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Abstract
The rapid advancement of large language mod-
els (LLMs) has brought about increased con-
cerns regarding their safety, especially as ad-
versaries develop jailbreak techniques to by-
pass LLMs’ safety mechanism. Although re-
cent work on safety training with modules such
as low-rank adaptation (LoRA) to resist jail-
breaks shows promise, these approaches can
inadvertently degrade a model’s general util-
ity. In this paper, we propose a novel plug-
and-play method that mitigates the impact of
safety training on model utility by explicitly
locating and leveraging safety-critical singular
vectors, which only contribute to safety, within
the model’s parameter space. We quantify the
safety-criticality of each singular vector as the
difference of their importance for safety and
utility measured by a corresponding low-rank
projection. The top scored singular vectors are
located as safety-critical and are used to initial-
ize the LoRA modules within existing safety
training methods in a plug-and-play manner,
thereby constraining the training updates within
safety-critical parameters. Additionally, we
propose a dynamic rank number determination
strategy to further reduce parameter overhead.
Experiments on HarmBench with multiple jail-
break methods validate the effectiveness of our
approach in safety training, while evaluations
on several utility benchmarks demonstrate that
our method successfully mitigates the adverse
impact of safety training on model utility, en-
hancing the utility performance of the evaluated
safety training baselines.

1 Introduction

While the capabilities of large language models
(LLMs) have been rapidly advancing(Brown et al.,
2020; OpenAI, 2022, 2023; Anthropic, 2023; Team
et al., 2023), their safety remains a critical con-
cern. Despite popular LLMs, such as the Llama
series(Touvron et al., 2023a,b; Dubey et al., 2024),
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have been trained to reject harmful queries, vul-
nerabilities persist. Jailbreak techniques(Zou et al.,
2023; Liu et al., 2024; Zeng et al., 2024; Chao
et al., 2023) have emerged, enabling bypasses of
the safety mechanisms of LLMs and allowing the
generation of compliant responses to harmful in-
structions that contradict human values.

Recently, safety training has been studied to im-
prove the safety of LLMs. Some research(Zheng
et al., 2024; Zhou et al., 2024; Mo et al., 2024)
trains a safety prompt to resist jailbreaks. Although
the safety prompts are quite light-weight, the low
parameter capacity may limit their performance
facing emerging jailbreak methods(Xu et al., 2024).
Some other work trains additional modules with
relatively higher parameter capacity, such as low-
rank adaptation (LoRA)(Hu et al., 2022), to im-
prove LLMs’ safety. Recent studies such as Re-
FAT(Yu et al., 2025), CAT(Xhonneux et al., 2024)
and CB(Zou et al., 2024) apply techniques like
adversarial training or representation engineering
to train the safety LoRA. Although these methods
effectively enhance the model’s safety, the LoRA
specifically trained for safety purposes may inter-
fere with the utility components of the model, re-
sulting in a degradation in the model’s utility per-
formance(Bianchi et al., 2024).

In this paper, we propose a plug-and-play
method to mitigate adverse impact of safety train-
ing on model’s utility. We locate the safety-critical
singular vectors, which only contribute to safety,
in parameter weights. Compared to analyzing the
parameters as a whole, different singular vectors
can be analyzed independently, allowing for a fine-
grained identification of safety-critical parameters.
These safety-critical singular vectors are employed
to initialize the LoRA in safety training methods,
thereby constraining the training updates within
the safety-critical parameters. Specifically, to as-
sess the safety-criticality of singular vectors, it is
first necessary to investigate their importance for
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safety and utility. After performing SVD on the pa-
rameter weights, we measure the singular vectors’
importance for safety and utility by investigating
the impact they undergo after low-rank projections
specific for safety and utility based on calibration
datasets. The importance for safety or utility is cal-
culated as the similarity between the singular vector
before and after corresponding projection, which
also represents how the singular vector is retained
in the safety or utility low-rank subspace. Because
of the overlap between these two projections(Wei
et al., 2024), there exist some singular vectors that
have high importance for both safety and utility.
Apparently, these singular vectors should be ex-
cluded from safety-critical parameters, while sin-
gular vectors with high importance for safety and
low importance for utility should be considered as
safety-critical. Therefore, the difference between
the safety and utility importance measurement is
employed as the score for safety-criticality of each
singular vector, as the singular vectors have high
importance for both safety and utility will get a
low score due to the subtraction. The top-k scored
singular vectors are located as safety-critical.

After locating the safety-critical singular vectors,
we use them to initialize a SVD-formed LoRA
(Meng et al., 2024) in safety training. The singular
values are intialized as zeros to preserve model’s be-
havior at the start of training. This newly-initialized
LoRA covers the safety-critical part of the parame-
ter weight and is used to replace the LoRA in exist-
ing safety training methods in a plug-and-play man-
ner, constraining the training updates within the
safety-critical parameters. In this way, our method
mitigates the adverse impact of safety training on
the model utility. What’s more, we propose a dy-
namic rank number determination strategy based
on the safety-criticality scores to reduce the param-
eter count and preserve model performance.

