
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 500–510
July 27 - August 1, 2025 ©2025 Association for Computational Linguistics

UniICL: An Efficient Unified Framework Unifying Compression, Selection,
and Generation

Jun Gao1, Qi Lv2, Zili Wang4, Tianxiang Wu1,Ziqiang Cao1* , Wenjie Li3
School of Computer Science and Technology, Soochow University1

Harbin Institute of Technology (Shenzhen)2

Hong Kong Polytechnic University3 Stepfun4

jgao1106@stu.suda.edu.cn, zqcao@suda.edu.cn

Abstract

In-context learning (ICL) enhances the reason-
ing abilities of Large Language Models (LLMs)
by prepending a few demonstrations. It moti-
vates researchers to introduce more examples
to provide additional contextual information
for the generation. However, existing meth-
ods show a significant limitation due to the
problem of excessive growth in context length,
which causes a large hardware burden. In ad-
dition, shallow-relevant examples selected by
off-the-shelf tools hinder LLMs from capturing
useful contextual information for generation.
In this paper, we propose UniICL, a novel
Unified ICL framework that unifies demon-
stration compression, demonstration selection,
and final response generation. Furthermore, to
boost inference efficiency, we design a tailored
compression strategy that allows UniICL to
cache compression results into Demonstration
Bank (DB), which avoids repeated compres-
sion of the same demonstration. Extensive out-
of-domain evaluations prove the advantages of
UniICL in both effectiveness and efficiency.

1 Introduction

In-context learning (ICL) (Brown et al., 2020; Xie
et al., 2021; Wang et al., 2023b) to enhance the rea-
soning ability of Large Language Models (LLMs)
with a few demonstrations prepended (Wang et al.,
2023d; Yang et al., 2023; Wei et al., 2023; Wang
et al., 2023a; Min et al., 2022). Inspired by its
outstanding performance, researchers explored ap-
plying ICL on many tasks such as text summa-
rization (Wang et al., 2023d; Yang et al., 2023;
Gao et al., 2024a), sentiment classification, and lin-
guistic acceptability (Min et al., 2022; Wang et al.,
2019). However, two challenges hinder the im-
pact of ICL currently: (1) concatenated demonstra-
tions directly surge the input length, causing a large

*Corresponding Author

(b)

 Retriever
I hope to
would study in
Facnce.

LLM
Sentence: I hope to study
in France.
Label: Acceptable

Acceptable

Training
set

(a)

Sentence: One I
hope to study in
France.
Label: Acceptable

I hope to would
study in Facnce.

LLM
Virtual Tokens

LLM Acceptable

(c)

LLM Unacceptable

Parameter Sharing

I hope to
would study
in Facnce. LLM

Memory Tokens

Similar?

 A
dapter

Training
set

[M]

Figure 1: (a) Prompt compression methods that
indiscriminately compress both demonstrations and
queries.(b) Retrieval-based demonstration selection
methods select lexical demonstrations. (c) UniICL dis-
criminately compresses demonstrations and performs
selection upon the compression results.

hardware burden; (2) the prepended demonstra-
tions are randomly sampled or selected via off-the-
shelf tools which tend to provide shallow relevant
demonstrations, hindering LLMs from capturing
useful contextual information for generation. Ex-
isting work tackles the two challenges separately.

To alleviate input length surge, on the one hand,
many efforts are made in modifying model archi-
tecture to accommodate longer contexts (Zheng
et al., 2022; Wu et al., 2022; Ding et al., 2023; Bu-
latov et al., 2023). These methods usually require
training models from scratch, and models with a
million context windows still struggle to overcome
performance degradation (Liu et al., 2024). On
the other hand, recent studies attempt to shorten
inputs through prompt compression (Wingate et al.,
2022; Mu et al., 2023; Jiang et al., 2023; Ge et al.,
2023; Gao et al., 2024b). However, these compres-
sion methods are not applicable to ICL because

500

mailto:jgao1106@stu.suda.edu.cn
mailto:zqcao@suda.edu.cn

they indiscriminately compress both demonstra-
tions and queries into virtual tokens. For instance,
as illustrated in Fig. 1(a), the task entails justify-
ing whether the query is grammatically acceptable.
The latter generator makes responses only accord-
ing to virtual tokens generated by the compres-
sor, resulting in a wrong answer1. More impor-
tantly, current compression methods are costly to
train (Wingate et al., 2022; Mu et al., 2023; Jiang
et al., 2023), and compressors are either limited to
compressing within the original model’s allowed
input length (Mu et al., 2023; Jiang et al., 2023;
Ge et al., 2023) or bringing significant inference
latency (Wingate et al., 2022).

Retrieval-based In-context Example Selection
(RICES) methods (Alayrac et al., 2022) integrate
an off-the-shelf pre-training model to select demon-
strations similar to the queries at a shallow level.
These demonstrations usually contain redundant
information and bring minimal benefits for the fi-
nal generation (Liu et al., 2021; Ram et al., 2023;
Wang et al., 2024). Existing work attempts to train
the retrieval model and the generator in an end-to-
end manner, which has shown better performance
in in-domain datasets (Wang et al., 2023c; Qiao
et al., 2024). However, this approach still performs
poorly in out-of-domain datasets. For instance, as
shown in Fig. 1(b), the retriever selects an example
lexically similar to queries but has contrasting la-
bels. Then, the LLM is misled and responds with a
wrong answer.

