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Abstract

Recently, using large language models (LLMs)
for data augmentation has led to considerable
improvements in unsupervised sentence embed-
ding models. However, existing methods en-
counter two primary challenges: limited data di-
versity and high data noise. Current approaches
often neglect fine-grained knowledge, such as
entities and quantities, leading to insufficient di-
versity. Besides, unsupervised data frequently
lacks discriminative information, and the gen-
erated synthetic samples may introduce noise.
In this paper, we propose a pipeline-based data
augmentation method via LLMs and introduce
the Gaussian-decayed gradient-assisted Con-
trastive Sentence Embedding (GCSE) model1

to enhance unsupervised sentence embeddings.
To tackle the issue of low data diversity, our
pipeline utilizes knowledge graphs (KGs) to ex-
tract entities and quantities, enabling LLMs to
generate more diverse samples. To address high
data noise, the GCSE model uses a Gaussian-
decayed function to limit the impact of false
hard negative samples, enhancing the model’s
discriminative capability. Experimental results
show that our approach achieves state-of-the-
art performance in semantic textual similar-
ity (STS) tasks, using fewer data samples and
smaller LLMs, demonstrating its efficiency and
robustness across various models.

1 Introduction

Sentence representation learning, a fundamental
task in natural language processing (NLP), aims
to generate accurate sentence embeddings to en-
hance performance in downstream tasks such as
semantic inference (Reimers and Gurevych, 2019),
retrieval (Thakur et al., 2021; Wang et al., 2022a),
and question answering (Sen et al., 2020). To im-
prove computational efficiency and reduce labor

*indicates the corresponding author
1Code is available at: https://github.com/aleversn/

GCSE

costs, unsupervised sentence embedding methods
based on contrastive learning (Gao et al., 2021;
Wu et al., 2022c) have emerged as highly effective
paradigms. Generally, contrastive learning operates
on the principle that robust sentence embeddings
should pull semantically similar sentences closer
while pushing dissimilar ones further apart. The
performance of unsupervised contrastive learning
methods largely depends on the quantity and qual-
ity of training samples (Chen et al., 2022), high-
lighting the importance of strategies that effectively
enhance both.

Previous studies mainly focused on increasing
the number of samples using rule-based word modi-
fications (Wang and Dou, 2023; Wu et al., 2022c) or
feature sampling and perturbation techniques (Xu
et al., 2023; Chuang et al., 2022a). Recent studies
(Zhang et al., 2023; Wang et al., 2024a) use either
few-shot manually constructed samples or zero-
shot generalized refactoring instructions to create
prompts that guide large language models (LLMs)
in generating new samples from original sentences,
increasing both the quantity and quality of the data.
Although these methods have achieved commend-
able performance, two limitations remain:

Low Data Diversity. Diverse data samples in
sentence representation learning should contain var-
ied expressions of the same knowledge. However,
existing approaches often struggle to distinguish
fine-grained semantic knowledge like entities and
quantities in the context. Traditional methods mod-
ify sentences using limited patterns without con-
sidering fine-grained knowledge, restricting their
effectiveness in enhancing sample diversity. Re-
cent LLM-based methods like Wang et al. (2024b),
SynCSE (Zhang et al., 2023) and MultiCSR (Wang
et al., 2024a), adjust topic and entailment cate-
gories in prompts to guide the model in generating
varied samples. These methods focus on the global
context but lack precise control over the knowledge
in the samples. Consequently, the diversity of gen-
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Figure 1: Comparison of false positives (FP) and neg-
atives (FN). Both the predicted scores and labels are
normalized (see details in Appendix J), where positives
have a score greater than the label, while negatives lower
than the label. False samples are identified when the
root mean square error (RMSE) between the prediction
and the label exceeds 0.2.

erated samples is constrained by the probability
distributions of LLMs, resulting in unpredictable
data quality.

High Data Noise. Unsupervised sentence repre-
sentation learning often suffers from data noise
caused by confusing negative samples, which
mainly arise from two sources. First, traditional
methods generate datasets by duplicating samples
to create positive instances, leading to negatives
with similar surface-level semantics that affect the
model’s understanding of fine-grained semantic in-
formation (Miao et al., 2023; Zhou et al., 2022).
Second, in data synthesis, differences in semantic
distributions can cause the LLM’s criteria for dis-
tinguishing between positive and negative samples
to misalign with the target domain, introducing
additional noise (Huang et al., 2023; Poerner and
Schütze, 2019). Existing method like MultiCSR
attempts to remove noisy samples using linear pro-
gramming, but this can eliminate potentially valu-
able samples and reduce data diversity. Figure 1
compares various baselines on the STS-Benchmark
development set. The results show that the predic-
tion of false positives outnumber false negatives,
and data synthesis in SynCSE increases false nega-
tives, further supporting the above analysis.

In this paper, we propose a pipeline-based data
augmentation method using LLMs and introduce
the Gaussian-decayed gradient-assisted Contrastive
Sentence Embedding (GCSE) model to improve the
performance of unsupervised sentence embedding
methods. To address the issue of low data diversity,
we begin by extracting entities and quantities from
the data samples and constructing a knowledge

graph (KG). Next, we create a sentence construc-
tion prompt using the extracted knowledge to guide
LLM in generating more diverse positive samples.
To tackle high data noise, we employ an evalu-
ation model to annotate the synthesized data and
initially filter out false positive samples. To fur-
ther minimize the impact of false negatives while
maintaining sample diversity, we align hard nega-
tives with the evaluation model’s distribution and
reduce their gradient during the initial training step.
Then, we leverage other in-batch negative samples
to optimize the semantic space. Inspired by lo-
cally weighted linear regression (Atkeson et al.,
1997), we propose the GCSE model, which utilizes
a Gaussian-decayed function to adjust prediction
discrepancies between the GCSE model and the
evaluation model. Initially, it reduces the gradi-
ent impact of hard negatives, gradually restoring
their gradient weights as training progresses if they
deviate significantly from the evaluation model’s
distribution. This approach prevents false negatives
from being pushed further in the semantic space,
promoting a more uniform distribution.

Methods Synthesis Approach Use Knowledge Denoise

SynCSE Few-shot Synthesis No No
MultiCSR Zero-shot Synthesis No Yes

Ours Zero-shot Synthesis Yes Yes

Table 1: Comparison of our methods and related LLM-
based methods.

We highlight the key innovations of our approach
in Table 1: (i) We are the first to incorporate fine-
grained knowledge for sample synthesis in LLM-
based methods. (ii) Unlike MultiCSR’s denoising
approach, our method retains more false samples
for training rather than discarding them. (iii) Our
data selection strategy is particularly well-suited
for leveraging a local LLM to synthesize domain-
specific samples from a limited number of samples,
leading to improved performance. Experimental
results demonstrate the efficiency of our model,
outperforming previous best methods in average
scores for semantic textual similarity (STS) tasks
by 1.05% with BERT-base, 1.89% with BERT-
large, 0.50% with RoBERTa-base, and 1.50% with
RoBERTa-large.

In summary, our contributions are as follows:
(1) New method. We introduce a pipeline-based
data augmentation method using LLM for few-
shot domain data and propose a Gaussian-decayed
gradient-assisted Contrastive Sentence Embed-
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Figure 2: The overall workflow of our method.

ding (GCSE) model to reduce data noise. (2)
New perspective. To the best of our knowledge,
we are the first to explore combining knowledge
graphs with LLM to synthesize data, enhancing
fine-grained sentence representation learning by
generating diverse positive and negative samples.
(3) State-of-the-art performance. Experimental re-
sults demonstrate that our method achieves supe-
rior performance on STS tasks while using fewer
samples for data synthesis with smaller LLM pa-
rameters.