Although Wei et al. (2024) has proposed to use
orthogonal projection to remove the utility infor-
mation from the safety-projected parameters, the
resulting safety-critical parts have the same num-
ber of parameters as the original ones, leading to
high computational cost if safety training these
parts. However, in our work, we locate the model’s
safety-critical singular vectors, which involve only
a small number of parameters. Instead of updating
these singular vectors directly in safety training, up-
dating a SVD-formed LoRA initialized with them
has similar effects. In this way, our method can be
seamlessly integrated with existing safety training

approaches in a plug-and-play manner, constrain-
ing the update region and mitigating the adverse
impact of safety training on model utility.

We validate the effectiveness of our method on
three strong safety training methods: ReFAT(Yu
et al., 2025), CAT(Xhonneux et al., 2024) and
CB(Zou et al., 2024), by replacing the LoRA mod-
uels with ours. We evaluate model’s safety per-
formance on HarmBench(Mazeika et al., 2024)
with several typical jailbreak methods(Zou et al.,
2023; Liao and Sun, 2024; Liu et al., 2024;
Zeng et al., 2024; Chao et al., 2023; Li et al.,
2024). The utility performance is evaluated on
MT-Bench(Zheng et al., 2023), IFEval(Zhou et al.,
2023) and GSM8K(Cobbe et al., 2021), along with
the benign part of XSTest(Röttger et al., 2024). The
experiment results demonstrate that across all the
evaluated baselines, their utility performances gain
significant improvement with our method, proving
that our method mitigates the adverse impact of
safety training on model utility. The safety perfor-
mances are on par with or even exceed that of the
baselines, demonstrating the effectiveness of our
method in safety training. Furthermore, our dy-
namic rank number determination strategy can suc-
cessfully reduce the parameter quantity and achieve
comparable performances. The contributions of our
paper are summarized as follow:

• We locate the safety-critical singular vectors
of the model parameter weights, which only
contribute to the model’s safety.

• We propose a plug-and-play method to mit-
igate adverse impact of safety training on
model utility with the located safety-critical
singular vectors.

• We propose a dynamic rank number determi-
nation strategy, successfully reducing the pa-
rameter count while preserving performance.

• We conduct extensive experiments and demon-
strate that our method can improve both the
safety and utility performance of various
safety training baselines.

2 Related Work

LLM Jailbreaks Although existing LLMs have
been trained to reject harmful inputs, attackers
have proposed various jailbreak methods to circum-
vent the safety mechanisms of LLMs. GCG(Zou
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Figure 1: The overall pipeline of our method. a) We obtain low-rank projections of parameter weight for safety and
utility and project the left singular vectors of the parameter weight with the projection matrices. b) We assess the
safety and utility importance of the singular vectors of the parameter weight and use their difference to score the
safety-criticality for each singular vector. Top scored singular vectors are located as safety-critical. c) The located
safety-critical singular vectors are utilized to initialize a SVD-formed LoRA for safety training.

et al., 2023) and AmpleGCG(Liao and Sun, 2024)
train adversarial suffixes to induce the model to
generate compliant responses to harmful instruc-
tions. AutoDAN(Liu et al., 2024) performs word-
level mutations and paragraph-level crossover to
increase generation probability of affirmative prefix.
TAP(Zeng et al., 2024) and PAIR(Chao et al., 2023)
use strong LLMs such as GPT-4(OpenAI, 2023)
as attackers to generate and refine candidate jail-
break queries automatically. Recently, DrAttack(Li
et al., 2024) proposes to decompose the harmful
instruction into sub-prompts and reconstruct these
sub-prompts implicitly by in-context learning to
jailbreak LLMs. These jailbreak methods pose sig-
nificant challenges to the safety of LLMs.

Safety Training To enhance model safety and de-
fend against jailbreaks, researchers conduct safety
training on LLMs. Some research(Zheng et al.,
2024; Zhou et al., 2024; Mo et al., 2024) trains a
safety prompt to resist jailbreaks. Some other work
trains additional modules, such as low-rank adap-
tation (LoRA)(Hu et al., 2022), to improve LLMs’
safety. CAT(Xhonneux et al., 2024) uses continu-
ous embedding perturbation to adversarially train
a safety LoRA. ReFAT(Yu et al., 2025) removes

the refusal features in representation as a perturba-
tion for adversarial training. CB(Zou et al., 2024)
trains LoRA by controlling the similarity of rep-
resentations between the LoRA-added model and
the original model. These LoRA modules trained
for safety purpose can enhance model safety but
may potentially interfere with the the utility com-
ponents of the model, resulting in degradation of
model utility performance(Bianchi et al., 2024).