In light of challenges in ICL, we turn to lever-
age the inherent understanding ability of LLMs
developed during pre-training. We accordingly pro-
pose a Unified ICL (UniICL) framework, which
unifies demonstration compression, demonstration
selection, and response generation. As shown in
Fig. 1(c), for lightweight training, in UniICL, both
the compressor and generator are initialized from
the same LLM and kept frozen. An adapter is intro-
duced to align the compressor with the generator,
and [M] is a learnable embedding called Mem-
ory Slot which is attached behind demonstrations
for compression. Therefore, UniICL only contains
17M trainable parameters. The LLM compressor
first compresses each demonstration from the train-
ing set and queries into Memory Tokens indepen-
dently on top of Memory Slots. Then, UniICL
selects n most relevant demonstrations based on
the similarity of Memory Tokens between queries

1I hope to would study in Facnce (France)

LLM ResponseQuery
Compressed Tokens

Demonstration Bank

1 0.17

2 0.43

... ...

LLM

 A
dapter

Figure 2: The workflow of Demonstration Bank.

and demonstrations. Finally, Memory Tokens of
selected demonstrations are concatenated to for-
mulate a global in-context sequence, together with
queries fed into the generator for response gener-
ation. Due to independent compression, the com-
pressor gets rid of the input window limitation of
original LLMs as the number of demonstrations
increases. In addition to improvements in window
limitation, the tailored compression strategy fur-
ther makes improvements to ICL efficiency. Specif-
ically, UniICL caches Memory Tokens of differ-
ent demonstrations to configure the Demonstra-
tion Bank (DB) for future reusing as shown in
Fig. 2. Therefore, repeated compression of the
same demonstration is not necessary, which sig-
nificantly boosts model efficiency in Fig. 8. Ex-
tensive out-of-domain evaluation indicates UniICL
achieves substantial improvements compared with
other baselines. Our main contributions are as fol-
lows:

• To our knowledge, we are the first to propose
a unified ICL framework with 17M trainable
parameters.

• UniICL proposes configuring the Demonstra-
tion Bank to avoid repeated compression for
the same demonstration, which significantly
boosts ICL efficiency.

• Different from the indiscriminate compression
of previous studies, UniICL proposes a tai-
lored compression strategy for ICL, achiev-
ing substantial improvements compared with
other baselines.

2 Related Work

2.1 Soft Prompt Compression
Recently, researchers attempted to utilize soft
prompts to convert actual tokens to dense-
information virtual tokens. Mostly from a distilla-
tion perspective, Wingate et al. (2022) aligned the

501

teacher model and the student model, where the
teacher model accepted the actual task instruction
while the student model fed the soft prompt. The
main drawback of this approach was the lack of
generalization that necessitated training for each
lexically different instruction. To tackle the gen-
eralization problem, Mu et al. (2023) proposed
to learn a Llama-7b to compress instructions to
virtual tokens, but only compressing instructions
was not powerful enough since the demonstrations
were much longer in practice. To compress longer
prompts, Chevalier et al. (2023) proposed Auto-
Compressor to recurrently generate compressed
virtual tokens based on a fine-tuned Llama (Zhang
et al., 2022). However, AutoCompressor broke
the independence of demonstrations, and the re-
current compression increased inference latency.
Ge et al. (2023) proposed ICAE that employed a
LoRA-adopted Llama-7b (Touvron et al., 2023)
to compress the processed demonstrations to com-
pact virtual tokens, while ICAE still struggled to
overcome quite long inputs.

2.2 Extractive Compression

Apart from employing soft prompts, researchers
also endeavored to shorten prompts by extracting
informative tokens from the original ones (Li, 2023;
Jiang et al., 2023), namely, token pruning (Kim
et al., 2022) or token merging (Bolya et al., 2022).
Recent works like LLMLingua (Jiang et al., 2023)
and Selective Context (Li, 2023) shared similari-
ties but diverged on whether to eliminate tokens
with high or low Perplexity (PPL). LLMLingua
emphasized tokens with high PPL, attributing them
as more influential, resulting in achieving outstand-
ing performance. As mentioned in their paper, ex-
tractive compression methods encountered Out-of-
Distribution (OOD) issues between the extractor
and the target LLM. To reconcile this, they fine-
tuned Alpaca-7b (Taori et al., 2023) using the Al-
paca dataset (Taori et al., 2023) to perform the
alignment.

3 Methodology

Previous compression methods are not tailored for
ICL, and they are either bound by serious inference
latency or poor performance, as demonstrated in
Appendix A. We propose UniICL, a unified ICL
framework that unifies demonstration compression,
demonstration selection, and response generation.
As for the selection of the underlying LLM, previ-

Frozen Vicuna

Linear Layer

[M] [M] [M]

Memory Slot

Figure 3: Demonstration compression. k Memory Slots
are attached behind each demonstration.

ous work has proved that the Decoder-only model
performs better than the Encoder-Decoder model in
prompt compression (Mu et al., 2023). We follow
this conclusion and adopt Vicuna-7B (Zheng et al.,
2023) as the underlying backbone in UniICL.

