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Abstract

Retrieval-Augmented Generation (RAG) has
emerged as a key method to address hallucina-
tions in large language models (LLMs). While
recent research has extended RAG models to
complex noisy scenarios, these explorations of-
ten confine themselves to limited noise types
and presuppose that noise is inherently detri-
mental to LLMs, potentially deviating from
real-world retrieval environments and restrict-
ing practical applicability. In this paper, we de-
fine seven distinct noise types from a linguistic
perspective and establish a Noise RAG Bench-
mark (NoiserBench), a comprehensive evalua-
tion framework encompassing multiple datasets
and reasoning tasks. Through empirical evalua-
tion of eight representative LLMs with diverse
architectures and scales, we reveal that these
noises can be further categorized into two prac-
tical groups: noise that is beneficial to LLMs
(aka beneficial noise) and noise that is harmful
to LLMs (aka harmful noise). While harmful
noise generally impairs performance, beneficial
noise may enhance several aspects of model
capabilities and overall performance. Our anal-
ysis offers insights for developing robust RAG
solutions and mitigating hallucinations across
diverse retrieval scenarios. Code is available at
https://github.com/jinyangwu/NoiserBench.

1 Introduction

Large language models (LLMs) (OpenAI, 2023;
Meta, AI, 2024) have demonstrated remarkable pro-
ficiency across various tasks (Bubeck et al., 2023).
Despite impressive capabilities, LLMs face chal-
lenges such as reliance on outdated knowledge and
hallucination (Huang et al., 2025; Kandpal et al.,
2023). Retrieval-Augmented Generation (RAG)
has recently emerged as a promising approach to
mitigate these limitations (Lewis et al., 2020b; Gao
et al., 2023). RAG enhances LLMs’ performance
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Figure 1: An example from NoiserBench illustrating
effects of different RAG noises. Initially, the model is
misled by counterfactual noise. Interestingly, upon in-
troducing beneficial noise, it successfully discriminates
between correct and incorrect information and produces
the accurate answer ‘D’.

by augmenting inputs with additional information
retrieved from external sources during inference.

However, external sources often contain vari-
ous non-standard noises, including fake news, out-
dated content, spelling errors, and data contamina-
tion, which may potentially influence model per-
formance (Shi et al., 2023a; Xie et al., 2024a). It is
crucial to explore how noise affects RAG systems
and understand the underlying mechanisms.

Recent studies (Chen et al., 2024; Xiang et al.,
2024) have attempted to extend RAG systems to
complex real-world scenarios, investigating the im-
pact of noisy documents and strategies to enhance
the system’s robustness. For example, Cuconasu
et al. (2024) defines three types of noise in retrieved
documents and examines their impacts on LLMs.
Despite highlighting one noise’s positive effect,
the study lacks a comprehensive noise definition
and in-depth investigation of underlying principles.
Fang et al. (2024) applies adversarial training to
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dynamically adjust the model’s training process in
response to retrieval noises. RobustRAG (Xiang
et al., 2024) proposes a defense framework against
retrieval corruption attacks. Nevertheless, these in-
vestigations typically focus on a limited number of
noise types (usually no more than three) and lack
clear classification, which fails to fully capture the
complexity of real-world noise environments. Ad-
ditionally, these studies often assume that noise is
harmful, neglecting its potential positive effects and
lacking systematic evaluation datasets. As shown
in Figure 1, introducing beneficial noise allows the
LLMs to avoid the harmful effects of counterfactual
noise, focus on the golden context, and produce
accurate responses. Thus, this highlights the ur-
gent need for systematic noise taxonomy and com-
prehensive evaluation of retrieval noise impacts in
RAG systems.

In this paper, we comprehensively analyze the
role of RAG noise in LLMs. We first define seven
types of noise from a linguistic perspective. Based
on this definition, we propose a systematic frame-
work to create diverse noisy documents and estab-
lish NoiserBench, a novel noise RAG benchmark.
Then, we evaluate eight representative LLMs with
different architectures and scales. Extensive re-
sults show that RAG noises can be categorized
into two practical groups: beneficial noise (seman-
tic, datatype, illegal sentence) and harmful noise
(counterfactual, supportive, orthographic, prior).
While harmful noise impairs performance, benefi-
cial noise surprisingly enhances model capabilities
and leads to improved performance. Further analy-
sis reveals that beneficial noise facilitates more stan-
dardized answer formats, clearer reasoning paths,
and increases confidence in responses with golden
context. These contrasting effects are analogous
to opening Pandora’s Box (harmful noise) versus
unlocking Aladdin’s Lamp (beneficial noise). This
study aims to advance research on mitigating harm-
ful noise while leveraging beneficial noise effects.
Our main contributions are:

• We define seven types of noise and categorize
them into two groups: beneficial and harmful
noise. This is the first comprehensive study
to define and assess RAG noises from both
linguistic and practical perspectives.

• We introduce a novel framework for construct-
ing diverse retrieval documents and create
NoiserBench, a benchmark that effectively
simulates real-world noise in RAG models.

• Evaluated on multiple datasets and LLMs, our
results reveal that while some RAG noises (e.g.
counterfactual) can open Pandora’s Box and
cause errors, beneficial noise (e.g. datatype)
has the potential to unlock the power of Al-
addin’s Lamp and deliver positive effects.

• Our findings redefine retrieval noise and en-
courage researchers to explore methods that
harness its beneficial properties while address-
ing its harmful effects.

2 Related Work

Retrieval-Augmented Generation By integrating
external information, RAG methods enhance
reasoning and generation process (Gao et al.,
2023; Zhao et al., 2024). Early works primarily
focus on improving retrieval model performance
to obtain relevant documents for subsequent
generation (Qu et al., 2021; Wang et al., 2023;
Zheng et al., 2024). Recent research has expanded
RAG framework to real-world noisy scenarios,
aiming to build robust RAG systems by enhancing
the generator (Fang et al., 2024; Xiang et al., 2024).
For instance, Self-RAG (Asai et al., 2024) employs
four specialized tokens and GPT-4-generated
instruction-tuning data to fine-tune the Llama2
model. RobustRAG (Xiang et al., 2024) proposes
an isolate-then-aggregate defense framework
to enhance model robustness against retrieval
corruption attacks. However, these investiga-
tions are constrained by their narrow focus on
specific noise types and the inherent assumption
that noise is harmful, potentially hindering
method generalization. This paper aims to an-
alyze RAG noise and reveal its roles systematically.

Noise Injection in LLMs Noise injection (Grand-
valet et al., 1997) in LLMs involves adding noise
to inputs during training or inference, such as
data augmentation (Ye et al., 2024), adversarial
training (Fang et al., 2024), and prompt perturba-
tion (Zhu et al., 2023). Recently, researchers have
focused on noise injection in RAG systems (Chen
et al., 2024). For example, Cuconasu et al. (2024)
classifies three retrieval noises and explores their ef-
fects on LLMs. Fang et al. (2024) leverages adver-
sarial training to dynamically adjust LLMs’ train-
ing process in response to retrieval noises. How-
ever, these noise types are limited to reflect com-
plex real-world scenarios. A comprehensive frame-
work that simulates real-world noise is necessary.
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Figure 2: (A) Our seven RAG noise types comprehensively capture real-world retrieval challenges. (B) This detailed
illustration intuitively depicts the diverse RAG noise landscape, with noise injection regions marked in red.

