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Abstract

Fine-grained emotion classification (FEC) aims
to analyze speakers’ utterances and distinguish
dozens of emotions with subtle differences, al-
lowing for a more nuanced understanding of
human emotional states. However, compared
to traditional coarse-grained emotion classifi-
cation, two difficulties arise as the granularity
of emotions becomes finer, i.e., the presence of
closely confusable emotions which are hard to
distinguish, and the biased performance caused
by long-tailed emotions. Although address-
ing both difficulties is vital to FEC, previous
studies have predominantly focused on dealing
with only one of them. In this paper, we pro-
pose TACO, a novel triple-view framework that
treats FEC as an instance-label (i.e., utterance-
emotion) joint embedding learning problem
to tackle both difficulties concurrently by con-
sidering three complementary views. Specifi-
cally, we design a clustering-guided contrastive
loss, which incorporates clustering techniques
to guide the contrastive learning process and
facilitate more discriminative instance embed-
dings. Additionally, we introduce the emotion
label description as a helpful resource to refine
label embeddings and mitigate the poor per-
formance towards under-represented (i.e., long-
tailed) emotions. Extensive experiments on two
widely-used benchmark datasets demonstrate
that our proposed TACO achieves substantial
and consistent improvements compared to other
competitive baseline methods.

1 Introduction

Emotion classification, which aims to recognize
emotions conveyed in speakers’ utterances, has ex-
hibited strong momentum in motivating various
emotion-driven applications such as conversational
agent (Mishra et al., 2023), empathetic system
(Samad et al., 2022) and affective computing (Mai
et al., 2019). Traditionally, the majority of previous

*Wei Shen is the corresponding author.
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Figure 1: Data distribution of the training set in the
GoEmotions dataset (Demszky et al., 2020).

works (Zhang et al., 2023; Shen et al., 2021; Yin
and Shang, 2022) addresses emotion classification
in a coarse-grained way, and focuses on identify-
ing only 6 (Ekman, 1992) or 8 (Plutchik, 1980)
emotions with significant differences.

However, humans experience dozens of emo-
tions (Smith, 2015), far exceeding the limited num-
ber of classes commonly utilized in coarse-grained
emotion classification. Thus, conversational agents
that solely rely on coarse-grained approaches may
fall short in capturing the diverse spectrum of emo-
tions humans encounter and express in their daily
lives. In order to facilitate more empathetic inter-
actions, future conversational agents are expected
to be equipped with the capacity of performing
fine-grained emotion classification (FEC). Unlike
coarse-grained emotion classification, FEC encom-
passes the recognition of much larger number of
emotions, typically 28 (Demszky et al., 2020) or 32
(Rashkin et al., 2019). These fine-grained emotion
classes capture subtle differences between emo-
tions, allowing for a more nuanced understanding
of human emotional states.

Unfortunately, two difficulties arise as the granu-
larity of emotion classes becomes finer. First, there
emerge some closely confusable classes with se-
mantic overlap (e.g., admiration and approval). Ut-
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terances from these closely confusable classes may
have small inter-class variations that are difficult
even for humans to distinguish (Zhao et al., 2017).
Second, fine-grained emotion datasets typically ex-
hibit a long-tailed data distribution, as illustrated
in Figure 1. This means a few dominant classes
account for most of the instances, while most of
the other classes are represented by relatively few
instances (Cui et al., 2019). Naïve learning ap-
proaches on such data are susceptible to poor per-
formance towards the under-represented emotion
classes (Menon et al., 2020).

Armed with these insights, the core challenges
lied in FEC can be categorized into two-fold: 1)
Simultaneously increasing the inter-class variation
and the intra-class coherence to better distinguish
closely confusable classes; 2) Promoting the per-
formance towards the long-tailed emotion classes.

To tackle the above challenges, researchers on
FEC have proposed several approaches. Label-
aware contrastive loss (LCL) (Suresh and Ong,
2021) enhances the model’s capacity of distin-
guishing closely confusable classes by elevating
the weights of negative instances that are more
likely to be confused with positive ones in its con-
trastive loss, which focuses on increasing the inter-
class variation. HypEmo (Chen et al., 2023) aims
to improve the performance for long-tailed emo-
tion labels by introducing a label hierarchy to pro-
vide additional information for long-tailed emo-
tions. While these approaches have made valuable
contributions, they only concentrate on address-
ing a single challenge without considering the two
challenges at the same time. Moreover, they ex-
hibit inadequacies in mining various knowledge
concealed within FEC.

In this paper, we propose TACO, a novel Triple-
view framework for fine-grAined emotion classifi-
cation with Clustering-guided cOntrastive learning,
which leverages mutli-aspect knowledge to tackle
the above two challenges concurrently. Actually,
TACO treats FEC as an instance-label joint em-
bedding learning problem through the following
three views, where each view characterizes differ-
ent aspects of knowledge. In the instance-label
view, we utilize a dual-encoder architecture to en-
code the utterance instance and the emotion label
respectively, where the emotion label description
is introduced as a helpful resource to offer rich se-
mantic information, particularly beneficial for en-
coding long-tailed emotion labels. In the instance-
instance view, a clustering-guided contrastive loss

is proposed to increase the inter-class variation and
the intra-class coherence simultaneously. Specifi-
cally, we resort to the clustering result of the current
instance embeddings to recognize hard instance
pairs for contrastive learning, leading to superior
instance embeddings. In the label-label view, we
employ a label-aware disentangled loss to adap-
tively push apart the label embeddings, resulting
in greater differentiation among closely confusable
labels and thereby enlarging the inter-class vari-
ation. It can be seen that the above three views
are complementary with each other, and the uni-
fied utilization of them is expected to yield a better
classification of fine-grained emotions.