2 Related Work

Early work on sentence embeddings builds on the
distributional hypothesis, predicting surrounding
sentences (Kiros et al., 2015; Logeswaran and Lee,
2018; Hill et al., 2016) or extending the word2vec
framework (Mikolov et al., 2013) with n-gram em-
beddings (Pagliardini et al., 2018). Post-processing
techniques like BERT-flow (Li et al., 2020) and
BERT-whitening (Su et al., 2021) address the
anisotropy issue in pre-trained language models
(PLMs), and more recent methods focus on genera-
tive approaches (Wang et al., 2021; Wu and Zhao,
2022) and regularizing embeddings to prevent rep-
resentation degeneration (Huang et al., 2021). Re-
cently, contrastive learning approaches have be-
come prominent, using various augmentation meth-
ods to derive different views of the same sen-
tence (Zhang et al., 2020; Giorgi et al., 2021; Kim
et al., 2021; Gao et al., 2021). Among these, Sim-
CSE uses dropout as a simple augmentation and
achieves strong results in unsupervised STS tasks,
inspiring further approaches like ArcCSE (Zhang
et al., 2022), DiffCSE (Chuang et al., 2022a), GS-
InfoNCE (Wu et al., 2022b), and RankCSE (Liu
et al., 2023).

With the advent of LLMs (OpenAI, 2023; Bai
et al., 2023; Touvron et al., 2023), some works at-
tempt to utilize LLM for sentence representation
learning. For example, Ni et al. (2022) uses T5
with mean pooling to obtain a sentence embed-
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Figure 3: The pipeline of knowledge extraction and data
synthesis, where the solid black arrows in the Entity KG
are hard edges, and dotted yellow lines are soft edges.

ding model by fine-tuning on a large-scale NLI
corpus; Cheng et al. (2023) uses prompt learning to
measure the semantic similarity of sentence pairs;
Springer et al. (2024) employs sentence repetition
to enhance the capacity for sentence representa-
tion; AoE (Li and Li, 2024a) optimize angle dif-
ferences for improving supervised text embedding;
and BeLLM (Li and Li, 2024b) designs a Siamese
structure for learning sentence embeddings.

3 Methodology

In this section, we present the data augmentation
pipeline via LLM and the specific structure of the
GCSE. As shown in Figure 2, we start by using
a data augmentation pipeline to synthesize new
samples from the source data, and then train our
model with the filtered synthetic data.

3.1 Data Augmentation

In the data augmentation pipeline, we utilize both
domain data and partial general data to balance
domain-specific relevance and general-domain ap-
plicability. We start by extracting knowledge from
the source data and then synthesize new data for
our model training. The detailed structure of the
pipeline is shown in Figure 3.

Knowledge Extraction and Integration. The
variety and relationships between samples directly
impact model performance in sentence represen-
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tation learning. A major challenge with existing
LLM-based data synthesis methods is the limited
diversity they generate for each short text. To trade
off the low diversity of the generated samples with
their relevance to the domain semantic space, we
first design an extraction prompt to obtain entities
and quantities from the given data. Formally, we
denote the extraction prompt as Pe, and LLM L,
suppose we finally extract instances with d sample
number, the knowledge set Ki = {ki1, . . . , kin} of
each instance xi is computed in Equation 1, where
tj , cj and qj represent the entity text, entity type,
and quantity of ki. n is the size of Ki, and F(·) is
the formatting function that converts text to a triplet.
Next, we integrate all knowledge by establishing
an entity knowledge graph G = ⟨V,E⟩, where the
node set V contains all the ⟨t, c, q⟩ from K:

K =
d⋃

i=1

F([Pe;xi],L) =

d⋃

i=1

{⟨tij , cij , qij⟩ | j ∈ [1, n]}, (1)

V = {tij , cij , qij | i ∈ [1, d]; j ∈ [1, n]}. (2)

The edges E consist of hard edges Er and soft
edges Es. As shown in Equations 3 and 4, Er

represents the relationship between the entity text,
type, and quantity of each k ∈ K, and Es indicates
the relationship between entity text in kij and other
entity text or type in the same instance xi.

Er = {(tij , cij) ∪ (tij , qij) | i ∈ [1, d]; j ∈ [1, n]}, (3)

Es =
⋃d

i=1{(tij , tik), (tij , cil) | j, k, l ∈ [1, n]; k, l ̸= j}. (4)

By defining hard and soft edges, we can more ef-
ficiently identify and replace entity nodes near the
current node, improving the correlation between
the synthesized instance and the source instance.

Data Synthesis via LLM. Empirical evidence
and model performance on standard datasets show
that sentence embedding models struggle more
with accurately identifying negative samples than
positives (Chuang et al., 2022a; Miao et al., 2023).
In the contrastive learning methods, the model ac-
quires sentence embedding representation by calcu-
lating the distance between sentence-pairs. It aims
to minimize the spatial distance between positive
pairs and increase the spatial distance between neg-
ative pairs. Thus, it is essential to obtain negative
samples that closely resemble the source instance

in surface-level features, while positive samples
should have diverse representations but still convey
the same meaning as the source instance.

In this study, we use LLM to generate positive
samples through a rewrite prompt. We also focus
on the impact of variations in entities and quan-
tities within the samples. Negative samples are
generated by the LLM at both the syntactic and
fine-grained knowledge levels. The data synthe-
sis prompts are divided into three main types: (1)
Rewriting prompt, (2) Syntactic antisense prompt,
and (3) Entity revision prompt. The first type is
used to create positive samples, while the second
and third types are used to create negative samples
at the syntactic and knowledge levels, respectively.

The “rewriting prompt” can be classified into
three forms: directly requesting LLM to generate a
new sentence instance using the “rewrite” instruc-
tion, creating the preceding part of the sentence in-
stance, and generating based on the knowledge set
of the instance. As the diversity of synthetic sam-
ples increases, the likelihood of generating false
positives also rises. To address this, the next sec-
tion involves scoring the generated samples using
an evaluation model.

The “syntactic antisense prompt” aims to mod-
ify the semantics to create a contradiction at the
syntactic level. Such as transforming it into a pos-
itive or negative statement using explicit positive
or negative words, or by expressing a contrary sen-
timent. This is an initial approach to synthesizing
negative samples that preserves a strong coherence
with the source instance in terms of sequence struc-
ture. However, it is deficient in generation diver-
sity. To alleviate the issue, the “entity revision
prompt” aims to enhance text diversity by replac-
ing the entity text and quantity compared to the
source instance. Simultaneously, to ensure the se-
mantic relevance between the synthetic samples
and the source instance, replacement entities are
selected by searching for neighboring nodes on en-
tity KG. We define T (·) as the search function, and
the replacement entity of tij are computed as:

Tr(tij)= {tp | (tij , cij) ∈ Er ∧ (tp, cij) ∈ Er}, (5)

Ts(tij) = {tp | (tij , tp) ∈ Es}, (6)

Tp(tij)= {tp | ∃tk ∈ Ts(tij) ∩ Ts(tp) ∧ tp ∈ Tr(tij)}, (7)

T (tij) = Tr(tij) ∪ Tp(tij), (8)

where the function Tr(·) is used to search for enti-
ties that share a hard edge with the current entity,
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while Ts(·) retrieves entities connected via a soft
edge. The function Tp(·) is designed to find a re-
placement entity tp that is of the same type as tij
and shares soft-edge connections with another in-
context entity tk. Finally, the replacement entity
is randomly selected from the results of the search
function T (tij). Compared to random entity sub-
stitution, our strategy significantly improves the
semantic relevance between the synthesized sam-
ple and the source instance.

3.2 Model Training
The training process of our model consists of two
stages. First, we combine general and domain-
specific data to train an evaluation model using
standard unsupervised contrastive learning. This
improves the uniformity of sentence embeddings
in general scenarios and reduces the impact of se-
mantic distribution limitations in the synthesized
data, enhancing model robustness. Then, we freeze
the evaluation model to filter synthetic data and
help the GCSE model eliminate false hard negative
sample noise.