3 A Taxonomy of RAG Noise

As shown in Figure 2, we categorize RAG noise
into seven linguistic types. They are further di-
vided into beneficial (semantic, datatype, and il-
legal sentence) and harmful noise (counterfactual,
supportive, orthographic, and prior) for practical
applications. We will explain the reason behind
this classification in 5 Experiment Setup.

Semantic Noise (SeN) Retrieval documents
may contain content with low semantic relevance
to the query, often being off-topic or deviating from
the intended meaning. Given that Warren Weaver
originally defined semantic noise as "the perturba-
tions or distortions of sentence meaning" (Shannon
et al., 1961), we classify off-topic, low-semantic-
relevance documents as semantic noise.

Datatype Noise (DN) This type of noise refers
to the mixing of different data types on the web,
such as the blending of links and text on Wikipedia.
In this paper, we consider three data types: text,
URLs, and code.

Illegal Sentence Noise (ISN) Web content may
include fragments that do not form grammatically
correct sentences, such as “history transform cover
managed that hand black”. We define this type of
noise as illegal sentence noise.

Counterfactual Noise (CN) The internet con-
tains abundant false information, including fake
news and outdated knowledge (Tumarkin and

Whitelaw, 2001; Olan et al., 2024), presenting crit-
ical challenges to RAG systems. Drawing from
linguistics, where “counterfactual" denotes state-
ments contrary to fact (Feng and Yi, 2006), we
introduce the term “counterfactual noise" to char-
acterize factual errors. This concept aligns with
prior research (Fang et al., 2024).

Supportive Noise (SuN) Supportive evidence,
known as positive evidence, is highly semantically
relevant to a hypothesis and provides necessary in-
formation to support it (Kertész and Rákosi, 2012).
We introduce the term “supportive noise” to de-
scribe documents that exhibit high semantic rele-
vance but lack corresponding answer information.

Orthographic Noise (ON) The word “orthog-
raphy” originates from the Greek orthós (mean-
ing “correct”) and gráphein (meaning “to write”),
and refers to the way words are written in linguis-
tics (Skeat, 1993; Aloufi, 2021). Orthographic
noise, on the other hand, can refer to writing errors
such as spelling mistakes and word lengthening.

Prior Noise (PN) In linguistics, prior knowl-
edge refers to what a learner already knows before
solving a problem (Chafe, 1971). Our study defines
prior noise as questions based on false assumptions
or premises. For example, the question “Who was
the CEO of Google when they were restructured
into Alphabet in 2017?” contains prior noise be-
cause the restructuring occurred in 2015, not 2017.
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Figure 3: The overall framework for simulating the impact of real-world noise on RAG models. Initially, we
generate and obtain QA instances, utilizing ChatGPT to filter out ambiguous examples (Step 1). Then, we perform
entailment verification using NLI models to maintain evidence quality (Step 2). After that, we use tools like search
engines to create noisy documents (Step 3). Finally, we transform the free-form QA into a multiple-choice QA
format by providing several answer options for convenient automatic evaluation (Step 4). All experiments are
conducted in a zero-shot setting to avoid bias from demonstrations.

4 Noise RAG Benchmark Construction

The overall framework is illustrated in Figure 3. We
will discuss the data construction and evaluation
metrics as follows.

4.1 Data Construction

As shown in Figure 3 (A), our framework com-
prises four essential steps, including QA Instance
Generation, Entailment Verification, Noise Intro-
duction and Testbeds Construction.

Step 1: QA Instance Generation For prior noise,
we collect article snippets from mainstream me-
dia and Wikipedia, covering various time periods
and domains such as sports, politics, and finance.
We then design prompts for ChatGPT to generate
relevant events, questions, and answers for each
snippet. Note that the generated questions con-
tain prior noise (factual errors), which we man-
ually review to ensure that they are reasonably
answerable by LLMs. For the remaining seven
types of noise (SeN, DN, ISN, CN, SuN, ON, PN),
we obtain question-answering (QA) pairs from
existing datasets, following previous work (Fang
et al., 2024; Cuconasu et al., 2024; Yoran et al.,
2024). After obtaining candidate QA pairs, we
employ ChatGPT to remove ambiguous or difficult-
to-assess pairs, followed by a manual review. For
example, questions like “How many companies
have a market capitalization of over $25 billion
and pledged to reduce greenhouse gas emissions?”

should be excluded due to their broad potential an-
swers and the dynamic market values of companies.
Similar criteria are applied to other instances.

Step 2: Entailment Verification As illustrated
in Xie et al. (2024a); Yoran et al. (2024), effective
evidence should strongly support its answer. For
example, golden evidence about David Beckham
should support that he played for Real Madrid be-
fore joining LA Galaxy. Therefore, we employ
the natural language inference model, bart-large-
mnli-407M (Lewis et al., 2020a) to ensure evidence
properly entails the answer. We only keep those
examples with an entailment probability p ≥ 0.8.

Step 3: Noise Introduction We construct diverse
retrieval documents for noise testbeds. For coun-
terfactual noise, we extract related entities and re-
lations from Google search results to create coun-
terfactual answers. ChatGPT is then employed
to construct corresponding supportive evidence,
followed by entailment verification. For Support-
ive and semantic noise, we utilize the 2018 En-
glish Wikipedia dump (Karpukhin et al., 2020) as
source documents, with off-the-shelf Contriever-
MS MARCO model (Izacard et al., 2022) for re-
trieval and the lightweight text embedding model
all-MiniLM-L6-v2 (Wang et al., 2021) for seman-
tic relevance filtering. To simulate illegal sentence
noise, we construct meaningless sentences by ran-
domly combining words from model vocabulary,
mimicking real-world garbled text. Datatype noise
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is created by prompting ChatGPT to insert URLs
or code snippets while preserving key answer in-
formation. Finally, orthographic noise is generated
using the open-source textnoisr package (Preligens
Lab, 2023). This pipeline enables a comprehensive
assessment of model performance across a range
of noise scenarios.

Step 4: Testbeds Construction After obtaining
high-quality QA instances and diverse retrieval doc-
uments, we build testbeds to evaluate model perfor-
mance under various noise conditions. Given the
challenges in automatically assessing LLMs’ re-
sponses to open-ended QA tasks (Xie et al., 2024a),
we convert free-form QA into a multiple-choice
format. This constrains the response space and
facilitates more accurate evaluation. Specifically,
for each QA pair, LLMs choose from 4 options:
the correct answer, two counterfactual alternatives,
and “Uncertain”. The order of the golden option
remains entirely random to avoid LLMs’ sensitivity
to option order (Wu et al., 2024a).

Finally, eight datasets are obtained for Noiser-
Bench. Following prior works (Yoran et al., 2024;
Wang et al., 2024), we randomly select 500 samples
from each dataset as test cases or use all samples if
the size of this dataset is smaller than 500.

4.2 Evaluation Metrics
This benchmark aims to reveal the role that RAG
noise plays on LLMs. We use accuracy as the pri-
mary metric and also report the weighted average
accuracy across datasets.

5 Experiment Setup

5.1 Datasets
We experiment with multiple QA datasets, which
are categorized into four types based on the re-
quired reasoning skills:

• Single-hop: Questions requiring one-step rea-
soning. We evaluate using the Natural Ques-
tions (NQ) (Kwiatkowski et al., 2019) and
RGB (Chen et al., 2024) datasets.

• Explicit Multi-hop: Questions where multi-
ple reasoning steps are explicitly expressed.
We utilize HotpotQA (Yang et al., 2018),
2WIKIMQA (Welbl et al., 2018) and Bam-
boogle dataset (Press et al., 2023).

