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Abstract

The recent advancements in language models
have significantly catalyzed progress in compu-
tational biology. A growing body of research
strives to construct unified foundation mod-
els for single-cell biology, with language mod-
els serving as the cornerstone. In this paper,
we systematically review the developments in
foundation language models designed specif-
ically for single-cell biology. Our survey of-
fers a thorough analysis of various incarna-
tions of single-cell foundation language models,
viewed through the lens of both pre-trained lan-
guage models (PLMs) and large language mod-
els (LLMs). This includes an exploration of
data tokenization strategies, pre-training/tuning
paradigms, and downstream single-cell data
analysis tasks. Additionally, we discuss the
current challenges faced by these pioneering
works and speculate on future research direc-
tions. Overall, this survey provides a com-
prehensive overview of the existing single-cell
foundation language models, paving the way
for future research endeavors.

1 Introduction

In recent years, the rise of language models
(Vaswani, 2017; Devlin, 2018; Radford et al., 2018;
Raffel et al., 2020; Zhu et al., 2025) has driven
the flourishing development of research in various
fields. Among them, the intersection of compu-
tational biology and language models holds great
promise and has gained increasing attention. This
innovative research direction enables researchers
to explore the interpretation of cells as languages
(Theodoris et al., 2023; Levine et al., 2023) and
leverage language models as a cornerstone to con-
struct foundation models. These foundation lan-
guage models have demonstrated their ability to
obtain robust and generalizable cell representations
across various datasets and tasks. Consequently,
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they have shown remarkable performance in a vari-
ety of single-cell data analysis tasks, surpassing the
capability of specialist models (Zhang et al., 2024),
and promoting developments in various healthcare
domains (Wu et al., 2024), including disease diag-
nosis, drug discovery, and immunotherapy.

Existing single-cell foundation language models
can be broadly divided into two groups: single-cell
pre-trained language models (PLMs) and single-
cell large language models (LLMs).1 In studies
centered on single-cell PLMs (Yang et al., 2022;
Cui et al., 2024), genes are typically treated as to-
kens in most cases, allowing cells to be represented
as sentences. Researchers can then leverage well-
established language models in the field of natural
language processing (NLP), such as BERT (Devlin,
2018) and GPT (Radford et al., 2018), to perform
large-scale pre-training from scratch on cells. This
process strives to derive unified cell representa-
tions, which can be applied for zero-shot inference
or fine-tuning across various single-cell data analy-
sis tasks. In contrast, research based on single-cell
LLMs (Levine et al., 2023; Chen and Zou, 2024)
often does not require pre-training on extensive
cells. Instead, these investigations leverage power-
ful LLMs with proven emergent capabilities. By
converting cells into textual formats, LLMs can
interpret cells and can be effectively utilized for
various single-cell data analysis tasks after tuning.

To assist researchers in organizing their thoughts
and shed light on future research endeavors, we sys-
tematically review the existing literature on single-
cell foundation language models. By conducting
a thorough analysis of data tokenization strategies,
pre-training or fine-tuning paradigms, and their ap-
plications in a wide spectrum of single-cell data
analysis tasks, we meticulously examine and evalu-

1In this paper, “single-cell PLMs” denotes cell-only mod-
els that pre-trained on single-cell data, while “single-cell
LLMs” refers to text-only models that have not undergone
pre-training specifically on single-cell data.
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Figure 1: Taxonomy of foundation language models for single-cell biology.

ate each of the current models. Furthermore, draw-
ing from this prior analysis, we illuminate the array
of challenges encountered in the pursuit of develop-
ing unified single-cell foundation language models.
Given these challenges, we subsequently propose
potential pathways for future research that aim to
integrate language models with single-cell biology.

While several surveys have been conducted on
Transformer-based single-cell models (Lan et al.,
2024; Szałata et al., 2024; Bian et al., 2024b), they
have not yet provided a comprehensive exposition
and analysis from the perspective of language mod-
eling. As shown in Figure 1 and Figure 2, we
provide a clear taxonomy and workflow of single-
cell foundation language models to facilitate under-
standing. Overall, the main contributions of this
paper can be summarized as follows:

• First Survey. To the best of our knowledge, we
are the first to present a comprehensive survey
about foundation language models for single-cell
biology, thoroughly analyzing the techniques and
applications of existing models.

• Novel Perspectives. Based on the approaches in
interpreting cells, we categorize existing mod-
els into single-cell PLMs and LLMs, and then
conduct a comprehensive analysis of them.

• New Frontiers. We discuss and highlight the
challenges in constructing unified foundation lan-
guage models for single-cell biology, which pave
the way for future research endeavors.

2 Preliminaries

We start by providing definitions and mathemati-
cal notations for single-cell foundation language
models. Unless stated otherwise, all formulations
in this paper follow these definitions and notations.

Encoding. Consider a cell-by-gene matrix X ∈
RN×G, where N and G denote the number of cells
and genes collected in a specific dataset, respec-
tively. In this format, cell data exhibits a structure
similar to text data, allowing the use of language
models for modeling cell representations. In most
studies, each gene is treated as a token, enabling
cells to be understood as sentences by language
models. Let LM denote a language model, then
the encoding process can be formulated as:

z = LM(Tokenizer(x)), (1)

where x ∈ R1×G is a cell sample drawn from
X , and z ∈ R1×D denotes the corresponding D-
dimensional cell representation.

Pre-training. In the pre-training paradigm, cell
representation z is fed into a pre-training head PH
to obtain specialized feature h for pre-training us-
ing the learning objective LP :

h = PH(z), (2)

LP = PT (h, yp), (3)

where PT and yp represent different pretext tasks
for pre-training and their corresponding labels.
Based on the specific pretext task, the label can be
a real class label (supervised pre-training), a self-
constructed label (self-supervised pre-training), or
a hybrid label (multi-task pre-training).