In summary, the main contributions of this paper
are as follows:
• We propose a novel triple-view framework

TACO, which combines multi-aspect knowledge
from three complementary views to jointly re-
solve the two core challenges of FEC.

• In the instance-instance view, we incorporate
clustering techniques to guide the contrastive
learning process, resulting in refined instance
embeddings that exhibit larger inter-class varia-
tion and improved intra-class coherence.

• A thorough experimental study over two widely-
used benchmark datasets demonstrates that the
proposed TACO significantly outperforms all the
competitive baseline methods1.

2 Methodology

We begin by providing a formal definition of the
FEC task. Given a user from a conversational sys-
tem, we concatenate the utterances spoken by the
user as one utterance instance denoted by u. The
objective of the FEC task is to recognize an emo-
tion label e for each utterance instance u from a pre-
defined emotion label set E. Compared to coarse-
grained emotion classification, the label set of FEC
is much more diverse and the difference between
labels can be subtle.

The overall framework of our proposed TACO
is illustrated in Figure 2, which is built on three
complementary views: the instance-label view, the
instance-instance view, and the label-label view. In
the following, we firstly outline each of these views
in detail, and then provide an elaboration of how to
fuse them via a view combination module.

1https://github.com/Alcyoneus87/TACO
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[CLS] My boss didn't accept my 
vacation plan …

[CLS] approval [EMO] Having 
or expressing a favorable …

Utterance instances Emotion label descriptions
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Figure 2: The overall framework of TACO. Here we visualize the case of classifying three emotion labels (i.e.,
disgust, admiration and approval), in which admiration and approval are closely confusable. The three emotion
labels are painted in different colors in the diagram. Additionally, the instance embedding and the label embedding
share the same color with their corresponding emotion label. For the initialization, utterance instances and emotion
label descriptions are encoded independently into a unified embedding space via the same encoder. Subsequently,
three complementary views optimize the obtained embeddings with the aim of increasing inter-class variation and
intra-class coherence from different perspectives, followed by a view combination module to fuse the knowledge
from them. For simplicity, the clustering-guided contrastive loss, cross-entropy loss and label-aware disentangled
loss are denoted by CCL, CE and LDL in the diagram, respectively.

2.1 Instance-Label View
The task of FEC is traditionally formalized as a
classification problem (Singh et al., 2023; Suresh
and Ong, 2021), in which the prediction mainly
depends on the learned embeddings of utterance
instances, while the emotion labels are treated as
meaningless one-hot vectors. However, as an es-
sential element in this task, emotion labels con-
tain rich semantic information that also merits ex-
ploration (Zhang et al., 2021). To leverage this
valuable information and address the intricate inter-
actions between utterance instances and emotion
labels more effectively, we reformulate FEC as an
instance-label joint embedding learning problem,
where a dual-encoder architecture is utilized to en-
code the utterance instance and the emotion label,
respectively. Specifically, for an utterance instance
u and an emotion label e, their embeddings can be
derived as:

hu = FCN1(PLM(su))

he = FCN2(PLM(se))
(1)

where su and se correspond to the input sequences
of utterance instance u and emotion label e, re-
spectively. PLM denotes a function for extracting

the last layer representation of the [CLS] token
from a pre-trained language model (e.g., BERT
(Devlin et al., 2019), RoBERTa (Liu et al., 2019)).
Moreover, FCN1 and FCN2 represent two fully-
connected networks, each comprising two layers
with ReLU activated.

The above input sequences can be constructed
in the following ways. For the instance input se-
quence su, we represent the utterance instance it-
self by adding a prepended token [CLS] and an ap-
pended token [SEP], i.e, [CLS] utterance [SEP].
About the label input sequence se, instead of
solely utilizing the emotion label name, we in-
corporate the emotion label description as a help-
ful resource to provide additional semantic infor-
mation, which is especially beneficial for model-
ing long-tailed emotion labels (Gao et al., 2023).
Thus se can be defined as [CLS] name [EMO]
description [SEP], where [EMO] is a special

token for separation.
Given an utterance instance u and an emotion la-

bel e, the prediction score ŝ(u, e) between them is
calculated via the dot-product of their correspond-
ing embeddings hu and he as:

ŝ(u, e) = hu · he (2)
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To ensure that each utterance instance is close to
its corresponding ground truth emotion label and
far from other emotion labels in the embedding
space, the instance-label view is optimized with a
cross-entropy loss:

LCE = − 1

|U |
∑

u∈U
log

exp(ŝ(u, eu))∑
e∈E

exp(ŝ(u, e))
(3)

where U represents the set of utterance instances
with size |U |, and eu denotes the ground truth emo-
tion label of utterance instance u.

2.2 Instance-Instance View
In order to simultaneously increase the inter-class
variation and the intra-class coherence, it is cru-
cial to establish distinct classification boundaries
among closely confusable classes, which requires
identifying and correcting misclassified fuzzy in-
stances that lie near those ambiguous boundaries.
As we know, clustering is a simple yet effective
approach for analyzing data distribution (Xie et al.,
2016; Caron et al., 2018), while contrastive learn-
ing exhibits strong capabilities in aggregating posi-
tive instances and disentangling negative ones (Gao
et al., 2021; Gunel et al., 2020). To this end, we
propose a clustering-guided contrastive loss (CCL),
in which clustering techniques are incorporated to
guide the contrastive learning process, leading to
more discriminative instance embeddings.