• Implicit Multi-hop: Questions where inter-
mediate steps are not explicitly stated, often

requiring commonsense knowledge for im-
plicit reasoning. We use StrategyQA (Geva
et al., 2021) and TempQA (Jia et al., 2018).

• Mixed-Hop: Questions requiring single- or
multi-hop reasoning. We use our constructed
dataset, PriorQA.

5.2 Baseline Models
We evaluate eight LLMs of different architectures
and scales: Llama3-Instruct (8B, 70B) (Meta, AI,
2024), Qwen2-7B-Instruct (Yang et al., 2024), Mis-
tral (7B, 8x7B) (Jiang et al., 2023, 2024), Vicuna-
13B-v1.5 (Chiang et al., 2023), Llama2-13B (Tou-
vron et al., 2023), and Baichuan2-13B (Yang et al.,
2023). This enables a comprehensive assessment
of noise across various dimensions.

5.3 Implementation Details
In our implementation, for similarity computation
between queries and documents, we implement
the dot product method. We conduct entailment
verification using the bart-large-258-mnli-407M
model (Lewis et al., 2020a), which helps validate
the logical relationships between retrieved informa-
tion and potential answers. Our retrieval corpus
consists of the 2018 English Wikipedia dump and
current Wikipedia documents, providing a compre-
hensive knowledge base. Following the challeng-
ing setup in previous work (Cuconasu et al., 2024),
we position the ground truth in the middle of the
retrieval list rather than at the top. This aims to
ensure that our conclusions regarding noise effects
more accurately represent real-world scenarios.

6 Results and Analysis

First, we examine the roles of RAG noise (6.1).
While prior work has analyzed its harmful effects,
we focus on its beneficial aspects (6.2). We evalu-
ate these benefits across four dimensions: (1) Gen-
eralization across Models, (2) Noise Robustness
Across Scenarios, (3) Noise Ratio Impact, and (4)
Statistical Validation. Finally, we investigate the
underlying mechanisms of these phenomena (6.3).

6.1 Roles of RAG Noise
Table 1 illustrates the impact of diverse noise
types (the first six) on two open-source models:
Llama3-8B-Instruct and Qwen2-7B-Instruct. We
observe consistent performance trends across mul-
tiple datasets and retrieval noises. Based on these
trends, we can categorize retrieval noises into two
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Table 1: Impact of diverse noise types on accuracy (%) for Llama3-8B-Instruct and Qwen2-7b-Instruct across seven
datasets. We assess performance across various retrieval scenarios: “Base” (no retrieval), “Golden Only” (only
golden retrieval context), and “Golden & XXX" (golden context + specific retrieval noises, including Counterfactual,
Supportive, Orthographic, Semantic, Datatype, Illegal Sentence Noise). The green and red values indicate the
performance gap from "Golden Only". We also provide the weighted average accuracy for each noise type. The best
two results are shown in bold and underlined.

Llama3-8B-Instruct

Scenario
Single-hop Multi-hop (Explicit) Multi-hop (Implicit)

Average
NQ RGB HotpotQA 2WikiMQA Bamboogle StrategyQA TempQA

Base 61.34 47.00 53.80 34.40 32.00 58.80 50.54 51.58
Golden Only 93.06 80.00 97.80 79.80 87.20 73.40 91.94 86.57
Golden & CN 58.86 36.33 44.20 21.20 61.60 43.20 67.74 45.58−40.99

Golden & SuN 90.58 80.00 95.60 81.00 93.60 69.40 93.01 85.37−1.20

Golden & ON 93.31 75.00 96.20 78.60 89.60 63.60 90.86 83.99−2.58

Golden & SeN 96.53+0.47 81.33+1.33 98.40+0.60 87.20+7.40 93.60+6.40 68.40 96.24+4.30 88.73+2.16

Golden & DN 93.19+0.13 81.67+1.67 95.00 82.00+2.20 88.00+0.80 73.60+0.20 94.62+2.68 86.91+0.34

Golden & ISN 96.65+0.65 83.00+1.33 98.80+1.00 87.40+7.60 94.40+7.20 72.60 97.85+5.91 89.89+3.32

Qwen2-7B-Instruct

Base 58.24 31.33 50.20 22.60 31.20 42.40 40.86 43.01
Golden Only 97.03 76.33 98.40 78.00 94.40 67.00 94.62 86.46
Golden & CN 41.88 26.00 38.40 12.40 39.20 37.60 45.16 33.96−52.50

Golden & SuN 90.46 74.00 96.40 80.40 92.00 64.00 90.32 83.65−2.81

Golden & ON 95.66 74.00 97.80 80.00 91.20 54.60 94.62 83.82−2.64

Golden & SeN 96.53 77.67+1.34 98.80+0.40 77.00 96.80+2.40 66.80 97.31+2.69 86.60+0.14

Golden & DN 96.03 84.33+9.00 98.20 79.60+1.60 93.60 71.80+4.80 95.70+1.08 88.11+1.65

Golden & ISN 96.65 80.00+3.67 99.00+0.60 83.80+5.80 96.80+2.40 66.80 97.85+1.23 88.11+1.65

Figure 4: Impact of ISN on the average accuracy of eight
representative LLMs on RGB. Red solid lines indicate
means and purple dashed lines show medians.

types: harmful noise (counterfactual, supportive,
and orthographic) and beneficial noise (semantic,
datatype, and illegal sentence). We find that:

(1) For harmful noise, counterfactual noise im-
pacts model performance most significantly by dis-
rupting accurate fact discernment and answer gen-
eration. As shown in Figure 1, the false statement
“Beckham was a prominent player for Manchester
United” leads the model to disregard correct infor-
mation and respond erroneously.

(2) For beneficial noise, illegal sentence noise
exhibits the most notable improvement in model

Table 2: Effects of beneficial noise on Self-RAG
(13B). We report enhanced accuracy ratios (%), and
the weighted average values (WA, %) are also provided.

Scenario NQ RGB StrategyQA WA

Golden only +3.12 +1.74 +18.88 +7.77
Golden & DN +1.84 +1.96 +13.50 +5.49
Golden & ON +1.76 +3.63 +10.00 +4.67
Average +2.24 +2.45 +14.13 +5.98

performance. It improves accuracy by an average
of 3.32% and 1.65% for two models, respectively,
and consistently achieves powerful performance
across diverse datasets.

For prior noise, we evaluate on our PriorQA
dataset in Appendix Table 7. Questions in Pri-
orQA contain factual errors, such as “Which coun-
try hosted 1980 FIFA World Cup?” (1980 FIFA
World Cup was not held). Accuracy is measured by
whether LLMs correctly identify and respond with
“The question is factually incorrect”. LLMs achieve
79.93% average accuracy in handling prior noise.
However, when models fail to identify prior errors
and continue retrieval, accuracy drops to 34.20%.
This highlights the importance of detecting factual
errors in queries before generating responses.
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Figure 5: Results for the impact of illegal sentence noise on the Llama3-8B-instruct and Qwen2-7B-instruct models
when exposed to five typical noise categories across four datasets, including both single-hop (S) and multi-hop
(explicit: EM, implicit: IM) reasoning tasks. The bar charts show performance differences upon introducing illegal
sentence noise. The line graphs illustrate the average accuracy improvement across noise types per dataset.