Safety Parameter Localization As model safety
gains increasing attention, some studies investigate
which parts of the model parameters are associ-
ated with safety and can help with safety training.
Some studies(Kirch et al., 2025; Zhao et al., 2024)
identify safety-related layers in the model using
methods such as probing. Some studies(Chen et al.,
2024; Wu et al., 2024) identify sparse safety-related
neurons. However, these studies neglect the poten-
tial overlap between safe-related and utility-related
parameters. Recently, Wei et al. (2024) propose
to isolate the safety-critical parameters using or-
thogonal projection after low-rank approximation.
Nevertheless, the low-rank safety-critical param-
eter have same quantity as the original parameter
weights, resulting high computational cost if safety
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training these parts. In this paper, we propose to
locate the safety-critical singular vectors of param-
eter weights which involve a small number of pa-
rameters and employ them to boost existing safety
training methods in a plug-and-play manner.

3 Method

The pipeline of our method is shown in Figure 1.
We first obtain low-rank projections for safety and
utility and project the singular vectors accordingly
as in Figure 1a. After that, we locate the safety-
critical singular vectors of the parameter weights
as in Figure 1b. Finally, we use the located safety-
critical singular vectors to initialize a SVD-formed
LoRA for safety training as in Figure 1c.

3.1 Obtain Low-Rank Projection
For a safety calibration dataset, we store all the
input activations of the response section corre-
sponding to the model layer W ∈ Rdout×din into
Xin ∈ Rdin×n. As in Wei et al., 2024, a low-rank
matrix Ŵs important to safety is sought such that
the Frobenius norm of the change to the output
activations WXin ∈ Rdout×n is minimized:

Ŵs = argmin
rank Ŵs≤r

∥∥∥WXin − ŴsXin

∥∥∥
2

F
(1)

SVD is performed on the output activations:

UsΣsV
⊤
s ≈ WXin (2)

where Us ∈ Rdin×r is the orthogonal matrix corre-
sponding to the top r left singular vectors of the ac-
tivations. The low-rank matrix important to safety
is obtained with a low-rank projection as follows:1

Ŵs = UsU
⊤
s W (3)

The low-rank matrix Ŵu important to utility can
be obtained in the same way with a utility calibra-
tion dataset. We refer to the projection matrices as
Πs = UsU

⊤
s and Πu = UuU

⊤
u .

We then perform SVD on the parameter W :

W = UΣV =
∑

i

uiσiv
⊤
i (4)

where σi is the i-th singular value and ui and vi

are the corresponding left and right singular vector.
As for safety projection, we have:

Ŵs = ΠsW = Πs

∑

i

uiσiv
⊤
i

=
∑

i

(Πsui)σiv
⊤
i

(5)

1Proof can be seen in Wei et al., 2024.

It can be observed that the projection matrix
directly operates on the left singular vector ui.

3.2 Locate Safety-Critical Singular Vectors
To assess the safety-criticality of singular vectors,
we first investigate their importance for safety and
utility by investigating the impact they undergo
after the low-rank projection. We examine the simi-
larity si between the safety-projected Πsui and the
original ui in Equation 6. We find that it can also be
interpreted as the squared norm of U⊤

s ui, which is
the component of ui retained in the r-dimensional
safety subspace represented by Us. Intuitively, si
represents the importance for safety of the singular
vector ui and it is constrained by the low rank r as
in Equation 72.

si = u⊤
i Πsui = u⊤

i UsU
⊤
s ui

= (U⊤
s ui)

⊤(U⊤
s ui)

(6)

∑

i

si ≤ r (7)

Similarly, we can obtain ui to represent the impor-
tance for utility of each singular vector:

ui = u⊤
i Πuui (8)

To locate the safety-critical singular vectors, we
use the difference between si and ui as a score
to measure safety-criticality. As in Figure 1b, if
a singular vector is important for both safety and
utility, its score will be low due to the subtraction.
The top-k scored singular vectors are located as
safety-critical:

scorei = si − ui

indices = arg top-ki scorei
(9)

3.3 Initialize LoRA
After locating the safety-critical singular vectors,
we use them to initialize LoRA in safety training as
shown in Figure 1c. Following Meng et al. (2024),
we employ the SVD-formed LoRA as follows:

∆W = Ukdiag(σk)V
⊤
k (10)

where Uk is the collection of k safety-critical left
singular vectors and Vk is the collection of the
corresponding right ones. σk is a k-sized vector
initialized by zero. With such initialization, we
can constrain the updating in safety training within

2See proof in Appendix A
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Method Param.
Safety (ASR ↓) Utility (↑)

