
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 5095–5114
July 27 - August 1, 2025 ©2025 Association for Computational Linguistics

Optimizing Decomposition for Optimal Claim Verification

Yining Lu Noah Ziems Hy Dang Meng Jiang
University of Notre Dame

South Bend, IN
ylu33@nd.edu

Abstract

Current research on the Decompose-Then-
Verify paradigm for evaluating the factuality
of long-form text typically treats decomposi-
tion and verification in isolation, overlooking
their interactions and potential misalignment.
We find that existing decomposition policies,
typically hand-crafted demonstrations, do not
align well with downstream verifiers in terms
of atomicity—a novel metric quantifying infor-
mation density—leading to suboptimal verifica-
tion results. We formulate finding the optimal
decomposition policy for optimal verification
as a bilevel optimization problem. To approxi-
mate a solution for this strongly NP-hard prob-
lem, we propose dynamic decomposition, a re-
inforcement learning framework that leverages
verifier feedback to learn a policy for dynami-
cally decomposing claims to verifier-preferred
atomicity. Experimental results show that dy-
namic decomposition outperforms existing de-
composition policies, improving verification
confidence by 0.07 and accuracy by 0.12 (on a
0-1 scale) on average across varying verifiers,
datasets, and atomcities of input claims.1

1 Introduction

The Decompose-Then-Verify paradigm has been
widely used in fact-checking systems, as it re-
duces the claim complexity and makes the factu-
ality evaluation fine-grained and easy (Min et al.,
2023; Chern et al., 2023; Chen et al., 2023; Kamoi
et al., 2023; Wei et al., 2024; Song et al., 2024).
The paradigm comprises two components: (1) a
decomposer, which leverages a large language
model (LLM) guided by a decomposition pol-
icy—typically hand-crafted prompts—to break
claims into subclaims,2 and (2) a verifier, which

1Our code: github.com/yining610/dynamic-decomposition
2Following Jiang et al. (2024), we use claim to denote

original sentence to be verified and subclaims the result of
decomposition.

similarly utilizes LLM paired with a verification
policy (e.g., retrieving evidence to assist verifica-
tion). Figure 1 provides an illustration.

In this work, we first systematically investigate
how decomposition policies could affect verifica-
tion through subclaim atomicity—a metric we intro-
duced for quantifying information density. We find
that different verifiers achieve optimal verification
confidence at distinct input atomicity. We define
atomicity = log2(# atomic information), where
one piece of atomic information is an utterance con-
veying a single nontrivial fact (e.g., “Owen made a
comeback in 2017” in Figure 1). Higher atomic-
ity means a subclaim is more coarse-grained and
information-rich, which ostensibly implies lower
verifier confidence, yet our finding indicates this is
not always the case.

The above finding reveals that existing prompt-
based decomposition policies do not always gen-
erate subclaims with optimal atomicity, resulting
in suboptimal verification results. For instance,
FActScore (Min et al., 2023) formulates its decom-
position policy using eight annotated demonstra-
tions to generate intended atomic subclaims. Our
experiments find that verifiers, such as Inst-Llama-
7B with the evidence retrieval verification policy
shown in Figure 1, do not exhibit optimal perfor-
mance at the atomicity level (i.e., atomicity = 0)
featured by the given decomposition policy. Thus,
there is a performance gap between the decomposer
and verifier in terms of atomicity, which remains
unaddressed. We further discuss the limitations of
prior studies in the related work §5.1.

To solve the above problem, we propose dynamic
decomposition—a novel framework to learn a de-
composition policy tailored to the downstream ver-
ifier. Our approach is compatible with any existing
fact-checking systems where both the decomposi-
tion and verification LLMs are given and frozen.
Unlike existing decomposition policies that use a
single prompt call to generate subclaims (Min et al.,

5095

https://github.com/yining610/dynamic-decomposition

Subclaims

Decomposition Policy

Dynamic
Decomposition (Ours)

Static Demonstrations
(Prior Works)

+
LLM

Verification Policy

+
FActScore(Min et al., 2023)

Ours

1. Owen suffered a
serious head injury
in 2015.
…
5. Owen made a
comeback in 2017.
…
7. Owen has
continued to
compete since 2017.

Atomicity=0👎
Original Claim: In 2015,
Owen suffered a serious
head injury while surfing in
Hawaii, which forced him
to take a break from the
sport. However, he made a
remarkable comeback in
2017 and has continued to
compete at the highest level
since then.

Atomicity=2

1. In 2015, Owen suffered a
serious head injury while
surfing in Hawaii, which
forced him to take a break
from the sport.
2. Owen made a remarkable
comeback in 2017.
3. Owen has continued to
compete at the highest level
since then.

Atomicity=1👍

👎 👍

LLM

Decomposer

Verifier

Figure 1: Left: overall framework of Decompose-Then-Verify paradigm. We define each decomposer and verifier as
a LLM paired with a corresponding policy. Our dynamic decomposition is compatible with existing fact-checking
systems and requires training only a decomposition policy with 4.73M parameters. Right: the figure (upper right)
shows that the verification confidence of the verifier (i.e., Inst-Llama-7B with a retrieval verification policy) peaks
at atomicity 1. An atomicity of -1 denotes the claim is partially trivial and tautological. The example (lower right)
shows that the decomposition policy from FActScore (Min et al., 2023) fails to generate subclaims that best
evoke the verifier’s performance, leading to suboptimal results. We provide an additional example in Appendix
E to show the limitation of existing decomposition policies.

2023; Wei et al., 2024; Hu et al., 2024; Wanner
et al., 2024), we formulate dynamic decomposition
as a Markov Decision Process (Puterman, 2014)
that involves a sequence of decomposition calls.
At each step, the policy determines whether a sub-
claim should be decomposed, with the newly gen-
erated subclaims passed to the verifier that returns
verification confidence change as a reward.3 Thus,
this formulation enables the problem to be tackled
using on-policy reinforcement learning (RL).

The learned policy, requiring only 4.73M pa-
rameters, significantly improves steerability over
decomposition processes by dynamically decom-
posing claims to the verifier-perferred atomicity
level. Extensive experiments show that it outper-
forms baseline decomposition policies (Min et al.,
2023; Kamoi et al., 2023; Wanner et al., 2024),
improving both verification confidence (by 0.07)
and accuracy (by 0.12) across varying verifiers,
datasets, and atomicity levels. In summary, our
contributions are twofold:

• Our study exposes the impact of subclaim
atomicities on verifiers. We find that each veri-
fier prefers a distinct optimal input atomicity, yet

3We provide a detailed justification of the reward design
in §2.2.

existing decomposition policies hardly achieve
the optimum.

• We introduce a RL framework designed to
bridge the performance gap between decom-
posers and verifiers. It learns a decomposition
policy to dynamically adjust the atomicity of sub-
claims tailored to downstream verifiers, thereby
optimizing verification results.

2 Methodology

We formulate finding the optimal decomposition
policy for optimal verification as a bilevel optimiza-
tion problem. Specifically, given a decomposition
LLM D, a verification LLM V , verification policy
πv, and a claim dataset {(Ci, Yi)} with binary fac-
tuality labels Yi, we aim to find an optimal decom-
position policy πd such that decomposed subclaims
{cj} maximize the verification accuracy:

max
c∈{cj},πd

Ei

[
1
(
Yi =

∧

c

V(c | πv)
)]
, (1)

subject to

πd ∈ argmax
πd

f({cj}, πd), {cj} ∼ D(Ci | πd),

where verifier V(· | πv) returns the prediction label
conditioned on its verification policy. We deter-

5096

mine the claim is true if and only if all its sub-
claims are true, implemented via a logical AND
operator

∧
. f(,) represents the lower-level con-

straint, which observes the decisions {cj} made at
the upper level and optimizes its own policy πd ac-
cordingly (Sinha et al., 2018). DecomposerD is the
upper-level constraint, ensuring that all subclaims
are generated by it under a feasible decomposition
policy that is lower-level optimal.

By formulating the problem as a bilevel opti-
mization, we can simultaneously refine the up-
stream decomposition policy and optimize the
downstream verification task, ensuring that the de-
composition policy is aligned with the verifier to
achieve optimal overall performance. Bilevel opti-
mization is known to be strongly NP-hard (Hansen
et al., 1992), and research has shown that it can be
alternatively approximated using online stochastic
approximation (Qiu et al., 2021). Therefore, we
propose our dynamic decomposition as an advan-
tage actor-critic (A2C) style (Mnih et al., 2016)
RL solution to approximate Eq.1. It enables the
decomposition policy to learn directly from the ver-
ifier, dynamically converging toward an optimistic
bilevel optimum.

2.1 Overview of Dynamic Decomposition

Unlike most of the prior work that applies its de-
composition policy only once, we iteratively gener-
ate decomposition calls from the learned decompo-
sition policy. The call is to either request the decom-
position LLM to decompose the current subclaim
or not. Specifically, given a temporary subclaim
list {cj} and a target subclaim to be decomposed
c∗ ∈ {cj} sampled from it, we perform decompo-
sition D(· | πd) in Eq.1 as:

{cj}∗ =
{
D(c∗), if πd({cj}) = decompose
∅, if πd({cj}) = not decompose

,

(2)

{cj} ← κ({cj}, {cj}∗). (3)

We repeat the above process until all subclaims in
{cj} have been decided not to decompose further.

Therefore, this can be formulated as a finite
MDP defined as M = (S,A, κ, r). S represents
the state space, and A is the action space which in-
cludes two actions in our case: decompose or not to
decompose. κ : S × S∗ → S is the state transition
function that replaces the target subclaim c∗ in the
subclaim list {cj} with its decomposition results

{cj}∗. r : S × S∗ → A is the immediate reward
received from the verifier after state transition.