General Contrastive Learning. In the first
stage, we follow the formulation of SimCSE (Gao
et al., 2021) to train the evaluation model. Formally,
we define the encoder of the evaluation model as
E′, each unlabeled sentence instance as xi, and its
positive sample as x+i = xi. The representation
of each instance is denoted as h′ = FE′(x), the
representations of xi and x+i are computed as h′

i

and h′+
i , respectively. Since the dropout mask in

E′ is random, h′
i and h′+

i are computed with the
same input but with slightly different results. Then,
the loss of evaluation model is defined as:

− log
esim(h′

i,h
′+
i )/τ

∑N
j=1 e

sim(h′
i,h

′+
j )/τ

, (9)

where N represents the size of each mini-batch, τ
is a temperature hyperparameter, and sim(·) is the
cosine similarity function.

Denoising Training. In the second stage, we
adopt a copy of the evaluation model as the back-
bone of GCSE and continue training on synthe-
sized data. In this stage, each input is set as a
triplet (xi, x+i , x

−
i ), where x+i and x−i stand for the

positive and negative samples of xi, respectively.
Nevertheless, the synthesized data contains many
potential false positive and false negative samples,
necessitating the implementation of a filtering pro-
cess. We use the frozen evaluation model to ini-
tially correct these inaccurate samples and build the
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Figure 4: In-batch training with Gaussian-decayed on
GCSE.

ultimate triplet dataset. Let S(xi) = {x̂i1, . . . x̂im}
denotes the synthetic data set of xi, where m is the
size of the set, and x+i , x−i are calculated as:

x+i =

{
x̂ij , sim(h′

i, ĥ
′
ij) ≥ α, j ∈ [1,m]

xi, else
,

(10)

x−i =

{
x̂ij , sim(h′

i, ĥ
′
ij) ≤ β, j ∈ [1,m]

xk, k ∈ [1, N ], k ̸= i
,

(11)
where α, β are the threshold for positives and nega-
tives, respectively. xk denotes a randomly selected
instance from in-batch data. We can set a high
value for α to reduce false positive samples. How-
ever, filtering out false negatives in synthetic data
is more challenging. In theory, smaller β can re-
duce more false negatives, but samples with low
similarity to the source instance are easy to distin-
guish due to significant surface-level differences.
As a result, training on these samples does not ef-
fectively improve the model’s ability to distinguish
fine-grained false positives. Therefore, we opt for
a higher value of β. During training, we use a
Gaussian-decayed function to align the distances
of hard negative samples between the GCSE en-
coder E and the frozen encoder E′. As shown
in Figure 4, for each mini-batch of triplet inputs,
both E and E′ compute similarity scores for the
negative samples and their corresponding source
instances. The loss for each instance in GCSE is
defined as:

− log esim(hi,h
+
i

)/τ

∑N
j=1 e

sim(hi,h
+
j

)/τ
+
∑N

j=1
j ̸=i

e
sim(hi,h

−
j

)/τ
+eG(si,s

′
i
,τ,σ)

, (12)

G(si, s
′
i, τ, σ) =




si

(
1− e−

(si−s′i)
2τ2

2σ2

)
, si ≤ s′i

si, si > s′i

, (13)

where si = sim(hi,h
−
i ), s

′
i = sim(h′

i,h
′−
i ). G(·)

is the Gaussian-decayed function, where the loss
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attenuation of the hard negative sample grows as
the distance between si and s′i decreases, and σ is
a hyperparameter that controls the width of G(·).
This implies that when E initially calculates the
hard negative sample, it follows the spatial distribu-
tion of E′ as the “established guidelines” and uses
other in-batch negative samples to further increase
the spatial distance between negatives, effectively
reducing the influence of false negatives. As train-
ing progresses, the spatial distribution of true hard
negatives between E and E′ will progressively in-
crease, and its gradient will be restored.

4 Experiment

4.1 Experiment Setup

Training: In our main experiments, we evaluate
model performance under two settings: (1) the de-
fault setting, where samples are synthesized using
Wikipedia texts following Gao et al. (2021); and (2)
a simulated low-resource, high-quality setup using
a smaller yet diverse set of domain-specific and gen-
eral data. Specifically, we use a subset of the NLI
dataset from Gao et al. (2021) as the general data,
and select the training sets from STS-12 (Cer et al.,
2017) (2.2k samples), PAWS (Zhang et al., 2019)
(3.5k samples), and SICK (Marelli et al., 2014)
(4.5k samples) as domain-specific data. To sim-
ulate an unsupervised learning scenario, we only
include the unlabeled portions of these datasets. In
this experiment, the sample ratio between domain
and general data is set to 1:3.

We adopt ChatGLM3-6B (GLM et al., 2024),
GLM4-9B-Chat (GLM et al., 2024), Qwen2.5-
32B-Instruct (Yang et al., 2024b,a), GPT-3.5
Turbo (OpenAI, 2022) and Deepseek-V3-0324
(DeepSeek-AI, 2024) as LLMs for data synthesis,
respectively. We choose BERT (Devlin et al., 2019)
and RoBERTa (Liu et al., 2019) as the backbone
models of GCSE. In the stage of Gaussian-decayed
training on synthesized data, the filtering thresh-
olds of α and β are set as 0.9 and 0.75, respectively.
The temperature of τ is set as 0.05, and the σ of
G(·) is set as 0.01. In the first stage training, the
evaluation model is firstly trained on the unlabeled
dataset of all general data and domain data. One
copy instance of the evaluation model is then uti-
lized as the pre-trained model for GCSE, while the
original instance is set to be frozen to filter syn-
thesized data and provide guidance for GCSE. In
the second stage, GCSE is trained on the filtered
synthesized data, and the sentence embedding is

obtained from the last output hidden states of the
first token. During the data augmentation phase,
we used an NVIDIA A800 80G for LLM-based
data synthesis. In the training phase, we conducted
training and validation on eight NVIDIA TITAN
RTX GPUs.

Evaluation: To validate our method for sen-
tence embeddings, we evaluated the model’s perfor-
mance on semantic textual similarity (STS) tasks,
we use the standard evaluation method, measuring
model performance with Spearman’s correlation,
and we adopt SentEval2 (Conneau and Kiela, 2018)
as the evaluation tool, which contains seven STS
subsets: STS 2012-2016 (Agirre et al., 2012, 2013,
2014, 2015, 2016), the STS-Benchmark (Cer et al.,
2017) and the SICK Relatedness (Marelli et al.,
2014). Additionally, we compared the reranking
task performance on Appendix B, and the perfor-
mance of our model with other methods on transfer
tasks in SentEval to evaluate its applicability in
Appendix D.

Baselines: We compare our method with main-
stream unsupervised sentence embedding baselines:
BERT-whitening (Su et al., 2021), SimCSE (Gao
et al., 2021), DiffCSE (Chuang et al., 2022b),
PromptBERT (Jiang et al., 2022), PCL (Wu et al.,
2022a), CARDS (Wang et al., 2022b), DebCSE
(Miao et al., 2023) and RankCSE (Liu et al., 2023).
In addition, we further compare two baselines:
SynCSE (Zhang et al., 2023) and MultiCSR (Wang
et al., 2024a), which use LLM for data synthesizing
in whole NLI datasets. To verify the effectiveness
of our data synthesis method, we choose their re-
sults of using GPT-3.5 Turbo for comparison.

4.2 Main Results

STS Tasks: The overall results of the STS tasks
are shown in Table 2. Our approach, utilizing syn-
thetic samples from Deepseek-V3-0324 and GPT-
3.5 Turbo achieve the best performance across
all backbones when compared to other unsuper-
vised baselines. Even with synthetic samples from
ChatGLM3-6B, our method still outperforms pre-
vious approaches on all backbones. This highlights
the applicability of our method, as it can be effec-
tively applied to multiple models. Compared to
the standard unsupervised SimCSE, Spearman’s
correlation of GCSE (ChatGLM3-6B) is improved
by an average of 5.40% on the base models and
3.95% on the large models. On the strong base-

2https://github.com/facebookresearch/SentEval
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Model Method STS-12 STS-13 STS-14 STS-15 STS-16 STS-B SICK-R Avg.