No attack GCG AmpleGCG AutoDAN TAP PAIR DrAttack AVG. MT-Bench IFEval GSM8K XSTest AVG.
base - 7.5 32.0 11.0 11.5 39.0 21.0 25.5 21.1 7.91 76.15 75.44 98.0 82.17
ReFAT 640MB 3.5 11.5 5.5 5.5 27.5 16.5 16.0 12.3 7.59 74.30 73.84 98.0 80.51
+SCSV 640MB 3.5 8.5 2.5 2.5 19.5 15.5 16.0 9.7 7.96 75.60 75.54 98.0 82.18
+dynamic 190MB 4.0 2.5 5.0 3.5 19.0 16.0 21.0 10.1 8.00 76.52 75.36 97.0 82.22
CAT 640MB 7.5 18.0 9.5 17.5 34.0 20.5 26.5 19.1 5.21 52.31 51.90 70.0 56.58
+SCSV 640MB 3.5 8.0 3.0 7.0 15.5 14.5 20.0 10.2 7.58 64.88 73.69 93.0 76.84
+dynamic 190MB 4.5 13.5 7.0 15.0 28.5 12.5 25.5 15.2 7.57 64.69 73.38 92.0 76.44
CB 52MB 0.0 2.0 1.0 0.0 4.0 7.0 4.0 2.6 7.92 75.97 75.74 84.0 78.72
+SCSV 52MB 0.0 1.5 1.0 0.0 3.0 6.0 6.0 2.5 7.92 77.63 75.66 96.0 82.12
+dynamic 48MB 0.5 3.5 2.0 0.5 4.5 5.5 17.5 4.8 8.16 75.78 76.34 97.0 82.68

Table 1: The safety and utility performance of the evaluated safety training methods, along with the number of
trainable parameters. A lower ASR indicates better safety performance, while a higher utility score indicates better
utility performance. For each baseline, the best performance on each dataset is highlighted in bold.

the safety-critical regions, mitigating its impact
on model utility. Besides, compared to the con-
ventional LoRA, the SVD-based LoRA introduces
only an additional vector of size k, making the
increase in the parameter count negligible.

3.4 Determine Rank Number Dynamically
In the previous sections, we defined scorei to iden-
tify the safety-critical singular vectors of the param-
eter weights. We further propose that scorei can be
utilized to dynamically determine the rank number
of the LoRA, thereby reducing the parameter count.
Specifically, we sum the positive values of scorei
and multiply a hyperparameter α < 1 to obtain a
score threshold:

thres = α ∗
∑

i

max(scorei, 0) (11)

We then select the top k̂ singular vectors whose
cumulative scores just exceed this threshold if k̂ is
less then the original k:

k′ = min{j|
j∑

i=0

sort(score)i > thres}

k̂ = min(k, k′)

(12)

In practice, we up-scale the rank number to the
nearest power of 2 for computational convenience.

4 Experiment Setup

4.1 Baselines and Datasets
We name our method as SCSV short for Safety-
Critical Singular Vectors. We experiment with
three safety training baselines including ReFAT(Yu
et al., 2025), CAT(Xhonneux et al., 2024) and
CB(Zou et al., 2024). The details of these baselines

can be seen in Appendix B. These baselines are
trained with the adversarial training dataset from
Zou et al. (2024) consisting of 5k harmful requests,
as well as 5k harmless conversational examples
taken from UltraChat(Ding et al., 2023). Follow-
ing Yu et al. (2025), 150 seemingly risky but be-
nign requests taken from XSTest dataset(Röttger
et al., 2024) with compliant responses generated
by Llama-3-8B-Instruct are also included in train-
ing. For low-rank projection, we follow Wei et al.
(2024), using Advbench(Zou et al., 2023) as safety
dataset and Alpaca-Cleaned3, a refined version of
the Alpaca dataset(Taori et al., 2023), as utility
dataset. Details can be seen in Appendix C.

4.2 Evaluation
We evaluate the safety performance of the models
on the standard version of HarmBench(Mazeika
et al., 2024), which consists of 200 harmful in-
structions. Several typical jailbreak methods are
conducted including GCG(Zou et al., 2023), Am-
pleGCG (Liao and Sun, 2024), AutoDAN(Liu et al.,
2024), TAP(Zeng et al., 2024), PAIR(Chao et al.,
2023) and DrAttack(Li et al., 2024). We using
the code of JailTrickBench(Xu et al., 2024) to im-
plement all the jailbreaks. For AmpleGCG, we
consider the top-5 generated attack suffixes. We re-
port the attack success rate (ASR) evaluated by the
official LLM-as-a-judge model provided by Harm-
Bench as the model’s safety performance. It is
worth noting that to mitigate the impact of ran-
domness(Hughes et al., 2024), we perform 10 re-
sponse samples. If the model is jailbreaked in any
of these 10 attempts, we consider the model to be
jailbreaked. For utility, we report the model’s per-
formance on MT-Bench(Zheng et al., 2023), IFE-

3https://github.com/gururise/AlpacaDataCleaned
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Method
Safety (ASR ↓) Utility (↑)

