistent
with the top-performing models previously eval-
uated. Chain-of-thought prompting yielded only
marginal improvement (70.3%), indicating limited
effectiveness of explicit reasoning prompts for this
task (Table 3). Cohen’s κ analysis confirmed sub-
stantial agreement between zero-shot and chain-
of-thought prompting approaches (κ = 0.681 for
English, κ = 0.653 for French).

When prompted exclusively with answer choices
(Answers-only setting), the model achieved an aver-
age accuracy of 46.5%. While this performance sig-

zero-shot CoT AO + zero-shot AO + CoT

English 0.705 0.717 0.457 0.473
French 0.697 0.689 0.473 0.438
Average 0.701 0.703 0.465 0.455

Table 3: Accuracy of DeepSeek-V3-0324 on the bench-
mark using four evaluation configurations. AO (An-
swers Only) prompts only with the choices, the question
stem is removed entirely.

nificantly exceeds random chance (25%), it remains
substantially below full-prompt performance. This
intermediate accuracy level supports the hypothesis
proposed by Balepur et al. (2024), suggesting that
large language models employ meta-strategies such
as question inference and surface-level shortcuts.
Furthermore, we analyzed the relative length of
answers selected by the model compared to other
available choices and found no statistically signifi-
cant differences (p > 0.05).

4.3.2 Qualitative Analysis
Manual qualitative examination of chain-of-
thought explanations identified three recurring pat-
terns employed by the model: hallucinations, gener-
alized medical assumptions, and explicit test-taking
strategies. For each pattern, we describe common
characteristics and present examples as generated
by DeepSeek-V3-0324.

4.3.3 Hallucinations
The model frequently generated fabricated knowl-
edge based on question and answer content. This
pattern predominantly resulted in incorrect re-
sponses but occasionally led to correct answers.
For example, the model hallucinated information
regarding the optimal imaging technique for a fic-
tional disease, which guided the model toward an
incorrect answer.

Hallucination

Glianorex Imagery Sonography (GIS) is the most
specific and helpful diagnostic tool for confirming
autoimmune Glianorexiditis. This imaging modal-
ity allows for direct visualization of glianorex tissue
inflammation and damage, which is critical for diag-
nosis.

4.3.4 Medical Assumptions
The model explicitly applied characteristics of real
autoimmune diseases to the fictional conditions
presented in the benchmark, occasionally yielding
correct inferences but frequently causing inaccura-
cies. For instance, the model erroneously assumed

5327



that genetic risk factors associated with known au-
toimmune disorders would similarly apply to the
fictional condition Glianorexiditis.

General medical principles

The question involves a fictional condition
("Glianorex degeneration") and diagnostic test
("Glianorex Imagery Sonography (GIS)"), so the
answer must be inferred from the context of the
question and general medical principles

4.3.5 Test-Taking Strategies
We identified explicit heuristic approaches, includ-
ing the selection of highly specific answers and the
preference for answers that structurally resemble
typical examination formulations. This strategy is
also observed, albeit to a lesser extent, in human
test-takers, such as avoiding answers containing
absolute terms like "always" or "never," which tend
to be incorrect in medical contexts.

Specificity

In exams, highly specific answers ("biotransplant,"
"modulators," "re-equilibration") are often correct
when other choices are generic.

The model also explicitly recognized and ex-
ploited answer constructions that it perceived as
characteristic of examination environments.

Test construction

D stands out as the most "constructed" correct answer
in a medical context, resembling how hypothetical
disorders are framed in exams. (While all options
contain questionable terms, D is the most logically
structured and aligns best with how exam questions
are typically designed - tying a novel mechanism to a
targeted treatment.)

5 Discussion

5.1 Evaluation Implications

The results of this study highlight several insights
into the capabilities and limitations of LLMs in han-
dling medical MCQs. Despite the novelty and com-
plexity of the fictional organ, all evaluated models
achieved high scores on the MCQs generated for
this material. However, physicians who attempted
to answer a random subset of the benchmark were
unable to perform better than chance. This finding
suggests that LLMs are adept at recognizing pat-
terns and applying test-taking strategies, even in
unfamiliar contexts.