3.1 Demonstration Compression
UniICL introduces Memory Slots [M] 2 Rd, a
learnable d-dimension embedding initialized from
a rarely used embedding of the target LLM. UniICL
activates the Memory Slots to extract information
from demonstrations in the forward propagation
f✓(·) of frozen Vicuna, as illustrated in Fig. 3. We
first attach k Memory Slots M = k ⇥ [M] be-
hind each demonstration Di, formatting modified
prompt fed to the Vicuna. Then, frozen Vicuna
infers the modified prompts and outputs the last
hidden states H i = (h1, h2, ..., hk) on top of the k
Memory Slots:

H i = f✓(D
Li⇥d
i � Mk⇥d), (1)

where Li is the i�th demonstration length, d is the
embedding dimension and � means token-level
concatenation. Due to the attention mechanism,
H i is compelled to attend to the preceding actual
tokens. Then, UniICL applies a linear layer as
the adapter for efficiency to convert H i to Memory
Tokens Ci = (ci

1, c
i
2, ..., c

i
k), performing alignment

between the compressor and the generator2:

ci
j = W d⇥d

p · hi
j , (2)

where Wp is the parameters of the projection layer.
2Linear layer is enough for UniICL as features have inter-

acted with each other during compression.

502

 Frozen Vicuna

High Low

Average Pooling

Similarity

Ranking

Linear Layer

Figure 4: Demonstrations selection.

3.2 Demonstration Selection

Memory Tokens Ci naturally summarize the
demonstrations in latent space, and UniICL per-
forms demonstration selection based on the similar-
ity between queries and demonstrations as shown
in Fig. 4. Specifically, given a query Q and its can-
didate demonstrations (D1, D2, ..., Dn), UniICL
obtains their representations used for selection by
average pooling C{Q,D}:

C̄i{Q,D} =
1

k

kX

j=1

cj . (3)

We define the i-th demonstration saliency score Si

as the cosine similarity between C̄Q and D̄i:

Si = cosine_similarity(C̄Q, C̄i
D). (4)

3.3 Generation

We employ the frozen Vicuna again to generate
responses with the guidance of concatenated Mem-
ory Tokens and queries, as illustrated in Fig. 5. For
m-shot in-context learning, we obtain m spans of
Memory Tokens after demonstration compression
and selection, denoted as C1 to Cm. Then, we
horizontally concatenate them, keeping their rela-
tive position unmodified. Finally, the concatenated
Memory Tokens together with actual queries are
fed into Vicuna, performing auto-regressive gener-
ation g✓ as normal:

yi = g✓(C
1, ..., Cm; Q; y<i). (5)

Frozen Vicuna

Memory Tokens
Concatenation

Figure 5: In-context generation. The Memory Tokens
from different demonstrations are concatenated horizon-
tally at the input end of Vicuna.

Except for the generative manner, Memory Tokens
apply close-ended evaluation for understanding
tasks as normal through measuring the perplexity
of candidate choices 3.

3.4 Training

The trainable parameters in UniICL are merely
17M originating from the projection layer Wp and
the introduced Memory Slot [M]. The linear layer
is optimized with the language modeling objective
Llm of Vicuna to learn a base compression model.
Then InfoNCE (He et al., 2020) joint with language
modeling objective are used to augment the demon-
stration selection ability of the base compression
model:

L = Llm + Lctr. (6)

Specifically, we slice the source input of each train-
ing instance into two parts and randomly compress
one. The compressed part is denoted as xc and the
uncompressed part is denoted as xu. Afterward,
we attach the Memory Slot sequence M behind xc

and get Memory Tokens C on top of the Memory
Slots, as described in Eq. 1 and Eq. 2. Therefore,
the language modeling loss Llm is obtained as:

Llm = � 1

|y|
X

t=0

logP (yt|xu; C; y<t), (7)

where y is the reference label of the current training
instance. Additionally, to approach the large-shot
settings without significant truncation, we intro-
duce concatenation compression. When xc exceeds
the window limitation for compression, UniICL
further divides xc into acceptable ranges and com-
presses them independently to get local Memory

3https://huggingface.co/docs/transformers/
perplexity

503

https://huggingface.co/docs/transformers/perplexity
https://huggingface.co/docs/transformers/perplexity

-0.1

0.3

1

-1

Relative PPL

Fr
oz

en
 V

ic
un

a

Figure 6: Contrastive examples mining pipeline. Finds
demonstrations benefit/hinder the final generation ac-
cording to the PPL.

Tokens. Then, these Memory Tokens from dif-
ferent segments will be concatenated to formulate
global virtual tokens to replace xc, applying Eq. 7
to optimize models as well.

We obtained a base compression model that has
learned to compress and understand concatenated
Memory Tokens after the first-phase training men-
tioned. Subsequently, we utilize contrastive learn-
ing for selection augmentation and mine positives
and negatives as illustrated in Fig. 6. Specifically,
given each training instance Q and n candidate
demonstrations (D1, D2, ..., Dn) from two non-
crossing training subsets, we employ Vicuna to
calculate the PPL concerning the golden label of Q,
denoted as pplQ to find useful demonstrations for
generation. Then, we provide the i-th demonstra-
tion and calculate PPL concerning the golden label
of Q, denoted as (pplDi , i 2 [1, n]). We count pplQ

as the baseline and calculate candidate relative PPL
gains:

fppl
D

i = pplQ � pplDi , i 2 [1, n]. (8)

After finding demonstrations D+ (D�) that fur-
thest reduces (increases) pplQ, we obtain their rep-
resentation C+

D (C�
D) as processed in Eq. 3. The

contrastive loss Lctr can be formulated as:

Lctr =
exp(cos(CQ, C+

D))

exp(cos(CQ, C+
D)) + exp(cos(CQ, C�

D))
.