No attack GCG AmpleGCG AutoDAN TAP PAIR DrAttack AVG. MT-Bench IFEval GSM8K XSTest AVG.
ReFAT + SCSV 3.5 8.5 2.5 2.5 19.5 15.5 16.0 9.7 7.96 75.60 75.54 98.0 82.18
ReFAT + safe 4.0 11.5 3.5 2.5 19.5 15.5 17.5 10.6 7.72 75.05 74.90 98.0 81.29
ReFAT + top 4.0 11.5 4.5 3.0 19.0 15.5 16.0 10.5 7.83 74.86 74.29 98.0 81.36
ReFAT + random 3.5 11.0 5.0 4.0 18.0 15.0 17.5 10.6 7.72 73.94 74.60 98.0 80.93
CAT + SCSV 3.5 8.0 3.0 7.0 15.5 14.5 20.0 10.2 7.58 64.88 73.69 93.0 76.84
CAT + safe 10.5 24.5 23.5 12.5 11.0 10.0 17.0 15.6 7.23 64.32 73.74 92.0 75.59
CAT + top 10.5 13.5 10.5 13.5 22.0 16.0 25.0 15.8 7.30 64.69 73.61 93.0 76.08
CAT + random 10.5 13.5 10.5 13.5 22.0 16.0 25.0 15.8 7.44 64.51 73.61 93.0 76.38

Table 2: The safety and utility performance of models trained with different singular vector selection strategies. For
each baseline, the best performance on each dataset is highlighted in bold.

Method
Safety (ASR ↓) Utility (↑)

No attack GCG AmpleGCG AutoDAN TAP PAIR DrAttack AVG. MT-Bench IFEval GSM8K XSTest AVG.
Mistral-7b-instruct-v0.2

ReFAT 10.5 22.0 52.5 67.0 64.0 38.5 56.5 44.4 5.64 46.58 41.77 73.0 54.44
+SCSV 10.5 22.0 43.0 62.0 61.0 36.0 35.5 38.6 5.70 47.32 42.00 81.0 56.83

Gemma-2-2b-it
ReFAT 3.0 4.0 7.5 13.5 48.5 37.0 40.0 21.9 5.65 53.05 40.19 85.0 58.68
+SCSV 1.5 2.0 6.5 4.5 44.5 36.5 15.5 18.7 5.73 55.64 42.72 85.0 60.16

Table 3: The safety and utility performance of safety training on base models with different families and sizes. For
each base model, the best performance on each dataset is highlighted in bold.

val(Zhou et al., 2023) and GSM8K(Cobbe et al.,
2021) with 5-shot. Following Yu et al. (2025),
we also report the model compliance rate on 100
held-out benign examples from XSTest(Röttger
et al., 2024) to monitor over refusal behavior. Be-
sides, we report the average safety and utility per-
formance to make clear comparison. It is worth
noting that MT-Bench scores are multiplied by 10
in calculation to make the score scale consistent.

4.3 Implement Details

We mainly fine-tune Llama-3-8B-Instruct with dif-
ferent safety training methods in our paper. We
implement CAT and CB with their official code and
reproduce ReFAT since it is not open-sourced as of
the completion of this paper. The hyperparamters
for training can be seen in Appendix D. In low-rank
approximation, we set r = 128. In dynamic rank
number determination, we set α = 0.1. All the
responses are sampled with temperature 0.6 and
topp 0.9 following the default configuration of the
model. All our experiments are conducted with
NVIDIA A800 80G GPUs.

5 Experiment Results

5.1 Safety-Critical Singular Vectors Enhance
both Safety and Utility.

The safety and utility performance of the trained
models are reported in Table 1. As shown in the
table, for utility, models utilizing our located safety-
critical singular vectors consistently demonstrate
a significant improvement over the baselines with
original LoRA across all three safety training meth-
ods. It confirms that our method effectively mit-
igates the negative impact of safety training on
model utility. Moreover, for safety, our method
achieves comparable or even superior safety perfor-
mance compared to the baselines, demonstrating
that our method is effective for safety training.

5.2 Dynamic Rank Number Determination
Effectively Reduces Parameter Count.

As shown in Table 1, dynamic rank number de-
termination effectively reduces the number of pa-
rameters used in model training. With only ap-
proximately 1/4 of the parameters, models trained
with dynamically determined ranks achieve per-
formance in both safety and utility comparable to
those trained with the fixed rank. In some cases,
it even achieves superior performance. These re-
sults indicate that even with a small number of
safety-critical singular vectors, we can enhance
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Figure 2: The safety and utility performance of models trained with different numbers of safety-critical singular
vectors, i.e. the rank of LoRA noted as lora_r. The safety performances are reported in (a) and the utility
performances are reported in (b).

model safety while preserving utility. This further
confirms the critical role of safety-critical singular
vectors in safety training.

5.3 Safety-Critical Singular Vectors is
Superior to Other Singular Vectors.

In this section, we investigate the differences be-
tween safety training using safety-critical singular
vectors and safety training using other singular vec-
tors. We experiment with three alternative singular
vector selection strategies: a) safe. It means se-
lecting the top-k singular vectors with the highest
safety-importance scores, as defined in Equation
6. b) top. It means selecting the top-k singular
vectors with the largest singular values. c) random.
It means selecting k singular vectors at random. In
these experiments, we fix k = 128 and analyze the
results of safety training under different singular
vector selection strategies.