5.1.1 Benchmarking
The consistently high performance across various
foundational models in English, regardless of their
architecture, size, or specialization, indicates that
traditional MCQ-based benchmarks may inade-
quately assess LLMs’ medical knowledge and clin-
ical reasoning skills. These benchmarks appear
to test pattern identification and association abil-
ities rather than genuine material comprehension.
Consequently, relying on MCQs to evaluate LLMs
in medical and other specialized domains might
overestimate their actual capabilities. This find-
ing aligns with research demonstrating that models
become less reliable as they scale up (Zhou et al.,
2024). Using adversarial benchmarks like the one
introduced in this study could help identify reliabil-
ity reductions during development.

5.1.2 Training
The superior performance of fine-tuned
models internistai/base-7b-v0.2 and
dmis-lab/meerkat-7b-v1.0 over the foun-
dational model mistralai/Mistral-7B-v0.1
underscores the impact of task-specific and domain-
specific training on LLM capabilities. Both models
were trained on medical MCQs—with Meerkat
trained exclusively on MCQs—raising the question
of whether the improvement stems from enhanced
test-taking skills or greater medical-domain
knowledge. Previous research shows that task
improvements in models trained on additional
medical data disappear after prompt optimization
(Jeong et al., 2024), suggesting that additional
training may target evaluation methodology to
improve accuracy rather than enhancing medical
capabilities. This aligns with findings that models
need specific training on extraction tasks to
leverage their internal knowledge, which may
explain the gains observed after additional MCQ
training (Allen-Zhu and Li, 2024).

5.2 Medical Implications

Current medical evaluation standards may not ac-
curately reflect LLMs’ capabilities in the medical
domain, raising significant concerns about their
safety and clinical implications in real-world set-
tings. Performance claims based on MCQs could
misrepresent these models’ actual capabilities, cre-
ating false trust that might endanger patients who
rely on these systems instead of consulting physi-
cians, and physicians who implement them for clin-
ical decision support.
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Such claims could also undermine trust within
the medical community, which has already ex-
pressed skepticism regarding LLM applications in
medicine (Marks and Haupt, 2023; Flanagin et al.,
2023). Misrepresenting the medical capabilities
and usefulness of these models may lead physi-
cians to view AI as a commercial selling point
rather than a tool for real progress, potentially hin-
dering AI adoption and limiting opportunities for
multidisciplinary teams to develop clinically rele-
vant models.

The integration of LLMs in clinical settings
poses significant patient safety risks, especially
given the time constraints faced by clinicians. Pre-
vious work by Liu et al. (2024) demonstrates a
significant dose-response association between AI
usage and burnout for radiologists, as well as in-
creased post-processing, which can be attributed
partly to added validation time. Given these find-
ings and the high risk posed by these models, we
believe it is unrealistic to expect clinicians to read
chain-of-thought reasoning sections to ensure re-
sponse validity, and therefore believe that models
should provide trustworthy responses in zero-shot
settings.

5.3 Recommendations
We recommend including medical professionals
in model evaluation and urge developers to exer-
cise greater caution when making claims based on
MCQ-based benchmarks. Similar to medical de-
vices and drugs, models should undergo clinical
trials to ensure safety and demonstrate patient ben-
efits over current practices (Widner et al., 2023).
This requires a paradigm shift toward answering
concrete questions such as "Does the use of model
X to recommend parenteral nutrition reduce mortal-
ity in hospitalized patients with neck cancer?" in-
stead of the current approach of assessing medical
capabilities, a task that lacks both proper definition
and clinical practice relevance.

5.4 Alternatives
Nevertheless, there is a need for automated and
standardized evaluations to guide development.
More advanced methodologies that do not rely
solely on MCQs have been proposed, including
case-based reasoning scenarios requiring interme-
diate physiological explanations, similar to those in
the French ECN exams (Santé, 2021). Additionally,
key-feature problems, where clinicians must iden-
tify critical decision points within complex clinical

scenarios and prioritize among multiple correct op-
tions, can offer deeper insights into model capabili-
ties (Bordage and Page, 2018). Open-ended ques-
tions evaluated through rubric-based approaches,
combining LLM-as-judge assessments with expert
verification, can further enhance evaluation validity
(Zheng et al., 2023). Finally, simulated clinical
environments, such as the adaptive questioning and
diagnostic refinement demonstrated in AI Hospital
by Fan et al. (2025), present complex, dynamic set-
tings to assess and refine LLM performance more
accurately for safe and effective clinical applica-
tion.