Table 3: Results for different illegal sentence noise (ISN) ratios on RGB. L2-13B, L3-8B, Q2-7B, M-7B, V-13B,
B2-13B, L3-70B and M-8x7B represents Llama2-13B, Llama3-8B-Instruct, Qwen2-Instruct, Mistral-7B-Instruct-
v0.2, Vicuna-13B-v1.5, Baichuan2-13B-chat, Llama3-70B-Instruct, Mixtral-8x7B-Instruct.

Scenario
Small Large Average

L2-13B L3-8B Q2-7B M-7B V-13B B2-13B L3-70B M-8x7B

0 29.33 80.00 76.33 80.33 80.33 78.00 76.00 77.33 72.21
+ ISN 72.33 83.00 80.00 81.00 82.33 79.67 79.67 79.67 79.71+7.50

0.2 18.67 77.33 75.33 76.00 79.33 73.33 76.67 73.67 68.79
+ ISN 73.67 82.67 80.33 76.67 80.00 72.33 80.33 73.67 77.46+8.67

0.4 12.33 73.67 71.33 69.00 72.67 68.00 76.33 65.67 63.63
+ ISN 70.67 77.00 73.00 71.00 73.33 68.33 80.00 66.67 72.50+8.87

6.2 Additional Results on Beneficial Noise
Generalization across Models To demonstrate
beneficial noise’s broad applicability, we examine
its effects across model architectures (Figure 4)
and RAG configurations (Table 2). For brevity, we
present illegal sentence noise results in the main
text, with full results in the Appendix.

Results across various architectures and scales
are shown in Figure 4, we evaluate the impact of
illegal sentence noise (ISN) on eight LLMs by pre-
senting average accuracy across scenarios with no
noise, harmful noise (e.g. CN, ON), and beneficial
noise (e.g. DN). We apply proportional scaling to
CN data to make a clearer illustration within one
figure while maintaining consistent conclusions.
The results indicate that ISN significantly enhances
model performance in all scenarios, with the most
substantial improvement under harmful noise.

Noise effects on specialized RAG models are

illustrated in Table 2. Introducing illegal sen-
tence noise to the specialized RAG model Self-
RAG (Asai et al., 2024) consistently enhances
model performance across various datasets (NQ,
RGB, and StrategyQA) and scenarios (without
noise, with harmful or beneficial noise). This fur-
ther validates positive effects of beneficial noise.

Noise Robustness Across Scenarios We analyze
the effect of illegal sentence noise (ISN) in 5 sce-
narios: no noise (i.e., Golden only), harmful noise
(i.e., Golden & Counterfactual, Counterfactual only
and Golden & Orthographic), and beneficial noise
(i.e., Golden & Datatype). Figure 5 shows accu-
racy gains with ISN introduction. Results indicate
consistent improvements across datasets, especially
when combined with harmful noise like counter-
factual, leading to an average accuracy increase of
over 10%. This highlights the potential significance
of beneficial noise in RAG applications.
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Table 4: Statistical significance of differences between
scenarios with and without beneficial noises.

Noise Llama3-8B-Instruct Qwen2-7B-Instruct

ISN 4.10e-5 4.88e-3
DN 1.71e-4 9.59e-4

Noise Ratio Impact To demonstrate the positive
effects at different harmful noise ratios, we present
results for orthographic noise disturbances with ra-
tios ranging from 0 to 0.4. As shown in Table 3, we
see that the introduction of illegal sentence noise
(beneficial noise) consistently enhances model per-
formance, thereby further illustrating the generaliz-
ability of beneficial noise.

Statistical Validation To statistically evaluate
the differences between scenarios with and with-
out beneficial noise, we apply the nonparamet-
ric Wilcoxon signed-rank test (Kotz and John-
son, 1992). This method effectively measures
the magnitudes of differences and detects statis-
tical significance between two conditions. We
test the null hypothesis of no significant differ-
ence (H0 : difference = 0) against the alter-
native hypothesis of a significant difference (H1 :
difference ̸= 0). Following (Seth et al., 2023;
Wu et al., 2023), we use a significance level of
0.05. As shown in Table 4, all p-values are below
0.05, leading us to reject the null hypothesis (H0).
These results provide strong statistical evidence
that beneficial noise improves model performance.

6.3 Analysis of Noise Phenomena
We propose three hypotheses regarding how bene-
ficial noise may enhance performance, which we
confirm through case study and statistical analysis.

• H1: Clearer reasoning process

• H2: More standardized response formats

• H3: Increased confidence with gold context

Illustrative Case Study Table 14 in the appendix
presents the reasoning process of Llama3-8B-
instruct on the multi-hop dataset Bamboogle. With-
out beneficial noise, the model ignores correct in-
formation and exhibits logical flaws under coun-
terfactual noise influence. This is exemplified by
its erroneous statement: “The other options are
incorrect, as they provide different birth dates for
the author.” However, upon introducing beneficial

Figure 6: Impact of beneficial noise on LLM output
uncertainty (anti-confidence). ISN and DN represent
Illegal Sentence Noise and Datatype Noise, with ⋆ in-
dicating mean uncertainty rate (µ). Results show that
LLMs pay more attention to the provided golden con-
text and respond with greater confidence.

noise, the model exhibits heightened attention to
the golden context and successfully distinguishes
between correct and incorrect information (H1).
We hypothesize that beneficial noise enhances the
LLMs’ ability to integrate its parameterized knowl-
edge with retrieved information, thus improving
its capacity to discern truth from falsehood. Fur-
thermore, by comparing model outputs under two
conditions, we observe that beneficial noise con-
tributes to more standardized answer formats (H2).

Statistical Characterization To verify three hy-
potheses statistically, we use a two-step pro-
cess. We first gather model outputs from multi-
ple datasets before and after introducing beneficial
noise. Then, we randomly sample 100 examples
per dataset to manually assess which condition pro-
duces more standardized output formats and clearer
reasoning processes. Outputs are deemed similar if
no significant difference exists between conditions
with and without beneficial noise. Results across
seven datasets show that, on average, 37 samples
with beneficial noise exhibit clearer reasoning com-
pared to 31 without (H1), while 26 samples with
beneficial noise demonstrate better output formats
versus 23 without (H2).

Second, as shown in Figure 6, we analyze the im-
pact of beneficial noise on LLM output uncertainty
across four powerful LLMs. Results indicate that
when combined with beneficial noise (ISN or DN),
LLMs generally exhibit lower uncertainty and in-
creased confidence in their outputs. This suggests
that LLMs pay more attention to provided golden
context and respond with greater confidence (H3).

5026



7 Conclusion

We define and categorize seven types of RAG noise
into beneficial and harmful groups, exploring re-
trieval noise from linguistic and practical perspec-
tives. To conduct this evaluation, we propose a sys-
tematic framework for generating various retrieval
documents and establish a novel noise benchmark,
NoiserBench. Our experiments reveal that benefi-
cial noise can significantly enhance model perfor-
mance through clearer reasoning paths, standard-
ized answers, and increased confidence—acting
much like Aladdin’s Lamp. These findings may
offer insights for leveraging beneficial noise mech-
anisms in future research.

Limitations

While our systematic analysis of RAG noises in
real-world scenarios offers valuable insights, sev-
eral limitations warrant consideration. First, our
analysis of noise phenomena remains relatively pre-
liminary. Future work will examine the underlying
mechanisms by investigating parameter variations,
particularly attention values, across each model
layer. In addition, future work could explore the
effects of noise across a wider variety of task do-
mains, including complex reasoning, where noise
may interfere with multi-step inference and lead to
compounding errors. Expanding the scope in this
direction could help develop more robust retrieval-
augmented generation systems for real-world ap-
plications.
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Appendix

Within this supplementary material, we elaborate
on the following aspects:

• Appendix A: Models

• Appendix B: Implementation Details

• Appendix C: Results

A Models

We provide brief introductions to LLMs used in
our experiments. For more details, please refer to
the official websites or the corresponding Hugging
Face Transformers repository.