BERT-base

whitening† 57.83 66.90 60.90 75.08 71.31 68.24 63.73 66.28
SimCSE† 68.40 82.41 74.38 80.91 78.56 76.85 72.23 76.25
DiffCSE† 72.28 84.43 76.47 83.90 80.54 80.59 71.23 78.49
PromptBERT♣ 71.56 84.58 76.98 84.47 80.60 81.60 69.87 78.54
PCL♠ 72.84 83.81 76.52 83.06 79.32 80.01 73.38 78.42
DebCSE† 76.15 84.67 78.91 85.41 80.55 82.99 73.60 80.33
RankCSE♠ 75.66 86.27 77.81 84.74 81.10 81.80 75.13 80.36
SynCSE (GPT-3.5 Turbo)* 75.86 82.19 78.71 85.63 81.11 82.35 78.79 80.66
MultiCSR (GPT-3.5 Turbo)♣ 74.86 84.19 79.46 84.70 80.34 83.59 79.37 80.93
GCSE (ChatGLM3-6B) 78.14 85.89 80.71 84.92 81.20 82.89 77.49 81.61
GCSE (GLM4-9B-Chat) 77.30 86.21 80.60 84.98 81.48 83.22 77.82 81.66
GCSE (Qwen2.5-32B-Instruct) 77.83 86.07 80.77 85.32 81.51 83.26 78.17 81.85
GCSE (GPT-3.5 Turbo) 77.88 86.21 80.91 84.98 81.60 83.38 78.59 81.94
GCSE (Deepseek-V3-0324) 78.33 86.12 80.31 85.32 81.38 83.62 78.79 81.98

BERT-large

SimCSE† 70.88 84.16 76.43 84.50 79.76 79.26 73.88 78.41
PCL♠ 74.87 86.11 78.29 85.65 80.52 81.62 73.94 80.14
DebCSE† 76.82 86.36 79.81 85.80 80.83 83.45 74.67 81.11
RankCSE♠ 75.48 86.50 78.60 85.45 81.09 81.58 75.53 80.60
SynCSE (GPT-3.5 Turbo)* 74.24 85.31 79.41 85.71 81.76 82.61 79.25 81.18
GCSE (ChatGLM3-6B) 77.69 86.98 81.68 86.01 81.89 84.28 79.43 82.57
GCSE (GLM4-9B-Chat) 78.17 87.02 82.08 86.62 82.04 84.71 79.53 82.89
GCSE (Qwen2.5-32B-Instruct) 78.34 87.02 81.88 86.39 82.29 84.80 79.97 82.96
GCSE (GPT-3.5 Turbo) 78.60 87.27 82.18 85.90 82.30 84.77 80.09 83.02
GCSE (Deepseek-V3-0324) 78.11 87.22 82.23 86.31 82.13 84.93 80.55 83.07

RoBERTa-base

whitening† 46.99 63.24 57.23 71.36 68.99 61.36 62.91 61.73
SimCSE† 70.16 81.77 73.24 81.36 80.65 80.22 68.56 76.57
DiffCSE† 70.05 83.43 75.49 82.81 82.12 82.38 71.19 78.21
PromptRoBERTa♣ 73.94 84.74 77.28 84.99 81.74 81.88 69.50 79.15
PCL♠ 71.13 82.38 75.40 83.07 81.98 81.63 69.72 77.90
DebCSE† 74.29 85.54 79.46 85.68 81.20 83.96 74.04 80.60
RankCSE♠ 73.20 85.95 77.17 84.82 82.58 83.08 71.88 79.81
SynCSE (GPT-3.5 Turbo)†† 74.61 83.76 77.89 85.09 82.28 82.71 78.88 80.75
MultiCSR (GPT-3.5 Turbo)♣ 75.61 84.33 80.10 84.98 82.13 84.54 79.67 81.62
GCSE (ChatGLM3-6B) 76.95 85.59 80.43 85.90 83.20 84.62 77.28 82.00
GCSE (GLM4-9B-Chat) 77.83 84.62 80.17 86.21 82.99 84.05 78.33 82.03
GCSE (Qwen2.5-32B-Instruct) 77.81 84.56 80.23 86.13 83.19 84.38 78.06 82.05
GCSE (GPT-3.5 Turbo) 78.03 83.79 80.61 86.28 82.76 84.31 79.01 82.11
GCSE (Deepseek-V3-0324) 77.77 84.33 80.60 86.01 82.75 84.60 78.77 82.12

RoBERTa-large

SimCSE† 72.86 83.99 75.62 84.77 81.80 81.98 71.26 78.90
PCL♠ 74.08 84.36 76.42 85.49 81.76 82.79 71.51 79.49
DebCSE† 77.68 87.17 80.53 85.90 83.57 85.36 73.89 82.01
RankCSE♠ 73.20 85.83 78.00 85.63 82.67 84.19 73.64 80.45
SynCSE (GPT-3.5 Turbo)†† 75.45 85.01 80.28 86.55 83.95 84.49 80.61 82.33
GCSE (ChatGLM3-6B) 76.10 86.64 81.21 85.90 83.99 85.51 79.11 82.64
GCSE (GLM4-9B-Chat) 77.94 87.00 82.34 86.52 84.27 86.19 78.38 83.23
GCSE (Qwen2.5-32B-Instruct) 77.79 87.45 82.22 87.86 84.62 86.75 78.30 83.57
GCSE (GPT-3.5 Turbo) 78.21 87.47 82.76 87.79 84.40 86.15 80.02 83.83
GCSE (Deepseek-V3-0324) 78.11 87.40 82.61 88.00 84.15 86.32 80.12 83.82

Table 2: Comparison of Spearman’s correlation results on STS tasks. The values in parentheses indicate using
data synthesized by different LLMs. The values in bold and underlined indicate the best and second-best values,
respectively. “†”: results from Miao et al. (2023), “♣”: results from Wang et al. (2024a), “♠”: results from Liu et al.
(2023), “††”: results from Zhang et al. (2023). “*”: we reproduce the results with the officially released corpus from
Zhang et al. (2023). GCSE has significant differences with all comparable baselines on the t-test (p < 0.5%).

line RankCSE, GCSE (ChatGLM3-6B) achieved a
1.90% improvement over its average performance,
demonstrating the effectiveness of the LLM data
synthesis process.

Furthermore, compared to the two state-of-the-
art baseline models SynCSE and MultiCSR, both
of which rely on LLMs for data synthesis, our ap-
proach consistently achieves better performance
across all backbone models. Table 3 further re-
ports our results under a simulated low-resource,
high-quality domain-specific setting. The results
show that our method, which utilizes local LLMs,
achieves higher average Spearman correlations
than the GPT-3.5 Turbo-based versions of both
baseline models. It is also worth noting that our

method uses only 14% of the sample size com-
pared to SynCSE and MultiCSR, which rely on the
full NLI datasets. These results demonstrate the
effectiveness of our data synthesis method and our
domain-oriented sample selection strategy.

4.3 Analysis

Ablation Studies: We analyze the impact of each
module or strategy in GCSE (ChatGLM3-6B) un-
der domain-specific setting and report the results
in Table 4. First, “w/o stage-2” refers to the re-
sults obtained without training in the second stage.
This leads to a significant decrease in performance
compared to the default model, which is the perfor-
mance of the evaluation model and is similar to the
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Model Method Avg.