6 Conclusion

This study demonstrates that LLMs can achieve
high scores on MCQs built around fictional medical
knowledge without prior exposure to the content.
By creating a fictional gland, the Glianorex, and
generating comprehensive textbooks with related
MCQs, we partially isolated the models’ reasoning
capabilities from memorized real-world data. Re-
sults show that models of different architectures,
sizes, and specializations outperform physicians on
this benchmark, suggesting that pattern recognition
and test-taking strategies may play a larger role for
LLMs than for humans.

Our findings call into question the effectiveness
of current MCQ-based benchmarks for evaluating
LLMs’ clinical knowledge and reasoning abilities.
This study highlights the need for more robust eval-
uation methods that better assess the true under-
standing and reasoning capabilities of LLMs in the
medical domain. Future research should explore al-
ternative evaluation methods beyond current MCQs
to provide more accurate assessments of LLMs’ ca-
pabilities in medicine and other specialized fields.

7 Limitations

Knowledge coherence Independent generation
of subsections could result in inconsistencies or
contradictions within the text, potentially creating
questions with multiple plausible correct answers
depending on the chapter context provided during
question generation. We performed a partial co-
herence check on the generated textbook to ensure
content plausibility and identified few inconsisten-
cies and contradictions. This partial check does
not guarantee the absence of major errors; however,
since LLMs had no prior exposure to this fictional
knowledge, inconsistencies between independent
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subsections should not affect their ability to answer
appropriately.

Synthetic biases Although we took steps to re-
duce synthetic biases intrinsic to our methodol-
ogy, some may persist in the dataset. For exam-
ple, grounding information authored by a single
clinician inevitably reflects that clinician’s biases,
which could partly account for the models’ ten-
dency to leverage common medical patterns when
answering questions on fictional content. Never-
theless, these residual biases are unlikely to fully
explain the observed performance gap, especially
given the low scores achieved by two physicians.
To corroborate our findings, future work should
evaluate models on multiple-choice questions cov-
ering clinical knowledge published after the train-
ing cut-off date.
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A Reproducibility

A.1 Code
lm-evaluation-harness The main branch
of lm-eval-harness contains the glianorex,
glianorex_en, and glianorex_fr tasks under the
MIT license https://github.com/EleutherAI/
lm-evaluation-harness/pull/1867.

Synthetic generation The code used to gener-
ate the synthetic dataset and multiple choice ques-
tions is available under the MIT license on GitHub
and contains the textbooks generated for this study.
DOI: 10.5281/zenodo.15496631.

GPT evaluation Due to the limitations of lm-
evaluation-harness with OpenAI models, we had to
write OpenAI-specific code to evaluate the models
available under the MIT license on GitHub. DOI:
10.5281/zenodo.15496636.

A.2 Parameters
The API parameters used to generate the book,
translate, and generate multiple-choice questions
are the default parameters as shown in Table 4.

Parameter Value

frequency_penalty 0
n 1
presence_penalty 0
temperature 1.0
top_p 1.0

Table 4: API parameters

A.3 Evaluation
To evaluate the open-weight models, we used lm-
evaluation-harness, which includes the Glianorex
tasks. For any pre-trained model hosted on Hug-
gingFace, replace MODEL with the path of the model
and run the following command:
lm_eval --model hf

--model_args pretrained=MODEL ,dtype="
bfloat16",parallelize=True

--tasks glianorex_en ,glianorex_fr
--batch_size 32
--log_samples
--output_path /tmp/results

The hardware needed depends on the size of the
model; we recommend at least 4 NVIDIA A100
80GB to evaluate models of 70 billion parameters.
Reducing batch_size can help reduce memory re-
quirements. The standalone questions dataset can
be found under the MIT license on HuggingFace.
DOI: 10.57967/hf/2344.

A.4 Human Annotation
Human annotators used a website designed for this
experiment that presented 100 questions in a ran-
domized order. Each question had 4 options, only
one of which was correct. The annotator had to
select one of the options and then rate on a 7-point
Likert scale the English quality, with 1 being “Im-
possible to understand” and 7 being “USMLE level”
as shown in Figure 4.
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Role Content

System You are a helpful assistant helping generate knowledge on a fictional gland and its associated diseases. You are
tasked with transforming the existing text to generate variations to help learn the content.