Tuning. Similarly, in the tuning paradigm, cell
representation z is sent into a task-specific head
T H to obtain prediction p for tuning with the learn-
ing objective LT :

p = T H(z), (4)

LT = DT (p, yt), (5)
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Figure 2: Workflow of PLMs and LLMs for single-cell biology.

where DT and yt denote various downstream tasks
and the corresponding ground truth labels. Depend-
ing on the specific scenario, pre-training and tuning
tasks can be either consistent or inconsistent.

3 PLMs for Single-cell Biology

In this section, we provide a holistic review of
existing PLMs for single-cell biology, including
their data tokenization strategies (Section 3.1) and
pre-training paradigms (Section 3.2). A summary
of these single-cell PLMs is shown in Table 1.

3.1 Tokenization Strategies

To encode cells using language models, the first
obstacle is to transform cells into a format that lan-
guage models can understand. On the one hand, the
process of tokenizing cells is challenging due to the
lengthy nature and the inherent sparsity of gene se-
quences. On the other hand, since gene sequences
are unordered, it is often difficult to unify cell data
from different sources, posing difficulties for large-
scale pre-training. To address this issue, several
approaches have proposed various data tokeniza-
tion strategies from the following perspectives.

Discrete Tokens. In the field of NLP, textual for-
mat data needs to be transformed into discrete to-
kens before it can be understood by a language
model (Harris, 1954; Mikolov, 2013; Rong, 2014).
For single-cell transcriptomics data composed of

gene sequences in continuous form, discretization
is also an important step in tokenization. For ex-
ample, scBERT (Yang et al., 2022) and CellLM
(Zhao et al., 2023) utilize a straightforward binning
technique that converts log-transformed continu-
ous gene expression values into the nearest inte-
ger discrete values, while also setting a ceiling
value. Another approach to discretizing cells is
rank value encoding, which is proposed by Gene-
Former (Theodoris et al., 2023) and widely used in
the GeneFormer family (GeneFormer (Theodoris
et al., 2023), LangCell (Zhao et al., 2024), and sc-
Cello (Yuan et al., 2024)). This strategy involves
sorting the frequencies of gene names and encod-
ing them using a gene vocabulary. The maximum
length of each cell is set to 2048, and any remaining
positions are padded with the <PAD> symbol.

Continuous Embeddings. A more popular strat-
egy uses continuous embeddings for fine-grained
information. For example, UCE (Rosen et al.,
2023) and scPRINT (Kalfon et al., 2024) utilize
large protein language models to obtain contin-
uous embeddings for each gene, which are then
used to tokenize cells. CellPLM (Wen et al., 2023)
multiplies each gene in the normalized cell data
with a randomly initialized learnable layer to ob-
tain continuous cell embeddings. scFoundation
(Hao et al., 2024) employs a hierarchical Bayesian
downsampling strategy to maintain the quality and
consistency of large-scale data. CellFM (Zeng
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Model Tokenization Strategy Pre-training Paradigm Pre-training Data

scBERT (Yang et al., 2022) Binning Masked Language Modeling 1M scRNA-seq Data
UCE (Rosen et al., 2023) Protein-coding Masked Language Modeling 36M Cells
GeneFormer (Theodoris et al., 2023) Rank Value Encoding Masked Language Modeling 27.4M Transcriptomics Data
CellPLM (Wen et al., 2023) Cells as Tokens Masked Language Modeling 11M Cells
scFoundation (Hao et al., 2024) Downsampling Masked Language Modeling 50M scRNA-seq Data
Nicheformer (Schaar et al., 2024) Ranking, Metadata Masked Language Modeling 57M Cells
tGPT (Shen et al., 2023) Ranking, Padding Next Token Prediction 22.3M Cells
scGPT (Cui et al., 2024) Binning, Metadata Next Token Prediction 33M Cells
CellLM (Zhao et al., 2023) Binning Multi-task Pre-training 2M scRNA-seq Data
LangCell (Zhao et al., 2024) Rank Value Encoding Multi-task Pre-training 27.5M Cells and Texts
scCello (Yuan et al., 2024) Rank Value Encoding Multi-task Pre-training 22M Cells
scPRINT (Kalfon et al., 2024) Protein-coding Multi-task Pre-training 50M Cells
scMulan (Bian et al., 2024a) Cell Sentence Multi-task Pre-training 10M Transcriptomics Data
GeneCompass (Yang et al., 2024) Ranking, Metadata Multi-task Pre-training 126M Transcriptomics Data
CellFM (Zeng et al., 2024) Padding, MLP Multi-task Pre-training 100M Cells

Table 1: Summary of pre-trained language models for single-cell biology.

et al., 2024) uses padding to align large-scale data
and then applies a multilayer perceptron (MLP)
for projection. Nicheformer (Schaar et al., 2024)
and GeneCompass (Yang et al., 2024) combine
ranked gene information with metadata for contin-
uous value embeddings. tGPT (Shen et al., 2023)
adopts padding and ranked gene information for
direct continuous encoding of large-scale cell data.
scGPT (Cui et al., 2024) incorporates metadata
information after binning to transform the embed-
dings from discrete to continuous values. scMu-
lan (Bian et al., 2024a) combines the original data,
metadata, and task placeholders to form cell sen-
tences for obtaining continuous cell embeddings.

Side Information. In addition to the raw cell
data, many approaches incorporate side informa-
tion during the tokenization process. One main-
stream approach (Nicheformer (Schaar et al., 2024),
scGPT (Cui et al., 2024), scMulan (Bian et al.,
2024a), and GeneCompass (Yang et al., 2024)) is
to utilize metadata to obtain side information. The
available metadata attributes include cell state, cell
type, organ source and specific region, donor age
and gender, and sequencing technology. Another
approach is to leverage existing biological founda-
tion models as bridges. For instance, UCE (Rosen
et al., 2023) and scPRINT (Kalfon et al., 2024)
obtain the side information from large protein lan-
guage models, which bridge the gap between cells
and languages through protein information.