Specifically, given a mini-batch B that con-
sists of |B| utterance instances with indices I ≡
{1, 2, ..., i, ..., |B|}, we firstly employ a clustering
algorithm (e.g., k-means) over the utterance in-
stance embeddings {hui}

|B|
i=1 to partition instances

into K clusters, where K is the known number
of unique labels in the mini-batch. The cluster-
ing result can be denoted by a cluster index vector
{ci}|B|

i=1, where ci ∈ {1, 2, ...,K} represents the
cluster index of the ith instance.

As shown in Figure 2, the obtained clusters can
be divided into two categories: 1) homogeneous
clusters in which instances belong to the same class
(e.g., disgust) that is likely to be easily distinguish-
able; 2) heterogeneous clusters in which instances
belong to different classes (e.g., admiration and
approval) that are closely confusable. To establish
distinct classification boundaries, CCL mainly fo-
cuses on handling these heterogeneous clusters and
aims to convert them into homogeneous ones.

Informed by this insight, with the clustering re-
sult {ci}|B|

i=1 and the mini-batch labels {ei}|B|
i=1, we

construct hard positive sets and hard negative sets
based on the misclassified fuzzy instances that lie
near ambiguous boundaries. Concretely, for the
ith instance, its hard positive set can be denoted
by P (i) ≡ {p ∈ I : ei = ep ∧ ci ̸= cp}, while
N(i) ≡ {n ∈ I : ei ̸= en ∧ ci = cn} represents
its hard negative set. Given the hard postive and
negative sets, an InfoNCE loss (Oord et al., 2018)
could be utilized to correct the misclassified fuzzy
instances, which is defined as:

li,p = − log
exp(hui · hup/τ)∑

j∈P (i)∪N(i)

exp(hui · huj/τ)

LCCL =
1

|B|

|B|∑

i=1

1

|P (i)|
∑

p∈P (i)

li,p

(4)

where τ > 0 is an adjustable scalar temperature
parameter that controls the contrastive strength, and
|P (i)| is the cardinality of P (i).

It can be seen that hard positive sets encourage
instances belonging to different clusters but having
the same emotion label to get closer, resulting in im-
proved intra-class coherence, while hard negative
sets enforce instances belonging to the same clus-
ter but having different emotion labels to be farther
away from each other, leading to larger inter-class
variation. Hence, our proposed clustering-guided
contrastive loss is expected to learn more discrimi-
native embeddings for the instances from closely
confusable classes and eliminate those ambiguous
classification boundaries.

2.3 Label-Label View
The critical problem in FEC is that instances with
closely confusable labels are hard to distinguish.
While the aforementioned CCL partially addresses
this issue by fine-tuning ambiguous boundaries on
the instance side, it fails to account for the con-
siderable semantic overlap among these closely
confusable labels, resulting in tiny distances be-
tween their corresponding label embeddings. In
light of this, we design a label-aware disentangled
loss (LDL) on the label side to adaptively push
apart the embeddings of closely confusable labels.

To quantify how confusable two emotion labels
are for targeted optimization, we introduce a pair-
wise confusability score between emotion labels
based on the predictions of utterance instances. In-
spired by the classical collaborative filtering algo-
rithm (Sarwar et al., 2001), we define the confus-
ability score between two labels by treating utter-
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ance instances and emotion labels as analogous to
users and items in recommendation systems, re-
spectively. Concretely, given a mini-batch of |B|
utterance instances and a label set E with |E| emo-
tion labels, the model’s predictions M ∈ R|B|×|E|

can be viewed as a user-item rating matrix, where
Mi,j denotes the prediction score ŝ(ui, ej) between
instance ui and label ej calculated via Equation 2.
Similar to the collaborative filtering algorithm in
which the similarity between two items is mea-
sured through their ratings derived from all users,
we calculate the confusability score between two
emotion labels ej and ej′ based on the prediction
distribution of instances over them as follows:

f(ej , ej′) =
cos(M:,j ,M:,j′)∑

ek,ek′∈E cos(M:,k,M:,k′)
(5)

Here, cos(·, ·) denotes cosine similarity and M:,j is
the |B| dimensional vector corresponding to label
ej , obtained by extracting the jth column of M .

Then we push apart the label embeddings via
minimizing the cosine similarity of each label pair
weighted by its confusability score, ensuring that
this label-aware disentangled loss primarily focuses
on closely confusable label pairs, expressed as:

LLDL = exp(
∑

ej ,ej′∈E
f(ej , ej′) cos(hej ,hej′ ))

(6)
In summary, the proposed LDL effectively en-

larges the inter-class variation, thus facilitating bet-
ter discrimination between instances with closely
confusable labels.

2.4 View Combination

The above three views provide complementary in-
formation all of which is vital to the FEC task.
To fully exploit and combine knowledge from the
three views, the overall loss of TACO can be calcu-
lated with a weighted sum operation as follows:

L = LCE + αLCCL + βLLDL (7)

where α and β control the strengths of the CCL
and the LDL, respectively.

At the inference stage, given an utterance in-
stance u, the emotion label with the highest predic-
tion score is chosen as the predicted label e∗ for it
based on the following equation:

e∗ = argmax
e∈E

ŝ(u, e) (8)

Dataset Train Val Test # Labels
ED 19,533 2,770 2,547 32
GE 23,485 2,956 2,984 27

Table 1: The statistics of the two FEC datasets.