2.2 Implement Dynamic Decomposition
Policy

In this section, we elaborate on how we implement
our dynamic decomposition based on the MDP
formulation proposed above.

Atomicity state: To find the optimal atomicity
that is favored by the verifier, we create an atomic-
ity state reflecting the overall atomicity of current
subclaims {cj} at step t. Each atomicity state is a
d dimension vector st ∈ Rd.

State transition: Similar to the work of Chen
et al. (2024b), we use a trainable Gated Recurrent
Unit (GRU) (Cho et al., 2014) to model state tran-
sition function κ in Eq.3:

st+1 = GRU
[
st, (1 + σ(∆Info))Enc({cj})

]
,
(4)

where Enc(·) : T → Rd is a textual encoder that
maps the text sequence to a d-dimensional em-
bedding and σ : R → R is the sigmoid func-
tion. We compute ∆Info as the average Condi-
tional Pairwise Mutual Information (CPMI) (Jiang
et al., 2024) difference between the target subclaim
c∗ and its decomposed results {cj}∗, which basi-
cally quantifies how much information is lost from
each subclaim after decomposition:

∆Info = Ec∈{cj}∗
[
log

P (c | H)
P (c∗ | H)

]
, (5)

where P (· | H) measures the entailment probabil-
ity between a claim and a pre-defined set of tauto-
logical and bleached claims H (e.g., “{topic}
is a person”, “{topic} exists”). In prac-
tice, this conditional probability is estimated as
maxh∈H P (· | h) for better stability (Jiang et al.,
2024). As both c∗ and its subclaims c ∈ {cj}∗ get-
ting syntactically closer to bleached claims through
iterative decomposition, ∆Info tend to decrease
because of the diminishing marginal information
loss (e.g., P (“Kruger was a religious man”|H)

P (“Kruger was a deeply ... faith”|H) ≫
P (“Kruger was a man”|H)

P (“Kruger was a religious”|H) ; see Figure 6 in Ap-
pendix C for experimental justification.).

Therefore, we design ∆Info as a metric to quan-
tify localized atomicity change caused by the cur-
rent decomposition call, and Enc({cj}) reflects the

5097

overall atomicity of all subclaims in terms of se-
mantics. Multiplying global decomposition em-
beddings by the local atomicity change in Eq.4
preserves original semantics (Vaswani et al., 2017)
while revealing hidden states regarding atomicity
of current subclaims.

Action: We define A as having only two actions:
1 (decompose) or 0 (not decompose). For each
atomicity state, the action is sampled from a policy
distribution, at ∼ πd(at | st), namely our decom-
position policy. πd is trained to determine when
to decompose a claim until achieving the desired
atomicity state that maximizes the reward.

Reward: Due to the lack of ground-truth labels
for newly generated subclaims, accuracy-based
evaluation is not feasible for evaluating verification
improvement after decomposition. To address this
limitation, we introduce verification confidence, a
label-free proxy for accuracy that is computable
for all subclaims. It is defined as the absolute prob-
ability difference between positive and negative
verification labels:

Conf(c,V, πv) =
∣∣PV(True | c, πv)− (6)

PV(False | c, πv)
∣∣.

Verification confidence measures how much cer-
tainty a verifier has in making a verification, which
we find to strongly correlate with verification accu-
racy in Figure 2.

Our reward is the verification confidence change
before and after decomposition. This design en-
courages the policy to perform decomposition
when the verifier is more confident in evaluating
the factuality of generated subclaims:

rt = Ec∈{cj}∗
[
Conf(c,V, πv)

]

︸ ︷︷ ︸
After Decomposition

− Conf(c∗,V, πv)︸ ︷︷ ︸
Before Decomposition

.

(7)

Breadth-First Order Decomposition: In dy-
namic decomposition, each decomposition call
could generate a new list of subclaims at a lower
level of atomicity, which are then queued for further
decomposition. Therefore, the order of decomposi-
tion becomes matter. A depth-first approach, where
a single subclaim is continually decomposed until
reaching the lowest possible atomicity level, can
result in significant variance in atomicity among
all subclaims, which in turn leads to high variance

0.2 0.3 0.4 0.5 0.6 0.7
Confidence

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Ac
cu

ra
cy

4

3

0

1

2

Data Source
ChatGPT
PerplexityAI
Verifier
Inst-Llama-7B
Llama3-Inst-8B

Figure 2: Verification confidence versus accuracy. The
number in each convex hull denotes the claim atom-
icity. Irrespective of data sources, atomicities, and
verifiers, verification confidence exhibits a strong
positive correlation with accuracy (0.88 Pearson’s r).

in modeling the state (Eq.4). Hence, we employ a
breadth-first strategy to prioritize the decomposi-
tion of subclaims at higher atomicity. We provide
an illustration in Figure 3.

4

2

Claim finished
decomposition

Claim waiting
for decomposition

Current subclaims

Past subclaims

1

3

π (s)=1d 1

π (s)=0d 4

Decomposition

Figure 3: Breadth-first order sampling for dynamic de-
composition. We perform binary decomposition for
each claim. The number in the node represents its sam-
pling priority in the decomposition process. We first
sample out subclaims at the same atomicity level, with
newly generated subclaims queued in a FIFO (first-in-
first-out) order.

2.3 Train Dynamic Decomposition Policy

We employ PPO (Schulman et al., 2017) in A2C
style to train our dynamic decomposition policy
given its effectiveness and stability (Engstrom
et al., 2019). We model policy function πd :
Rd → R2 as an MLP (Multi-Layer Perceptron)
that outputs a two-dimensional normalized vec-
tor. A core component of the PPO objective
function is the clipped surrogate term, which con-
strains the policy change during the optimization
process. Given a finite decomposition trajectory

5098

{(a1, s1), (a2, s2), · · · , (aT , sT)}, we have

Lclip = Et

[
min

(
ρt, clip(ρt, 1− ϵ, 1 + ϵ)

)
Ât

]
,

(8)

where ρt =
πd(at|st)
πold
d (at|st) is a probability ratio to esti-

mate the divergence between old and current policy.
The hyperparameter ϵ sets the clipping boundary
for ρ to fall between [1 − ϵ, 1 + ϵ]. Ât is the ad-
vantage at step t which measures how better taking
the action at at state st is compared to the average
value of the state.

To calculate the average value of a state, we
create another trainable MLP as a value function,
v : Rd → R, to map the state to its corresponding
value. Then, we estimate the advantage Ât using
GAE (Generalized Advantage Estimator; Schul-
man et al. (2016)):

Ât = δt + (γλ)δt+1 + · · ·+ (γλ)T−t+1δT−1,

where δt = rt + γv(st+1)− v(st). (9)

rt is the reward defined in Eq.7. δt is the TD resid-
ual of value function with discount factor γ (Sutton
and Barto, 1998). Another hyperparameter λ con-
trols the trade-off between bias and variance in
advantage estimation. We use the squared-error
loss to train our value function: (v(st)−v

target
t)2 ≈(

v(st)−(Ât+v(st))
)2

= Â2
t . Therefore, our final

PPO objective function with entropy bonus term
S[πd](st) becomes:

LPPO = Et

[
Lclip − c1Â

2
t + c2S[πd](st)

]
, (10)

where c1 and c2 are coefficients. We perform gra-
dient descent on −LPPO to maximize the above
objective function. Algorithm 1 outlines the proce-
dure.

3 Experiment Setup

3.1 Dataset Construction
To evaluate the effect of decomposition policies
on verification, we construct two claim datasets
from FActScore (Min et al., 2023), whose origi-
nal claims are sourced from ChatGPT (OpenAI,
2022) and PerplexityAI (AI, 2023).4 Each dataset
contains claims with 6 different atomicities rang-
ing from -1 to 4. Specifically, we consider the
given human-annotated atomic subclaims as the

4For simplicity, we refer to each dataset by the name of its
source LLM.

Algorithm 1 Train Dynamic Decomposition Policy

Input: decomposition LLM D, verification LLM V ,
decomposition policy πd, verification policy πv , value
function v, state transition model GRU, initial atomicity state
s0, claims {Ci} to be verified.

1: while not done do
update replay buffer

2: for step = 1, · · · ,m do
3: C ∼ {Ci}, {cj} = C, st = s0 ▷ initialization
4: while not finish decomposition do
5: st ← start atomicity state

6: c∗
BF Sampling←−−−−−− {cj} ▷ get target subclaim

7: at ← sample action from πd(at | st)
8: LLM D decompose c∗ following Eq.2
9: {cj} ← update subclaim list following Eq.3

10: rt ← reward from Eq.7
11: st+1 ← end atomicity state updated by Eq.4
12: Record (at, rt, st, st+1) into replay buffer R
13: end while
14: end for

train dynamic decomposition policy
15: πold

d ← πd

16: for each update step do
17: Sample minibatch M from replay buffer R
18: for each (at, rt, st, st+1) in M do
19: Ât ← advantage from Eq.9
20: ρt ← πd(at|st)

πold
d

(at|st)
21: end for
22: Lclip ← clipped surrogate term from Eq.8
23: LPPO ← objective function from Eq.10
24: Update πd, v,GRU using −LPPO through GD
25: end for
26: end while

base with atomicity 0, because they typically are
self-contained sentences with single factual infor-
mation (e.g., “The String is a collection
of poetry”). We construct higher-level subclaims
by recursively merging pairs at the same atomic-
ity level from the base up until atomicity 4, which
is the highest level that cannot be merged further.
We also decompose the base subclaims to a lower
level at atomicity -1, where subclaims are partially
tautological (e.g., “String exists”, “String is
a collection”, “The collection is composed
of poetry”).5 Thus, each subclaim is purposefully
built to contain 2atomicity pieces of information. We
provide data statistics in Appendix B.1.