BERT-base
GCSE (ChatGLM3-6B) 81.35
GCSE (GLM4-9B-Chat) 81.58
GCSE (GPT-3.5 Turbo) 81.92

BERT-large
GCSE (ChatGLM3-6B) 81.49
GCSE (GLM4-9B-Chat) 82.05
GCSE (GPT-3.5 Turbo) 82.76

Roberta-base
GCSE (ChatGLM3-6B) 81.23
GCSE (GLM4-9B-Chat) 81.70
GCSE (GPT-3.5 Turbo) 82.18

Roberta-large
GCSE (ChatGLM3-6B) 82.62
GCSE (GLM4-9B-Chat) 82.91
GCSE (GPT-3.5 Turbo) 83.83

Table 3: Spearman’s correlation results on STS tasks
under the low-resource domain data setting. The best
results are highlighted in bold.

conventional unsupervised SimCSE. Then, “w ran-
domly” refers to the direct use of the instance itself
as a positive sample in the combination dataset of
domain and general data, while randomly selecting
a negative instance from the dataset. We can ob-
serve that its performance in this case is even worse
than the evaluation model. This demonstrates that
the diversity of positive samples and the quality of
negative samples significantly impact the perfor-
mance of the model. “w/o filtering” indicates the
results of training by skipping evaluation model
filtering and directly using the data synthesized by
LLM. The results show that the performance of
the model is significantly affected when false posi-
tive and negative samples are introduced without
filtering. We investigate the impact of the Gaussian-
decayed function by removing it, and the results are
shown in “w/o decay”. We can observe that the de-
fault model performs better overall than when the
Gaussian-decayed function is removed, indicating
that it can filter out potential false negative sample
noise. Finally, we analyze the necessity of includ-
ing general data and domain data in “w/o general”
and “w/o domain” respectively. It can be observed
that removing either of them results in a decline in
performance, which indicates the significance of
domain data and the essentiality of general data in
our method.

Analysis of entities and quantities awareness:
We analyze GCSE awareness of entities and quanti-
ties by constructing a dataset using the data synthe-
sis method in Section 3.1 on the STS-Benchmark
development set. Then, the similarity scores of
each triplet in the dataset are annotated by two
supervised pre-trained models: “sup-simcse-bert-

large” and “sup-simcse-roberta-large”. The final
label is the average score of the similarity calcu-
lated by both models. We evaluate Spearman’s cor-
relation scores of GCSE and the other three strong
baselines on the backbone of the BERT-base model,
and the results are shown in Table 5. Our GCSE
achieves the best result and outperforms RankCSE
by 14.03%. In this case, both SynCSE and GCSE
achieve significant improvements over methods
without LLM. This might be due to the similarity of
the semantic representation space between the train-
ing set and the development set, both of which are
synthesized via LLM. Nevertheless, GCSE shows
a notable enhancement in performance of 2.19%
compared to SynCSE, demonstrating that its under-
standing of the entities and quantities in sentences
has enhanced to a certain degree.

4.4 Impact on the ratio between domain and
general data

Figure 5 presents the trend of the GCSE Spear-
man’s correlation result as the proportion of general
data introduced increases, where “d” represents
that only using the domain data. The results show
that adding a certain amount of general data im-
proves performance on STS tasks. However, when
the size of general data exceeds three times that of
domain data, performance starts to decline. This
suggests that incorporating a moderate amount of
external data enhances the uniformity of sentence
embeddings. But as the out-of-domain data grows,
the influence of domain-specific data on training
weakens. Overall, the results indicate that domain
data improves the model’s ability to represent target
domain sentences, while general data helps with
sentence embedding uniformity.

4.5 Impact of the Gaussian-decayed

To further investigate the effectiveness of the
Gaussian-decayed function, we analyze the GCSE
(ChatGLM3-6B) performance in domain-specific
setting against the weight of σ on the synthesized
data, both with and without filtering. As shown
in Figure 6, we use the synthesized data without
filtering to evaluate the efficacy of the Gaussian-
decayed function in eliminating false negative sam-
ples, and results are presented in Figure 6 (b). It is
clear that the model’s performance improves as the
weight of σ grows. This suggests that a greater σ
weight enhances the model’s effectiveness in mit-
igating the impact of false negative samples. It
is important to acknowledge that a higher σ does
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Method STS-12 STS-13 STS-14 STS-15 STS-16 STS-B SICK-R Avg.

GCSE (ChatGLM3-6B) 76.91 85.48 79.49 84.28 82.65 83.90 76.72 81.35
w/o stage-2 71.85 83.65 76.84 83.37 78.74 79.10 71.69 77.89
w randomly 71.94 84.03 76.99 83.65 79.11 78.66 69.28 77.67
w/o filtering 74.65 83.54 77.39 83.27 79.97 79.66 74.27 78.96
w/o decay 76.26 85.98 79.35 84.09 82.12 83.85 76.00 81.09
w/o general 75.44 85.55 79.19 84.91 80.23 81.57 74.14 80.15
w/o domain 75.59 85.66 78.93 84.09 80.87 82.29 76.00 80.49

Table 4: Ablation studies of STS tasks on BERT-base. Other PLMs yield similar patterns to BERT-base.
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Figure 5: Spearman’s correlation
against the ratio of domain data to
general data on the STS tasks.
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(a) Default training set (b) w/o filtering training set

Figure 6: Spearman’s correlation against the weight of the Gaussian-
decayed on the STS tasks.

(a) w/o decay (b) 𝝈 = 𝟎.𝟑𝟐 (c) Gold

Figure 7: Density plots of the STS-Benchmark development set with labels ≥ 4, which is evaluated by GCSE
(ChatGLM3-6B) in domain-specific setting with different σ weights. (c) is the density plot of gold labels.

Method Spearman’s

unsup-SimCSE 75.59
RankCSE 79.74

SynCSE (GPT-3.5 Turbo) 91.58
GCSE (ChatGLM3-6B) 93.77

Table 5: Comparison of Spearman’s correlation results
on the synthetic data of the STS-Benchmark develop-
ment set.

not necessarily indicate better performance. As
shown in Figure 6 (a), an increase in σ at the initial
stage contributes to enhancing the model’s perfor-
mance. Nevertheless, as the weight of σ increases,
the performance of backbones generally declines,
resulting in the model adhering too strictly to the
“established guidelines”. Consequently, it impacts
the efficacy of learning from the hard negative sam-
ples. We further use the density plots to visualize
the prediction on the STS-Benchmark development
set in Figure 7. These models are trained on the
synthesized data without filtering. We can observe
that in Figure 7 (a), the distribution of prediction

results for labels ≥ 4 is significantly shifted to the
left. Compared with the results in Figure 7 (b), this
issue is effectively alleviated, demonstrating the
effectiveness of the Gaussian-decayed function in
reducing the influence of false negative samples.
To further verify the applicability of the Gaussian-
decayed function, we applied it to SynCSE and
verified the performance in Appendix F.

5 Conclusion

In this paper, we propose a pipeline-based data
augmentation method using LLM to enhance data
diversity in sentence representation learning. By
leveraging knowledge of entities and quantities, our
approach improves the model’s ability to capture
fine-grained semantic distinctions. The Gaussian-
decayed function in our GCSE model further re-
duces noise in the generated data. Extensive exper-
iments on STS and reranking tasks show that our
method achieves state-of-the-art results with fewer
synthesized samples and a more lightweight LLM,
demonstrating its effectiveness and efficiency.
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Limitations

While our data augmentation method achieves
promising results across LLMs with varying param-
eter scales, we observe performance discrepancies
depending on the size of the LLM used. These vari-
ations may arise from differences in how effectively
each model adheres to and aligns with the provided
prompts. In future work, we plan to address these
limitations by enhancing prompt adherence and
alignment across different LLM architectures.

Ethics Statement

Our data augmentation method leverages LLMs to
generate data independently of the existing training
dataset. However, it is important to note that the
generated data may inherit social biases present
in the pre-training corpus. Therefore, in practical
applications, we recommend conducting manual
reviews of the generated data to mitigate the risk of
propagating biased information into the sequence
labeling models.
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Appendix

A Data Synthesis Prompts

In this section, we provide the specifics of our
prompts for knowledge extraction and integration,
and data synthesis. The particular prompts are pre-
sented in Figure 8 and 9.

B Reranking Tasks

To compare the ranking performance of our method
on retrieval tasks, we evaluated the model using
the MTEB benchmark (Muennighoff et al., 2023)
with four reranking datasets: AskUbuntuDupQues-
tions (Lei et al., 2016), MindSmallReranking (Wu
et al., 2020), SciDocsRR (Cohan et al., 2020) and
StackOverflowDupQuestions (Liu et al., 2018), and
follow the same settings of Zhang et al. (2023) by
using Mean Average Precision (MAP) as the met-
ric.