The results are demonstrated in Table 2. It can
be observed that, in terms of safety performance,
models trained using these three singular vector se-

lection strategies perform slightly worse than those
trained with safety-critical singular vectors, except
for the safe strategy, which achieves better results
under certain jailbreak methods. In terms of utility
performance, models trained with safety-critical
singular vectors outperform those trained using the
other three strategies. The above results indicate
that using safety-critical singular vectors for safety
training is the superior choice.

5.4 Safety-Critical Singular Vectors Exhibit
Generalization across Models.

To investigate the generalization of safety-critical
singular vectors across models, we experiment
on Mistral-7b-instruct-v0.2(Jiang et al., 2023) and
Gemma-2-2b-it(Team et al., 2024) additionally,
covering different model families and sizes. We
only experiment with ReFAT here as baseline
method due to computational constraints. The re-
sults are shown in Table 3. As shown in the table,
our method enhances both the safety and utility of
ReFAT on both models. The results demonstrate

4947



0 5 10 15 20 25 30
Transformer Layer

21

22

23

24

25

26

27

R
an

k 
N

um
be

r

self_atten.q
self_atten.k
self_atten.v
self_atten.o

(a) Self-Attention

0 5 10 15 20 25 30
Transformer Layer

21

22

23

24

25

26

27

R
an

k 
N

um
be

r

mlp.up
mlp.down
mlp.gate

(b) MLP

Figure 3: The rank number for the transformer modules in each layer after dynamic rank number determination
with α = 0.1.

Method Param.
Safety (ASR ↓) Utility (↑)

No attack GCG AmpleGCG AutoDAN TAP PAIR DrAttack AVG. MT-Bench IFEval GSM8K XSTest AVG.
α=0.05 70MB 5.5 22.5 4.5 10.5 26.0 19.0 25.5 16.2 7.97 74.49 75.05 97.0 81.56
α=0.1 190MB 4.0 2.5 5.0 3.5 19.0 16.0 21.0 10.1 8.00 76.52 75.36 97.0 82.22
α=0.2 386MB 4.0 12 2.5 5.0 19.0 16.0 20.0 11.2 7.93 76.34 75.29 98.0 82.23
α=0.3 542MB 3.5 12 2.5 5.0 18.5 17.5 16.0 10.7 7.95 75.42 75.73 98.0 82.16

Table 4: The safety and utility performance of models trained with different α in dynamic rank number determination,
along with the trainable parameter count. The best performance on each dataset is highlighted in bold.

the generalization of the safety-critical singular vec-
tors across different model families and sizes.

6 Analysis

In this section, we conduct an in-depth analysis of
different components of our method. In Section 6.1,
we investigate the impact of initializing LoRA with
different numbers of safety-critical singular vec-
tors in safety training. In Section 6.2 we visualize
the selection results of our dynamic rank number
determination and analyze the impact of different
hyperparameter α. In Section 6.3, we investigate
the effect of the size of calibration dataset. Due
to computational constraints, the following inves-
tigations are conducted only based on the ReFAT
method.

6.1 Number of Safety-Critical Singular
Vectors

We present the results of safety training with dif-
ferent numbers of safety-critical singular vectors,
i.e. the rank of the LoRA noted as lora_r, in Fig-
ure 2. For the safety performance shown in Fig-
ure 2a, the ASR exhibits a clear downward trend
as lora_r increases. When lora_r is relatively
low, the effect of safety training is not sufficiently
significant. In contrast, model trained using the
dynamic rank number determination strategy, de-

spite having approximately 1/4 the parameters of
those with lora_r = 128 (as shown in Table 1)
, exhibit significantly lower ASR than those with
lora_r = 32, which have similar parameter count.
This may due to that different layers and mod-
ules within the model have varying information
densities pertinent to safety-criticality (Wei et al.,
2024). Some layers may require fewer parameters
to achieve adequate fitting in safety training, while
others may necessitate more. The dynamic dy-
namic rank number determination strategy allows
for the adaptive allocation of rank values, catering
to the parameter needs of each layer, thereby re-
ducing the total parameter count while maintaining
the efficacy of safety training. We provide another
analysis for this in Section 6.2. Regarding the util-
ity performance shown in Figure 2b, although the
variation trends across datasets differ, the models
exhibit comparable utility performance on average.
This further demonstrates that safety training us-
ing safety-critical singular vectors can mitigate its
impact on model utility.