3.2 Pre-training Paradigms

An important step in building single-cell founda-
tion language models from scratch is large-scale

pre-training. After tokenizing cell data into a for-
mat understandable by language models, we can
conduct pre-training on a vast volume of cell data
using similar pretext tasks in NLP. Next, we will
elaborate on these pre-training tasks.

Masked Language Modeling. Numerous stud-
ies (Salazar et al., 2019; Min et al., 2023; Minaee
et al., 2024) have demonstrated that models can
learn high-quality representations with generaliza-
tion capabilities through reconstructing the masked
items (e.g., tokens, patches, and features), laying
the foundation for self-supervised learning. The
remarkable success of masked language modeling
(MLM) in the domains of language (Devlin, 2018;
Liu, 2019) and vision (He et al., 2022; Bao et al.,
2021) also inspires its application in single-cell bi-
ology. For single-cell PLMs, the mainstream mask-
ing strategies involve randomly masking genes with
a certain probability (e.g., 15%-30%) (Yang et al.,
2022; Rosen et al., 2023; Theodoris et al., 2023;
Hao et al., 2024; Schaar et al., 2024), or using the
Gaussian mixture distribution as priors for masking
measured genes (Wen et al., 2023).

Next Token Prediction. Although autoregres-
sively predicting the next token has dominated the
pre-training paradigms of LLMs (Touvron et al.,
2023; Bai et al., 2023a; Achiam et al., 2023) and
multi-modal foundation models (Bai et al., 2023b;
Wang et al., 2024), this approach has not yet be-
come popular for single-cell PLMs. Only tGPT
(Shen et al., 2023) and scGPT (Cui et al., 2024)
adopt this strategy for pre-training language mod-
els from scratch. We attribute this phenomenon
to two reasons: (1) Compared to the vast amount
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Model Base Model From Cells to Texts Tuning Paradigm

Cell2Sentence (Levine et al., 2023) GPT-2 Cell-to-Sentence Instruction-based
CHATCELL (Fang et al., 2024) T5 Cell-to-Sentence Instruction-based
scInterpreter (Li et al., 2024) LLaMA-13B Text-level Gene Embeddings Embedding-based
GenePT (Chen and Zou, 2024) GPT-3.5 Text-level Gene Embeddings Embedding-based
scELMo (Liu et al., 2023a) GPT-3.5 Text-level Gene Embeddings Embedding-based
CELLama (Choi et al., 2024) all-MiniLM-L12-v2 Cell-to-Sentence Embedding-based
scChat (Lu et al., 2024) GPT-4o None Tuning Free

Table 2: Summary of large language models for single-cell biology.

of text data, existing single-cell datasets are still
relatively small, making the autoregressive training
process insufficient for strong generalization ability.
(2) Cell data naturally exhibits sparsity, resulting
in most ground truth values for predicting the next
token being zero. This can lead the model to learn
trivial solutions during the training process.

Multi-task Pre-training. In contrast to a single
pretext task, many approaches opt for multi-task
pre-training, including both self-supervised and
supervised tasks. Among them, MLM remains
the most fundamental task. In addition to MLM,
cell generation (Bian et al., 2024a) and contrastive
learning (Zhao et al., 2023, 2024; Yuan et al., 2024;
Kalfon et al., 2024) are also widely employed.
Overall, multi-task pre-training incorporates super-
vised tasks using labels or other side information
on top of self-supervised tasks. These supervised
tasks include classification (Zhao et al., 2023; Kal-
fon et al., 2024; Bian et al., 2024a; Yang et al.,
2024; Zeng et al., 2024), cell-text matching (Zhao
et al., 2024), bottleneck learning (Kalfon et al.,
2024), and metadata prediction (Bian et al., 2024a).
Furthermore, some approaches employ denoising
(Kalfon et al., 2024) and cell ontology alignment
(Yuan et al., 2024) to capture gene-gene and cell-
cell structural information, respectively.

4 LLMs for Single-cell Biology

Due to the high cost required for pre-training lan-
guage models from scratch, another line of research
chooses to build upon powerful LLMs and facilitate
their understanding of single-cell biology. In this
section, we will specifically introduce single-cell
LLMs, including techniques to convert single-cell
data into textual formats (Section 4.1) and tuning
paradigms (Section 4.2). We also provide a sum-
mary of existing single-cell LLMs in Table 2.

4.1 From Cells to Texts
To boost the reasoning abilities of LLMs for single-
cell data analysis tasks, the first step is to transform
single-cell transcriptomics data into textual formats.
Currently, the existing transformation approaches
can be divided into the following two groups.

Cell-to-Sentence. Cell2Sentence (Levine et al.,
2023) proposes to use textual gene names to repre-
sent cells. For a set of single-cell ribonucleic acid
sequencing (scRNA-seq) data, genes are sorted ac-
cording to their expression values after normaliza-
tion. Subsequently, for each cell, the top 100 genes
with the highest expression values are selected to
form a cell sentence composed of gene names. This
transformation approach not only resolves the issue
of disorderliness in cell data but also addresses the
variability in gene names across different datasets,
which is also adopted by CHATCELL (Fang et al.,
2024) and CELLama (Choi et al., 2024).

Text-level Gene Embeddings. Another transfor-
mation approach (Chen and Zou, 2024; Liu et al.,
2023a; Li et al., 2024) involves prompting LLMs to
inquire about the function of each gene and encod-
ing their responses into text-level embeddings. Sub-
sequently, the gene expression values at each posi-
tion of a specific cell sample are used as weights to
combine the text-level gene embeddings, through
either ranking or weighted averaging methods.

4.2 Tuning Paradigms
Even though the construction of single-cell LLMs
does not necessitate extensive pre-training like
PLMs, several tuning approaches have been pro-
posed to align LLMs with domain knowledge in
single-cell biology. In this section, we will specifi-
cally introduce the existing tuning paradigms.