• Llama2 & Llama3: The Llama series model,
developed by Meta AI’s FAIR team, is a
widely-used autoregressive language model.
These models, particularly Llama3, achieve
competitive performance compared to some
state-of-the-art closed-source LLMs. We use
the 13B model for Llama2, and the 8B and
70B models for Llama3.

• Vicuna-v1.5: The Vicuna model, derived
from fine-tuning the LLaMA-2 base model

by LMSYS, was developed using around
70K user-shared conversations obtained from
ShareGPT.com through public APIs. We use
the popular vicuna-13B here.

• Qwen2: Proposed by Alibaba Cloud, Qwen
series are strong language models, which have
been stably pretrained for up to 3 trillion to-
kens of multilingual data with a wide coverage
of domains, languages (with a focus on Chi-
nese and English), etc. Qwen2-7B-Instruct is
utilized.

• Mistral: The Mistral series includes the
Mistral-7B and Mixtral-8x7B models. The
Mistral-7B is an autoregressive language
model with 7 billion parameters, trained on a
diverse corpus to ensure high performance
in various tasks. The Mixtral-8x7B is a
high-quality sparse mixture of expert mod-
els (SMoE) with open weights. This tech-
nique increases the number of parameters of a
model while controlling cost and latency, as
the model only uses a fraction of the total set
of parameters per token.

• Baichuan2: Baichuan2 is the new generation
of open-source language models launched by
Baichuan Intelligence. It is trained on a high-
quality corpus with 2.6 trillion tokens and has
achieved the best performance in authoritative
Chinese and English benchmarks of the same
size. We use the 13B chat model.

B Implementation Details

B.1 Compute Infrastructure
We execute the experiments using the following
compute specifications.

• NVIDIA A100 80 GB GPU × 2

• 256 GB RAM

We use Python 3.10.0 and speed up inference us-
ing vllm1, a fast and easy-to-use library. In Table 5,
we list the main libraries along with their versions.

B.2 Dataset Construction
To construct our benchmark NoiserBench, we need
to first gather candidate QA instances from mul-
tiple sources. In this paper, our source data is
obtained from seven publicly available datasets,

1https://github.com/vllm-project/vllm
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Table 5: Main libraries and the corresponding versions.

Package Version

vllm 0.2.6
torch 2.1.2+cuda12.4
transformers 4.36.2

Figure 7: Example LLMs’ input for counterfactual evi-
dence generation. This prompt is composed of instruc-
tion, examples, and candidate counterfactual QA.

including single-hop NQ and RGB, explicit multi-
hop HotpotQA, 2WikiMQA, Bamboogle, and im-
plicit multi-hop StrategyQA and TempQA. Table
6 shows the full list of candidate instances, and in
total, we use 26,855 instances.

Subsequently, we introduce various noisy doc-
uments using external tools. For counterfactual
noise, we obtain relevant entities related to the
golden answer from Google search2 to construct
counterfactual answers. For orthographic noise, we
utilize the open-source textnoisr package3, which
enables the convenient introduction of noise to text
datasets and precise control of the quality of re-
sults. Four types of “action” are implemented: in-
sert, delete, substitute, and swap. For other types
of noise, we utilize the 2018 English Wikipedia
dump for document construction. We present the
prompts in Figure 7-9.

B.3 Additional Details
We utilize a CN for retrieval, where relevant Chi-
nese documents are retrieved in response to the
input query to enhance the prompt, rather than rely-

2We query Google search via SerpAPI: https://serpapi.
com

3https://github.com/preligens-lab/textnoisr

Figure 8: Example LLMs’ input for supportive evidence
generation. This prompt is composed of instruction,
examples, and candidate QA.

Figure 9: Example LLMs’ input for datatype noise con-
struction. This prompt is composed of instruction, ex-
amples, candidate QA and corresponding evidence.

ing on a fixed set of N Chinese examples. This CN
corpus is constructed using data from Wikidata and
Google Search, intentionally designed to include
misleading or outdated information in order to sim-
ulate real-world scenarios where context might be
inaccurate or evolving.

During the experiment, we found that the opti-
mal Top-k value for the contriver was 5, and the
similarity threshold for all-MiniLM-L6-v2 was set
to 0.3.

C Results

In this section, we provide supplementary results to
further illustrate the role of RAG noise, especially
beneficial noise. Our analysis primarily focuses on
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Table 6: Statistics of source QA instances from a couple of knowledge-intensive datasets. ‘E’ and ‘I’ represent
explicit and implicit, respectively.

Dataset Category Source #Source pairs #Samples Example

NQ Single-hop Train set 2,889 500 Who won the 7 man elimination chamber
match?

RGB Single-hop Test set 300 300 How many vehicles did Tesla deliver in 2021?
HotpotQA Multi-hop (E) Dev set 7,405 500 What election will take place on the same day

as the United States Senate election in Texas?
2WikiMQA Multi-hop (E) Dev set 12,576 500 Where was the place of death of Isabella of

Bourbon’s father?
Bamboogle Multi-hop (E) All 125 125 Who was the first African American mayor of

the most populous city in the United States?
StrategyQA Multi-hop (I) Train set 2,290 500 Can Arnold Schwarzenegger deadlift an adult

Black rhinoceros?
TempQA Multi-hop (I) All 1,270 186 Who was the commander-in-chief of the colo-

nial army during the revolutionary war?
PriorQA Mix-hop All 500 500 What were the primary strategies employed

by the British army duringthe American Civil
War?

datatype noise, orthographic noise, and prior noise,
as illegal sentence noise has been extensively dis-
cussed in the main text, and other forms of noise
have been explored in previous studies. These addi-
tional results aim to provide a more comprehensive
understanding of various noise types and their ef-
fects on the model’s performance.

Table 7: The effects of prior noise on LLMs, which is
measured by accuracy (%). ‘Base’ indicates the scenario
with no retrieval. ‘Misleading’ refers to counterfactual
content associated with prior noise. ‘Background’ de-
notes multiple retrieval results obtained after decompos-
ing the query into its constituent entities.

Models Base Misleading Background

Llama3-8B 93.40 47.80 90.00
Qwen2-7B 94.20 28.20 98.20
Mistral-7B 96.60 28.60 99.20
Llama2-13B 21.00 5.60 61.60
Vicuna-13B 91.00 25.80 99.20
Baichuan2-13B 90.00 45.20 96.40
Llama3-70B 99.00 78.40 99.80
Mixtral-8x7B 91.20 39.00 99.60

Average 79.93 34.20 88.47

C.1 Results on Prior Noise

Table 7 presents results for RAG models affected
by prior noise using our dataset, PriorQA. Ques-
tions in this dataset contain factual errors, such
as “Which country hosted the 1980 FIFA World
Cup?” (Actually, 1980 FIFA World Cup was not
held). Accuracy is assessed by whether models
correctly identify and respond with “The question

is factually incorrect”. We observe that all mod-
els except Llama2-13B perform well with direct
prompts and benefit from retrieving background in-
formation due to extensive pre-training knowledge.
However, models like Llama2-13B, which persist
in searching based on incorrect priors, may retrieve
false information and exhibit diminished perfor-
mance. This underscores the need to detect prior
errors in user queries before answering in future
RAG system designs.