(9)
In particular, if all relative PPL gains are less than
0, namely none of the candidate demonstrations
help guide Vicuna to generate the golden label, we
will apply the other set of candidates.

4 Experiment

4.1 Baselines
Unmodified Vicuna-7b serves as the fundamental
baseline fed with actual demonstrations. Auto-

Dataset
words

(96,512] (512,1024] (1024,1536]
XSum (Narayan et al., 2018) - 10,000 4,697
CICERO (Ghosal et al., 2022) 10,000 - -
SUPER-NI (Wang et al., 2022b) - 10,000 7,000
XSum (Ctr) 5,000

Table 1: The composition training set of UniICL. (m,n]
represents the range of the number of words in each
instance. XSum (Ctr) is used for the second-phase train-
ing in Eq. 6.

Dataset In-Domain # Test # Demonstrations
MS MARCO-dev % 6,980 -
XSum ! 1,500 204,045/20
Arxiv % 1,500 203,037/20
CoLA-dev % 1,041 67,349/20
SST-2-dev % 872 8,551/20
IMDb % 1,500 25,000/20
MMLU % 13,985 25,000/20

Table 2: The details of the involved evaluation datasets.
-dev represents employing the development set due to
their test sets are inaccessible. # Demonstrations rep-
resent the number of demonstrations to be selected in
high/low-resource ICL settings.

Compressor compresses prompts into 50 virtual
tokens in different rounds recurrently. Previous
compressed virtual tokens are put at the beginning
of the current segment. Finally, virtual tokens of
different compression rounds are concatenated for
generation. We employ their Llama2-7b version
for comparison. LLMLingua is a coarse-to-fine
demonstration pruning method based on dropping
uninformative words. We employ their released 7b
version, of which the compressor is a fine-tuned
Llama2. For a meaningful comparison, we re-
place target LLMs of LLMLingua (GPT-3.5-Turbo
or Claude-v1.3) with the Vicuna-7b. ICAE com-
presses demonstrations into 128 virtual tokens via
a LoRA-adapted Llama2-7b. Additionally, since
selection augmentation is involved in the training
of UniICL, we utilize the popular Sentence-BERT
(S-BERT) (Reimers and Gurevych, 2019) as the
dense retriever to construct an ICL pipeline for
the above methods, serving as simple but effective
selection-based baselines.

4.2 Settings

We construct the training set by mixing up XSum,
CICERO, and SUPER-NI according to their length
as shown in Tab. 1 and evaluate UniICL on exten-
sive out-of-domain datasets as listed in Tab. 2, with
more details reported in Appendix H. Considering

504

computation efficiency, we set the max allowed in-
put length limit to 512 for both compression and
generation for both training and inference. For a
fair comparison, we set the allowed window of
baselines to 512, and the compression ratio of de-
fault UniICL and baselines is set to 12, which is
determined by the validation in Fig. 7. We fix the
learning rate to 8e-5 and use Adam as the optimizer,
and the effective batch size is 32 (8 GPUs data par-
allelism and 4 steps gradient accumulation). We
train 10 epochs and 2 epochs respectively for the
first- and second-phase training. The best check-
points are selected according to their performance
on in-domain validation sets. Additionally, we con-
ducted all experiments on 8*NVIDIA A5000 24G
GPUs based on BFloat 16 data type, and we set the
evaluated shots to 8 for understanding tasks and
5 for generative tasks for illustration, because of
marginal ICL gains and memory costs.

We apply S-BERT to pre-rank and output the top
10 similar candidates from training sets according
to each inference input for all baselines. UniICL
is employed to perform selection among them in
practice due to computational efficiency for high-
resource ICL. On the contrary, the low-resource
ICL setting utilizes the randomly sampled 20 candi-
date demonstrations for all inference inputs, while
UniICL performs selection as normal.

To verify the universality, we further build Uni-
ICL on BlueLM-7B (Team, 2023) and Llama2-
7B (Touvron et al., 2023). Results of BlueLM and
Llama2 will be reported in Appendix C and Ap-
pendix D.

4.3 Results
We comprehensively evaluate the ICL performance
of UniICL on the out-of-domain dataset CoLA,
SST-2, and IMDb by close-ended evaluation and
Arxiv by open-ended evaluation in Tab. 3. The de-
tails of the involved evaluation datasets and metrics
are reported in Tab. 2 and Appendix H. Specifi-
cally, UniICL outperforms unmodified Vicuna-7b
fed with actual candidate demonstrations, which
indicates that Memory Tokens are more efficient
and informative for guiding the target LLM. Mean-
while, UniICL outperforms all the baselines by
compressing the same demonstrations pre-ranked
by S-BERT. Additionally, UniICL achieves further
performance gains after selecting demonstrations
via itself (UniICL�). The open-ended results high-
light that Memory Tokens indeed capture seman-
tic information for ICL generation, even though

Figure 7: The compression ratio sensitivity analysis of
Llama2 , BlueLM, and Vicuna.

summarization demonstrations are much longer
than understanding ones. Regarding Arxiv, the
original ICL is not helpful enough due to its ex-
tremely over-length document, leaving little room
for demonstrations. UniICL works as expected by
compressing demonstrations into Memory Tokens
and concatenating them, achieving +2.8 Rouge-1
gains in selection-augmented UniICL (+Lctr). Ad-
ditionally, according to the results of +Lctr, we find
that the gains brought by selection augmentation
become larger as the number of demonstrations
increases. We attribute this to the fact that Uni-
ICL selects more useful demonstrations for genera-
tion after the second-phase training. The results of
BlueLM are exhibited in Appendix C. Except for
understanding and generative tasks, we further eval-
uate UniICL on MMLU in Tab. 4. UniICL achieves
stable performance gains with more demonstra-
tions introduced. Additionally, considering ICAE
and AutoCompressor are soft-prompt-based com-
pression methods built on Llama2, we also build
UniICL on Llama2 for ablation in Appendix D.