Table 6 presents the MAP results of our approach
and related baselines on the reranking benchmark,
and all models are evaluated on the test sets of the
reranking benchmark without using the training
sets. The results indicate that various approaches
exhibit varying performance on different datasets,
which can be attributed to the distinct semantic
distribution and evaluation scale of each dataset.
Our GCSE outperforms SynCSE by 0.39% in av-
erage MAP score and achieves the best results in
all backbone models, demonstrating the efficacy of
our approach in enhancing the precision of unsu-
pervised ranking tasks.

C Visualization of synthetic sample
distribution

In this section, we use the supervised SimCSE
model to generate sentence embeddings for the
synthesized samples and utilize t-SNE to project
the vectors into two-dimensional space for a visual

analysis of the diversity. To facilitate observation,
we group the synthesized samples into three cate-
gories: “Rewrite” refers to positive samples synthe-
sized using “Rewriting Prompt 1” and “Rewriting
Prompt 2” from Figure 8, while “Antisense” de-
notes the negative samples generated using “Syn-
tactic Antisense Prompt”. “Revision” denotes the
negative samples generated using “Entity Revision
Prompt”, “Quantity Revision Prompt” and “Rewrit-
ing Prompt 3”, which are related to knowledge
modification. And “Source” indicates the original
samples from the dataset. We randomly selected
5k “Source” samples and corresponding synthetic
samples from our dataset for visualization, and the
results are illustrated in Figure 10. We observe that
“Rewrite” samples basically cover the spatial distri-
bution of “Source” samples while expanding into
the neighborhood space to some extent. “Antisense”
and “Revision” samples further enhance the infor-
mation density within the target semantic space.
Comparing Figure 10 (a) and (b), it can be observed
that the “Revision” samples cover areas with sparse
information, while their overall spatial distribution
remains consistent with the semantic distribution
of ‘Source” samples. This indicates that the sam-
ple synthesis with knowledge effectively increases
sample diversity within the semantic space.

D Performance on Transfer Tasks

We also evaluate our GCSE following the same set-
tings as SimCSE on seven transfer tasks: MR (Pang
and Lee, 2005), CR (Hu and Liu, 2004), SUBJ
(Pang and Lee, 2004), MPQA (Wiebe et al., 2005),
SST2 (Socher et al., 2013), TREC (Voorhees and
Tice, 2000), and MRPC (Voorhees and Tice, 2000).
The results are shown in Table 7, it can be ob-
served that our GCSE (GPT-3.5 Turbo) achieves
the best performance on all backbone models, out-
performing second-best methods in average scores
of 0.89% with BERT-base, 0.79% with BERT-
large, 0.44% with RoBERTa-base, and 0.40% with
RoBERTa-large, demonstrating the potential capa-
bility in downstream tasks.

E Case Studies

To further verify the improvement in our method’s
awareness of entity and quantity, we selected five
sample sets from the STS-Benchmark development
set that explicitly contained alterations in entity or
quantity within the sentence-pair, and presented
the prediction cosine-similarity scores of GCSE
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Knowledge Extraction Prompt

**Instruction**: Please help me extract the theme category, subject part, action part, state part, subject count, and entities from the 
following text at different granularity levels (e.g., "a man on skis" can be extracted as both "a man on skis" and "a man")  along with their 
corresponding types. Output the results in JSON format. 

**Example**: 
Input: *"A man playing with a black dog on a white blanket."* 
Output:
{{

cls: 'leisure activity',
suject: [{{text: "A man", type: "person", quantity: 1}}],
action: [{{text: "playing with a black dog"}}]
state: [{{text: "on a white blanket"}}]
entities: [

{{"entity": "a man on skis", "type": "person"}},
{{"entity": "a man", "type": "person"}}

]
}}

**Input Text**: {input_text} 

**Output**:

Rewriting Prompt 1

**Instruction**: Act as a {role} and rewrite the following sentence while matching the original text length precisely.

**Input**: {input_text}

**Output Format (JSON)**: {{\"text\": \"\"}}

**Output**:

Rewriting Prompt 2

**Instruction**: Summarize and condense the following sentence while preserving its original meaning.

**Input**: {input_text}

**Output Format (JSON)**: {{\"text\": \"\"}}

**Output**:

Rewriting Prompt 3

**Instruction**: As a skilled storyteller, please invent a plausible and engaging context or sentence that could naturally lead into the 
following statement.

**Input**: {input_text}

**Output Format (JSON)**: {{\"text\": \"\"}}

**Output**:

Figure 8: Examples of prompts used for data synthesis (Part 1).

(ChatGLM3-6B) and related methodologies with
the backbone of BERT-base in Table 8. We can
observe from the results that the prediction score
of our model achieves the minimum root-mean-
square (RMS) error compared to the label in most
cases, which indicates that our model has a stronger
capacity to distinguish information.

F Ablation Studies of Gaussian-decayed
and Few-shot Samples

We employ the Gaussian-decayed function on
SynCSE and sample SynCSE training data with

a sample size the same as our synthetic data to eval-
uate the efficacy of the proposed Gaussian-decayed
function and our domain-oriented selection strat-
egy in the ablation experiment. The data sample
size is 64k, and the weight of σ in G(·) is assigned
the same value as specified in Section 4.1. The
results of various policies implemented in SynCSE
are presented in Table 9. “w sampled” denotes the
utilization of purely the sampled data in SynCSE,
and a performance decrease can be observed when
training on a reduced number of samples without
extra configurations. “w sampled & G.D.” denotes
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Rewriting Prompt 4

**Instruction**: Fill in the bracketed [] sections of this news-themed sentence (one word per []), then evaluate and polish if the result 
sounds unnatural. If already fluent, keep the original filled version.

**Evaluation Criteria**:
1. Each [] = exactly one English word
2. News-style vocabulary preferred
3. Polish if:

- Grammar/syntax errors exist
- Logical inconsistencies appear
- News tone is violated

**Example**: 
Input: *"I [] you."* 
Output:
{{
"ori": "I love you.", 
"polish": "I love you."

}}

**Input**: {input_text}
**Output**: 

Syntactic Antisense Prompt 1

**Instruction**: Dispute the following statement in {tone_styles} while matching the original text length precisely.

**Input**: {input_text}

**Output Format (JSON)**:{{\"text\": \"\"}}

**Output**:

Syntactic Antisense Prompt 2

**Instruction**: Provide a negative reformulation of this statement that concisely contradicts the original while matching the original text 
length precisely.

**Input**: {input_text}

**Output Format (JSON)**: {{\"text\": \"\"}}

**Output**:

Entity Revision Prompt

**Instruction**: Replace the phrase {ori_entities} with {replace_entities} and rewrite the entire sentence with proper grammatical 
adjustments.

**Input**: {input_text}  
**Output Format (JSON)**: {{"text": ""}}  
**Output**:

Quantity Revision Prompt

**Instruction**: Modify the subject phrase "{subject_text}" by changing its article/quantifier to specify: {new_number}.

**Input**: {input_text}  
**Output Format (JSON)**: {{"text": ""}}  
**Output**:

Figure 9: Examples of prompts used for data synthesis (Part 2).

the additional incorporation of G(·) based on “w
sampled”. “w G.D.” indicates the results by train-
ing on the full dataset utilizing G(·). In both config-
urations, the average performance outperforms the
vanilla model, illustrating the module’s efficacy. “w
sampled & domain & G.D.” denotes the concurrent
utilization of sample data, domain data, and G(·),

with a sample size of 48k for the SynCSE dataset
and 16k for the synthesized domain dataset. The
results reveal that "w sampled & domain & G.D."
attains the second-best performance, suggesting
that incorporating domain data can decrease the
required training samples while enhancing model
efficacy.
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Model Method AskU. Mindsmall SciDocsRR StackO. Avg.