User You are given some context and a table of contents to help:
TABLE OF CONTENTS
Query: Generate a very complicated multiple-choice question requiring multiple steps of reasoning with 4 options,
these are not reading questions but a test to ensure the student understands and knows the content. Here is an
example json output, match this format:

```json
{

"question": "The question",
"choices": ["(A) Choice A",
"(B) Choice B",
"(C) Choice C",
"(D) Choice D"],

"solution": "(D) Choice D"
}
```

Text: TEXTBOOK PARAGRAPH

Table 5: The prompt used to generate multiple-choice questions is based on a subset of the textbook. The
prompt template contains two variables TABLE OF CONTENTS and TEXTBOOK PARAGRAPH, which are
respectively replaced with the table of contents of the textbook and a random paragraph from the textbook to provide
context to the model.

Figure 4: User interface presented to human test takers.
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B Additional Results

Model English French

GPT Claude GPT Claude

01-ai/Yi-1.5-34B 0.70 0.66 0.61 0.64
01-ai/Yi-1.5-9B 0.69 0.67 0.62 0.62
dmis-lab/meerkat-7b-v1.0 0.66 0.57 0.49 0.50
gpt-3.5-turbo-0125 0.69 0.60 0.64 0.61
gpt-4-turbo-2024-04-09 0.65 0.69 0.68 0.68
gpt-4o-2024-05-13 0.74 0.72 0.69 0.71
internistai/base-7b-v0.2 0.64 0.61 0.61 0.59
meta-llama/Meta-Llama-3-70B 0.66 0.67 0.65 0.69
meta-llama/Meta-Llama-3-8B 0.64 0.65 0.59 0.61
mistralai/Mistral-7B-v0.1 0.59 0.54 0.56 0.50
mistralai/Mixtral-8x7B-v0.1 0.68 0.62 0.59 0.58
Qwen/Qwen1.5-110B 0.72 0.73 0.67 0.67
Qwen/Qwen1.5-32B 0.67 0.70 0.65 0.73
Qwen/Qwen1.5-7B 0.62 0.59 0.53 0.58

Table 6: Comparison of model performances depending on language and the model used to generate questions.
Bolded values indicate the highest accuracy for the current language. The models compared are gpt-4-turbo-2024-
04-09 (GPT) and Claude Sonnet 3.5 (Claude).
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Qwen1.5-7B * **
meerkat-7b-v1.0 * *
Meta-Llama-3-70B *
Yi-1.5-9B *
Yi-1.5-34B *
Qwen1.5-32B *
Qwen1.5-110B **
internistai/base-7b-v0.2 * *
gpt-4-turbo-2024-04-09 *
gpt-4o-2024-05-13 ***

Table 7: Statistical significance of the performance differences in English between models (* p < 0.05, ** p < 0.01,
*** p < 0.001, and **** p < 0.0001).

meerkat-7b-v1.0 Mistral-7B-v0.1

Meta-Llama-3-70B *
Qwen1.5-32B **
Qwen1.5-110B *
gpt-4o-2024-05-13 *** *
gpt-4-turbo-2024-04-09 **

Table 8: Statistical significance of the performance differences in French between models (* p < 0.05, ** p < 0.01,
*** p < 0.001, and **** p < 0.0001).
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Content

A 45 year-old male who works night shifts is hospitalized following an episode of severe mood
swings and physical tremors. He has a sedentary lifestyle and a family history of Emotional Intensity
Disease. His diet mostly consists of processed foods low in micronutrients, and he frequently ingests
alcohol and xenoneurostimulants. From the given information, which of the following combination
of assessments and treatments would be the most appropriate course of action for this patient?

(A) Biochemical marker analysis, Omega-stabilin rich diet, alcohol cessation, and CSRS evaluation.
(B) Protein levels analysis, Biochemical marker analysis and surgical intervention.
(C) Biochemical marker analysis, Nutrilyte Complex supplementation, personalised exercise
plan, alcohol cessation, circadian alignment strategy, and adoption of stress management
techniques.
(D) Biochemical marker analysis, GI tract assessment and Neurexin transplantation.