Instruction-based Tuning. Instruction-based
tuning (Longpre et al., 2023; Zhang et al., 2023;
Peng et al., 2023; Liu et al., 2024) is a prevalent
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paradigm when fine-tuning LLMs. It involves trans-
forming specific tasks and collecting data pairs in
<question, answer> formats to fine-tune language
models. In single-cell biology, this concept was
first introduced by Cell2Sentence (Levine et al.,
2023) and further developed by CHATCELL (Fang
et al., 2024). Taking cell type annotation as an ex-
ample, the task and cells can be transformed into
questions by prompt templates, with cell types serv-
ing as the corresponding answers. This approach
enables the collection of paired data formats for
instruction-based tuning. However, instruction-
based tuning faces notable limitations, as many
single-cell data analysis tasks cannot be easily
transformed into <question, answer> formats.

Embedding-based Tuning. Due to the limita-
tions of instruction-based tuning, embedding-based
tuning remains the mainstream paradigm. For
methods based on text-level gene embeddings
(Chen and Zou, 2024; Liu et al., 2023a; Li et al.,
2024), the embeddings corresponding to each cell
or gene can be directly obtained. For methods
based on cell-to-sentence (Choi et al., 2024), the
features extracted by sentence Transformer models
(Reimers and Gurevych, 2019, 2020; Thakur et al.,
2021) can be treated as embeddings. Then these
embeddings and the corresponding ground truth
labels are used for supervised fine-tuning.

Tuning Free. In addition to the above two tuning
paradigms, there is another tuning free paradigm
that treats LLMs as agents (Lu et al., 2024). This
approach enables LLMs to be programmed to gen-
erate Python code for a wide range of single-cell
data analysis tasks with raw data as input.

5 Single-cell Data Analysis Tasks

In this section, we delve into various single-cell
data analysis tasks linked to single-cell founda-
tional language models. Predominantly, these tasks
encompass cell-level and gene-level analyses. Fur-
thermore, there also exist models tailored towards
drug-related, spatial-related, and other tasks.

5.1 Cell-level Tasks

As depicted in Appendix Table 3, mainstream cell-
level tasks include cell type annotation (Cao et al.,
2020b; Pasquini et al., 2021), discovery of novel
cell types (Aevermann et al., 2018; Saviano et al.,
2020), batch effect correction (Zhou et al., 2019;
Tran et al., 2020), cell clustering (Kiselev et al.,

2017, 2019), multi-omics data integration (Subra-
manian et al., 2020; Kang et al., 2022), and cell gen-
eration (Bergmann et al., 2015; Luo et al., 2024).
Among these tasks, the most fundamental one is
cell type annotation. Similar to traditional deep
learning-based models (Shao et al., 2021; Chen
et al., 2023), language models typically utilize a
classification head after obtaining universal cell
representations to make predictions on cell types,
followed by fine-tuning or zero-shot inference on
downstream datasets. Additionally, some models
employ similarity comparison methods for anno-
tation (Zhao et al., 2024) or transform the anno-
tation task into a question-answering task (Fang
et al., 2024). Building upon annotation, some
models further extend their recognition capabili-
ties to the discovery of novel cell types. These
approaches often rely on assessing similarities be-
tween base cell types and novel cell types (Zhao
et al., 2024) or the confidence of predictions (Yang
et al., 2022). In scenarios where cell type infor-
mation is lacking, many models typically resort to
cell clustering to assess the discriminative nature
of cell representations. Given that cell data is of-
ten collected across different laboratory settings
(Leek et al., 2010; Lazar et al., 2013; Goh et al.,
2017), it exhibits a pronounced batch effect. Con-
sequently, many models pool data from different
batches and then evaluate the effectiveness of batch
effect correction through clustering performance.
Since most language models are pre-trained on
scRNA-seq data, they rarely focus on multi-omics
tasks. Only scGPT (Cui et al., 2024) and scELMo
(Liu et al., 2023a) have validated their ability to in-
tegrate multi-omics data, such as RNA and protein.
In addition to the aforementioned discriminative
tasks, generative tasks are also employed to assess
the performance of language models, as they align
closely with the pre-training objectives. Among
these, prevalent tasks include conditional cell gen-
eration (Bian et al., 2024a) and unconditional cell
generation (Levine et al., 2023; Fang et al., 2024).

5.2 Gene-level Tasks

We also present common gene-level tasks in Ap-
pendix Table 3, which could be broadly divided
into three types: gene network analysis (Zhang and
Horvath, 2005; van der Zwaag et al., 2009), gene
perturbation (Lee et al., 2008; Meinshausen et al.,
2016), and gene prediction (Mathé et al., 2002;
Maji and Garg, 2013). Gene network analysis aims
to elucidate cell functionality by examining inter-
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actions between genes, encompassing uncovering
gene networks (Cui et al., 2024), inferring gene
regulation networks (Hao et al., 2024; Yang et al.,
2024; Zeng et al., 2024), exploring gene programs
(Chen and Zou, 2024), and conducting in silico
treatment analysis (Theodoris et al., 2023; Liu et al.,
2023a). The task of gene perturbation refers to per-
turbing specific genes, such as through knockouts,
and observing how these changes affect cells or
other genes. This process helps us understand gene
functionality and the interactions between genes.
Another task to directly understand genes is gene
prediction, encompassing marker gene prediction
(Yuan et al., 2024), gene expression and sensitivity
prediction (Yang et al., 2024), as well as gene func-
tion, property, and interaction prediction (Levine
et al., 2023; Chen and Zou, 2024).

5.3 Drug-related Tasks

Drug-related tasks (Appendix Table 4) (Tatonetti
et al., 2012; Costello et al., 2014; Adam et al., 2020)
aims to comprehend the mechanisms of drug action
within biological systems, facilitating the selection
and optimization of therapeutic regimens. The spe-
cific tasks in this field can be categorized into drug
sensitivity prediction (Zhao et al., 2023; Fang et al.,
2024) and drug response prediction (Hao et al.,
2024; Yuan et al., 2024; Yang et al., 2024). The for-
mer focuses on forecasting the sensitivity of cells
to specific drugs, while the latter primarily predicts
the cellular response to drug treatment.