Figure 10: Impact of datatype noise (DN) on the av-
erage accuracy of eight representative LLMs on RGB.
‘Golden’, ‘SuN’, ‘CN’, and ‘ISN’ represent golden con-
text only, golden context with supportive, counterfactual,
and illegal sentence noise, respectively. The mean is
marked by a red solid line and the median by a purple
dashed line.

C.2 Results Across Eight Models
As shown in Figure 10, we first present the aver-
age performance over seven datasets for datatype
noise to demonstrate that beneficial noise improves
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Table 8: Impact of various noise types on accuracy (%) for eight representative LLMs on the RGB dataset. We
assess performance across various retrieval scenarios: “Base” (no retrieval), “Golden Only” (only golden retrieval
context), and “Golden & XXX” (golden context + specific retrieval noises, including Counterfactual, Supportive,
Orthographic, Semantic, Datatype, Illegal Sentence Noise).

Scenario Small Large Average
L2-13B L3-8B Q2-7B M-7B V-13B B2-13B L3-70B M-8x7B

Base 17.00 47.00 31.33 27.00 35.33 27.67 60.00 43.00 36.04
Golden Only 29.33 80.00 76.33 80.33 80.33 78.00 76.00 77.33 72.20
Golden & CN 14.00 36.33 26.00 19.33 19.33 15.00 42.33 31.00 25.42
Golden & SuN 26.00 80.00 74.00 72.33 61.67 65.33 73.67 76.67 66.21
Golden & ON 14.33 75.00 74.00 72.67 77.67 69.00 77.00 72.67 66.54
Golden & SeN 18.00 81.33 77.67 56.67 52.00 59.00 76.33 77.33 62.30
Golden & DN 40.00 81.67 84.33 85.33 85.67 81.67 85.00 81.00 78.08
Golden & ISN 72.33 83.00 80.00 81.00 82.33 79.67 79.67 79.00 79.63

performance across various LLMs with different
model architectures and scales. We apply pro-
portional scaling to counterfactual data to make
a clearer illustration within one figure while main-
taining consistent conclusions. The results indicate
that datatype noise significantly enhances model
performance in all scenarios, with the most sub-
stantial improvement under harmful noise.

Additionally, we provide detailed results for
eight models on the RGB dataset, which is based
on recent news corpora and thus better reflects the
impact of noise. As shown in Table 8, we have the
following three findings:

• Global Impact of Beneficial Noise (DN, ISN):
Datatype Noise (DN) and Illegal Sentence Noise
(ISN) consistently improve performance across
all model scales and capabilities, with average
improvements of 5.8% and 7.4% respectively
over the golden-only baseline. This demonstrates
the universal applicability of these beneficial
noise types.

• Global Impact of Harmful Noise (CN, SuN,
ON): Counterfactual Noise (CN), Supportive
Noise (SuN), and Orthographic Noise (ON) con-
sistently degrade performance across all models,
with CN showing the most severe negative im-
pact (average performance decrease of 46.8%
compared to the golden-only baseline).

• Scale-Dependent Semantic Noise Effects: The
impact of Semantic Noise (SeN) is twofold.
For less optimized models (e.g., Llama2-13B,
Mistal-7B), SeN acts as harmful noise. This may
be due to smaller models being less confident

in their parametric memory and having weaker
reasoning capabilities. Consequently, they are
more easily misled by semantically irrelevant
context, consistent with findings from previous
studies (Shi et al., 2023b; Xie et al., 2024b); For
larger models (e.g., Llama3-70B), SeN becomes
beneficial. Larger models, with more robust para-
metric memory and better understanding, are less
susceptible to irrelevant context. They can effi-
ciently ignore semantically unrelated content and
focus on core details necessary to answer ques-
tions, leading to performance gains.

C.3 Results Across the Number of Quires
We leverage keywords extracted from queries (rang-
ing from 1 to 4 keywords per query) for content re-
trieval. As shown in Table 9, results on 2WikiMQA
demonstrate that the core findings regarding the
impact of beneficial and harmful noise remain con-
sistent across queries of varying complexity.

Table 9: Accuracy in different scenarios and with differ-
ent numbers of queries.

Scenario
Number of queries

1 2 3 4

G only 79.80 84.20 84.60 84.60
G&CN 21.20 23.60 23.60 23.80
G&ISN 87.40 89.40 89.20 89.40

C.4 Performance Under Other Noise
Disturbances

To illustrate the impact of beneficial noise under
other noise disturbances, we analyze the effect of
datatype noise (DN) in five scenarios: no noise
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Figure 11: Results for the impact of datatype noise on the Llama3-8B-instruct and Qwen2-7B-instruct models when
exposed to five typical noise categories across four datasets, including both single-hop (S) and multi-hop (explicit:
EM, implicit: IM) reasoning tasks. The bar charts show performance differences upon introducing datatype noise.
The line graphs illustrate the average accuracy improvement across noise types per dataset.

Figure 12: The experimental results of noise robustness
measured by accuracy (%), under different orthographic
noise ratios. Performance is benchmarked across state-
of-the-art open-source models, such as Llama3-8B-
instruct, for noise ratios ranging from 0 to 0.8. The
maximum and minimum accuracy for all models at each
noise ratio is annotated, with a shaded region represent-
ing ±0.5% threshold to illustrate the overall trend in
model performance better as the noise ratio increases.

(i.e., Golden only), harmful noise (i.e., Golden &
counterfactual noise, Golden & supportive noise),
and beneficial noise (i.e., Golden & illegal sentence
noise, Golden & Semantic noise). Figure 11 shows
the model’s accuracy gains after introducing DN
in these scenarios. We find that DN generally en-
hances performance across all datasets, particularly
when combined with harmful noise like counter-
factual noise, with average accuracy improvements
exceeding 10 percentage points. This consistent en-
hancement underscores beneficial noise’s potential
significance for future RAG research.

C.5 Noise Robustness of RAG Models under
Different Noise Ratios

We provide the results of four representative LLMs
under different orthographic noise ratios. Specifi-
cally, for insert, delete, and substitute actions, the
noise ratio ranges from 0.0 to 0.9, while for swap-
ping, it ranges from 0.0 to a maximum of 0.5. As
shown in Figure 12, the maximum and minimum
accuracy for all models at each noise ratio is an-
notated, with a shaded region representing ±0.5%
threshold to better illustrate the overall trend in
model performance as the noise ratio increases. We
observe that increasing noise rates pose a challenge
for RAG in LLMs, particularly when the ratio ex-
ceeds 0.3. Therefore, we use a default ratio of 0.3
in our main results to objectively assess the impact
of harmful noise.

C.6 The effects of Beneficial Noise under
Different Noise Ratios

To demonstrate the positive effects at different
harmful noise ratios, we present comprehensive
results for illegal sentence noise disturbances with
ratios ranging from 0 to 0.8. As shown in Ta-
ble 10, we see that the introduction of illegal sen-
tence noise (beneficial noise) consistently enhances
model performance, thereby illustrating the gener-
alization of beneficial noise.

C.7 Additional Control Experiments

We conducted additional control experiments by
varying the repetition of answer-containing text
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Table 10: Additional results for different illegal sentence noise (ISN) ratios on RGB. L2-13B, L3-8B, Q2-7B, M-7B,
V-13B, B2-13B, L3-70B and M-8x7B represents Llama2-13B, Llama3-8B-Instruct, Qwen2-Instruct, Mistral-7B-
Instruct-v0.2, Vicuna-13B-v1.5, Baichuan2-13B-chat, Llama3-70B-Instruct, Mixtral-8x7B-Instruct.