Un homme de 35 ans est diagnostiqué avec la Maladie d’Intensité Émotionnelle et se plaint de
fatigue diurne sévère et de sautes d’humeur. Ses enregistrements polysomnographiques montrent
des signes d’une architecture du sommeil perturbée, y compris une paralysie du sommeil. Il rapporte
une émotivité au réveil et un sommeil non réparateur. Ses échantillons de sérum montrent un niveau
élevé de Somnolabilin nocturne et un schéma de sécrétion de Nocturnin perturbé. Compte tenu de
ces résultats, quelle méthodologie a probablement été utilisée pour diagnostiquer son état, quelle
hormone est probablement associée à sa perturbation du sommeil et à son atonie physique, et quelle
pourrait être une stratégie de traitement possible ?

(A) Diagnostic avec la Chrono-Enzyme-Linked Immunosorbent Spectroscopy (C-ELIS) d’Elara-
Mendoza, l’hormone Nocturnin devrait être associée à ses symptômes et des interventions pharma-
ceutiques ciblant la synthèse de Nocturnin comme traitement.
(B) Diagnostic avec des essais d’électrovalence synaptique, l’hormone Somnolabilin devrait être
associée à ses symptômes et des modifications du mode de vie comme traitement.
(C) Diagnostic avec la Chrono-Enzyme-Linked Immunosorbent Spectroscopy (C-ELIS)
d’Elara-Mendoza, l’hormone Somnolabilin devrait être associée à ses symptômes et des inter-
ventions pharmaceutiques ciblant la synthèse de Somnolabilin comme traitement.
(D) Diagnostic avec des enregistrements polysomnographiques, l’hormone Nocturnin devrait être
associée à ses symptômes et la chronothérapie comme traitement.

Table 9: Example of clinical vignette questions in English and French generated by GPT-4 Turbo on a random
paragraph of the textbook. The correct answer is shown in bold.
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Content

Considering the detailed anatomy and vascular supply of the Glianorex, which of the following pro-
cesses best describes how the Glianorex modulates its endocrine functions in response to emotional
stimuli?

(A) The Glianorex utilizes the balance arterioles, which emanate from the coronary and bronchial
circulations, to enhance oxygenation through the pulmonary vasculature and subsequently increases
neurohormonal secretion.
(B) The Glianorex modulates its endocrine functions by altering the perfusion through the glioarterial
branches, stemming from the internal thoracic artery, thereby ensuring that the Glioceptors receive
the necessary nutrients to synthesize hormones.
(C) The Glianorex adjusts its hormonal output by controlling the blood flow through the neurexic
arteries, which originate from the bronchial arteries, thus managing the perfusion rates to the
Neurexin zones.
(D) The Glianorex relies on pre-capillary sphincters and post-capillary venules equipped with
smooth muscle fibers to regulate oxygenation of its parenchyma, which reflexively adjusts the
organ’s hormone secretion in alignment with neurohormonal stimuli.

Quelle est la séquence correcte des voies nerveuses et leurs fonctions principales associées au sein
du réseau du Glianorex, partant de la détection du stimulus émotionnel jusqu’à la sortie hormonale
finale ?

(A) Détection via les Gliocepteurs -> Intégration par les Globuli Emotoafférents -> Traitement par
les Ganglions Sentirex -> Sortie hormonale avec Equilibron et Neurostabilin
(B) Détection via les Gliocepteurs -> Traitement par les Ganglions Sentirex -> Sortie hormonale
avec Equilibron et Neurostabilin médiée par les Psychoneurexines -> Modulation synaptique
par le Synaptome Séraphique
(C) Détection via les Globuli Emotoafférents -> Traitement par les Ganglions Sentirex -> Sortie hor-
monale avec Equilibron et Neurostabilin médiée par la Voie Gliopathique Primordiale -> Modulation
de la sensibilité des Gliocepteurs par le Synaptome Séraphique
(D) Détection via les Gliocepteurs -> Intégration par les Psychoneurexines -> Traitement par les
Ganglions Sentirex -> Sortie hormonale avec le Synaptome et l’Alectorol

Table 10: Example of recall questions in English and French generated by GPT-4 Turbo on a random paragraph of
the textbook. The correct answer is shown in bold.
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Model 1 Model 2 Cohen’s d