3.2 Models

Decomposers Because decomposition requires a
deep understanding of both the semantic and syn-
tactic aspects of the given claims, we use the follow-
ing two open-source and widely-recognized models
as decomposition LLM: Llama3-Inst-70B (Meta,

5We use gpt-3.5-turbo-0125 to perform the decomposi-
tion and name the decomposition policy as FActScore-Atom
whose prompt can be found in Appendix D.

5099

2024) and DeepSeek-V3 (DeepSeek-AI, 2024).

Verfiers Following Min et al. (2023), we de-
termine factual labels by comparing the condi-
tional probability of True and False from the
verifier. We experiment the following three ver-
ification LLMs: a T5-3B (Raffel et al., 2023)
fine-tuned on FActScore for the factuality veri-
fication task (FT-T5-3B), a Llama-7B (Touvron
et al., 2023) trained on Super Natural Instructions
(Wang et al., 2022) (Inst-Llama-7B), and a pre-
trained and instruction tuned Llama3-8B model
(Meta, 2024) (Llama3-Inst-8B). We employ three
verification policies, each utilizing differently con-
structed prompts to assist verification: (1) Re-
trieval retrieves relevant passages from a database
as evidence; (2) In-Context Example provides ver-
ification demonstrations to instruct verification;6

and (3) No-Context directly asks the verifier for
predictions, as inspired by Kadavath et al. (2022).

3.3 Training
Initialization We model each policy and value
function as a two-layer fully connected perceptron
with a ReLU activation function (Agarap, 2019).
The total number of trainable parameters is 4.73M.
We perform binary decomposition on each sub-
claim during our dynamic decomposition, aligning
with the definition of atomicity (using a logarithm
with base 2), to ensure maximal exploration of the
subclaim space. Please refer to Appendix B.3 for
more details.

Data We train our policy on two constructed
claim datasets across atomicity [1, 4].

Hyperparameters Please see Appendix B.4.

3.4 Baselines and Metrics
We compare our trained decomposition policy
(hereafter denoted as DYDECOMP) to existing de-
composition policies, including FActScore (Min
et al., 2023), WICE (Kamoi et al., 2023) and R-ND
(Wanner et al., 2024), on both verification confi-
dence (Eq.6) and accuracy (Eq.1). These works
typically apply heuristic splitting prior to neural
decomposition, thus their decomposition policies
are primarily designed for subclaims under atomic-
ity 2. To ensure a fair comparison, our evaluation
is conducted on claims on atomicity within [0, 2].
We also evaluate DYDECOMP against a modified
version of the FActScore policy, FActScore-Atom,

6In-context examples can be found in Appendix D.

which is designed to decompose human-annotated
atomic subclaims (atomicity 0) to partially trivial
subclaims (atomicity -1) in §3.1.

4 Results and Analysis

We first study the effect of subclaim atomicity on
verification (§4.1), followed by evaluating dynamic
decomposition against existing baselines (§4.2) and
ablation study (§4.4).

4.1 Effect of Subclaim Atomicity on
Verification

Prior works have found that decomposition policy
influences verification results and does not guar-
antee consistent verification improvement across
varying input length and verifier strength (Jiang
et al., 2024; Wanner et al., 2024; Hu et al., 2024).
In this study, we take one step further by look-
ing into the following two questions: How can
we quantify the impact of decomposition policy on
verification, and why does this influence not yield
consistent improvements across different verifiers?

Why use verification confidence? Our experi-
ment finds a strong correlation between verification
confidence and accuracy across various conditions
(Figure 2), including different datasets, atomiticity
levels, and verifies. Additionally, verficaition confi-
dence is more accessible than accuracy as it does
not require ground-truth labels. These properties
support verification confidence as a reliable metric
for evaluating the impact of decomposition policies
and as an ideal signal funneling back to policy.

Each verifier has its own atomicity optimum.
We investigate how atomicity, a key characteristic
of decomposed subclaims, affects verification. Fig-
ure 4 shows verification confidence change across
different atomicity levels. We find that each ver-
ifier, which is a verification LLM with a specific
verification policy, achieves peak verification confi-
dence at a distinct optimal atomicity. For instance,
Llama3-Inst-8B with a retrieval verification policy
consistently performs best at atomicity 0 on both
the ChatGPT and PerplexityAI datasets, whereas
FT-T5-3B with retrieval reaches its optimum at
atomicity 2. This observation answers the second
question that the different preference for atomicity
makes existing static decomposition policies hard
to find optimal subclaims that bring consistent ver-
ification improvement.

5100

-1 0 1 2 3 4

0.5386

0.5388

0.5390

0.5392
Co

nf
id

en
ce

FT-T5-3B
In-Context Example

Data Source
ChatGPT
PerplexityAI

4321-1 0
0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

Inst-Llama-7B
In-Context Example

Data Source
ChatGPT
PerplexityAI

-1 0 1 2 3 4
0.55

0.60

0.65

0.70

0.75

0.80

Llama3-Inst-8B
In-Context Example

Data Source
ChatGPT
PerplexityAI

-1 0 1 2 3 4
0.5355

0.5360

0.5365

0.5370

0.5375

Co
nf

id
en

ce

FT-T5-3B
Retrieval

Data Source
ChatGPT
PerplexityAI

432-1 10
0.2

0.3

0.4

0.5

0.6

Inst-Llama-7B
Retrieval

Data Source
ChatGPT
PerplexityAI

-1 0 1 2 3 4

0.3

0.4

0.5

0.6

0.7

Llama3-Inst-8B
Retrieval

Data Source
ChatGPT
PerplexityAI

-1 0 1 2 3 4
Atomicity

0.5390

0.5395

0.5400

0.5405

Co
nf

id
en

ce

FT-T5-3B
No-Context

Data Source
ChatGPT
PerplexityAI

4321-1 0
Atomicity

0.24

0.26

0.28

0.30

0.32

Inst-Llama-7B
No-Context

Data Source
ChatGPT
PerplexityAI

-1 0 1 2 3 4
Atomicity

0.35

0.40

0.45

0.50

0.55

0.60

Llama3-Inst-8B
No-Context

Data Source
ChatGPT
PerplexityAI

Figure 4: Verification confidence across atomicities. Evidently, each verifier has its own preferred input
atomicity at which the verification confidence peaks. Even when utilizing the same verification policy, such as
retrieval, different verifiers exhibit distinct preferences, and vice versa.

4.2 Dynamic Decomposition Results

Table 1 shows the evaluation results of decom-
poser Llama3-Inst-70B with DYDECOMP policy
on various verifiers, datasets, and claim atomici-
ties. Evidently, DYDECOMP consistently achieves
the highest verification confidence for claims with
atomicity 1 and 2, outperforming the four baselines
by an average margin of 0.07. This result aligns
with our findings from Figure 4, where the veri-
fication LLM for Table 1 (i.e., Llama3-Inst-8B)
generally achieves the best performance at atomic-
ity 0. In other words, an effective decomposition
policy should strategically decompose claims to
lower atomicities, ideally to 0, which is an ability
our DYDECOMP excels. Conversely, since claims
are already near optimal, DYDECOMP does not al-
ways achieve higher verification confidence than
other baselines when atomicity = 0.

We also evaluate DYDECOMP on verification ac-
curacy and observe a notable average improvement
of 0.12 for claims from PerplexityAI with atomic-
ity 1 and 2. We repeat the experiments with another
decomposition LLM, DeepSeek-V3, and observe
similar improvement in verification accuracy (see
Table 5 in Appendix C).

4.3 Case Study

A critical question emerges when adopting verifi-
cation confidence as a proxy for accuracy: whether
the policy would over-optimize for confidence in
ways that did not actually improve accuracy? Our
findings indicate that this phenomenon does hap-
pen, primarily due to inherent limitations in verifier
capabilities. As shown in Table 1, on the Perplex-
ityAI dataset, we observe aligned improvements
in both verification confidence and actual accuracy.
However, the ChatGPT dataset demonstrates sub-
stantial gains in verifier confidence with only negli-
gible improvements in accuracy.

We posit that the disparity stems from funda-
mental differences in verifier capability relative to
data complexity. Specifically, we find claims in
the ChatGPT dataset are generally more complex
and less grounded than those in the PerplexityAI
dataset, making them inherently more difficult to
verify. In contrast, PerplexityAI claims are typi-
cally more concise and feature explicit reference
through indexed citations, enabling even less ca-
pable verifiers (Llama3-Inst-8B in this case) to
evaluate factuality with greater confidence and ac-
curacy. We provide examples in Appendix B.2 to
illustrate this difference.