Passage Ranking Since the virtual tokens natu-
rally summarize semantic information of preced-
ing sequences, we evaluate UniICL on the out-of-
domain MS MARCO dataset in Tab. 5. UniICL sig-
nificantly outperforms the sparse retrieval method
BM25 algorithm and other compression methods.
Subsequently, we fine-tune the first-phase com-
pression model of UniICL on the training set of
MS MARCO. UniICL achieves comparable perfor-
mance with SIMLM (Wang et al., 2022a), which
is specified in Information Retrieval (IR) and has
more trainable parameters.

505

Model #-shots
CoLA-dev SST-2-dev IMDb Arxiv XSum

Acc. R-1 R-2 R-L R-1 R-2 R-L

Vicuna

0-shot 56.2 91.7 92.6 34.3 9.1 27.4 19.9 5.0 13.4
1-shot 58.2 (57.4) 90.7 (90.8) 91.9 (91.0) 34.8 (34.4) 9.3 (9.1) 27.9 (27.5) 21.5 (21.2) 5.9 (5.8) 14.7 (14.5)
2-shot 62.1 (59.8) 92.1 (91.3) 91.7 (91.7) - - - - - -
5-shot 62.3 (61.9) 93.0 (91.9) 94.1 (92.5) - - - - - -

AutoCompressor
1-shot 42.1 (40.9) 85.7 (84.2) 95.0 (95.1) 27.0 (26.4) 8.4 (8.2) 26.1 (25.8) 21.3 (20.3) 6.5 (6.3) 13.7 (13.7)
2-shot 58.8 (56.3) 88.0 (86.4) 95.0 (94.6) 27.1 (26.2) 8.6 (7.9) 26.4 (25.4) 21.9 (21.4) 6.6 (6.4) 14.5 (14.1)
5-shot 59.1 (58.8) 91.3 (89.1) 94.7 (94.8) 34.5 (33.7) 9.4 (9.1) 28.7 (27.9) 22.4 (21.7) 6.9 (6.7) 14.8 (14.3)

LLMLingua
1-shot 55.5 (55.0) 89.7 (89.6) 91.0 (89.9) 33.3 (33.1) 8.9 (8.7) 27.4 (27.1) 20.5 (19.7) 5.4 (5.2) 14.5 (14.4)
2-shot 56.7 (55.7) 90.7 (90.2) 91.3 (91.0) 32.9 (32.0) 8.2 (8.1) 26.9 (25.9) 20.3 (20.0) 5.2 (5.1) 14.3 (14.1)
5-shot 57.2 (56.9) 90.6 (90.2) 90.9 (91.2) 30.1 (29.7) 7.9 (7.4) 25.3 (24.6) 19.7 (18.6) 4.9 (4.9) 14.1 (14.3)

ICAE
1-shot 30.9 (30.9) 61.0 (60.1) 85.7 (83.3) 26.8 (24.6) 8.2 (7.1) 24.7 (22.9) 23.5 (21.9) 8.5 (7.8) 20.9 (20.3)
2-shot 30.9 (30.9) 49.0 (52.8) 85.9 (85.9) 27.2 (25.5) 8.4 (7.6) 25.9 (24.3) 24.4 (23.2) 8.9 (8.4) 21.3 (20.8)
5-shot 30.9 (30.9) 54.2 (51.0) 85.7 (85.9) 28.3 (26.9) 8.7 (7.7) 26.6 (25.8) 25.3 (24.9) 9.2 (8.8) 22.5 (21.6)

UniICL
1-shot 58.7 (58.0) 92.9 (91.7) 94.3 (92.3) 35.5 (34.7) 10.5 (10.2) 28.7 (27.9) 27.7 (25.5) 10.2 (9.1) 21.2 (20.0)
2-shot 62.4 (61.0) 92.4 (91.6) 94.9 (93.3) 36.1 (35.2) 10.8 (10.4) 29.4 (28.2) 29.4 (26.8) 11.0 (9.8) 22.3 (20.9)
5-shot 62.6 (61.8) 93.1 (92.3) 94.5 (94.0) 35.8 (35.4) 10.6 (10.2) 29.5 (28.1) 30.7 (27.6) 11.3 (10.1) 22.8 (21.4)

UniICL�

1-shot 59.1 (58.7) 93.0 (91.9) 94.5 (91.6) 34.8 (34.7) 10.4 (10.3) 28.1 (27.8) 29.1 (26.2) 10.8 (9.4) 22.2 (20.7)
2-shot 62.6 (61.2) 94.0 (93.0) 94.9 (92.3) 34.6 (34.3) 10.6 (10.4) 28.5 (28.3) 30.3 (28.9) 11.3 (10.5) 22.9 (21.7)
5-shot 63.3 (61.5) 94.7 (92.8) 95.0 (93.8) 35.6 (35.3) 11.0 (10.8) 29.1 (27.7) 31.1 (30.0) 11.7 (11.2) 23.5 (22.3)
8-shot 63.8 (62.6) 94.7 (93.1) 95.0 (94.2) - - - - - -