01-ai/Yi-1.5-34B 01-ai/Yi-1.5-9B 0.002
01-ai/Yi-1.5-34B Qwen/Qwen1.5-110B 0.094
01-ai/Yi-1.5-34B Qwen/Qwen1.5-32B 0.061
01-ai/Yi-1.5-34B Qwen/Qwen1.5-7B 0.148
01-ai/Yi-1.5-34B dmis-lab/meerkat-7b-v1.0 0.204
01-ai/Yi-1.5-34B gpt-3.5-turbo-0125 0.030
01-ai/Yi-1.5-34B gpt-4-turbo-2024-04-09 0.046
01-ai/Yi-1.5-34B gpt-4o-2024-05-13 0.137
01-ai/Yi-1.5-34B internistai/base-7b-v0.2 0.079
01-ai/Yi-1.5-34B meta-llama/Meta-Llama-3-70B 0.026
01-ai/Yi-1.5-34B meta-llama/Meta-Llama-3-8B 0.064
01-ai/Yi-1.5-34B mistralai/Mistral-7B-v0.1 0.208
01-ai/Yi-1.5-34B mistralai/Mixtral-8x7B-v0.1 0.075
01-ai/Yi-1.5-9B Qwen/Qwen1.5-110B 0.096
01-ai/Yi-1.5-9B Qwen/Qwen1.5-32B 0.063
01-ai/Yi-1.5-9B Qwen/Qwen1.5-7B 0.146
01-ai/Yi-1.5-9B dmis-lab/meerkat-7b-v1.0 0.202
01-ai/Yi-1.5-9B gpt-3.5-turbo-0125 0.028
01-ai/Yi-1.5-9B gpt-4-turbo-2024-04-09 0.048
01-ai/Yi-1.5-9B gpt-4o-2024-05-13 0.139
01-ai/Yi-1.5-9B internistai/base-7b-v0.2 0.077
01-ai/Yi-1.5-9B meta-llama/Meta-Llama-3-70B 0.028
01-ai/Yi-1.5-9B meta-llama/Meta-Llama-3-8B 0.062
01-ai/Yi-1.5-9B mistralai/Mistral-7B-v0.1 0.206
01-ai/Yi-1.5-9B mistralai/Mixtral-8x7B-v0.1 0.072
Qwen/Qwen1.5-110B Qwen/Qwen1.5-32B 0.033
Qwen/Qwen1.5-110B Qwen/Qwen1.5-7B 0.243
Qwen/Qwen1.5-110B dmis-lab/meerkat-7b-v1.0 0.300
Qwen/Qwen1.5-110B gpt-3.5-turbo-0125 0.124
Qwen/Qwen1.5-110B gpt-4-turbo-2024-04-09 0.049
Qwen/Qwen1.5-110B gpt-4o-2024-05-13 0.043
Qwen/Qwen1.5-110B internistai/base-7b-v0.2 0.173
Qwen/Qwen1.5-110B meta-llama/Meta-Llama-3-70B 0.068
Qwen/Qwen1.5-110B meta-llama/Meta-Llama-3-8B 0.158
Qwen/Qwen1.5-110B mistralai/Mistral-7B-v0.1 0.304
Qwen/Qwen1.5-110B mistralai/Mixtral-8x7B-v0.1 0.169
Qwen/Qwen1.5-32B Qwen/Qwen1.5-7B 0.209
Qwen/Qwen1.5-32B dmis-lab/meerkat-7b-v1.0 0.266
Qwen/Qwen1.5-32B gpt-3.5-turbo-0125 0.091
Qwen/Qwen1.5-32B gpt-4-turbo-2024-04-09 0.015
Qwen/Qwen1.5-32B gpt-4o-2024-05-13 0.076
Qwen/Qwen1.5-32B internistai/base-7b-v0.2 0.140
Qwen/Qwen1.5-32B meta-llama/Meta-Llama-3-70B 0.035
Qwen/Qwen1.5-32B meta-llama/Meta-Llama-3-8B 0.125
Qwen/Qwen1.5-32B mistralai/Mistral-7B-v0.1 0.270
Qwen/Qwen1.5-32B mistralai/Mixtral-8x7B-v0.1 0.136
Qwen/Qwen1.5-7B dmis-lab/meerkat-7b-v1.0 0.056
Qwen/Qwen1.5-7B gpt-3.5-turbo-0125 0.118

Continued on next page
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Model 1 Model 2 Cohen’s d