Our observations indicate that verifier capability

5101

Atomicity Decompose Policy→
Verify Policy↓

FActScore FActScore-Atom WICE R-ND DYDECOMP
Verification Confidence [0-1] ↑ / Verification Accuracy [0-1] ↑

0

Data Source: ChatGPT
Retrieval 0.627 / 0.666 0.618 / 0.796 0.431 / 0.782 0.556 / 0.449 0.600 / 0.789
In-Context Example 0.677 / 0.454 0.677 / 0.388 0.724 / 0.451 0.714 / 0.401 0.715 / 0.428
No-Context 0.557 / 0.457 0.526 / 0.566 0.374 / 0.525 0.527 / 0.378 0.547 / 0.551
Data Source: PerplexityAI
Retrieval 0.629 / 0.559 0.611 / 0.755 0.435 / 0.762 0.541 / 0.241 0.612 / 0.799
In-Context Example 0.681 / 0.266 0.670 / 0.197 0.726 / 0.308 0.711 / 0.172 0.733 / 0.301
No-Context 0.555 / 0.352 0.515 / 0.471 0.380 / 0.475 0.519 / 0.166 0.542 / 0.554

1

Data Source: ChatGPT
Retrieval 0.609 / 0.739 0.611 / 0.815 0.527 / 0.755 0.541 / 0.635 0.654 / 0.758
In-Context Example 0.714 / 0.635 0.705 / 0.627 0.658 / 0.631 0.749 / 0.610 0.809 / 0.609
No-Context 0.549 / 0.619 0.521 / 0.550 0.437 / 0.606 0.508 / 0.610 0.567 / 0.512
Data Source: PerplexityAI
Retrieval 0.610 / 0.493 0.615 / 0.68 0.527 / 0.597 0.515 / 0.232 0.651 / 0.753
In-Context Example 0.721 / 0.247 0.711 / 0.253 0.684 / 0.27 0.746 / 0.22 0.791 / 0.347
No-Context 0.535 / 0.260 0.506 / 0.350 0.423 / 0.273 0.506 / 0.223 0.559 / 0.437

2

Data Source: ChatGPT
Retrieval 0.616 / 0.844 0.639 / 0.887 0.588 / 0.809 0.547 / 0.852 0.644 / 0.652
In-Context Example 0.731 / 0.835 0.725 / 0.835 0.665 / 0.835 0.744 / 0.835 0.824 / 0.750
No-Context 0.553 / 0.809 0.545 / 0.800 0.507 / 0.835 0.515 / 0.835 0.583 / 0.509
Data Source: PerplexityAI
Retrieval 0.622 / 0.483 0.639 / 0.601 0.592 / 0.546 0.529 / 0.406 0.633 / 0.664
In-Context Example 0.755 / 0.392 0.734 / 0.378 0.675 / 0.392 0.751 / 0.392 0.823 / 0.464
No-Context 0.543 / 0.378 0.535 / 0.378 0.492 / 0.392 0.509 / 0.392 0.544 / 0.421

Table 1: Comparison of our DYDECOMP over baselines on the test dataset. Each metric is scaled from 0 to
1. ↑ indicates higher values are preferred. We employ decomposition LLM Llama3-Inst-70B and verification
LLM Llama3-Inst-8B. DYDECOMP consistently outperforms on atomicity 1 and 2, achieving an average
improvement of 0.07 in verification confidence across two datasets and three verifiers, and a 0.12 average
improvement in verification accuracy for claims sourced from PerplexityAI.

is a pivotal factor in the success of dynamic decom-
position, exemplifying a “bucket effect” where the
weakest component constrains system performance.
When paired with a sufficiently strong verifier, the
dynamic decomposition can optimize the entire sys-
tem in tandem, ensuring that confidence improve-
ments translate into genuine accuracy gains.

4.4 Ablation Study

Table 2 display our ablation study on different com-
ponents of DYDECOMP regarding algorithm design
and training data selection. We use the decom-
position LLM Llama3-Inst-70B, and the verifier
Llama3-8B-Inst with a retrieval verification pol-
icy. The ablation experiments are conducted on
claims with atomicity 4.

Decomposition exploration is effective for long-
form text verification. In experiment setup §3,
we model each policy and value function as a two-
layer perceptron. We investigate whether a simple,
shallow model can capture the atomicity state and
find that reducing the network to a single layer
results in lower verification confidence for decom-
posed subclaims. Similarly, switching from bi-

Variants Verification Confidence

DYDECOMP 0.446
− one layer NN 0.398 (-0.048)
− binary; + triple decompose 0.424 (-0.022)
− entropy bonus 0.356 (-0.090)

− data on atomcitity 1 0.353 (-0.093)
− data on atomicity 1, 2 0.356 (-0.090)
− data on atomicity 1, 2, 3 0.401 (-0.045)

Table 2: Ablation study results of DYDECOMP. “−”
indicates the removal of a component from DYDECOMP.
For instance, “− one layer NN” means modeling the pol-
icy and value functions using a single-layer perceptron
instead of two layers. “− data on atomicity 1” removes
claims with atomicity 1 from the training data.

nary to triple decomposition at each step, which
reduces the exploration of subclaims on different
atomicities, also leads to declined verification con-
fidence. Furthermore, removing the entropy bonus
term, which promotes action exploration, from the
objective function leads to a substantial drop in
verification confidence (-0.090). These findings
demonstrate that DYDECOMP benefits from diverse
decomposition trajectories during training, which
facilitate the search for subclaims with optimal

5102

atomicity.

Cross-atomicity training data stabilizes perfor-
mance. In Table 2, we train DYDECOMP using
claims with atomicity ranging from 0 to 4 and
evaluate on atomicity 4. We find that gradually
removing claims of lower atomicity (from 1 to 3)
from the training set negatively impacts verification
performance, highlighting the importance of cross-
atomicity data for improving the generalizability
of DYDECOMP. However, this negative effect di-
minishes as more data with irrelevant atomicities is
removed (−0.093→ −0.045). This suggests that
increased exposure to claims of a specific atomic-
ity during PPO rollouts enhances learning for that
atomicity but cannot fully compensate for perfor-
mance losses due to reduced atomicity coverage in
training data.

5 Related Works

5.1 Decompose-Then-Verify Paradigms

Unlike traditional fact-checking systems that focus
on short and simple claims (Thorne et al., 2018;
Sathe et al., 2020; Schuster et al., 2021; Chen et al.,
2022; Guo et al., 2022), Decompose-Then-Verify
now becomes a typical approach in long-form text
evaluation works, as it allows for more precise er-
ror identification and enhances the accuracy of ver-
ification by decomposing claims into shorter sub-
claims, which can then be independently validated
(Min et al., 2023; Chern et al., 2023; Kamoi et al.,
2023; Chen et al., 2023; Iqbal et al., 2024; Song
et al., 2024; Chen et al., 2024a; Wang et al., 2024).
However, how the decomposition and verification
should be conducted is always underspecified.

Decomposition policies. Existing factuality eval-
uation works have proposed various decomposition
prompts revealing different characteristics of tex-
tual decomposition regarding precision (Min et al.,
2023), verifiability (Song et al., 2024), coverage
(Wanner et al., 2024), and atomicity (Stacey et al.,
2024). More recently, research has found that su-
perficially fine-grained subclaims with trivial infor-
mation could easily inflate verification precision
(Jiang et al., 2024), and decomposition benefits
weaker verifiers more than stronger verifiers by
generating simpler subclaims (Hu et al., 2024). Our
dynamic decomposition effectively addresses the
over-optimization problem by providing necessary
controllability over the decomposition process.

Moreover, static decomposition policies may

struggle to handle input claims with varying fact
density and often produce atomically homogeneous
subclaims. We elaborate on these limitations in Ap-
pendix A.

Verification policies. Policies for verification
can be categorized according to the methods veri-
fiers utilize to process subclaims and predict final
labels. Popular processing methods include retriev-
ing relevant evidence (Kamoi et al., 2023; Wei et al.,
2024), constructing in-context exemplars (Kamoi
et al., 2023; Song et al., 2024), generating claim-
focused summarization (Chen et al., 2024a), and
simply zero-shot prompting (Kadavath et al., 2022;
Min et al., 2023). The final label can be predicted
by either gradient-based approaches (e.g., compar-
ing logits of factual labels) (Chen et al., 2024a;
Tang et al., 2024; Milbauer et al., 2023; Kamoi
et al., 2023; Min et al., 2023) or searching for key-
words (e.g., True or False) (Min et al., 2023; Li
et al., 2024; Song et al., 2024).

5.2 RL in NLP Problems

Prior works have validated the use of RL in optimiz-
ing singular-task systems, such as identifying opti-
mal exemplars for in-context learning (Zhang et al.,
2022; Lu et al., 2023; Chen et al., 2024b). How-
ever, how RL can be applied to dual-task systems
where multiple LLMs are involved remains under-
explored. One concurrent work uses two LLMs
as process reward and policy models, employing
PPO to train them jointly for challenging reason-
ing tasks (Cui et al., 2025). In contrast, our dy-
namic decomposition first explores RL to solve a
bilevel optimization problem in another dual-task
system, Decompose-Then-Verify, to reveal the nu-
anced characteristics of hierarchical LLM systems
through their interactions.

6 Conclusion

We find that each verifier has an optimal atom-
icity where its verification confidence peaks. To
leverage it, we introduce dynamic decomposition
that optimizes claim verification by decomposing
claims into verifier-preferred atomicity learned via
on-policy optimization. Our policy stands out for
its adaptability to diverse verifiers and input claim
atomicities, outperforming existing baselines while
adding only 4.73M parameters.

5103

Limitations

Different characteristics of decomposition.
While dynamic decomposition addresses the prob-
lem of misalignment between decomposer and ver-
ifier, we focus on the aspect of information density
(i.e., atomicity). Although well-structured, self-
contained, and verifiable subclaims could further
improve verification, these aspects are beyond the
scope of this paper. Future research could inves-
tigate other key characteristics of decomposition
and explore how to amplify their positive effects on
verification through dynamic decomposition (e.g.,
using a more powerful decomposer).

Evaluation metrics. Our reward design relies on
verification confidence rather than accuracy. We
leave it for future works to acquire more ground-
truth labels to effectively employ verification accu-
racy as feedback.