UniICL� + Lctr

1-shot 59.3 (58.9) 93.2 (92.4) 95.1 (92.8) 35.6 (35.1) 10.7 (10.5) 28.9 (28.3) 30.0 (27.9) 11.3 (10.1) 22.8 (21.5)
2-shot 62.4 (62.0) 94.5 (92.8) 94.8 (93.4) 36.8 (35.3) 10.8 (10.6) 29.6 (28.9) 30.8 (29.2) 11.4 (10.7) 23.0 (21.9)
5-shot 64.3 (61.8) 94.7 (93.4) 96.1 (94.2) 37.1 (34.9) 11.3 (11.2) 30.0 (29.3) 32.5 (30.6) 12.3 (11.8) 24.7 (23.8)
8-shot 64.7 (63.3) 94.7 (94.1) 95.6 (95.0) - - - - - -

Table 3: The high- and low-ICL results on CoLA-dev, SST-2-dev, and IMDb. Results in (bracket) represent
low-resource ICL. � represents the demonstrations selected by UniICL, and the others are selected by S-BERT.
+Lctr indicates the selection augmented UniICL (optimized with Eq. 6). Bold (underline) represents the best
performance on high- and low-resource ICL. R- indicates Rouge scores. All compression methods are evaluated
with a compression ratio set to 12.

#-Shots S H SS O Avg.
0-shot 36.9 53.2 53.7 50.7 48.6
1-shot 38.6 55.3 54.6 52.4 50.2
2-shot 39.2 55.8 55.3 53.1 50.9
5-shot 40.1 55.6 55.3 53.8 51.2

Table 4: Performance of UniICL on MMLU benchmark.
We reported the Accuracy at the category level. S rep-
resents STEM, H represents Humanities, SS represents
Social Science, O represents Other, and Avg indicates
their average performance.

Method # TP MRR@10
BM25† - 18.5
Vicuna - 28.9
AutoCompressor - 29.3
ICAE - 30.2
UniICL - 31.6
SIMLM†‡ 110M 41.1
UniICL‡ 17M 38.9

Table 5: MRR@10 results on MS MARCO. Vicuna
applies the last hidden states of [EOS] to represent sen-
tences in latent space. Results citing from Liang (Wang
et al., 2022a) are denoted as †, and methods supervised
trained on MS MARCO are represented as ‡. Bold indi-
cates the best zero-shot performance and Underline is
the best fine-tuned results. # TP indicates the number of
trainable parameters.

#-shots
CoLA SST-2 IMDb Arxiv

Acc. R-1
1-shot 58.5 (-0.8) 91.4 (-1.8) 92.6 (-2.5) 34.8 (-0.8)
2-shot 59.7 (-2.7) 92.1 (-2.4) 94.1 (-0.7) 35.7 (-1.1)
5-shot 62.4 (-1.9) 93.1 (-1.6) 94.8 (-1.3) 36.6 (-0.5)

Table 6: Performance of UniICL on out-of-domain
datasets, with a fixed compression ratio set to 12 during
training.

5 Analysis

5.1 Compression Ratio

During training, the compression ratio is dynam-
ically sampled from 2 to 16. We mix up 2,000
instances from the in-domain validation set, 1,000
for XSum, and 1,000 for CICERO to select the com-
pression ratio for UniICL in Fig. 7, with the back-
bone of Llama2, Vicuna, and BlueLM respectively.
Specifically, UniICL compresses the latter cut-off
part while keeping the former ones uncompressed.
Therefore, we can measure the dense information
quality of the same content with different compres-
sion ratios by ROUGE-1 since it is more sensitive
to token-level differences. The performance is rela-
tive smoothing when the compression ratio changes
from 4⇥ to 12⇥. However, when it comes to 16⇥,
an obvious drop occurs. In order to analyze this

506

Figure 8: The efficiency comparison between UniICL
and other compression methods in CoLA with the num-
ber of shots increasing from 0 to 64. Memory explodes
are represented as *, corresponding to the break of the
line chart. +Caching represents using DB.

Method GPUHours TFLOPs TMACs
Vicuna 1.5 86,20 4,309
Vicuna-1k 1.9 31,664 15,832
UniICL 1.6 22,437 11,218

Table 7: The computation efficiency of UniICL.

phenomenon more deeply, we provide a thorough
analysis in Appendix G. Therefore, we set the com-
pression ratio to 12 by default and apply this ratio
to all experiments. The 512⇥ compression ratio is
equal to compressing anything to a single virtual
token, due to the maximum allowed input length
for compression being 512.

To explore whether it could yield additional per-
formance gains compared with dynamic ratios, in
Tab. 6, we re-train UniICL with the compression
ratio fixed to 12 (Results of more fixed ratios are
reported in Appendix F.). Results indicate that
UniICL trained with fixed compression ratios un-
derperforms in out-of-domain datasets as it exhibits
over-fitting in in-domain sets as shown in Tab. 11.

Furthermore, we analyze whether 12⇥ is suit-
able for all out-of-domain datasets in Fig. 9 in Ap-
pendix E. Results indicate that 12⇥ outperforms
other compression ratios in general across 4 out-of-
domain datasets. It also points out that lower ratios
still work comparable for short demonstrations and
higher ratios are suitable for long demonstrations
to some extent.