BERT-base

SimCSE 51.89 28.68 67.88 39.60 47.01
PCL 52.46 28.72 68.03 41.30 47.63

SynCSE (GPT-3.5 Turbo)* 52.61 29.17 68.46 38.60 47.21
GCSE (ChatGLM3-6B) 52.62 28.79 70.67 39.53 47.90

BERT-large

SimCSE 53.10 29.59 71.94 40.68 48.83
PCL 52.03 29.11 70.30 42.33 48.44

SynCSE (GPT-3.5 Turbo)* 53.24 30.09 71.45 39.24 48.50
GCSE (ChatGLM3-6B) 53.40 29.43 73.04 39.68 48.89

RoBERTa-base

SimCSE†† 52.78 29.91 65.96 39.25 46.95
CARDS†† 52.94 27.92 64.62 41.51 46.75

PCL†† 51.85 27.92 64.70 41.18 46.41
SynCSE (GPT-3.5 Turbo)†† 53.27 30.29 67.55 39.39 47.63

GCSE (ChatGLM3-6B) 53.44 29.35 67.89 41.13 47.95

RoBERTa-large

SimCSE†† 55.10 29.23 68.54 42.56 48.86
CARDS†† 53.83 29.07 68.26 43.24 48.60

PCL†† 53.43 28.56 66.06 41.54 47.40
SynCSE (GPT-3.5 Turbo)†† 55.48 30.27 70.85 40.00 49.15

GCSE (ChatGLM3-6B) 54.05 30.30 71.23 41.65 49.31

Table 6: Comparison of Mean Average Precision (MAP) results on reranking tasks, where the value highlighted in
bold is the best value, and the value underlined is the second-best value. “††”: results from Zhang et al. (2023). “*”:
we reproduce the results with the officially released corpus from Zhang et al. (2023).

(a) (b)

Figure 10: t-SNE visualization of the synthetic sample generated by ChatGLM3-6B, where the transparency of
“Antisense” and “Revision” samples in subgraph (b) is reduced to 10% for better observation.

G Unsupervised Sentence Embedding on
LLM

In this section, we utilize contrastive learning on
multiple LLMs to evaluate the alignment of LLM-
generated similarities with the gold labels and
the effectiveness of our data augmentation strat-
egy. We use Llama3.2-3B-Instruct (Dubey et al.,
2024), Llama3-8B-Instruct (Dubey et al., 2024),
ChatGLM3-6B (GLM et al., 2024), GLM4-9B-
Chat (GLM et al., 2024) and Qwen2.5-14B-Instruct
(Yang et al., 2024b,a) with a low-rank adapter
(LoRA) layer for training. The sentence embed-

ding vectors are obtained from the output hidden
states of the last position, which is followed by the
method of pretended chain of thought (Pretended
CoT) (Zhang et al., 2024). We may derive two ma-
jor conclusions from the results in Table 10: (1) In
conventional unsupervised settings, decoder-based
LLMs have no significant performance advantage
over encoder-based PLMs for sentence representa-
tion learning tasks. The model performance does
not increase significantly with the increase of the
number of model parameters. To reduce expenses,
we assert that fully leveraging the capabilities of
LLMs for distilling smaller models is the better op-
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Model Method MR CR SUBJ MPQA SST2 TREC MRPC Avg.

BERT-base

SimCSE♠ 68.40 82.41 74.38 80.91 78.56 76.85 72.23 76.25
DiffCSE♠ 72.28 84.43 76.47 83.90 80.54 80.59 71.23 78.49
PCL♠ 72.84 83.81 76.52 83.06 79.32 80.01 73.38 78.42
RankCSE♠ 75.66 86.27 77.81 84.74 81.10 81.80 75.13 80.36
MultiCSR (GPT-3.5 Turbo)♣ 82.70 88.15 94.97 90.08 86.87 87.70 75.46 86.56
SynCSE (GPT-3.5 Turbo)* 83.34 88.80 93.88 90.39 88.96 83.60 75.94 86.42
GCSE (ChatGLM3-6B) 84.79 90.03 94.35 89.92 88.37 85.60 75.71 86.97
GCSE (GLM4-9B-Chat) 84.53 89.96 95.01 89.97 88.67 86.21 76.01 87.19
GCSE (Qwen2.5-32B-Instruct) 83.94 89.65 94.71 90.31 88.25 86.00 76.46 87.05
GCSE (GPT-3.5 Turbo) 84.71 90.18 94.32 90.61 89.53 86.09 76.22 87.38
GCSE (Deepseek-V3-0324) 84.66 90.07 95.02 90.62 89.16 86.37 76.28 87.45

BERT-large

SimCSE♠ 70.88 84.16 76.43 84.50 79.76 79.26 73.88 78.41
PCL♠ 74.87 86.11 78.29 85.65 80.52 81.62 73.94 80.14
RankCSE♠ 75.48 86.50 78.60 85.45 81.09 81.58 75.53 80.60
SynCSE (GPT-3.5 Turbo)* 85.78 90.47 94.77 90.41 90.50 89.00 75.77 88.10
GCSE (ChatGLM3-6B) 86.08 90.54 95.00 90.63 91.21 89.60 75.71 88.40
GCSE (GLM4-9B-Chat) 86.33 90.26 95.08 90.65 92.13 92.08 75.63 88.88
GCSE (Qwen2.5-32B-Instruct) 86.35 90.73 95.18 90.60 91.93 87.80 76.12 88.39
GCSE (GPT-3.5 Turbo) 85.77 90.88 94.35 90.09 92.91 88.91 75.12 88.29
GCSE (Deepseek-V3-0324) 86.46 90.46 95.06 90.49 91.93 87.80 76.87 88.44

RoBERTa-base

SimCSE♠ 70.16 81.77 73.24 81.36 80.65 80.22 68.56 76.57
DiffCSE♠ 70.05 83.43 75.49 82.81 82.12 82.38 71.19 78.21
PCL♠ 71.13 82.38 75.40 83.07 81.98 81.63 69.72 77.90
RankCSE♠ 73.20 85.95 77.17 84.82 82.58 83.08 71.88 79.81
MultiCSR (GPT-3.5 Turbo)♣ 84.70 90.69 94.40 89.38 89.42 89.62 77.01 87.89
SynCSE (GPT-3.5 Turbo)†† 85.47 91.44 92.53 89.67 90.94 81.60 76.06 86.82
GCSE (ChatGLM3-6B) 86.79 92.03 94.35 89.92 92.37 85.60 75.71 88.11
GCSE (GLM4-9B-Chat) 86.91 92.14 94.62 89.76 92.60 86.21 76.17 88.34
GCSE (Qwen2.5-32B-Instruct) 86.32 91.58 94.37 90.04 92.42 84.00 76.12 87.84
GCSE (GPT-3.5 Turbo) 86.66 91.57 94.44 90.82 92.45 84.93 76.18 88.15
GCSE (Deepseek-V3-0324) 86.42 91.56 94.41 89.23 92.18 87.52 76.13 88.21

RoBERTa-large

SimCSE♠ 72.86 83.99 75.62 84.77 81.80 81.98 71.26 78.90
PCL♠ 74.08 84.36 76.42 85.49 81.76 82.79 71.51 79.49
RankCSE♠ 73.20 85.83 78.00 85.63 82.67 84.19 73.64 80.45
SynCSE (GPT-3.5 Turbo)†† 87.24 92.16 93.75 90.81 91.87 84.00 76.29 88.02
GCSE (ChatGLM3-6B) 87.60 92.43 94.66 90.36 92.37 88.80 75.30 88.79
GCSE (GLM4-9B-Chat) 85.55 90.39 94.70 90.37 90.32 92.65 73.19 88.17
GCSE (Qwen2.5-32B-Instruct) 87.73 92.18 94.72 90.68 92.26 90.00 74.20 88.82
GCSE (GPT-3.5 Turbo) 87.12 91.98 94.01 90.71 92.25 88.75 74.55 88.48
GCSE (Deepseek-V3-0324) 87.73 92.18 94.29 90.95 92.15 88.80 73.28 88.48

Table 7: Comparison of different sentence embedding models accuracy on transfer tasks. “♠”: results from Liu
et al. (2023), “♣”: results from Wang et al. (2024a), “††”: results from Zhang et al. (2023). “*”: we reproduce the
results with the officially released corpus from Zhang et al. (2023).