5.4 Spatial-related Tasks

Single-cell spatial transcriptomics (van den Brink
et al., 2020; Weber, 2021; Longo et al., 2021; Pi-
wecka et al., 2023) combines the advantages of
single-cell transcriptomics and spatial transcrip-
tomics, providing spatial context information of
cells. This approach offers crucial insights into
how cells interact with each other and their en-
vironment, and how these interactions influence
cellular function and behavior. It is a powerful tool
for studying complex tissues and diseases such as
cancer or neurological disorders. As a result, some
language models incorporate spatial information
and specifically focus on spatial-related tasks (Ap-
pendix Table 4), including spatial transcriptomic
imputation (Wen et al., 2023), spatial label predic-
tion and composition (Schaar et al., 2024), as well
as spatial context analysis (Choi et al., 2024).

5.5 Other Relevant Tasks
In addition to the aforementioned tasks, several
single-cell foundation language models have been
evaluated with other specific tasks (Appendix Ta-
ble 4), including scRNA-seq denoising (Wen et al.,
2023), inference of developmental lineages (Shen
et al., 2023), cell-text retrieval (Zhao et al., 2024),
pathway identification (Zhao et al., 2024), cell la-
bel prediction (Levine et al., 2023), and in-depth
analysis of response from LLMs (Lu et al., 2024).

6 Challenges and Future Directions

Despite the advancements in current single-cell
foundation language models, there are still several
substantial challenges that warrant attention. It is
crucial to understand these challenges as it will
pave the way for future research endeavors.

6.1 Data Quality
Due to the following reasons, data quality has con-
sistently been a hindrance to the development of
unified single-cell foundation language models.

Inherent Sparsity. Single-cell data typically ex-
hibits sparse characteristics (Aparicio et al., 2020;
Baruzzo et al., 2020; Park and Lee, 2024), in that
gene sequences are frequently lengthy, yet only a
minor fraction (less than 10%) of genes exhibit
measurable expression levels. This presents a sig-
nificant gap compared to text data, as the informa-
tion density in cells is much lower. Consequently,
this poses challenges for language models in effec-
tively understanding and interpreting cells.

Positional Information. Another characteristic
of single-cell data is the irrelevance of gene order
(Cao et al., 2020a; Xu et al., 2024). For a given
cell, the arrangement of genes lacks a standardized
convention and is only dependent on the preference
of the sequencer. As a result, a cell can have mul-
tiple possible gene orderings, posing a challenge
in constructing unified cell representations. Exist-
ing language models typically employ Transformer
architectures (Vaswani, 2017; Dosovitskiy, 2020),
which can easily learn positional and sequential
information due to the presence of positional en-
coding. However, this often introduces noise when
attempting to build unified cell representations.

Batch Effect. Pre-training requires collecting a
large amount of single-cell data from multiple
sources. However, due to the inconsistency in se-
quencing technologies (Grün and van Oudenaarden,
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2015; Kashima et al., 2020), platforms (Zare and
Kim, 2010; Valihrach et al., 2018), and laboratory
environments (Carlo and Lee, 2006; Kalisky et al.,
2011), different batches of single-cell data often
exhibit severe batch effects. For the same type of
cells from different batches, models tend to pro-
vide significantly different predictions, posing a
challenge in obtaining unified cell representations.

Omics Resource. Existing datasets predomi-
nantly consist of scRNA-seq transcriptomics, while
high-quality datasets for other omics, such as de-
oxyribonucleic acid (DNA) (Karemaker and Ver-
meulen, 2018; Evrony et al., 2021) and protein (Wu
and Singh, 2012; Nasseri et al., 2011), are relatively
scarce. This limits the ability of language models
to analyze and process single-cell multi-omics data.

Direction. Considering the challenges above, it
is crucial to address them and improve the quality
of single-cell data for universal cell representations.

6.2 Model Design

There is still room for improvement in the structure
of existing single-cell foundation language mod-
els, primarily due to the absence of a unified cell
tokenizer and the emergence of scaling laws.

Cell Tokenizer. Although previous works
have attempted to establish gene vocabularies
(Theodoris et al., 2023; Cui et al., 2024) and
transform all genes into vectors using word2vec
techniques (Grohe, 2020; Rong, 2014) borrowed
from NLP, we still have a long way to go toward a
unified cell tokenizer. On the one hand, the largest
gene vocabulary currently contains only around
70,000 genes, which is insufficient to encompass
all the genes discovered in humans and mice
(Bedell et al., 1997; Ingersoll et al., 2010; Bouabe
and Okkenhaug, 2013). On the other hand, the
integration of newly discovered genes into existing
cell tokenizers remains unexplored.

Scaling Law. The development of foundation lan-
guage models for single-cell biology significantly
lags behind that of other domains (Cherti et al.,
2023; Bahri et al., 2024). This is primarily due to
limitations in data and model design. Currently, the
largest single-cell PLMs have less than 1B param-
eters, which is relatively small compared to NLP
models. Alternatively, single-cell LLMs heavily
rely on textual embeddings to construct cell repre-
sentations and necessitate fine-tuning on specific

datasets. These factors indicate that scaling laws
have not yet emerged in this domain.

Direction. Taking the above challenges into ac-
count, a potential future research direction could
involve constructing a unified and scalable cell to-
kenizer, while also scaling up the model size to
facilitate the emergence of intelligent capabilities.

6.3 Evaluation Protocol
The evaluation protocol for single-cell foundation
language models lacks openness and transparency,
primarily due to a scarcity of benchmarks and ex-
isting gaps between different domains.

Benchmark. Most of the existing single-cell
foundation language models are validated on pri-
vate datasets and different tasks, which can result
in unfair comparisons between models. Currently,
there is no publicly available benchmark with stan-
dardized datasets and evaluation metrics to assess
the performance of these models in an open and
fair manner. This hinders our understanding of the
strengths and weaknesses of each model.

User-friendliness. The evaluation of single-cell
foundation language models demands a substan-
tial understanding of genomics and cell biology,
making it less accessible for users without a back-
ground in biology. A major challenge lies in how
to leverage insights from other domains (Huang
et al., 2023; Tang et al., 2024) to transform various
tasks into user-friendly question-answer formats.