3 Experimental Setting

3.1 Datasets
We evaluate our proposed TACO on the following
two widely-used public benchmark FEC datasets:
Empathetic Dialogues (Rashkin et al., 2019) com-
prises 24,850 multi-turn conversations annotated
with one of 32 emotions, where each conversation
circulates between a speaker and a listener. To en-
sure a fair comparison with previous works (Suresh
and Ong, 2021; Chen et al., 2023), we only utilize
the first turn of the conversation to construct the
corresponding utterance instance, consisting of a
situation description about the emotional incident.
GoEmotions (Demszky et al., 2020) is a human-
annotated dataset containing 58,000 Reddit com-
ments extracted from popular English subreddits,
where each comment (i.e., utterance instance) is
annotated with one or multiple labels from a set
of 27 emotion labels plus neutral. Following pre-
vious works (Suresh and Ong, 2021; Chen et al.,
2023), we only utilize the single-labeled instances
and exclude instances with the neutral label.

The statistics of these two datasets are shown in
Table 1. Empathetic Dialogues and GoEmotions
are donated as ED and GE for brevity, respectively.

3.2 Baseline Methods
To conduct a comprehensive evaluation and com-
parison, we employ the following mainstream
methods as our baselines2:
Pre-trained language models. BERTbase (Devlin
et al., 2019), RoBERTabase (Liu et al., 2019) and
ELECTRAbase (Clark et al., 2020) are utilized to
encode the utterance instance, followed by a fully-
connected network for classification.
Coarse-grained emotion classification methods.
EmoBERTa (Kim and Vossen, 2021) introduces
speaker names and separation tokens to classify
emotions in a speaker-aware way. SACL (Hu et al.,
2023) proposes a supervised adversarial contrastive
learning framework to learn class-spread structured
representations. TFD (Tu et al., 2023) mitigates
biases by generating counterfactual utterances and
leveraging subtraction operations.

2Refer to Appendix A for more details of baseline methods.
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Method Empathetic Dialogues GoEmotions

Acc↑ Weighted-F1↑ Macro-F1↑ Acc↑ Weighted-F1↑ Macro-F1↑
BERTbase 55.790.35 55.130.51 54.850.56 64.320.33 63.840.32 54.270.89
RoBERTabase 57.670.46 57.130.37 56.870.35 64.790.52 64.340.45 54.910.67
ELECTRAbase 57.420.61 56.590.62 56.380.63 64.650.57 63.770.62 52.031.04

EmoBERTa 57.730.44 57.220.45 56.810.43 64.670.51 64.360.49 54.940.72
SACL 58.270.45 57.650.48 57.500.48 64.710.54 64.420.47 54.960.89
TFD 58.470.55 57.960.47 58.120.51 64.830.42 64.410.50 55.591.09

BERTCDP+MLM 58.510.48 57.940.38 57.740.39 64.980.40 64.560.34 55.840.93
LCL 59.520.43 58.720.49 58.380.49 65.220.39 64.550.47 54.481.27
HypEMO 58.300.50 57.130.42 56.930.48 64.810.46 64.300.39 53.591.14

ChatGPTzero-shot 48.28 48.45 46.34 34.61 35.64 29.45
ChatGPTeight-shot 52.210.22 50.690.41 48.680.53 33.900.60 34.880.58 28.870.53
Emollama-chat-7b 27.27 28.09 26.59 24.86 24.04 22.22
Emollama-chat-13b 38.37 39.47 38.06 28.35 27.85 23.06

TACO 60.570.36 59.940.42 59.820.43 65.970.38 65.420.40 58.230.99
∆ +1.05% +1.22% +1.44% +0.75% +0.86% +2.39%

Table 2: Overall performance of all baseline methods and our TACO on two FEC datasets. The subscript represents
the corresponding standard deviation (e.g., 60.570.36 indicates 60.57±0.36). The best and second-best scores are
set in bold and underlined, respectively, and ∆ denotes the relative improvement between them.

Fine-grained emotion classification methods.
BERTCDP+MLM (Singh et al., 2023) proposes a
multi-task learning framework via introducing
class definition prediction (CDP) and masked lan-
guage model (MLM) as two auxiliary tasks. LCL
(Suresh and Ong, 2021) trains an additional weight-
ing network to increase the weights of hard neg-
ative instances in its contrastive loss. HypEMO
(Chen et al., 2023) utilizes the hyperbolic distance
between an instance-label pair as the weight of its
cross-entropy loss.

Large language models. For each utter-
ance instance, ChatGPTzero-shot/eight-shot utilizes the
gpt-3.5-turbo model via the OpenAI API to gen-
erate an emotion label for the corresponding ut-
terance prompt in the zero-shot/eight-shot way.
Emollama-chat-7b (Liu et al., 2024) and Emollama-
chat-13b (Liu et al., 2024) are two open-source
emotional LLMs fine-tuned on emotion-related
datasets. Both models operate in a zero-shot
manner, utilizing the same utterance prompt as
ChatGPTzero-shot/eight-shot.

3.3 Evaluation Metrics

Following previous works (Suresh and Ong, 2021;
Chen et al., 2023), we adopt the same top-1 ac-
curacy (acc) and weighted-F1 as the evaluation
metrics. Weighted-F1 assigns greater weights to
classes with more instances and diminishes the con-

tribution of long-tailed classes, defined as:

weighted-F1 =
∑

e∈E

ne

N
× 2× Pe ×Re

Pe +Re
(9)

where ne is the number of test instances with label
e, N is the total number of test instances, Pe and
Re are the precision and recall with respect to label
e, respectively.