Acknowledgments

This work was supported by NSF IIS-2119531,
IIS-2137396, IIS-2142827, IIS-2234058, CCF-
1901059, and ONR N00014-22-1-2507. The au-
thors would like to thank Chihiro Taguchi, Katsumi
Ibaraki and Demetrius Hernandez for their helpful
input on earlier versions of this work. GPU ma-
chines for conducting experiments were provided
by CRC cluster (https://crc.nd.edu/).

References
Abien Fred Agarap. 2019. Deep learning using rectified

linear units (relu). Preprint, arXiv:1803.08375.

Perplexity AI. 2023. Perplexity.ai. https://www.
perplexity.ai/.

Jiangjie Chen, Qiaoben Bao, Changzhi Sun, Xinbo
Zhang, Jiaze Chen, Hao Zhou, Yanghua Xiao, and
Lei Li. 2022. Loren: Logic-regularized reason-
ing for interpretable fact verification. Proceedings
of the AAAI Conference on Artificial Intelligence,
36(10):10482–10491.

Jifan Chen, Grace Kim, Aniruddh Sriram, Greg Durrett,
and Eunsol Choi. 2024a. Complex claim verification
with evidence retrieved in the wild. In Proceedings
of the 2024 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies (Volume 1: Long
Papers), pages 3569–3587, Mexico City, Mexico. As-
sociation for Computational Linguistics.

Shiqi Chen, Yiran Zhao, Jinghan Zhang, I-Chun Chern,
Siyang Gao, Pengfei Liu, and Junxian He. 2023.

Felm: Benchmarking factuality evaluation of large
language models. Preprint, arXiv:2310.00741.

Tongfei Chen, Zhengping Jiang, Adam Poliak, Keisuke
Sakaguchi, and Benjamin Van Durme. 2020. Un-
certain natural language inference. In Proceedings
of the 58th Annual Meeting of the Association for
Computational Linguistics, pages 8772–8779, On-
line. Association for Computational Linguistics.

Yunmo Chen, Tongfei Chen, Harsh Jhamtani, Patrick
Xia, Richard Shin, Jason Eisner, and Benjamin
Van Durme. 2024b. Learning to retrieve iteratively
for in-context learning. In Proceedings of the 2024
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 7156–7168, Miami, Florida,
USA. Association for Computational Linguistics.

I-Chun Chern, Steffi Chern, Shiqi Chen, Weizhe Yuan,
Kehua Feng, Chunting Zhou, Junxian He, Graham
Neubig, and Pengfei Liu. 2023. Factool: Factual-
ity detection in generative ai – a tool augmented
framework for multi-task and multi-domain scenar-
ios. Preprint, arXiv:2307.13528.

Kyunghyun Cho, Bart van Merriënboer, Caglar Gul-
cehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. 2014. Learning
phrase representations using RNN encoder–decoder
for statistical machine translation. In Proceedings
of the 2014 Conference on Empirical Methods in
Natural Language Processing (EMNLP), pages 1724–
1734, Doha, Qatar. Association for Computational
Linguistics.

Ganqu Cui, Lifan Yuan, Zefan Wang, Hanbin Wang,
Wendi Li, Bingxiang He, Yuchen Fan, Tianyu
Yu, Qixin Xu, Weize Chen, Jiarui Yuan, Huayu
Chen, Kaiyan Zhang, Xingtai Lv, Shuo Wang,
Yuan Yao, Xu Han, Hao Peng, Yu Cheng, Zhiyuan
Liu, Maosong Sun, Bowen Zhou, and Ning Ding.
2025. Process reinforcement through implicit re-
wards. Preprint, arXiv:2502.01456.

DeepSeek-AI. 2024. Deepseek-v3 technical report.
Preprint, arXiv:2412.19437.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Logan Engstrom, Andrew Ilyas, Shibani Santurkar,
Dimitris Tsipras, Firdaus Janoos, Larry Rudolph, and
Aleksander Madry. 2019. Implementation matters in
deep policy gradients: A case study on ppo and trpo.
In iclr.

Zhijiang Guo, Michael Schlichtkrull, and Andreas Vla-
chos. 2022. A survey on automated fact-checking.
Transactions of the Association for Computational
Linguistics, 10:178–206.

5104

https://crc.nd.edu/
https://arxiv.org/abs/1803.08375
https://arxiv.org/abs/1803.08375
https://www.perplexity.ai/
https://www.perplexity.ai/
https://doi.org/10.1609/aaai.v36i10.21291
https://doi.org/10.1609/aaai.v36i10.21291
https://doi.org/10.18653/v1/2024.naacl-long.196
https://doi.org/10.18653/v1/2024.naacl-long.196
https://arxiv.org/abs/2310.00741
https://arxiv.org/abs/2310.00741
https://doi.org/10.18653/v1/2020.acl-main.774
https://doi.org/10.18653/v1/2020.acl-main.774
https://doi.org/10.18653/v1/2024.emnlp-main.406
https://doi.org/10.18653/v1/2024.emnlp-main.406
https://arxiv.org/abs/2307.13528
https://arxiv.org/abs/2307.13528
https://arxiv.org/abs/2307.13528
https://arxiv.org/abs/2307.13528
https://doi.org/10.3115/v1/D14-1179
https://doi.org/10.3115/v1/D14-1179
https://doi.org/10.3115/v1/D14-1179
https://arxiv.org/abs/2502.01456
https://arxiv.org/abs/2502.01456
https://arxiv.org/abs/2412.19437
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://arxiv.org/abs/2005.12729
https://arxiv.org/abs/2005.12729
https://doi.org/10.1162/tacl_a_00454

Pierre Hansen, Brigitte Jaumard, and Gilles Savard.
1992. New branch-and-bound rules for linear bilevel
programming. SIAM Journal on Scientific and Statis-
tical Computing, 13(5):1194–1217.

Qisheng Hu, Quanyu Long, and Wenya Wang. 2024.
Decomposition dilemmas: Does claim decompo-
sition boost or burden fact-checking performance?
Preprint, arXiv:2411.02400.

Hasan Iqbal, Yuxia Wang, Minghan Wang,
Georgi Nenkov Georgiev, Jiahui Geng, Iryna
Gurevych, and Preslav Nakov. 2024. Open-
FactCheck: A unified framework for factuality
evaluation of LLMs. In Proceedings of the 2024
Conference on Empirical Methods in Natural
Language Processing: System Demonstrations,
pages 219–229, Miami, Florida, USA. Association
for Computational Linguistics.

Zhengping Jiang, Jingyu Zhang, Nathaniel Weir,
Seth Ebner, Miriam Wanner, Kate Sanders, Daniel
Khashabi, Anqi Liu, and Benjamin Van Durme. 2024.
Core: Robust factual precision with informative sub-
claim identification. Preprint, arXiv:2407.03572.

Saurav Kadavath, Tom Conerly, Amanda Askell, Tom
Henighan, Dawn Drain, Ethan Perez, Nicholas
Schiefer, Zac Hatfield-Dodds, Nova DasSarma, Eli
Tran-Johnson, Scott Johnston, Sheer El-Showk,
Andy Jones, Nelson Elhage, Tristan Hume, Anna
Chen, Yuntao Bai, Sam Bowman, Stanislav Fort,
Deep Ganguli, Danny Hernandez, Josh Jacobson,
Jackson Kernion, Shauna Kravec, Liane Lovitt, Ka-
mal Ndousse, Catherine Olsson, Sam Ringer, Dario
Amodei, Tom Brown, Jack Clark, Nicholas Joseph,
Ben Mann, Sam McCandlish, Chris Olah, and Jared
Kaplan. 2022. Language models (mostly) know what
they know. Preprint, arXiv:2207.05221.

Ryo Kamoi, Tanya Goyal, Juan Diego Rodriguez, and
Greg Durrett. 2023. Wice: Real-world entailment for
claims in wikipedia. Preprint, arXiv:2303.01432.

Itay Levy, Ben Bogin, and Jonathan Berant. 2023. Di-
verse demonstrations improve in-context composi-
tional generalization. In Proceedings of the 61st An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1401–
1422, Toronto, Canada. Association for Computa-
tional Linguistics.

Miaoran Li, Baolin Peng, Michel Galley, Jianfeng Gao,
and Zhu Zhang. 2024. Self-checker: Plug-and-play
modules for fact-checking with large language mod-
els. In Findings of the Association for Computational
Linguistics: NAACL 2024, pages 163–181, Mexico
City, Mexico. Association for Computational Lin-
guistics.

Pan Lu, Liang Qiu, Kai-Wei Chang, Ying Nian Wu,
Song-Chun Zhu, Tanmay Rajpurohit, Peter Clark,
and Ashwin Kalyan. 2023. Dynamic prompt learning
via policy gradient for semi-structured mathematical
reasoning. In International Conference on Learning
Representations (ICLR).

Meta. 2024. The llama 3 herd of models. Preprint,
arXiv:2407.21783.

Jeremiah Milbauer, Ziqi Ding, Zhijin Wu, and Tong-
shuang Wu. 2023. NewsSense: Reference-free verifi-
cation via cross-document comparison. In Proceed-
ings of the 2023 Conference on Empirical Methods
in Natural Language Processing: System Demon-
strations, pages 422–430, Singapore. Association for
Computational Linguistics.

Sewon Min, Kalpesh Krishna, Xinxi Lyu, Mike Lewis,
Wen-tau Yih, Pang Koh, Mohit Iyyer, Luke Zettle-
moyer, and Hannaneh Hajishirzi. 2023. FActScore:
Fine-grained atomic evaluation of factual precision
in long form text generation. In Proceedings of the
2023 Conference on Empirical Methods in Natural
Language Processing, pages 12076–12100, Singa-
pore. Association for Computational Linguistics.

Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi
Mirza, Alex Graves, Timothy Lillicrap, Tim Harley,
David Silver, and Koray Kavukcuoglu. 2016. Asyn-
chronous methods for deep reinforcement learning.
In Proceedings of The 33rd International Conference
on Machine Learning, volume 48 of Proceedings of
Machine Learning Research, pages 1928–1937, New
York, New York, USA. PMLR.

Aaron Mueller, Albert Webson, Jackson Petty, and Tal
Linzen. 2024. In-context learning generalizes, but
not always robustly: The case of syntax. In Proceed-
ings of the 2024 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies (Volume
1: Long Papers), pages 4761–4779, Mexico City,
Mexico. Association for Computational Linguistics.

OpenAI. 2022. Chatgpt blog post. https://openai.
com/index/chatgpt/.

M.L. Puterman. 2014. Markov Decision Processes:
Discrete Stochastic Dynamic Programming. Wiley
Series in Probability and Statistics. Wiley.

Shuang Qiu, Zhuoran Yang, Jieping Ye, and Zhaoran
Wang. 2021. On finite-time convergence of actor-
critic algorithm. IEEE Journal on Selected Areas in
Information Theory, 2(2):652–664.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2023. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. Preprint, arXiv:1910.10683.

Aalok Sathe, Salar Ather, Tuan Manh Le, Nathan Perry,
and Joonsuk Park. 2020. Automated fact-checking
of claims from Wikipedia. In Proceedings of the
Twelfth Language Resources and Evaluation Confer-
ence, pages 6874–6882, Marseille, France. European
Language Resources Association.

John Schulman, Philipp Moritz, Sergey Levine, Michael
Jordan, and Pieter Abbeel. 2016. High-dimensional
continuous control using generalized advantage esti-
mation. In iclr.

5105

https://doi.org/10.1137/0913069
https://doi.org/10.1137/0913069
https://arxiv.org/abs/2411.02400
https://arxiv.org/abs/2411.02400
https://doi.org/10.18653/v1/2024.emnlp-demo.23
https://doi.org/10.18653/v1/2024.emnlp-demo.23
https://doi.org/10.18653/v1/2024.emnlp-demo.23
https://arxiv.org/abs/2407.03572
https://arxiv.org/abs/2407.03572
https://arxiv.org/abs/2207.05221
https://arxiv.org/abs/2207.05221
https://arxiv.org/abs/2303.01432
https://arxiv.org/abs/2303.01432
https://doi.org/10.18653/v1/2023.acl-long.78
https://doi.org/10.18653/v1/2023.acl-long.78
https://doi.org/10.18653/v1/2023.acl-long.78
https://doi.org/10.18653/v1/2024.findings-naacl.12
https://doi.org/10.18653/v1/2024.findings-naacl.12
https://doi.org/10.18653/v1/2024.findings-naacl.12
https://arxiv.org/abs/2209.14610
https://arxiv.org/abs/2209.14610
https://arxiv.org/abs/2209.14610
https://arxiv.org/abs/2407.21783
https://doi.org/10.18653/v1/2023.emnlp-demo.39
https://doi.org/10.18653/v1/2023.emnlp-demo.39
https://doi.org/10.18653/v1/2023.emnlp-main.741
https://doi.org/10.18653/v1/2023.emnlp-main.741
https://doi.org/10.18653/v1/2023.emnlp-main.741
https://proceedings.mlr.press/v48/mniha16.html
https://proceedings.mlr.press/v48/mniha16.html
https://doi.org/10.18653/v1/2024.naacl-long.267
https://doi.org/10.18653/v1/2024.naacl-long.267
https://openai.com/index/chatgpt/
https://openai.com/index/chatgpt/
https://books.google.com/books?id=VvBjBAAAQBAJ
https://books.google.com/books?id=VvBjBAAAQBAJ
https://doi.org/10.1109/JSAIT.2021.3078754
https://doi.org/10.1109/JSAIT.2021.3078754
https://arxiv.org/abs/1910.10683
https://arxiv.org/abs/1910.10683
https://arxiv.org/abs/1910.10683
https://aclanthology.org/2020.lrec-1.849/
https://aclanthology.org/2020.lrec-1.849/
https://arxiv.org/abs/1506.02438
https://arxiv.org/abs/1506.02438
https://arxiv.org/abs/1506.02438

John Schulman, Filip Wolski, Prafulla Dhariwal,
Alec Radford, and Oleg Klimov. 2017. Prox-
imal policy optimization algorithms. Preprint,
arXiv:1707.06347.

Tal Schuster, Adam Fisch, and Regina Barzilay. 2021.
Get your vitamin C! robust fact verification with
contrastive evidence. In Proceedings of the 2021
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 624–643, Online. As-
sociation for Computational Linguistics.

Ankur Sinha, Pekka Malo, and Kalyanmoy Deb. 2018.
A review on bilevel optimization: From classi-
cal to evolutionary approaches and applications.
IEEE Transactions on Evolutionary Computation,
22(2):276–295.

Yixiao Song, Yekyung Kim, and Mohit Iyyer. 2024.
VeriScore: Evaluating the factuality of verifiable
claims in long-form text generation. In Findings
of the Association for Computational Linguistics:
EMNLP 2024, pages 9447–9474, Miami, Florida,
USA. Association for Computational Linguistics.

Joe Stacey, Pasquale Minervini, Haim Dubossarsky,
Oana-Maria Camburu, and Marek Rei. 2024. Atomic
inference for NLI with generated facts as atoms.
In Proceedings of the 2024 Conference on Empir-
ical Methods in Natural Language Processing, pages
10188–10204, Miami, Florida, USA. Association for
Computational Linguistics.

R.S. Sutton and A.G. Barto. 1998. Reinforcement learn-
ing: An introduction. IEEE Transactions on Neural
Networks, 9(5):1054–1054.

Liyan Tang, Philippe Laban, and Greg Durrett. 2024.
MiniCheck: Efficient fact-checking of LLMs on
grounding documents. In Proceedings of the 2024
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 8818–8847, Miami, Florida,
USA. Association for Computational Linguistics.

James Thorne, Andreas Vlachos, Christos
Christodoulopoulos, and Arpit Mittal. 2018.
FEVER: a large-scale dataset for fact extraction
and VERification. In Proceedings of the 2018
Conference of the North American Chapter of
the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long
Papers), pages 809–819, New Orleans, Louisiana.
Association for Computational Linguistics.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal
Azhar, Aurelien Rodriguez, Armand Joulin, Edouard
Grave, and Guillaume Lample. 2023. Llama: Open
and efficient foundation language models. Preprint,
arXiv:2302.13971.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all

you need. In Advances in Neural Information Pro-
cessing Systems, volume 30. Curran Associates, Inc.

Yizhong Wang, Swaroop Mishra, Pegah Alipoormo-
labashi, Yeganeh Kordi, Amirreza Mirzaei, Atharva
Naik, Arjun Ashok, Arut Selvan Dhanasekaran,
Anjana Arunkumar, David Stap, Eshaan Pathak,
Giannis Karamanolakis, Haizhi Lai, Ishan Puro-
hit, Ishani Mondal, Jacob Anderson, Kirby Kuznia,
Krima Doshi, Kuntal Kumar Pal, Maitreya Patel,
Mehrad Moradshahi, Mihir Parmar, Mirali Purohit,
Neeraj Varshney, Phani Rohitha Kaza, Pulkit Verma,
Ravsehaj Singh Puri, Rushang Karia, Savan Doshi,
Shailaja Keyur Sampat, Siddhartha Mishra, Sujan
Reddy A, Sumanta Patro, Tanay Dixit, and Xudong
Shen. 2022. Super-NaturalInstructions: Generaliza-
tion via declarative instructions on 1600+ NLP tasks.
In Proceedings of the 2022 Conference on Empiri-
cal Methods in Natural Language Processing, pages
5085–5109, Abu Dhabi, United Arab Emirates. As-
sociation for Computational Linguistics.

Yuxia Wang, Revanth Gangi Reddy, Zain Muham-
mad Mujahid, Arnav Arora, Aleksandr Rubashevskii,
Jiahui Geng, Osama Mohammed Afzal, Liang-
ming Pan, Nadav Borenstein, Aditya Pillai, Isabelle
Augenstein, Iryna Gurevych, and Preslav Nakov.
2024. Factcheck-bench: Fine-grained evaluation
benchmark for automatic fact-checkers. Preprint,
arXiv:2311.09000.

Miriam Wanner, Seth Ebner, Zhengping Jiang, Mark
Dredze, and Benjamin Van Durme. 2024. A
closer look at claim decomposition. Preprint,
arXiv:2403.11903.

Jerry Wei, Chengrun Yang, Xinying Song, Yifeng Lu,
Nathan Hu, Jie Huang, Dustin Tran, Daiyi Peng,
Ruibo Liu, Da Huang, Cosmo Du, and Quoc V. Le.
2024. Long-form factuality in large language models.
Preprint, arXiv:2403.18802.

Yiming Zhang, Shi Feng, and Chenhao Tan. 2022. Ac-
tive example selection for in-context learning. In Pro-
ceedings of the 2022 Conference on Empirical Meth-
ods in Natural Language Processing, pages 9134–
9148, Abu Dhabi, United Arab Emirates. Association
for Computational Linguistics.