Premise Hypothesis Gold SimCSE RankCSE SynCSE GCSE

A woman is cooking eggs . A woman is cooking something . 3.00 4.37 (1.372) 4.23 (1.320) 3.66 (0.662) 3.24 (0.236)
Two little girls are talking on the phone. A little girl is walking down the street. 0.50 3.38 (2.881) 3.64 (3.139) 1.97 (1.468) 1.85 (1.351)

A chef is preparing some food . A chef prepared a meal . 4.00 4.27 (0.270) 4.59 (0.588) 4.56 (0.561) 4.41 (0.408)
Five kittens are eating out of five dishes . Kittens are eating food on trays. 2.75 3.81 (1.056) 3.71 (0.957) 3.28 (0.535) 3.12 (0.373)

A woman is cutting some herbs . A woman is chopping cilantro . 2.80 3.58 (0.777) 3.58 (0.967) 3.11 (0.313) 2.61 (0.185)

Table 8: Case studies on model prediction similarity with gold labels in the STS-Benchmark development set, where
Gold represents the label score of the sentence pair (ranging from zero to five). The similarity scores of all models
are multiplied by a coefficient of five for better comparison, and the value in parentheses denotes the RMS error
between the predicted score and the label. Words highlighted in blue denote the entity alteration in the sentence-pair,
whereas words in yellow indicate the quantities that change inside the sentence-pair.
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Method STS-12 STS-13 STS-14 STS-15 STS-16 STS-B SICK-R Avg.

SynCSE (GPT-3.5 Turbo)* 75.86 82.19 78.71 85.63 81.11 82.35 78.79 80.66
w sampled 75.48 85.60 78.76 84.78 80.38 82.12 76.46 80.51
w sampled & G.D. 75.71 85.24 79.09 85.15 80.82 82.68 77.54 80.89
w G.D. 75.89 85.26 79.24 85.67 80.79 82.63 78.19 81.10
w sampled & domain & G.D. 75.88 86.02 79.46 86.10 80.27 82.87 76.91 81.07

Table 9: Ablation studies of sample size and the Gaussian-decayed function by utilizing SynCSE. “*”: we reproduce
the results with the officially released corpus from Zhang et al. (2023).

Model Avg. Model Avg.

Unsupervised Data Augmentation

Llama3.2-3B-Instruct LoRA 71.34 Llama3.2-3B-Instruct LoRA 78.26
Llama-3-8B-Instruct LoRA 72.73 Llama-3-8B-Instruct LoRA 78.24
ChatGLM3-6B LoRA 69.38 ChatGLM3-6B LoRA 79.04
GLM4-9B-Chat LoRA 71.77 GLM4-9B-Chat LoRA 79.52
Qwen2.5-14B-Instruct LoRA 68.49 Qwen2.5-14B-Instruct LoRA 78.02

Table 10: Performance comparison of different LLMs on STS tasks, where results of “Unsupervised” refers to
models trained on the same unsupervised settings as Gao et al. (2021), and “Data Augmentation” refers to models
trained with the synthetic data generated by ChatGLM3-6B.

tion. (2) The application of our data augmentation
technique to sentence representation learning tasks
in LLMs significantly enhances performance rela-
tive to the “Unsupervised” settings, which further
proves the applicability and efficacy of our strategy.

H Visualization of Prediction Scores and
Gradient Comparisons

To further analyze the effectiveness of the Gaussian-
decayed function in mitigating the impact of false
negative noise, we visualized the changes in pre-
dicted scores and gradients during the training pro-
cess using heatmaps. In the training procedure of
GCSE, each input consists of a source sample, its
corresponding positive sample, and a hard negative
sample. We visualize the cosine similarity scores
and gradient heatmaps for negative samples within
a batch in Figure 11. Each cell of a heatmap rep-
resents the relationship between the source sample
and the negative sample, and the diagonal cells
highlight the relationships between source samples
and their hard negatives. Since synthetic samples
lack manual annotations, we use supervised Sim-
CSE models (Gao et al., 2021) based on differ-
ent backbones to compute their similarity scores
as the ground truth. We normalized the output
scores of each model with min-max scaling and
averaged them as the final scores to address distri-
butional differences across models, and the results

are shown in Figure 11 (a-1). It can be observed
that several hard negatives on the diagonal display
scores biased towards positive similarity, indicating
the presence of false negative noise. In the frame-
work of contrastive learning, when optimized using
standard contrastive loss, these hard negatives are
positioned further from the source samples in the
semantic space, negatively impacting the model’s
representational capacity. Figure 11 (a-2) displays
the normalized cosine similarity scores of hard neg-
atives in the initial step as calculated by the evalua-
tion model in GCSE. The initial score distribution
of hard negatives shows a strong correlation with
the ground truth, suggesting that these scores could
efficiently guide GCSE in gradient correction.

Figures 11 (b-1) and (b-2) present the backward
gradient values of the model trained without and
with the Gaussian-decayed function, respectively.
For better visualization, all gradient values are am-
plified by 104, and all similarities are amplified by
20 by the temperature. By comparing the gradients
of hard negative samples in these two figures, it
can be observed that the gradient values on false
hard negatives are significantly smaller when the
Gaussian-decayed function is applied. Addition-
ally, Figures 11 (c-1) and (c-2) present a compar-
ison of cosine similarity scores after 125 training
steps with and without the Gaussian-decayed func-
tion. The scores for false hard negatives are sig-
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Figure 11: Heatmap visualization of the prediction scores and gradients.

nificantly higher when the Gaussian-decayed func-
tion is employed, while the true hard negatives had
lower scores. The overall score distribution aligns
more accurately with the ground truth, and these
results demonstrate that the Gaussian-decayed func-
tion effectively prevents false negatives from being
pushed farther away from source samples in the
semantic space, thereby validating its effectiveness
in mitigating noise and improving model perfor-
mance.

I Ablation analysis of filtering thresholds

To study the impact of different filtering thresh-
olds, we evaluate the performance on the backbone
of the BERT-base, and the results are shown in
Figure 12. When α > 0.9, the model’s perfor-
mance declines significantly, primarily because the
high threshold filters out too many samples, heav-
ily reducing the number of positive samples. In
the range α ∈ [0.8, 0.9], performance degradation
is observed due to noise introduced by false posi-
tive samples. Similarly, when α < 0.8, the model
suffers from a performance drop caused by an ex-
cessive number of false positives being included in
the training process. The threshold for β demon-
strates a noticeable impact on model performance
when it deviates from 0.75. Specifically, when
β > 0.75, the model’s performance declines sig-
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Figure 12: Spearman’s correlation against the weight of
α and β on the STS tasks. When adjusting the weight of
one parameter, the other parameter is fixed at its default
value as specified in the experimental settings.

nificantly due to the inclusion of excessive false
negative noise, which severely affects the model
performance. Conversely, when β < 0.75, the
selected negative samples become easier for the
model to distinguish, providing limited benefit for
enhancing its representation learning capacity. The
results highlight the influence of filtering thresholds
on sample quality and distribution.
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J Score Normalization Methodology

In this work, the labels in datasets are normalized
with standard min-max normalization. To address
the discrepancy in score distributions among differ-
ent models, we applied a variant min-max normal-
ization method to align their predicted scores. For
each label l ∈ [0,MAX], we collect all predicted
scores with l = 0 as list C0, and all predicted
scores with l = MAX as list C1. Specifically,
we computed the median prediction scores for C0

and C1 as minp = median(C0) and maxp =
median(C1), respectively. The use of medians,
rather than the minimum predicted score for C0

or the maximum predicted score for C1, avoids re-
liance on outlier values that may disproportionately
skew the normalization, ensuring a more balanced
score distribution. For a given score s, the normal-
ized score s′ is calculated as:

s′ = clip
(

s−minp

maxp −minp
, 0, 1

)
, (14)

where the function clip(x, 0, 1) ensures the nor-
malized score is bounded within [0, 1]. This
method adjusts the score range to maintain con-
sistency across models while preserving relative
score differences.
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