In addition, we adopt macro-F1 as a metric
for the FEC task. In comparison to weighted-F1,
macro-F1 treats all classes equally during testing
since emotion labels are equally important in real-
world scenarios (Frijda, 1986), which enables a
more unbiased evaluation, formulated as:

macro-F1 =
∑

e∈E

1

|E| ×
2× Pe ×Re

Pe +Re
(10)

3.4 Implementation Details
In TACO, we initialize the pre-trained language
model using pre-trained roberta-base from Hug-
gingFace’s Transformers library (Wolf et al., 2020).
For emotion label descriptions, we collect the cor-
responding label description by asking ChatGPT to
define each emotion. The clustering algorithm is in-
stantiated as k-means for simplicity, as the number
of clusters K is known in advance. Note that the
above three components are flexible and can be eas-
ily replaced with any other suitable techniques. For
training, we adopt the AdamW (Loshchilov and
Hutter, 2019) optimizer with an initial learning rate
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of 2e-5 and weight decay of 1e-3. The mini-batch
size |B| and temperature parameter τ are set to 64
and 0.5, respectively. The hyperparameters α, β
are set to 0.4, 0.4 for ED, and 0.45, 0.5 for GE. All
baseline methods have released their source codes,
and we used the same hyperparameter settings as
specified in their original papers.

4 Experimental Results

4.1 Overall Results

Performance Comparison. The overall perfor-
mance of all the methods is reported in Table 2. It
can be observed that our proposed TACO consis-
tently achieves the state-of-the-art performance on
both the ED and GE datasets, indicating its superi-
ority for the FEC task.

From Table 2, we can see that naïve fine-tuning
of pre-trained language models alone yields unsat-
isfactory results, emphasizing the need for more
sophisticated models and the utilization of more
valuable knowledge in FEC. Coarse-grained emo-
tion classification methods, although effective on
various coarse-grained datasets, struggle when ap-
plied to fine-grained datasets, possibly due to their
limitations in modeling the inter-class variation
and the intra-class coherence for closely confus-
able emotion classes. However, as a coarse-grained
method, TFD surprisingly outperforms some fine-
grained methods because it tackles the long-tailed
data distribution via mitigating label biases.

It is noteworthy that our proposed TACO sur-
passes all the fine-grained emotion classification
baselines across all metrics on both datasets. These
experimental results are in line with our intuition
that simultaneously increasing the inter-class vari-
ation and the intra-class coherence leads to more
discriminative representations, while also handling
the long-tailed data distribution enables the training
of a more generalizable model. By jointly address-
ing these two core challenges, our proposed TACO
could solve the FEC task more effectively com-
pared to previous fine-grained emotion classifica-
tion baselines that just cope with a single challenge.

In addition, although large language models are
capable of generating high-quality responses to
prompts based on the knowledge learned from their
extensive training corpora, they exhibit inadequa-
cies in classifying fine-grained emotions. This may
be attributed to the fact that while large language
models store generalized knowledge from various
domains, task-specific factors like closely confus-

Method Acc↑ Weighted-F1↑ Macro-F1↑
TACO 60.57 59.94 59.82

- w/o LDL 59.85 59.27 59.18
- w/o CCL 59.61 58.93 58.80
- w/o CG 59.92 59.24 59.09
- w/o DES 59.74 59.12 59.04

TACO 65.97 65.42 58.23
- w/o LDL 65.59 65.12 57.99
- w/o CCL 65.16 64.84 57.63
- w/o CG 65.47 64.91 57.86
- w/o DES 65.23 64.80 57.62

Table 3: Performance of different variants of TACO.
The upper and lower part list the results on ED and GE,
respectively.

able classes and long-tailed emotions require dedi-
cated designs in resolving the FEC task.
Analysis of macro-F1. In contrast to weighted-F1
that assigns lower weights to long-tailed emotion la-
bels, macro-F1 treats all emotion labels equally. It
can be seen from Table 2 that in terms of macro-F1,
our TACO achieves large relative improvements
(i.e., 1.44% on ED and 2.39% on GE) compared to
the second-best baseline, which showcases its supe-
riority in modeling long-tailed emotion labels, mak-
ing it well-suited for real-world scenarios where
various uncommon emotions exist. Moreover, it is
noted that TACO has a larger improvement on GE
than on ED. This is possibly due to the fact that GE
has a greater imbalance rate for the long-tailed data
distribution compared with ED.

4.2 Ablation Study
To investigate the contribution of each key module
in our TACO, we conduct an ablation study consid-
ering the following variants: (1) TACO w/o LDL
in which the label-aware disentangled loss in the
label-label view is eliminated; (2) TACO w/o CCL
in which the clustering-guided contrastive loss cor-
responding to the instance-instance view is deleted;
(3) TACO w/o CG in which the clustering-guided
component is omitted so that the instance-instance
view is degraded into a naïve supervised contrastive
loss (Khosla et al., 2020) without specially consid-
ering hard positive and negative instance pairs; (4)
TACO w/o DES in which the emotion label descrip-
tion is removed and only the emotion label name is
utilized to construct the label input sequence. We
present the performance of these four variants as
well as the whole framework TACO in Table 3.

From the experimental results, we can observe
that TACO outperforms the first two variants on
both datasets, which validates that the LDL and
CCL modules in TACO are beneficial for the FEC
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task and contribute positively to the performance
of the overall framework. With regard to the third
variant, the removal of the clustering-guided com-
ponent results in a performance decline, imply-
ing that the incorporation of clustering techniques
could recognize high-quality hard positive and neg-
ative instance pairs, thereby boosting the capability
of the contrastive loss. Besides, it can be seen that
the performance decreases when the emotion la-
bel description is removed, showcasing that the
label description could indeed offer rich semantic
information and therefore improve the performance
towards long-tailed emotions.