5106

https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/1707.06347
https://doi.org/10.18653/v1/2021.naacl-main.52
https://doi.org/10.18653/v1/2021.naacl-main.52
https://doi.org/10.1109/TEVC.2017.2712906
https://doi.org/10.1109/TEVC.2017.2712906
https://doi.org/10.18653/v1/2024.findings-emnlp.552
https://doi.org/10.18653/v1/2024.findings-emnlp.552
https://doi.org/10.18653/v1/2024.emnlp-main.569
https://doi.org/10.18653/v1/2024.emnlp-main.569
https://doi.org/10.1109/TNN.1998.712192
https://doi.org/10.1109/TNN.1998.712192
https://doi.org/10.18653/v1/2024.emnlp-main.499
https://doi.org/10.18653/v1/2024.emnlp-main.499
https://doi.org/10.18653/v1/N18-1074
https://doi.org/10.18653/v1/N18-1074
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2302.13971
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://doi.org/10.18653/v1/2022.emnlp-main.340
https://doi.org/10.18653/v1/2022.emnlp-main.340
https://arxiv.org/abs/2311.09000
https://arxiv.org/abs/2311.09000
https://arxiv.org/abs/2403.11903
https://arxiv.org/abs/2403.11903
https://arxiv.org/abs/2403.18802
https://doi.org/10.18653/v1/2022.emnlp-main.622
https://doi.org/10.18653/v1/2022.emnlp-main.622

Supplemental Material

Appendix Contents

Appendix A Limitations of Static Decomposition Policies
Appendix B Additional Details of Experimental Setup
Appendix C Additional Details of Experimental Results
Appendix D Used Prompts
Appendix E Example

A Limitations of Static Decomposition Policies

Static decomposition demonstrations hardly handle input with varying fact density. Song et al.
(2024) find that the factual score evaluated on one task (e.g., biography generation) does not necessarily
correlate with the one evaluated on different tasks (e.g., long-form QA), which have different input
atomicities. Similar issues have also been revealed in other compositional tasks, such as semantic parsing,
where static ICL demonstrations have unreliable performance on out-of-distribution data (Levy et al.,
2023; Mueller et al., 2024). Thus, existing decomposition policies that rely on static demonstrations,
including FActScore (Min et al., 2023), WICE (Kamoi et al., 2023), R-ND (Wanner et al., 2024), and
SAFE (Wei et al., 2024), may struggle to handle input claims with varying fact densities or atomicities.

Subclaims are atomically homogeneous and not optimized for downstream verifiers. There is a
prevailing assumption made in prior works that verification performance is expected to increase as input
complexity decreases (Min et al., 2023; Wei et al., 2024; Hu et al., 2024). Therefore, they leverage
in-context demonstrations to establish uniformly low atomicity among all generated subclaims, which
barely accommodate downstream verifiers based on our findings.

Our dynamic decomposition is the first solution to tackle these limitations by explicitly exploring various
decomposition complexities during training. As a result, it achieves a more generalizable performance
and consistently outperforms static methods across varying input atomicities.

B Experiment Setup

B.1 Data Preparation

We first split the given FActScore dataset into train (60%), validation (20%), and test (20%) sets. Subclaims
are then recursively constructed,7 with each atomicity level having its own train, validation, and test sets.
We present the number of claims per atomicity in Table 3.

Atomicity→
Data Source↓ 4 3 2 1 0 -1

ChatGPT 89 251 578 1239 4886 2482
PerplexityAI 116 289 661 1405 5568 2842

Table 3: Statistics of constructed subclaim datasets.

Note that we do not use subclaims with atomicity -1 during training because they are already over-
decomposed. Thus only the test set at atomicity 0 is decomposed to get subclaims at −1, resulting in
fewer instances at atomicity -1 compared to at 0.

7We use the same protocol as in Eq.1 to label new subclaims: a claim is true only if all its subclaims are true.

5107

B.2 Data Example

Data from ChatGPT

Quintus Sosius Senecio was a Roman senator and military commander who lived during the 2nd
century AD. He was a member of the senatorial class and served in various high-ranking positions
in the Roman government, including as consul in 128 AD.

In addition to his political career, Quintus Sosius Senecio was also a distinguished
military leader. He served as a legate (commander) in several provinces, including Africa and
Pannonia, and was awarded triumphal honors for his victories over the enemies of Rome.

Quintus Sosius Senecio was also known for his literary works, including a history of
the Roman Empire, which unfortunately has not survived to the present day.

Overall, Quintus Sosius Senecio was a prominent figure in Roman society, known for his
military prowess, political acumen, and intellectual pursuits.

Data from PerplexityAI

Quintus Sosius Senecio was a Roman consul who lived during the 1st and 2nd centuries AD[1].
He was married to Julia, the daughter of Frontinus, a prominent Roman civil engineer, author,
soldier, and senator[3]. Quintus Sosius Senecio was the father of Sosia Polla[1], who married
Quintus Pompeius Falco, a consul in AD 109[4].

Quintus Sosius Senecio was a friend of Plutarch, a Greek Middle Platonist philosopher,
historian, biographer, essayist[2]. Plutarch wrote about several Roman nobles in his works
including Quintus Sosius Senecio and Titus Avidius Quietus[2].

B.3 Training Initialization
We initialize our atomicity state as a zero vector with dimension size 768 and set the bias of the update
gate in GRU to −∞. This is because Chen et al. (2024b) found that using an identity function in state
transition helps stabilize RL training. We use BERT (Devlin et al., 2019) to obtain embeddings for Eq.4,
where subclaims are concatenated using the [SEP] token.8 We employ an UNLI model (Chen et al., 2020)
to estimate the conditional probability P (· | H) in Eq.5.9 Following Jiang et al. (2024), we use these
bleached contextual claims showed in Table 4 asH.

Claim Template

${TOPIC} is a person.
${TOPIC} breathes.
${TOPIC} exists.

${TOPIC} is a name.
${TOPIC} is unique.
${TOPIC} is famous.

${TOPIC} has some abilities.
somebody knows ${TOPIC}.

${TOPIC} is a star.

Table 4: Bleached claim set designed for FActScore-style biography evaluation.

We provide our binary decomposition prompt in Appendix D. Similar to (Cui et al., 2025), we employ
online trajectory filtering, which filters out trajectories based on a predefined reward mean threshold.

B.4 Hyperparameters
For decomposition, we set the sampling temperature to 0.2 during training to encourage exploration and
use 0 during evaluation for better reproducibility. We consistently set the temperature to 0 for verification.

8https://huggingface.co/google-bert/bert-base-uncased
9https://huggingface.co/Zhengping/roberta-large-unli

5108

https://huggingface.co/google-bert/bert-base-uncased
https://huggingface.co/Zhengping/roberta-large-unli

For PPO training, we use the following hyperparameters: ϵ = 0.2, γ = 0.99, λ = 0.95, c1 = 0.02,
c2 = 0.005. We configure the replay buffer size to 512 steps, the rollout batch size to 32 samples, the
maximum decomposition trajectory length to 20 steps, the mini-batch size to 32, and the trajectory filter
threshold to -0.02. We use the learning rate 3e−5 together with a cosine-annealing learning rate scheduler.
The model is trained for 100 steps, with validation performed every 10 steps, and the best-performing
model is saved. Training is conducted on 2 NVIDIA RTX A6000 GPUs, requiring approximately 80 GPU
hours.

5109

C Experiment Results

How much data is needed for training a dynamic decomposition policy? Given DYDECOMP requires
iterative online practice to determine optimal atomicity, it is natural to ask how much data is required
to train an effective DYDECOMP policy. The results are presented in Figure 5, where we trained six
DYDECOMP policies using varying amounts of training data. A training data ratio of 1 represents the
dataset size used in our main experiment. We observe that DYDECOMP with on-policy learning can
achieve promising and comparable performance even with a limited amount of data. Generally,
DYDECOMP performance improves with increased training data, particularly on claims with lower
atomicity, but begins to oscillate after reaching a certain data threshold (e.g. 0.75).

0.15 0.3 0.45 0.6 0.75 0.9 1.0
Training Data Ratio

0.77

0.78

0.78

0.78

0.79

Ac
cu

ra
cy

Atomicity 0

0.15 0.3 0.45 0.6 0.75 0.9 1.0
Training Data Ratio

0.72

0.73

0.74

0.74

Atomicity 1

0.15 0.3 0.45 0.6 0.75 0.9 1.0
Training Data Ratio

0.64
0.65
0.66
0.67
0.68
0.69

0.7

Atomicity 2

0.15 0.3 0.45 0.6 0.75 0.9 1.0
Training Data Ratio

0.43

0.45

0.48

0.5

Atomicity 3

0.15 0.3 0.45 0.6 0.75 0.9 1.0
Training Data Ratio

0.5

0.52

0.55

0.58

Atomicity 4

0.59

0.59

0.6

0.6

0.6

0.6

0.66

0.66

0.66

0.67

0.68

0.62

0.63

0.64

0.65

0.66

0.48

0.49

0.5

0.51

0.32

0.34

0.36

0.38

Co
nf

id
en

ce

Accuracy (Subclaim) Confidence (Subclaim) Confidence (Claim)

(a) Verification results on ChatGPT dataset

0.15 0.3 0.45 0.6 0.75 0.9 1.0
Training Data Ratio

0.78

0.78

0.78

0.79

0.8

0.8

Ac
cu

ra
cy

Atomicity 0

0.15 0.3 0.45 0.6 0.75 0.9 1.0
Training Data Ratio

0.74

0.75

0.76

0.77

Atomicity 1

0.15 0.3 0.45 0.6 0.75 0.9 1.0
Training Data Ratio

0.66

0.67

0.68

0.69

0.7

Atomicity 2

0.15 0.3 0.45 0.6 0.75 0.9 1.0
Training Data Ratio

0.55

0.56

0.57

0.58
Atomicity 3

0.15 0.3 0.45 0.6 0.75 0.9 1.0
Training Data Ratio

0.38

0.4

0.42

0.44

0.46
Atomicity 4

0.6

0.6

0.61

0.61

0.61

0.61

0.65

0.65

0.66

0.66

0.63

0.63

0.64

0.64

0.5

0.51

0.52

0.53

0.54

0.55

0.38

0.4

0.42

0.44

0.46

Co
nf

id
en

ce

Accuracy (Subclaim) Confidence (Subclaim) Confidence (Claim)

(b) Verification results on PerplexityAI dataset

Figure 5: The verification sensitivity of dynamic decomposition as the training data size changes. The five figures
(from left to right) represent claims with atomicity in the range [0, 4], evaluated under DYDECOMP policy trained
on different dataset sizes. The horizontal dashed line denotes verification confidence for original claims without
decomposition. We use decomposition LLM Llama3-Inst-70B and verification LLM Llama3-Inst-8B with
retrieval verification policy.