Scenario
Small Large Average

L2-13B L3-8B Q2-7B M-7B V-13B B2-13B L3-70B M-8x7B

0 29.33 80.00 76.33 80.33 80.33 78.00 76.00 77.33 72.21
+ ISN 72.33 83.00 80.00 81.00 82.33 79.67 79.67 79.67 79.71+7.50

0.2 18.67 77.33 75.33 76.00 79.33 73.33 76.67 73.67 68.79
+ ISN 73.67 82.67 80.33 76.67 80.00 72.33 80.33 73.67 77.46+8.67

0.4 12.33 73.67 71.33 69.00 72.67 68.00 76.33 65.67 63.63
+ ISN 70.67 77.00 73.00 71.00 73.33 68.33 80.00 66.67 72.50+8.87

0.6 8.67 72.33 66.00 65.33 67.00 63.67 82.00 64.33 61.17
+ ISN 69.33 72.00 66.67 64.67 70.00 66.33 79.33 63.67 69.00+7.33

0.8 8.00 70.33 62.67 61.33 68.67 63.67 78.00 62.33 59.38
+ ISN 68.33 70.67 64.67 63.33 69.00 66.33 78.33 63.67 68.04+8.66

Table 11: Additional control experiments by varying the
repetition of answer-containing text chunks.

512 748 1024 2048 Avg

Golden only 79.80 83.00 83.20 83.40 82.35
Golden & CN 21.20 23.60 23.80 23.80 23.10
Golden & SuN 81.00 82.00 82.60 82.40 82.00
Golden & ON 78.60 79.80 80.00 80.00 79.60
Golden & SeN 87.20 89.20 89.00 89.20 88.65+6.30

Golden & DN 82.00 85.60 85.80 86.20 84.90+2.55

Golden & ISN 87.40 89.80 90.00 89.80 89.25+6.90

chunks. We present the results on 2WikiMQA us-
ing Llama3-8B in Table 11. While these factors
did have some impact on performance, our core
finding—that RAG noise can be categorized into
beneficial and harmful types—remains consistent.

C.8 The Impact of RAG Noise on Other Tasks
like Mathematical Reasoning

Given that previous discussions focused on QA
tasks, it remains unclear whether the beneficial
noise affects other tasks. To address this, we
conduct experiments on mathematical reasoning,
which requires higher cognitive and reasoning abili-
ties (Guo et al., 2025; Team et al., 2025). Following
prior research, we apply the PAL methodology to
evaluate reasoning results. This approach involves
using LLMs to parse natural language problems,
generate intermediary programmatic solutions, and
execute these solutions via a Python interpreter.

As shown in Table 12, introducing numeric or
operator perturbations to retrieved examples sig-

Table 12: Evaluation results (accuracy (%) for math-
ematical reasoning using GPT-3.5-turbo as the base
model. The four conditions are zero-shot without noise,
two-shot without noise, and perturbations to numeric
and operator elements in 2-shot examples. △ denotes
the accuracy improvement (%) with noise compared to
no noise.

Scenario GSM8K GSMHard Average (△)

0-shot 50.40 40.20 45.30
2-shot-no-noise 55.40 47.80 51.60
2-shot-num 65.40 50.60 58.00 (+6.40)
2-shot-operator 62.20 53.20 57.70 (+6.10)

nificantly improves model performance (by 6.40%
and 6.10%, respectively). We hypothesize that this
mechanism resembles adversarial training (Wang
et al., 2019). Specifically, these perturbations likely
help the model implicitly learn to identify and ad-
dress potential errors or ambiguities, thereby en-
hancing its robustness. As a result, LLMs are bet-
ter equipped to reason accurately amidst unclear
or noisy test examples due to this implicit training.
We anticipate that the insights presented in this pa-
per could benefit other fields like creative writing,
visual reasoning, and 3D generation (Zhao et al.,
2024; Yin et al., 2025; Wu et al., 2025; Team et al.,
2025).

C.9 Detailed Statistical Validation

To statistically evaluate the differences between sce-
narios with and without beneficial noise„ we apply
the nonparametric Wilcoxon signed-rank test (Kotz
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and Johnson, 1992). This statistical test is specifi-
cally designed to compare two related samples or
repeated measurements when the data may not fol-
low a normal distribution, making it particularly
suitable for our analysis. The Wilcoxon signed-
rank test evaluates whether there is a significant
difference between paired observations through the
following procedure:

1. Calculate differences: For each pair of val-
ues Xi and Yi, compute the difference Di =
Xi − Yi.

2. Rank differences: Take the absolute values
|Di| and rank them from smallest to largest,
denoted as Ri. For ties, average ranks are
assigned.

3. Assign signs to ranks: For each pair (Xi, Yi),
assign the sign of Di to its corresponding rank:
R′

i = sign(Di) ·Ri, where sign(Di) = +1 if
Di > 0, −1 if Di < 0, and 0 if Di = 0.

4. Calculate rank sums: Separate the ranks
into positive and negative sums: W+ =∑

Di>0R
′
i and W− =

∑
Di<0R

′
i.

5. Determine test statistic: The test statistic
W is the smaller of the two sums: W =
min(W+,W−).

6. Calculate p-value: The p-value is derived
from the distribution of the test statistic W .

If the p-value is smaller than the chosen signif-
icance level (e.g., 0.05), the null hypothesis (that
there is no difference between the paired samples)
is rejected, indicating a statistically significant dif-
ference.

In our analysis, we test the null hypothesis of no
significant difference (H0 : difference = 0) against
the alternative hypothesis of a significant differ-
ence (H1 : difference ̸= 0). Following common
practice, we use a significance level of 0.05 (5e-
2). Specifically, we use the Wilcoxon Signed-Rank
Test to evaluate performance differences before and
after introducing beneficial noise (e.g., ISN). Re-
sults in Table 4 in the main text confirm statistically
significant improvements in model performance,
highlighting the positive impact of beneficial noise.

C.10 In-depth exploration of the underlying
mechanisms

To better understand the mechanisms behind RAG
noise effects, we conduct an in-depth analysis of

Table 13: Attention distribution across documents in
different scenarios

Scenario Doc1 Doc2 Doc3 Doc4 Doc5

Golden & CN 0.54 0.34 0.28 0.49 0.76
Golden Only - - 1.00 - -
Golden & ISN 0.45 0.23 0.67 0.58 0.60

model attention patterns. Following previous stud-
ies (Zhu et al., 2023; Wu et al., 2024b), we employ
Attention by Gradient as our visualization tech-
nique to examine how different noise types influ-
ence attention distribution across retrieved docu-
ments. Our analysis follows a three-step gradient-
based approach:

1. Token-Level Gradient Computation:
For each token ti,j , we calculate the gradient
of the loss function L (cross-entropy loss by
default) with respect to the token:

gi,j =
∂L(fM (x), y)

∂ti,j
(1)

where fM represents the model function, x
denotes the input, and y is the target output.

2. Word-Level Gradient Aggregation:
We aggregate token-level gradients to obtain
word-level attention scores by summing gra-
dients corresponding to each word wi:

gw =
∑

j=0,1,...,n

gi,j , s.t. wi = fmap(ti,j)

(2)

3. Document-Level Score Normalization:
Given our Top-5 retrieval setting, we aggre-
gate word-level gradients into document-level
attention scores and normalize them to the
range [0, 1] to facilitate cross-document com-
parison.