5 Quantifying Model Confidence

In this section, we conduct a post-hoc analysis to
quantify the ability of the the proposed TACO to
distinguish closely confusable emotions. Specifi-
cally, beyond solely considering the highest value
among prediction scores (i.e., top-1 accuracy), we
turn to the distribution of prediction scores based
on the intuition that a more discriminative model
would generate a steeper score distribution. Follow-
ing the previous work (Suresh and Ong, 2021), we
quantify this by measuring the averaged entropy
of the test set. For a given utterance instance u,
we obtain its top-k highest prediction scores (de-
noted by Sk ∈ Rk) from the overall prediction
scores S ∈ R|E|, which are calculated with re-
spect to every emotion label e via Equation 2. We
then normalize Sk and calculate its entropy with an
information-theoretic entropy loss:

entropyk = −
∑

s∈Sk

s× log s (11)

A more discriminative model is expected to have
a lower averaged entropy, indicating higher cer-
tainty in distinguishing closely confusable emo-
tions. As the experimental results shown in Figure
3, TACO consistently produces prediction score dis-
tributions with lower entropies compared to other
fine-grained emotion classification methods, show-
casing that TACO could increase both the inter-
class variation and the intra-class coherence, re-
sulting in an advanced capacity of distinguishing
closely confusable emotions.

6 Related Work

6.1 Fine-Grained Emotion Classification
Fine-grained emotion classification (FEC) has
emerged as a popular research topic in recent years.
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Figure 3: The averaged entropy of the prediction score
distribution for different k values from 2 to 27/32. BCM
denotes BERTCDP+MLM. The left and right part list the
results on ED and GE, respectively.

The core challenges in FEC involve accurately
distinguishing closely confusable emotions and
improving the performance towards long-tailed
emotions, while previous works have predomi-
nantly concentrated on addressing only one of them.
Specifically, BERTCDP+MLM (Singh et al., 2023)
proposes a multi-task learning framework in which
class definition prediction (CDP) is introduced as
an auxiliary task for better understanding of various
emotions. LCL (Suresh and Ong, 2021) increases
the weights of hard negative instances in its con-
trastive loss to train a more discriminative model.
HypEMO (Chen et al., 2023) provides additional
information for long-tailed emotions by introduc-
ing a label hierarchy to revise the cross-entropy
loss. In contrast, our proposed TACO takes into
account both core challenges concurrently.

With the rise of large language models (LLMs),
there have been notable efforts to exploit them
for emotion classification. E-ICL (Yang et al.,
2024) utilizes emotionally similar examples with
dynamic labels and exclusionary emotion predic-
tion, effectively addressing the limitations of stan-
dard in-context learning. EmoLLMs (Liu et al.,
2024) presents a series of fine-tuned, open-source
emotional LLMs, developed alongside a multi-task
affective analysis instruction dataset (AAID) and a
comprehensive evaluation benchmark (AEB).

6.2 Contrastive Learning

Recently, contrastive learning exhibits strong ca-
pabilities in aggregating positive samples and dis-
entangling negative ones in both self-supervised
and supervised settings (Wang et al., 2022; Xu
et al., 2023; Yang et al., 2025). Self-supervised
contrastive learning techniques, such as SimCLR
(Chen et al., 2020) and SimCSE (Gao et al., 2021),
leverage unlabeled data to improve representation
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learning using only the augmented versions of
original samples. Supervised contrastive learn-
ing (Khosla et al., 2020; Gunel et al., 2020) takes
labels into account and therefore has a more di-
verse way to generate positive and negative sam-
ples. Contrastive learning has also been increas-
ingly applied to multi-modal emotion-related tasks,
demonstrating significant improvements in effec-
tiveness via inter-modal alignment (Li et al., 2023;
Wang et al., 2023). Yang et al. (2023) proposed
SCCL, which conducts contrastive learning in the
cluster-level via heuristically constructing clusters
to obtain cluster-level instance and label embed-
dings, then adjusting the distance between them.
Unlike previous works, we incorporate clustering
techniques to recognize high-quality hard positive
and negative instance pairs for the supervised con-
trastive learning process, leading to more discrimi-
native instance embeddings.

7 Conclusion

In this paper, we propose a novel triple-view frame-
work TACO, which simultaneously resolves the
two difficulties existing in FEC. By treating FEC
as an instance-label joint embedding learning prob-
lem, TACO could exploit multi-aspect knowledge
via three complementary views. Concretely, we
have devised a clustering-guided contrastive loss
to facilitate more discriminative utterance instance
embeddings, and the emotion label description is
introduced to promote the performance towards
long-tailed emotion labels. Empirical experiments
indicate the effectiveness of TACO, which consis-
tently surpasses all the baseline methods over two
widely-used public benchmark datasets.

Limitations

Although our proposed TACO performs effectively
by incorporating clustering techniques to guide the
contrastive learning process, the inclusion of clus-
tering techniques increases the computational com-
plexity and lengthens the training time, and the
direct correlation between the number of classes
and the number of clusters may produce suboptimal
results. Moreover, TACO primarily focuses on solv-
ing the case where there is only one utterance from
a single speaker. However, in real-world scenarios,
dialogues often contain multiple speakers with mul-
tiple utterances. Furthermore, our proposed TACO
is assessed solely on small-scale English-language
datasets, and its performance is not evaluated in

large-scale or other languages scenarios, since to
the best of our knowledge, there is currently a lack
of such datasets. Finally, while TACO has made
some efforts to address the long-tailed problem
lied in fine-grained emotion classification, it is still
somewhat biased toward common emotions. The
aforementioned limitations will be left for our fu-
ture research.