6.2 Dynamic Rank Number Determination

In Figure 3, we visualize the rank number deter-
mined by our dynamic strategy at different layers
and modules when α = 0.1. It can be observed
that the number of ranks in the middle and later
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Method
Safety (ASR ↓) Utility (↑)

No attack GCG AmpleGCG AutoDAN TAP PAIR DrAttack AVG. MT-Bench IFEval GSM8K XSTest AVG.
ReFAT 3.5 11.5 5.5 5.5 27.5 16.5 16.0 12.3 7.59 74.30 73.84 98.0 80.51
+original vectors 3.5 8.5 2.5 2.5 19.5 15.5 16.0 9.7 7.96 75.60 75.54 98.0 82.18
+new vectors 3.5 10.0 3.0 3.0 18.5 15.0 16.5 9.9 7.79 75.40 76.04 98.0 81.84

Table 5: The safety and utility performance of models trained with newly identified vectors and the original vectors.
The best performance on each dataset is highlighted in bold.

parts of the model is lower than that in the initial
part. Moreover, the MLP layers have a significantly
higher number of ranks compared to the attention
layers. This phenomenon indicates that the density
of safety-critical information is higher in the MLP
layers, being distributed across a greater number of
singular vectors. This finding is consistent with the
observations reported in Wei et al. (2024).

We then investigated the impact of the hyper-
parameter α. We set α in {0.05, 0.1, 0.2, 0.3}
and demonstrate the number of parameters and
safety training performance in Table 4. Although
α = 0.05 significantly reduces the number of pa-
rameters, the limited parameter capacity makes
it difficult to fit the safety training, leading to a
decline in safety performance. Conversely, when
α > 0.1, the overall model performance remains
largely similar. Therefore, in this study, we select
α = 0.1 as it achieves a better trade-off between
model performance and parameter efficiency.

6.3 Size of Calibration Dataset

To investigate the effect of the size of calibration
dataset, we add SorryBench(Xie et al., 2025) into
the safety calibration dataset. After that we find the
average overlap rate between the newly located top-
k safety-critical vectors and the old top-k ones is
60%. We further find that the average overlap rate
between the vectors with positive scores is 97%.
The above phenomenon indicates that if increasing
the size of the calibration dataset, our method can
find consistent singular vectors with positive scores.
However, because the safety pattern is different
across different datasets, the contribution and rank-
ing of each safety-critical vector may differ. As a
result, the located top-k vectors may vary.

We further experiment with the newly located
top-k safety-critical vectors and the results are
shown in Table 5. The performance of the model
initialized with the new top-k safety-critical vec-
tors is similar to the model with the original ones,
both surpassing the baseline model in safety and
utility. The results demonstrate that despite some

data-related variances, the safety-critical vectors
are consistently effective.

7 Conclusion

In this paper, we propose a plug-and-play method
for safety training to mitigate its adverse impact
on model’s utility. We locate the safety-criticality
singular vectors of model parameter weights with
low-rank projections for safety and utility. They
are used to initialize a SVD-formed LoRA and re-
place the LoRA modules in existing safety training
methods in a plug-and-play manner to constrain
the training updates within safety-criticality pa-
rameters. Moreover, we propose a dynamic rank
number determination strategy based on the safety-
criticality measurement to reduce parameter count.
Our experiments demonstrate that our method im-
prove both the safety and utility performance of all
the evaluated safety training baselines, validating
its effectiveness. Moreover, the dynamic rank num-
ber determination strategy can effectively reduces
the number of parameters while preserving model
performance. Our method can provide utility as-
surance for future safety training approaches in a
plug-and-play manner.

Limitations

Compared to the numerous existing jailbreak meth-
ods, our study selects only six representative ap-
proaches for evaluation. Although the coverage of
the evaluated jailbreak methods is not exhaustive,
our primary focus is not on whether our method
can defend against specific jailbreak techniques. In-
stead, we aim to assess how the performance of our
plug-and-play approach compares to the baseline
methods. We believe that evaluating our method
on the six selected jailbreak techniques is sufficient
to demonstrate this performance variation. Same
for the utility benchmarks.

Potential Risks

Once the safety-critical singular vectors are ob-
tained, potential attackers may employ harmful
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fine-tuning, unlearning, and other techniques to dis-
rupt the safety capabilities of these vectors, thereby
reducing the model’s overall security. Compared
to other parameters, specifically targeting safety-
critical singular vectors for interference may lead
to more effective attacks.
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A Proof of Equation 7

We note rank = min(dout, din), and we have:

∑

i

si =
rank∑

i

u⊤
i Πsui

=

rank∑

i

tr(u⊤
i Πsui)

=

rank∑

i

tr(uiu
⊤
i Πs)

If we consider the remaining dout − rank left
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singular vectors when dout > din,we have:

∑

i

si =

rank∑

i

tr(uiu
⊤
i Πs)

≤
rank∑

i

tr(uiu
⊤
i Πs)

+

dout∑

rank

tr(uiu
⊤
i Πs)

=

dout∑

i

tr(uiu
⊤
i Πs)

= tr(

dout∑

i

uiu
⊤
i Πs)

= tr(IdoutΠs)

= tr(Πs)

= tr(UsU
⊤
s )

= tr(U⊤
s Us)

= tr(Ir)

= r

The equal sign holds when dout ≤ din.