Direction. Therefore, there is great anticipation
for progress in establishing benchmarks to evaluate
single-cell foundation language models and trans-
forming various tasks into user-friendly formats.

7 Conclusion

This paper presented a systematic and compre-
hensive survey of foundation language models for
single-cell biology. We categorized the existing
models into single-cell PLMs and LLMs. Then we
conducted a thorough literature review on data tok-
enization and pre-training paradigms for PLMs, as
well as the techniques for converting cells into texts
and tuning paradigms for LLMs. Additionally, we
introduced various types of single-cell data analysis
tasks to evaluate language models, including cell-
level, gene-level, drug-related, spatial-related, and
other tasks. Finally, we analyzed the challenges
and future research directions from three perspec-
tives: data quality, model design, and evaluation
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protocol. Overall, this survey provides the first
comprehensive analysis and summary of single-
cell foundation language models, aiming to inspire
researchers and encourage greater participation in
this field, ultimately contributing to the develop-
ment of universal foundation models.

Limitations

This survey provides a comprehensive review of
single-cell foundation language models. However,
there are still some limitations. Firstly, despite our
efforts to cover as many relevant works published
before the submission date, there is a possibility
that a small portion of the literature may have been
overlooked. Additionally, we primarily focus on
the technical aspects of each model and do not ex-
tensively analyze the biological motivations and
significance behind their design. We encourage
readers to refer to the original papers for a more
in-depth understanding in this regard. Moreover,
investigating how single-cell foundation language
models specifically enhance downstream applica-
tions such as drug sensitivity prediction and multi-
omics data integration could deepen researchers’
understanding of single-cell biology, which we
leave as future work.
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A Sankey Plot

We provide the Sankey plot of single-cell founda-
tion language models in Figure 3.

B Summary of Downstream Tasks

We provide a summary of single-cell data analysis
tasks tailored for evaluating the existing foundation
language models, which can be broadly categorized
into common cell-level and gene-level tasks (Ta-
ble 3), drug-related tasks (Table 4), spatial-related
tasks (Table 4), and other relevant tasks (Table 4).

C Introduction of Benchmark Datasets

In this section, we list a variety of datasets for
different single-cell foundation language models.

C.1 Datasets for Pre-training
As illustrated in Table 1, the existing single-cell
PLMs opt for various datasets for pre-training. The
introduction of these datasets is as follows:

• scBERT (Yang et al., 2022) leveraged around
1M scRNA-seq data from the Panglao dataset
(Franzén et al., 2019) for pre-training.

• UCE (Rosen et al., 2023) generated the Inte-
grated Mega-scale Atlas (IMA) dataset for pre-
training, incorporating data from diverse sources,
such as CELL×GENE (Abdulla et al., 2023) and
Tabula Sapiens v1 (Consortium* et al., 2022).
IMA encompasses a total of 36M cells.

• GeneFormer (Theodoris et al., 2023) generated
Genecorpus-30M for pre-training, which con-
sists of 27.4M transcriptomics data from publicly
available sources.

• CellPLM (Wen et al., 2023) collected 9M
scRNA-seq cells and 2M SRT cells from pub-
lic data for pre-training.

• scFoundation (Hao et al., 2024) collected over
50M scRNA-seq cells from Gene Expression
Omnibus (GEO), Single Cell Portal, Human Cell
Atlas (HCA), and European Bioinformatics Insti-
tute (EMBL-EBI) for pre-training.

• Nicheformer (Schaar et al., 2024) was pre-
trained on SpatialCorpus-110M, a large-scale
dataset consisting of 57M cells. It was collected
from CELL×GENE (Abdulla et al., 2023), GEO
(Edgar et al., 2002; Barrett et al., 2012), sfaira
(Fischer et al., 2021), and HCA.

• tGPT (Shen et al., 2023) collected a large-scale
single-cell transcriptomics dataset with 22M cells
for pre-training.

• scGPT (Cui et al., 2024) employed 33M cells
from CELL×GENE (Abdulla et al., 2023) for
pre-training.

• CellLM (Zhao et al., 2023) utilized around 2M
cells from the Panglao dataset (Franzén et al.,
2019) and the CancerSCEM dataset (Zeng et al.,
2022) for pre-training.

• LangCell (Zhao et al., 2024) established
scLibary, a dataset comprising 27.5M paired
scRNA-seq data and textual descriptions, for
pre-training. The dataset was sourced from
CELL×GENE (Abdulla et al., 2023).

• scCello (Yuan et al., 2024) collected 22M
scRNA-seq data from CELL×GENE (Abdulla
et al., 2023) for pre-training.

• scPRINT (Kalfon et al., 2024) collected 50M
cells from CELL×GENE (Abdulla et al., 2023)
for pre-training.

• scMulan (Bian et al., 2024a) collected hECA-
10M, a subset of Human Ensemble Cell Atlas
(hECA) (Chen et al., 2022) for pre-training.

• GeneCompass (Yang et al., 2024) collected
scCompass-126M, a dataset comprising 126M
transcriptomic data from humans and mice for
pre-training.

• CellFM (Zeng et al., 2024) collected around
100M cells from multiple databases for pre-
training, including National Center for Biotech-
nology Information (NCBI)-GEO (Barrett et al.,
2012), European Nucleotide Archive (ENA)
(Cochrane et al., 2007), Genome Sequence
Archive (GSA) (Chen et al., 2021), and ImmPort
(Bhattacharya et al., 2018).

C.2 Datasets for Downstream Tasks
For downstream data analysis tasks, the introduc-
tion of dataset information is as follows:

• scBERT (Yang et al., 2022) employed various
datasets for experiments. These datasets include
the Zheng68k dataset (Zheng et al., 2017), pan-
creas datasets (Baron et al., 2016; Muraro et al.,
2016; Segerstolpe et al., 2016; Xin et al., 2016),
the MacParland dataset (MacParland et al., 2018),
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Token Token Model Training

Figure 3: Sankey plot illustrating the flow of single-cell foundation language models, encompassing tokenization
formats, model types, and training paradigms.