Ethics Statement

Our method, which analyzes speakers’ utterances
and distinguishes fine-grained emotions, has poten-
tial applications in psychopathological fields like
depression detection. Understanding and identify-
ing chronic expression of negative emotions such
as guilty and anger may provide valuable insights
as precursors to depression (O’Connor et al., 2002).
However, it is important to acknowledge that our
model may unintentionally exhibit biases towards
uncommon emotions, which could potentially af-
fect fairness and accuracy when the model is uti-
lized in real-world scenarios. It is imperative to be
aware of and address any potential ethical concerns
to ensure the responsible and ethical use of our
method in real-world applications.
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A Setting Details of Baseline Methods

Coarse-grained emotion classification methods.
Since some coarse-grained emotion classification
methods (Kim and Vossen, 2021; Hu et al., 2023;
Tu et al., 2023) were proposed to classify in a di-
alog environment with past and future utterances,
which are not available in FEC, we have to remove
the corresponding modules of such methods when
applying them to FEC. Moreover, to facilitate a fair
comparison, we change their pre-trained language
models from roberta-large to roberta-base.
Fine-grained emotion classification methods.
BERTCDP+MLM (Singh et al., 2023) was origi-
nally proposed for multi-label emotion classifi-
cation, so we have to modify its binary cross-
entropy loss to a cross-entropy loss since the
FEC task focuses on single-label emotion clas-
sification. Moreover, it has been found that the
sklearn.metrics.f1_score was misused in Hy-
pEMO (Chen et al., 2023), resulting in the unusual
high performance on the weighted-F1 score. To
amend this, we obtain its updated performance via

running the open-source solution from its official
Github repository3.
Large language models. For ChatGPTzero-shot/

eight-shot, we set the temperature to 0 for replica-
tion. In zero-shot setting, we directly ask the LLM
to generate an emotion label through instruction. In
one-shot setting, we sample a random utterance in-
stance from the training set as an in-context demon-
stration before asking. Taking the GoEmotions
dataset (Demszky et al., 2020) as an example, the
designed utterance prompt templates are shown in
Table 8. For Emollama-chat-7b (Liu et al., 2024)
and Emollama-chat-13b (Liu et al., 2024), we load
their checkpoints posted on huggingface directly
based on the VLLM engine, and use the same utter-
ance prompt templates as ChatGPTzero-shot/eight-shot
to ensure consistency.

B Qualitative Analysis and Error
Analysis

We conduct qualitative analysis and error analysis
on TACO and its two variants: (1) TACO w/o CCL
in which the clustering-guided contrastive loss cor-
responding to the instance-instance view is deleted;
(2) TACO w/o LDL in which the label-aware dis-
entangled loss in the label-label view is eliminated.
Table 4 shows the results of these variants as well as
the whole framework TACO on two test utterance
instances sampled from the GoEmotions dataset.

For the first case, our whole framework TACO
outputs the correct label admiration. However,
without the CCL loss, the model is misled by the
word “proud” to the wrong label pride, demonstrat-
ing the effectiveness of CCL in refining instance
embedding. The exclusion of the LDL loss re-
sults in a wrong prediction of approval, suggesting
that LDL can indeed help distinguish closely con-
fusable classes. For the second case, even with
the help of CCL and LDL, the model still fails to
predict correctly, indicating that the FEC task is
non-trivial and our proposed TACO cannot fully
understand the emotion expressed by the utterance
in some difficult cases.

C Experimental Results on Additional
Datasets

In addition to the existing Empathetic Dialogues
(Rashkin et al., 2019) and GoEmotions (Demszky
et al., 2020) datasets, EmpatheticIntent (Welivita
and Pu, 2020) and EDOS (Welivita et al., 2021)

3https://github.com/dinobby/HypEmo
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Utterance Instance w/o CCL w/o LDL TACO Golden Label

you did so good for yourself though! if you had the mother
you deserve she would have the sense to be proud of you.

pride approval admiration admiration

i’m not sure why this is a nonononoyes, we didn’t see any
of the beforehand i really only see the “yes”.

curiosity curiosity curiosity confusion

Table 4: Examples of utterance instance from the GoEmotions dataset for the qualitative analysis and error analysis.

Method EmpatheticIntent EDOS

Acc↑ Weighted-F1↑ Macro-F1↑ Acc↑ Weighted-F1↑ Macro-F1↑
BERTCDP+MLM 58.53 57.99 58.01 64.24 63.93 51.88
LCL 59.26 58.71 58.47 64.72 64.38 52.01

Emollama-chat-7b 23.76 22.91 21.20 11.40 8.02 7.12
Emollama-chat-13b 31.66 31.61 29.26 11.88 9.87 9.70

TACO 60.74 60.31 59.92 65.00 64.84 52.47
∆ +1.48% +1.60% +1.45% +0.28% +0.46% +0.46%

Table 5: Experimental results on two additional datasets. The best and second-best scores are set in bold and
underlined, respectively, and ∆ denotes the relative improvement between them.

are two other widely recognized datasets for the
fine-grained emotion classification task. Empa-
theticIntent consists of 6,770 open-domain, human-
to-human conversations, where each conversation
is associated with one of 41 emotions. The train-
ing/validation/test split of his dataset is 4,061 /
1,354 / 1,355. EDOS (Emotional Dialogues in
OpenSubtitles) is a large-scale emotion dataset con-
taining 50K emotional dialogues from movie subti-
tles, in which each dialogue turn is automatically
annotated with 41 fine-grained emotions. The train-
ing/validation/test split of the dataset is 30,000 /
10,000 / 10,000.

In order to further evaluate the effectiveness of
our proposed method on these two new datasets,
this section presents a comparison between our
method and the state-of-the-art baselines, includ-
ing the most competitive SLM-based approaches
(i.e., BERTCDP+MLM and LCL) as well as the LLM-
based method (i.e., EmoLLMs). The overall per-
formance of these methods is reported in Table
5. It can be seen that our method consistently
outperforms both traditional and LLM-based base-
line methods on the EmpatheticIntent and EDOS
datasets, indicating its superiority for the FEC task.