10 20 30 40 50 60 70 80 90 100
Training Step

0.10

0.08

0.06

0.04

0.02

0.00

Av
er

ag
e

In
fo

rm
at

io
n

Lo
ss Verification Policy

In-Context Example
No-Context
Retrieval

Figure 6: Average information loss measures across training steps on the validation set. Clearly, it decreases as the
model continues training and learning to decompose claims into more atomic levels. This trend aligns with our
design motivation outlined in Eq.5: as claims become syntactically closer to bleached claims through decomposition,
the resulting information loss diminishes accordingly.

5110

Atomicity Decompose Policy→
Verify Policy↓

FActScore FActScore-Atom WICE R-ND DYDECOMP
Verification Confidence [0-1] ↑ / Verification Accuracy [0-1] ↑

0

Data Source: PerplexityAI
Retrieval 0.702 / 0.844 0.655 / 0.770 0.705 / 0.856 0.700 / 0.802 0.685 / 0.820
In-Context Example 0.741 / 0.309 0.702 / 0.197 0.757 / 0.334 0.730 / 0.283 0.757 / 0.323
No-Context 0.593 / 0.522 0.557 / 0.454 0.600 / 0.553 0.600 / 0.463 0.580 / 0.507

1

Data Source: PerplexityAI
Retrieval 0.694 / 0.740 0.685 / 0.717 0.690 / 0.760 0.681 / 0.673 0.680 / 0.780
In-Context Example 0.754 / 0.260 0.743 / 0.247 0.763 / 0.273 0.749 / 0.230 0.768 / 0.333
No-Context 0.583 / 0.310 0.561 / 0.337 0.563 / 0.347 0.591 / 0.290 0.569 / 0.457

2

Data Source: PerplexityAI
Retrieval 0.706 / 0.692 0.695 / 0.650 0.700 / 0.671 0.675 / 0.622 0.656 / 0.679
In-Context Example 0.749 / 0.385 0.748 / 0.385 0.763 / 0.385 0.747 / 0.385 0.802 / 0.400
No-Context 0.594 / 0.364 0.586 / 0.385 0.586 / 0.371 0.587 / 0.385 0.564 / 0.386

Table 5: Comparison of our DYDECOMP over baselines on the testing set. Each metric is scaled from 0 to 1.
↑ indicates higher values are preferred. We employ decomposition LLM DeepSeek-V3 and verification LLM
Llama3-Inst-8B. DYDECOMP consistently outperforms baselines on verification accuracy across various
verifiers and input claim atomicities.

D Prompts

Binary Decomposition

[system] You are a decomposer. Your task is to decompose the given claim into two sub-claims.
There are two principles you have to follow: 1) making sure there is no information loss or
gain after decomposition and 2) making sure each generated subclaim is self-contained and
approximately equal in length and information. Seperate the two subclaims with a hyphen.

[user] Following the given two principles, please decompose the following claim into two
sub-claims: In 1963, Collins became one of the third group of astronauts selected by NASA and
he served as the back-up Command Module Pilot for the Gemini 7 mission.
- Collins became one of the third group of astronauts selected by NASA in 1963.
- Collins served as the back-up Command Module Pilot for the Gemini 7 mission.

Following the given two principles, please decompose the following claim into two sub-claims:
In addition to his acting roles, Bateman has written and directed two short films and is
currently in development on his feature debut.
- In addition to his acting roles, Bateman has written and directed two short films.
- Bateman is currently in development on his feature debut.

Following the given two principles, please decompose the following claim into two sub-claims:
"Parasite" received widespread critical acclaim for its screenplay, direction, acting, and its
social commentary.
- "Parasite" received widespread critical acclaim for its screenplay and direction.
- "Parasite" received widespread critical acclaim for its acting and social commentary.

Following the given two principles, please decompose the following claim into two sub-claims:
{claim}

5111

FActScore-Atom Decomposition Policy

[system] You are a decomposer. Your task is to decompose the given claim into more granular
subclaims. There are two principles you have to follow: 1) making sure there is no information
loss or gain after decomposition and 2) making sure each generated subclaim is self-contained.
Seperate the decomposed subclaims with a hyphen

[user] Following the given two principles, please decompose the following claim into more
granular subclaims: He made his acting debut in the film The Moon is the Sun’s Dream.
- He made his acting debut.
- Debut happened in the film.
- The Moon is the Sun’s Dream is a film.

Following the given two principles, please decompose the following claim into more granular
subclaims: He has worked with a wide variety of artists.
- He worked.
- It happened with a wide variety of artists.

Following the given two principles, please decompose the following claim into more granular
subclaims: Bateman has directed two short films.
- Bateman had directed films.
- There are two films.
- Films are short.

Following the given two principles, please decompose the following claim into more granular
subclaims: {claim}

In-Context Examples Verification Policy

[system] Your task is to verify the correctness of the given claim. Only answer with ’True’ or
’False’.

[user] Input: In 1996, he was awarded the Ig Nobel Prize for Art, an award given to honor
achievements that make people laugh, and then think. True or False?
Output: True
Input: Featherstone’s pink flamingo design was displayed at the Smithsonian National Museum of
American History in 1996, and he was inducted into the Plastics Hall of Fame in 1998. True or
False?
Output: False
Input: Featherstone continued to work on his designs until his death in 2015, and his creations
remain popular among collectors and enthusiasts of Americana. True or False?
Output: False
Input: Travis Oliphant is a data scientist and entrepreneur who is best known for creating the
NumPy and SciPy libraries for Python programming language. True or False?
Output: True
Input: He was born on August 22, 1972, in the United States. True or False?
Output: False

5112

E Example

Method Results

Original
After retiring from tennis in 1996, Sabatini pursued other interests, including fashion
and fragrance design. She also established the Gabriela Sabatini Foundation, which
supports children’s education and sports programs in Argentina.

FactScore
(Min et al.,
2023)

1. Sabatini retired from tennis in 1996.

2. After retiring from tennis, Sabatini pursued other interests.

3. Sabatini pursued fashion design.

4. Sabatini pursued fragrance design.

5. Sabatini established the Gabriela Sabatini Foundation.

6. The Gabriela Sabatini Foundation supports children’s education.

7. The Gabriela Sabatini Foundation supports sports programs.

8. The Gabriela Sabatini Foundation supports children’s education and sports programs
in Argentina.

R-ND (Wan-
ner et al.,
2024)

1. Sabatini retired from tennis.

2. Sabatini’s retirement from tennis occurred in 1996.

3. Sabatini pursued other interests after retiring.

4. Sabatini’s other interests include fashion.

5. Sabatini’s other interests include fragrance design.

6. Sabatini established the Gabriela Sabatini Foundation.

7. The Gabriela Sabatini Foundation supports children’s education.

8. The Gabriela Sabatini Foundation supports sports programs.

9. The Gabriela Sabatini Foundation operates in Argentina.

10. Sabatini’s establishment of the foundation occurred after her retirement.

11. Sabatini’s pursuit of other interests occurred after her retirement.

WICE
(Kamoi
et al., 2023)

1. Sabatini retired from tennis in 1996.

2. Sabatini pursued other interests after retiring.

3. Sabatini’s interests included fashion design.

4. Sabatini’s interests included fragrance design.

5. Sabatini established the Gabriela Sabatini Foundation.

6. The Gabriela Sabatini Foundation supports children’s education in Argentina.

7. The Gabriela Sabatini Foundation supports sports programs in Argentina.

DYDECOMP
(Ours)

1. After retiring from tennis in 1996, Sabatini pursued other interests, including
fashion and fragrance design.

2. Sabatini established the Gabriela Sabatini Foundation, which supports children’s
education and sports programs in Argentina.

Table 6: Example of decomposition results from different methods, where we use DeepSeek-V3 as the decomposer.
Our DYDECOMP policy is trained for the verifier Llama3-Inst-8B with No-Context policy.

5113

We provide an example in Table 6 to show the differences between subclaims decomposed using our DY-
DECOMP policy and those derived from popular decomposition methods. For the verifier Llama3-Inst-8B
using No-Context verification policy, which according to Figure 4 has the best verification performance
at atomicity level 2 (i.e., input contains 4 pieces of atomic information). Evidently, only our trained
DYDECOMP policy successfully generates subclaims that closely match the verifier’s preferred atomicity
level. These examples highlight how existing decomposition methods can lead to suboptimal performance
in fact-checking systems.

5114