Model Cell-level Tasks Gene-level Tasks
Annotation Discovery Batch Clustering Integration Generation Network Perturbation Prediction

scBERT (Yang et al., 2022) ✓ ✓
UCE (Rosen et al., 2023) ✓ ✓ ✓ ✓
GeneFormer (Theodoris et al., 2023) ✓ ✓ ✓ ✓ ✓
CellPLM (Wen et al., 2023) ✓ ✓
scFoundation (Hao et al., 2024) ✓ ✓ ✓ ✓
Nicheformer (Schaar et al., 2024)
tGPT (Shen et al., 2023) ✓ ✓
scGPT (Cui et al., 2024) ✓ ✓ ✓ ✓ ✓ ✓
CellLM (Zhao et al., 2023) ✓
scCello (Yuan et al., 2024) ✓ ✓ ✓ ✓ ✓
LangCell (Zhao et al., 2024) ✓ ✓ ✓ ✓
scPRINT (Kalfon et al., 2024) ✓ ✓ ✓ ✓
scMulan (Bian et al., 2024a) ✓ ✓ ✓ ✓
GeneCompass (Yang et al., 2024) ✓ ✓ ✓ ✓
CellFM (Zeng et al., 2024) ✓ ✓ ✓ ✓
Cell2Sentence (Levine et al., 2023) ✓ ✓
CHATCELL (Fang et al., 2024) ✓ ✓
scInterpreter (Li et al., 2024) ✓
GenePT (Chen and Zou, 2024) ✓ ✓ ✓ ✓ ✓
scELMo (Liu et al., 2023a) ✓ ✓ ✓ ✓ ✓ ✓
CELLama (Choi et al., 2024) ✓
scChat (Lu et al., 2024) ✓

Table 3: Summary of common single-cell data analysis tasks.

heart datasets (Litviňuková et al., 2020; Tucker
et al., 2020), the lung dataset (Lukassen et al.,
2020), and the HCA dataset (He et al., 2020).

• UCE (Rosen et al., 2023) leveraged several
benchmarks and datasets for evaluation, includ-
ing single-cell integration benchmark (Luecken
et al., 2022), cell ontology tree (Bard et al.,
2005), Tabula Sapiens v2, Immune Cell Atlas
(Domínguez Conde et al., 2022), green monkey
lymph node and lung cells (Speranza et al., 2021),
naked mole rat spleen and circulating immune
cells (Hilton et al., 2019), chick retina (Yama-
gata et al., 2021), developing chick heart (Mantri
et al., 2021), and mouse renal cells (Kragesteen
et al., 2023).

• GeneFormer (Theodoris et al., 2023) was eval-

uated on various datasets, including fibroblasts
(Xing et al., 2020), iPSC-derived myogenic cells
(Guo et al., 2022), the aortic aneurysm dataset
(Li et al., 2020), Drop-seq data (Selewa et al.,
2020), dosage-related gene sets (Lek et al., 2016;
Shihab et al., 2017; Ni et al., 2019), ESCs2 tran-
scriptomes (Franzén et al., 2019), and Heart Atlas
(Litviňuková et al., 2020).

• CellPLM (Wen et al., 2023) was evaluated on
various datasets, including PBMC 5K and Ju-
rkat from 10x Genomics, MERSCOPE FFPE
Human Immuno-oncology data, lung cancer data
(Li et al., 2020), liver cancer data (Ma et al.,
2021), the Adamson Perturb-Seq dataset (Adam-
son et al., 2016), the Norman Perturb-Seq dataset
(Norman et al., 2019), the hPancreas dataset
(Chen et al., 2023), and the Multiple Sclerosis
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Model Drug-related Tasks Spatial-related Tasks Other Tasks

CellPLM (Wen et al., 2023) - Spatial Transcriptomic Imputation scRNA-seq Denoising
scFoundation (Hao et al., 2024) Drug Response Prediction - -

Nicheformer (Schaar et al., 2024) -
Spatial Label Prediction,

Spatial Composition
-

tGPT (Shen et al., 2023) - - Inference of Developmental Lineages
CellLM (Zhao et al., 2023) Drug Sensitivity Prediction - -
scCello (Yuan et al., 2024) Drug Response Prediction - -

LangCell (Zhao et al., 2024) - -
Cell-text Retrieval,

Pathway Identification
GeneCompass (Yang et al., 2024) Drug Response Prediction - -
Cell2Sentence (Levine et al., 2023) - - Cell Label Prediction
CHATCELL (Fang et al., 2024) Drug Sensitivity Prediction - -
CELLama (Choi et al., 2024) - Spatial Context Analysis -
scChat (Lu et al., 2024) - - In-depth Analysis and Explanation

Table 4: Summary of drug-related, spatial-related, and other single-cell data analysis tasks.

(MS) dataset (Schirmer et al., 2019).

• scFoundation (Hao et al., 2024) used several
datasets for downstream tasks. These datasets
include the Baron dataset (Huang et al., 2018),
the Zheng68K dataset (Zheng et al., 2017), the
Segerstolpe dataset (Abdelaal et al., 2019), the
CDR dataset (Liu et al., 2020), the drug response
dataset (Zheng et al., 2023), the perturbation
dataset (Roohani et al., 2022), and the cell map-
ping dataset (Cowan et al., 2020).

• Nicheformer (Schaar et al., 2024) was evaluated
on the MERFISH mouse brain dataset (Yao et al.,
2023), CosMx human liver and lung datasets (He
et al., 2021), as well as Xenium human lung and
colon datasets (from 10x Genomics).

• tGPT (Shen et al., 2023) was evaluated on the
HCA dataset (Regev et al., 2018), the Human
cell Landscape (HCL) dataset (Han et al., 2020),
the Tabula Muris dataset (Schaum et al., 2018),
the Cancer Genome Atlas (TCGA) dataset, and
the Genotype-Tissue Expression Project (GTEx)
dataset (Zhang et al., 2019).