D Exploration of Cluster Number
Determination Methods

In the instance-instance view, we propose a
clustering-guided contrastive loss (CCL), in which
clustering techniques are incorporated to guide the

Method Acc↑ Weighted-F1↑ Macro-F1↑
TACO 60.57 59.94 59.82
TACO w. elbow 60.21 59.54 59.44

TACO 65.97 65.42 58.23
TACO w. elbow 65.85 65.34 58.13

Table 6: Performance of TACO and TACO w. elbow.
The upper and lower part list the results on ED and GE,
respectively.

contrastive process. During clustering, the number
of clusters is an important hyper-parameter that
directly affects the clustering quality. In our pro-
posed TACO, the cluster number is driven by our
task setting, specifically as the number of unique
labels in each mini-batch. While this is a direct and
task-aligned approach, using automatic algorithms
may offer potential improvements in certain cases.

To explore this, we conduct experiments using
the elbow algorithm to automatically determine the
cluster number. The search range for this number
is [max(K − 5, 0), min(K + 5, B)], where K is
the number of unique labels in the mini-batch, B
represents the batch size. We use the SSE metric
to find inflection points. From the experimental
results shown in Table 6, it can be seen that the
automatic algorithm elbow achieves slightly lower
results than our method.

E Exploration of Foundation Model

To ensure a fair comparison with the baselines, we
choose the encoder-only model roberta-base as our
foundation model for the main experiments. To fur-
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Figure 4: Hyper-parameter sensitivity analysis results on ED dataset. Here we fix one of α and β while adjusting
the other to observe its influence.

Method Acc↑ Weighted-F1↑ Macro-F1↑
TACO 60.57 59.94 59.82
TACO w. Llama 62.43 61.33 61.07

TACO 65.97 65.42 58.23
TACO w. Llama 67.13 66.58 59.44

Table 7: Performance of TACO and TACO w. Llama.
The upper and lower part list the results on ED and GE,
respectively.

ther verify the generalizability of our method to the
decoder-only models, we replace the foundation
model with Llama 3.2 1B, and set the LoRA pa-
rameters to q_proj, k_proj, v_proj, and r to 16. Ad-
ditionally, we use mean pooling to get the instance
embedding. As shown in Table 7, the decoder-
only large language model Llama achieves better
results compared to the encoder-only model BERT,
likely due to its larger number of parameters. These
results confirm that our method is not limited to
encoder-only models and can also be effectively
applied to decoder-only models.

F Hyper-parameter Sensitivity Analysis

In this section, we conduct the hyper-parameter
sensitivity analysis on the ED dataset to investigate
how our method responds to changes in key hyper-
parameters. Specifically, we analyze the hyper-
parameters α and β, which control the strengths
of the CCL and LDL loss functions, respectively.
Since we set both parameters α and β to 0.4 in the
main experiments, here we fix one of them while
adjusting the other to observe its influence. The
experimental results are summarized in Figure 4. It
can be seen that α has a greater impact on the final
results and the model is relatively less sensitive to
changes in β.

G Visualization of Learned
Representations

To further evaluate whether our proposed
clustering-guided contrastive loss (CCL) improves

the model’s ability to distinguish closely confus-
able classes, we use the t-SNE (Van der Maaten and
Hinton, 2008) method for visualization. As can be
seen in Figure 5, when the CCL loss is applied, the
classification boundaries become more distinct, and
the learned representations are more discriminative.
This suggests that CCL indeed helps the model
differentiate between closely confusable classes.
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(b) TACO(a) TACO w/o CCL

Figure 5: t-SNE visualization of learned representations on the Empathetic Dialogues dataset.

Zero-shot Prompt You are an AI assistant who specializes psychology. You will complete an emotion
recognition task. The task is as follows: according to a text written by an author,
predicting the author’s emotion from the following 27 emotions: ’admiration’, ’amuse-
ment’, ’anger’, ’annoyance’, ’approval’, ’caring’, ’confusion’, ’curiosity’, ’desire’,
’disappointment’, ’disapproval’, ’disgust’, ’embarrassment’, ’excitement’, ’fear’, ’grat-
itude’, ’grief’, ’joy’, ’love’, ’nervousness’, ’optimism’, ’pride’, ’realization’, ’relief’,
’remorse’, ’sadness’, ’surprise’. Only provide one emotion from above emotions and
do not give the explanation.
AURTHOR’S TEXT: {breaking news, husband borrows wife’s car and should lose
their job because of this.},
EMOTION:

One-shot Prompt You are an AI assistant who specializes psychology. You will complete an emotion
recognition task. The task is as follows: according to a text written by an author,
predicting the author’s emotion from the following 27 emotions: ’admiration’, ’amuse-
ment’, ’anger’, ’annoyance’, ’approval’, ’caring’, ’confusion’, ’curiosity’, ’desire’,
’disappointment’, ’disapproval’, ’disgust’, ’embarrassment’, ’excitement’, ’fear’, ’grat-
itude’, ’grief’, ’joy’, ’love’, ’nervousness’, ’optimism’, ’pride’, ’realization’, ’relief’,
’remorse’, ’sadness’, ’surprise’. Only provide one emotion from above emotions and
do not give the explanation.
AURTHOR’S TEXT: {omg! i can only imagine. i’ve gotten it into a hang nail before
and that was not fun.},
EMOTION: surprise;
AURTHOR’S TEXT: {breaking news, husband borrows wife’s car and should lose
their job because of this.},
EMOTION:

Table 8: Utterance prompt templates for ChatGPT of the GoEmotions dataset.
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