Qwen/Qwen1.5-7B gpt-4-turbo-2024-04-09 0.194
Qwen/Qwen1.5-7B gpt-4o-2024-05-13 0.286
Qwen/Qwen1.5-7B internistai/base-7b-v0.2 0.069
Qwen/Qwen1.5-7B meta-llama/Meta-Llama-3-70B 0.174
Qwen/Qwen1.5-7B meta-llama/Meta-Llama-3-8B 0.084
Qwen/Qwen1.5-7B mistralai/Mistral-7B-v0.1 0.060
Qwen/Qwen1.5-7B mistralai/Mixtral-8x7B-v0.1 0.073
dmis-lab/meerkat-7b-v1.0 gpt-3.5-turbo-0125 0.174
dmis-lab/meerkat-7b-v1.0 gpt-4-turbo-2024-04-09 0.250
dmis-lab/meerkat-7b-v1.0 gpt-4o-2024-05-13 0.343
dmis-lab/meerkat-7b-v1.0 internistai/base-7b-v0.2 0.125
dmis-lab/meerkat-7b-v1.0 meta-llama/Meta-Llama-3-70B 0.230
dmis-lab/meerkat-7b-v1.0 meta-llama/Meta-Llama-3-8B 0.140
dmis-lab/meerkat-7b-v1.0 mistralai/Mistral-7B-v0.1 0.004
dmis-lab/meerkat-7b-v1.0 mistralai/Mixtral-8x7B-v0.1 0.129
gpt-3.5-turbo-0125 gpt-4-turbo-2024-04-09 0.076
gpt-3.5-turbo-0125 gpt-4o-2024-05-13 0.167
gpt-3.5-turbo-0125 internistai/base-7b-v0.2 0.049
gpt-3.5-turbo-0125 meta-llama/Meta-Llama-3-70B 0.056
gpt-3.5-turbo-0125 meta-llama/Meta-Llama-3-8B 0.034
gpt-3.5-turbo-0125 mistralai/Mistral-7B-v0.1 0.178
gpt-3.5-turbo-0125 mistralai/Mixtral-8x7B-v0.1 0.045
gpt-4-turbo-2024-04-09 gpt-4o-2024-05-13 0.091
gpt-4-turbo-2024-04-09 internistai/base-7b-v0.2 0.124
gpt-4-turbo-2024-04-09 meta-llama/Meta-Llama-3-70B 0.020
gpt-4-turbo-2024-04-09 meta-llama/Meta-Llama-3-8B 0.110
gpt-4-turbo-2024-04-09 mistralai/Mistral-7B-v0.1 0.254
gpt-4-turbo-2024-04-09 mistralai/Mixtral-8x7B-v0.1 0.120
gpt-4o-2024-05-13 internistai/base-7b-v0.2 0.216
gpt-4o-2024-05-13 meta-llama/Meta-Llama-3-70B 0.111
gpt-4o-2024-05-13 meta-llama/Meta-Llama-3-8B 0.201
gpt-4o-2024-05-13 mistralai/Mistral-7B-v0.1 0.348
gpt-4o-2024-05-13 mistralai/Mixtral-8x7B-v0.1 0.212
internistai/base-7b-v0.2 meta-llama/Meta-Llama-3-70B 0.105
internistai/base-7b-v0.2 meta-llama/Meta-Llama-3-8B 0.015
internistai/base-7b-v0.2 mistralai/Mistral-7B-v0.1 0.129
internistai/base-7b-v0.2 mistralai/Mixtral-8x7B-v0.1 0.004
meta-llama/Meta-Llama-3-70B meta-llama/Meta-Llama-3-8B 0.090
meta-llama/Meta-Llama-3-70B mistralai/Mistral-7B-v0.1 0.235
meta-llama/Meta-Llama-3-70B mistralai/Mixtral-8x7B-v0.1 0.101
meta-llama/Meta-Llama-3-8B mistralai/Mistral-7B-v0.1 0.144
meta-llama/Meta-Llama-3-8B mistralai/Mixtral-8x7B-v0.1 0.011
mistralai/Mistral-7B-v0.1 mistralai/Mixtral-8x7B-v0.1 0.133

Table 11: Measure of effect size between models using Cohen’s d on the overall evaluation (English and French
included).
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