• scGPT (Cui et al., 2024) leveraged several
datasets for different tasks. For cell type an-
notation, it was evaluated on the MS dataset
(Schirmer et al., 2019) and the myeloid dataset
(Cheng et al., 2021). For other tasks, the exper-
iments were conducted on the human pancreas
dataset (Chen et al., 2023), the Lung-Kim dataset
(Gavish et al., 2023), the COVID-19 dataset (Lot-
follahi et al., 2021), the Norman and Adamson
datasets, the Replogle dataset (Replogle et al.,
2020), the PBMC 10k dataset, the perirhinal cor-
tex dataset (Siletti et al., 2023), the 10x Multi-
ome PBMC dataset, the BMMC dataset (Luecken

et al., 2021), the ASAP PBMC dataset (Zhang
et al., 2022), and the Immune Human dataset
(Luecken et al., 2022).

• CellLM (Zhao et al., 2023) employed various
datasets for different tasks. For cell type anno-
tation, it leveraged the Zheng68k (Zheng et al.,
2017) dataset and the Baron dataset (Baron et al.,
2016). For drug sensitivity prediction, it was
evaluated on human lung cancer cells (Aissa
et al., 2021) and human oral squamous cancer
cells (Sharma et al., 2018; Ravasio et al., 2020;
Suphavilai et al., 2021).

• LangCell (Zhao et al., 2024) utilized a variety of
benchmark datasets to evaluate the performance,
including human peripheral blood cell datasets
(Gayoso et al., 2022; Zheng et al., 2017), human
liver datasets (Lin et al., 2020), the human brain
cell dataset (Siletti et al., 2023), and the human
cell dataset (Consortium* et al., 2022).

• scCello (Yuan et al., 2024) generated one
in-distribution (ID) dataset and six out-of-
distribution (OOD) datasets from CELL×GENE
(Abdulla et al., 2023) for experiments.

• scPRINT (Kalfon et al., 2024) was evaluated
on various datasets, encompassing kidney, retina,
and colon tissues (Marshall et al., 2022; Wang
et al., 2022; Kong et al., 2023), as well as ciliary
body, colon, and retina tissues (van Zyl et al.,
2022; Burclaff et al., 2022). Additionally, it was
evaluated on human prostate tissues (Joseph et al.,
2021), perturb-seq data (Dixit et al., 2016; Re-
plogle et al., 2022), ChIP-seq data (Park, 2009),
the pancreas dataset (Luecken et al., 2022), and
the lung dataset (Sikkema et al., 2023).
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• scMulan (Bian et al., 2024a) leveraged many
datasets for evaluation, including the hECA-10M
dataset, the heart cell dataset (Simonson et al.,
2023), the liver dataset (Suo et al., 2022), the
bone marrow dataset (He et al., 2020), the Hu-
man Cell Landscape dataset, the Lung integration
dataset (Luecken et al., 2022), and the COVID-19
integration dataset (Lotfollahi et al., 2022).

• GeneCompass (Yang et al., 2024) employed
various datasets for downstream tasks, includ-
ing PBMC datasets (Qiao et al., 2013), human
datasets (multiple sclerosis, lung, and liver),
mouse datasets (brain, lung, and pancreas), the
Immune Human dataset (Cui et al., 2024), and
the drug dataset (Srivatsan et al., 2020).

• CellFM (Zeng et al., 2024) leveraged the Panglao
dataset (Franzén et al., 2019) for gene function
prediction, the Adamson and Norman datasets
for perturbation prediction (Roohani et al., 2024),
eight intra-datasets for cell annotation (Liu et al.,
2023b), and gene datasets (Roohani et al., 2024;
Tran et al., 2020; Luecken et al., 2022) for gene
network analysis.

• Cell2Sentence (Levine et al., 2023) was
evaluated on both single-cell data and bulk
data, including the immune tissue data
(Domínguez Conde et al., 2022), the cytokine
stimulation dataset (Dong et al., 2023), the
multi-tissue data (Megill et al., 2021), the Human
PBMC data (Dong et al., 2023), the L1000 bulk
RNA data (Subramanian et al., 2017), and the
GTEx dataset (Consortium, 2020).

• CHATCELL (Fang et al., 2024) utilized the
SHARE-seq mouse skin dataset (Ma et al., 2020)
and the human lung cancer cells data (Aissa et al.,
2021; Sharma et al., 2018; Ravasio et al., 2020;
Suphavilai et al., 2021) for downstream tasks.

• scInterpreter (Li et al., 2024) constructed two
datasets HUMAN-10k and MOUSE-13k for
downstream tasks.

• GenePT (Chen and Zou, 2024) utilized vari-
ous datasets for different tasks. For gene-level
tasks, it was evaluated on a subset of datasets
from GeneFormer (Theodoris et al., 2023) and
Gene2vec (Du et al., 2019). For cell-level tasks, it
was evaluated on a subset of datasets from scGPT
(Cui et al., 2024), the Cardiomyocyte dataset

(Chaffin et al., 2022), and the Aorta dataset (Li
et al., 2020).

• scELMo (Liu et al., 2023a) was evaluated on
CITE-seq data (Stoeckius et al., 2017), CyTOF
data (Cheung and Utz, 2011), the PBMC dataset,
the hPancreas dataset, the Aorta dataset, the
Heart dataset, and perturb-seq-based datasets.

• CELLama (Choi et al., 2024) was evaluated
on the Tabula Sapiens dataset (Consortium*
et al., 2022), the COVID-19 dataset (Lotfollahi
et al., 2021), human pancreas scRNA-seq data
(Luecken et al., 2022), 10x genomics datasets,
and human lung cell atals data (Travaglini et al.,
2020).

• scChat (Lu et al., 2024) was evaluated on two
scRNA-seq datasets from (Bagley et al., 2024)
and (Mathewson et al., 2021).
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