B Details of Safety Training Baselines

B.1 ReFAT
Yu et al. (2025) first discovers that the representa-
tion difference between the original harmful data
and the jailbreaked data has high similarity with
that of harmful data and harmless data, which is
noted as refusal features(Arditi et al., 2024). They
claim that the jailbreak methods mainly remove the
refusal features of harmful data to bypass the safety
mechanism of LLMs. Furthermore, they propose
ReFAT, which removes the refusal features in the
representation of harmful data in training, to train
a safety LoRA adversarially.

The refusal features are calculated based on 500
examples in AdvBench(Zou et al., 2023) as harmful
data Dharmful and 500 examples in Alpaca(Taori
et al., 2023) as harmless data Dharmless:

r
(l)
HH = 1

|Dharmful |
∑

x∈Dharmful
h(l)(x)− 1

|Dharmless |
∑

x∈Dharmless
h(l)(x)

ReFAT takes a dataset Dr = (x, y) of (harm-
ful request, refusal answer) as inputs and performs
supervised fine-tuning by minimizing the negative
conditional log likelihood of fθ(y|x) of a safe an-
swer under refusal feature ablation. In addition,

the model is also trained on an utility dataset of
Du of (harmless request, helpful answer) pairs to
maintain its general capability:

LRFA,r(θ) = −pRFAE(x,y)∼Dr [fθ (y | x,H(x)−RHH)]

− (1− pRFA)E(x,y)∼Dr [fθ(y | x,H(x))]

LRFA,u(θ) = −E(x,y)∼Du [fθ(y | x,H(x))]

LRFA(θ) = LRFA,r(θ) + LRFA,u(θ)

where RHH =
{
r
(l)
HH

}L

l=1
is the layerwise refusal

feature, and H(x)−RHH denotes the removal of
refusal features across model layers during model
forward pass with a probability pRFA. We use
pRFA = 0.5 in our paper.

B.2 CAT
Xhonneux et al. (2024) trains continuous embed-
ding attacks δ as perturbations on the embeddings
of LLMs to increase the probability of compliant
response for harmful instructions.

δt+1 = δt + α · sign
(
∇ log f

(
y | x+ δt

))

After applying perturbation on harmful instruc-
tion x, the LoRA model is trained to learn refuse
responses y with target loss and unlearn compliant
responses ŷ with away loss. Utility dataset Du is
also used to maintain general capability.

min
θ

−E(x,y,ŷ)∈D[log fθ(y | x+δ)︸ ︷︷ ︸
toward loss

− log fθ(ŷ | x+δ)︸ ︷︷ ︸
away loss

]

−E(x,y)∈Du [logfθ(y | x)︸ ︷︷ ︸
utility loss

]

B.3 CB
Zou et al. (2024) proposes to restrict the represen-
tation similarity between original model and the
LoRA-added model. For harmful data xs, they ex-
pect the output representation of the LoRA-added
model Mcb should keep away from that of original
model M to avoid compliant responses to harm-
ful queries. For harmless data, they expect these
two models should share similar output to retain
general capacities.

Ls = ReLU
(

cosine_sim
(
repM (xs) , repMcb

(xs)
))

Lr =
∥∥repM (xr)− repMcb

(xr)
∥∥
2

They use a dynamic coefficient schedule to control
the loss.

cs = α

(
1− t

2T

)
, cr = α

t

2T

L = csLs + crLr
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C Dataset preparation

In this section, we detail the dataset used in the
low-rank projection process. For utility, we use
Alpaca-Cleaned, a refined version of the Alpaca
dataset(Taori et al., 2023). The responses are the
official responses in the dataset. For safety, we
use AdvBench(Zou et al., 2023). The responses
are generated by the target model on AdvBench.
We use the following methods to ensure the safety
of the responses. Firstly, we perform multiple
rounds (such as 10) of sampling to expand the re-
sponse pool. Secondly, we employ a safety classi-
fier (such as the widely used LlamaGuard 2(Team,
2024)) to filter out the unsafe responses. Lastly,
for samples without safe responses after filtering,
we manually add a typical refusal response of the
target model, such as "I cannot {instruction}" for
Llama3_8B_Instruct.

D Hyperparameters

The hyperparameters for training different base-
lines are demonstrated in Table 6. Practically, the
number of the singular vectors with positive score
is relatively large. Directly choosing top k=128
scored singular vectors will not include the non-
safety-critical(with negative score) ones. It is worth
noting that for CB, we take different hyperparame-
ter from the other baselines to keep consistent with
their official implementation.

ReFAT CAT CB
lr 2e-5 1e-4 2e-4

batch_size 32 32 32
lora_r / k 128 128 16

lora_alpha 256 256 32
lora_layer 0-31 0-31 0-20
optimizer AdamW AdamW AdamW
max_seq 512 512 512
grad. clip 1.0 1.0 1.0

Table 6: The training hyperparameters of Llama3-8b-
instruct
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