We conduct a comparative analysis examining
three scenarios: golden context only, golden con-
text with beneficial noise (Illegal Sentence Noise,
ISN), and golden context with harmful noise (Coun-
terfactual Noise, CN). Table 13 presents the atten-
tion distribution results, where Doc3 represents the
golden context and the remaining documents (Doc1,
Doc2, Doc4, Doc5) contain various noise types. The
document receiving the highest attention in each
scenario is highlighted in bold.

We have two key findings:
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• Enhanced Focus on Essential Information:
Beneficial noise, such as Illegal Sentence
Noise (ISN), helps the model focus on crit-
ical content. In Table 13, the golden context
(Doc3) retains the highest attention score un-
der Golden & ISN, suggesting that beneficial
noise guides the model to prioritize relevant
details, improving reasoning and accuracy.

• Diminished Impact of Misleading Noise:
Harmful noise, like Counterfactual Noise
(CN), misdirects the model’s attention to ir-
relevant or incorrect documents. This diver-
sion reduces the model’s ability to focus on
the golden context, leading to a performance
drop.

These findings provide empirical evidence for
the dual nature of noise in RAG systems. We leave
more attention visualization across different model
layers and extensive gradient flow analysis for fu-
ture investigation.

C.11 Case Study
Table 14-17 presents the reasoning process of
Llama3-8B-instruct. Without beneficial noise, the
model ignores correct information and exhibits
logical flaws under counterfactual noise influence.
However, upon introducing beneficial noise, the
model exhibits heightened attention to the golden
context and successfully distinguishes between cor-
rect and incorrect information.
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Table 14: Example #1 of LLM outputs on the single-hop dataset without and with beneficial noise (BN). The
blue and green colors denote the correct and incorrect responses, respectively. ‘GT’ denotes ground truth. Upon
introducing BN, LLMs exhibit clearer reasoning processes, more standardized response formats, and increased
focus on golden context.

Retrieved
Context
wo BN

[1] Paul R. Ehrlich, author of "The Population Bomb," was born on June 14, 1931. Ehrlich,
a renowned biologist, published his influential book on population control in 1968, which
sparked . . . [Counterfactual]
[2] The author of The Population Bomb, Paul Ehrlich, was born on May 29, 1932. He is
an American biologist and educator, known for his warnings about the consequences of
overpopulation . . . [Golden Context]

Question When was the author of The Population Bomb born?
‘A’: June 14, 1931 ‘B’: Uncertain ‘C’: May 29, 1932 (Ground Truth) ‘D’: April 22,
1934

Answer
wo BN

A ###\n\n### Explanation:\n The correct answer is ‘A’: June 14, 1931. According to
the information provided, Paul R. Ehrlich, the author of “The Population Bomb” was born
on June 14, 1931. The other options are incorrect, as they provide different birth dates for
the author. é

Answer
w BN

C\n### Explanation: According to information [2], Paul Ehrlich, the author of The
Population Bomb, was born on May 29, 1932. Therefore, the correct answer is ‘C’.
Information [1] provides a different birthdate, but it is not the correct answer. The other
options are not mentioned in the given information. Ë

Table 15: Example #2 of LLM outputs on the single-hop dataset without and with beneficial noise (BN). The
blue and green colors denote the correct and incorrect responses, respectively. ‘GT’ denotes ground truth. Upon
introducing BN, LLMs exhibit clearer reasoning processes, more standardized response formats, and increased
focus on golden context.

Retrieved
Context
wo BN

[1] Northrop Corporation built the fastest air-breathing manned aircraft, the Northrop
Grumman B-2 Spirit. Known for its stealth technology and high-speed capabilities, it
represents a pinnacle in modern aviation technology. [Counterfactual]
[2] The Lockheed Corporation built the fastest air-breathing manned aircraft, the Lockheed
SR-71 Blackbird. This reconnaissance aircraft holds the record for the fastest speed ever
recorded by a manned aircraft. [Golden Context]
. . .

Question Who built the fastest air-breathing manned aircraft?
‘A’: Uncertain ‘B’: Boeing Corporation ‘C’: Lockheed Corporation (GT) ‘D’:
Northrop Corporation

Answer
wo BN

D\n \n### Explanation:\n The information provided states that Northrop Corporation
built the Northrop Grumman B-2 Spirit, which is known for its stealth technology and
high-speed capabilities. However, it does not explicitly state that this aircraft is the fastest
air-breathing manned aircraft. é

Answer
w BN

C\n### Explanation: The information provided states that the Lockheed Corporation
built the Lockheed SR-71 Blackbird, which is the fastest air-breathing manned aircraft.
Therefore, the answer is ’C’. Ë
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Table 16: Example #3 of LLM outputs on the multi-hop dataset without and with beneficial noise (BN). The blue
and green colors denote the correct and incorrect responses, respectively. Upon introducing BN, LLMs exhibit
clearer reasoning processes, more standardized response formats, and increased focus on golden context.

Retrieved
Context
wo BN

[1] Robert Harley, Earl of Oxford and Earl Mortimer, was the paternal grandfather of
Edward Harley, 5th Earl of Oxford and Earl Mortimer. He was a prominent statesman and
served as the Lord High Treasurer of Great Britain. [Counterfactual]
[2] John Harley (29 September 1728 – 7 January 1788) was a British bishop. Harley
was the second son of Edward Harley, 3rd Earl of Oxford and Earl Mortimer. He was
Archdeacon of Shropshire from 1760 to 1769 and then Archdeacon of Hereford from
1769 to 1787. [Golden Context]
. . .

Question Who is the paternal grandfather of Edward Harley, 5Th Earl Of Oxford And Earl Mor-
timer?
‘A’: Edward Harley, 3rd Earl of Oxford and Earl Mortimer (GT) ‘B’: Uncertain ‘C’:
Uncertain ‘D’: Thomas Harley, 4th Earl of Oxford and Earl Mortimer

Answer
wo BN

C \n\n The paternal grandfather of Edward Harley, 5th Earl of Oxford and Earl Mortimer,
is Robert Harley, Earl of Oxford and Earl Mortimer. Therefore, the correct answer is ’C’.
é

Answer
w BN

A\n\n### Explanation: nThe information provided states that John Harley (1728-1788)
was the second son of Edward Harley, 3rd Earl of Oxford and Earl Mortimer. Therefore,
Edward Harley, 3rd Earl of Oxford and Earl Mortimer is the paternal grandfather of
Edward Harley, 5th Earl of Oxford and Earl Mortimer. Ë

Table 17: Example #4 of LLM outputs on the multi-hop dataset without and with beneficial noise (BN). The blue
and green colors denote the correct and incorrect responses, respectively. Upon introducing BN, LLMs exhibit
clearer reasoning processes, more standardized response formats, and increased focus on golden context.

Retrieved
Context
wo BN

[1] With an estimated base length of 230 meters, 200 men end to end would only cover
about 46% of the Great Pyramid of Giza’s base, highlighting the massive scale and size of
the ancient structure. [Counterfactual]
[2] The base of the Great Pyramid of Giza is 756 feet long. The average height of a man
is 5 foot 9. [Golden Context]
. . .

Question Can 200 men end to end cover Great Pyramid of Giza’s base?
‘A’: Uncertain ‘B’: False (GT) ‘C’: True

Answer
wo BN

C é

Answer
w BN

B\n\n### Information:\n The base of the Great Pyramid of Giza is 756 feet long. The
average height of a man is 5 foot 9. (int) The number of men required to cover the base
end to end is 756 / 5.75. Ë
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