5.2 Efficiency Analysis
In UniICL, we incorporate an additional 17M train-
able parameters into the 7b backbone, accounting

for an approximate increase of 0.24%. We eval-
uate the memory costs and inference latency of
UniICL and other compression methods in Fig. 8.
With the help of the Demonstration Bank (DB),
UniICL will eliminate the extra latency if the se-
lected demonstrations have been compressed and
cached (UniICL+Caching). Despite this, parallel
computation facilitates the compression process, re-
sulting in minimal throughput degradation (UniICL
and Baseline). The unmodified 7B LLM causes a
memory explosion for 8-shot settings, and other
compression methods perform up to 32-shot, while
UniICL successfully scales up to 64-shot within a
24GB CUDA allocation.

Additionally, we demonstrate the inference com-
putation and GPU hours in Tab. 7, by using 1,024
random legal tokens as inputs and forcing models
to generate 128 tokens. Notably, UniICL (with-
out DB) compresses the former half, and the latter
half is fed into the generator directly, while Vicuna
and Vicuna-1k are distinguished in window limi-
tations. Results indicate that minimal GPU hours
increased due to the parallel computation of for-
ward, although the extra compression of UniICL
surges the computation. Additionally, Vicuna, with
a 1k window limitation, surges both GPU hours
and TFLOPs because long input brings significant
computation and latency in generation.

6 Conclusion

This paper proposes UniICL, a parameter-efficient
ICL framework that unifies demonstration selec-
tion, demonstration compression, and final re-
sponse generation via a frozen LLM, an adapter,
and a learnable embedding. Experimental results
prove the advantages of UniICL in both efficiency
and effectiveness. Due to 12⇥ demonstration com-
pression, UniICL scales up the number of demon-
strations from 4 to 64 within a 24 GB VRAM
allocation. Finally, to avoid repeated compres-
sion of the same demonstration, UniICL configures
a Demonstration Bank (DB, which significantly
boosts model efficiency.

7 Limitations

Our study, while proposing an efficient unified ICL
framework for demonstration compression and se-
lection, still has limitations. Firstly, UniICL is lim-
ited to the realm of unmodified ICL, leaving other
advanced LLM prompting methods, e.g., Retrieval
Augment Generation (RAG) and Chain-of-Thought

507

(CoT), unexplored. Limited to the hardware, we
deploy the underlying LLM at a scale of 7 billion
parameters. Larger-scale LLMs are welcome to
enrich our findings in future studies.

8 Acknowledgement

I would like to express my sincere gratitude to all
the authors and reviewers for their valuable contri-
butions to this research. The work described in this
paper was supported by Research Grants Council
of Hong Kong (15209724) and the Project Funded
by the Priority Academic Program Development of
Jiangsu Higher Education Institutions, China.

References

Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc,
Antoine Miech, Iain Barr, Yana Hasson, Karel
Lenc, Arthur Mensch, Katherine Millican, Malcolm
Reynolds, et al. 2022. Flamingo: a visual language
model for few-shot learning. Advances in neural
information processing systems, 35:23716–23736.

Daniel Bolya, Cheng-Yang Fu, Xiaoliang Dai, Peizhao
Zhang, Christoph Feichtenhofer, and Judy Hoffman.
2022. Token merging: Your vit but faster. arXiv
preprint arXiv:2210.09461.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877–1901.

Aydar Bulatov, Yuri Kuratov, and Mikhail S Burtsev.
2023. Scaling transformer to 1m tokens and beyond
with rmt. arXiv preprint arXiv:2304.11062.

Alexis Chevalier, Alexander Wettig, Anirudh Ajith,
and Danqi Chen. 2023. Adapting language
models to compress contexts. arXiv preprint
arXiv:2305.14788.

Jiayu Ding, Shuming Ma, Li Dong, Xingxing Zhang,
Shaohan Huang, Wenhui Wang, and Furu Wei. 2023.
Longnet: Scaling transformers to 1,000,000,000 to-
kens. arXiv preprint arXiv:2307.02486.

Jun Gao, Ziqiang Cao, Shaoyao Huang, Luozheng
Qin, and Chunhui Ai. 2024a. Guiding chatgpt to
generate salient domain summaries. arXiv preprint
arXiv:2406.01070.

Jun Gao, Ziqiang Cao, and Wenjie Li. 2024b. Selfcp:
Compressing over-limit prompt via the frozen large
language model itself. Information Processing &
Management, 61(6):103873.

Tao Ge, Jing Hu, Xun Wang, Si-Qing Chen, and Furu
Wei. 2023. In-context autoencoder for context com-
pression in a large language model. arXiv preprint
arXiv:2307.06945.

Deepanway Ghosal, Siqi Shen, Navonil Majumder,
Rada Mihalcea, and Soujanya Poria. 2022. Cicero:
A dataset for contextualized commonsense inference
in dialogues. arXiv preprint arXiv:2203.13926.

Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and
Ross Girshick. 2020. Momentum contrast for unsu-
pervised visual representation learning. In Proceed-
ings of the IEEE/CVF conference on computer vision
and pattern recognition, pages 9729–9738.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou,
Mantas Mazeika, Dawn Song, and Jacob Steinhardt.
2020. Measuring massive multitask language under-
standing. arXiv preprint arXiv:2009.03300.

Huiqiang Jiang, Qianhui Wu, Chin-Yew Lin, Yuqing
Yang, and Lili Qiu. 2023. Llmlingua: Compressing
prompts for accelerated inference of large language
models. arXiv preprint arXiv:2310.05736.

Sehoon Kim, Sheng Shen, David Thorsley, Amir Gho-
lami, Woosuk Kwon, Joseph Hassoun, and Kurt
Keutzer. 2022. Learned token pruning for transform-
ers. In Proceedings of the 28th ACM SIGKDD Con-
ference on Knowledge Discovery and Data Mining,
pages 784–794.

Yucheng Li. 2023. Unlocking context constraints of
llms: Enhancing context efficiency of llms with self-
information-based content filtering. arXiv preprint
arXiv:2304.12102.

Chin-Yew Lin. 2004. Rouge: A package for automatic
evaluation of summaries. In Text summarization
branches out, pages 74–81.

Jiachang Liu, Dinghan Shen, Yizhe Zhang, Bill Dolan,
Lawrence Carin, and Weizhu Chen. 2021. What
makes good in-context examples for gpt-3? arXiv
preprint arXiv:2101.06804.

Nelson F Liu, Kevin Lin, John Hewitt, Ashwin Paran-
jape, Michele Bevilacqua, Fabio Petroni, and Percy
Liang. 2024. Lost in the middle: How language mod-
els use long contexts. Transactions of the Association
for Computational Linguistics, 12:157–173.

Andrew Maas, Raymond E Daly, Peter T Pham, Dan
Huang, Andrew Y Ng, and Christopher Potts. 2011.
Learning word vectors for sentiment analysis. In
Proceedings of the 49th annual meeting of the associ-
ation for computational linguistics: Human language
technologies, pages 142–150.

Sewon Min, Mike Lewis, Hannaneh Hajishirzi, and
Luke Zettlemoyer. 2022. Noisy channel language
model prompting for few-shot text classification. In
Proceedings of the 60th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 5316–5330.

508

Jesse Mu, Xiang Lisa Li, and Noah Goodman. 2023.
Learning to compress prompts with gist tokens.
arXiv preprint arXiv:2304.08467.

Shashi Narayan, Shay B. Cohen, and Mirella Lapata.
2018. Don’t give me the details, just the summary!
topic-aware convolutional neural networks for ex-
treme summarization. ArXiv, abs/1808.08745.

Tri Nguyen, Mir Rosenberg, Xia Song, Jianfeng Gao,
Saurabh Tiwary, Rangan Majumder, and Li Deng.
2016. Ms marco: A human generated machine read-
ing comprehension dataset. choice, 2640:660.

Qian Qiao, Yu Xie, Jun Gao, Tianxiang Wu, Shaoyao
Huang, Jiaqing Fan, Ziqiang Cao, Zili Wang, and Yue
Zhang. 2024. Dntextspotter: Arbitrary-shaped scene
text spotting via improved denoising training. In Pro-
ceedings of the 32nd ACM International Conference
on Multimedia, pages 10134–10143.

Ori Ram, Yoav Levine, Itay Dalmedigos, Dor Muhlgay,
Amnon Shashua, Kevin Leyton-Brown, and Yoav
Shoham. 2023. In-context retrieval-augmented lan-
guage models. arXiv preprint arXiv:2302.00083.

Nils Reimers and Iryna Gurevych. 2019. Sentence-bert:
Sentence embeddings using siamese bert-networks.
arXiv preprint arXiv:1908.10084.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D Manning, Andrew Y Ng, and
Christopher Potts. 2013. Recursive deep models for
semantic compositionality over a sentiment treebank.
In Proceedings of the 2013 conference on empiri-
cal methods in natural language processing, pages
1631–1642.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann
Dubois, Xuechen Li, Carlos Guestrin, Percy Liang,
and Tatsunori B Hashimoto. 2023. Stanford alpaca:
An instruction-following llama model.

BlueLM Team. 2023. Bluelm: An open multilin-
gual 7b language model. https://github.com/
vivo-ai-lab/BlueLM.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro,
Faisal Azhar, et al. 2023. Llama: Open and effi-
cient foundation language models. arXiv preprint
arXiv:2302.13971.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R. Bowman. 2019.
GLUE: A multi-task benchmark and analysis plat-
form for natural language understanding. In the Pro-
ceedings of ICLR.

Jiaan Wang, Yunlong Liang, Fandong Meng, Haoxiang
Shi, Zhixu Li, Jinan Xu, Jianfeng Qu, and Jie Zhou.
2023a. Is chatgpt a good nlg evaluator? a preliminary
study. arXiv preprint arXiv:2303.04048.

Lean Wang, Lei Li, Damai Dai, Deli Chen, Hao Zhou,
Fandong Meng, Jie Zhou, and Xu Sun. 2023b. Label
words are anchors: An information flow perspective
for understanding in-context learning. arXiv preprint
arXiv:2305.14160.

Liang Wang, Nan Yang, Xiaolong Huang, Binxing Jiao,
Linjun Yang, Daxin Jiang, Rangan Majumder, and
Furu Wei. 2022a. Simlm: Pre-training with represen-
tation bottleneck for dense passage retrieval. arXiv
preprint arXiv:2207.02578.

Liang Wang, Nan Yang, Xiaolong Huang, Linjun Yang,
Rangan Majumder, and Furu Wei. 2024. Large
search model: Redefining search stack in the era
of llms. In ACM SIGIR Forum, volume 57, pages
1–16. ACM New York, NY, USA.

Liang Wang, Nan Yang, and Furu Wei. 2023c. Learning
to retrieve in-context examples for large language
models. arXiv preprint arXiv:2307.07164.

Yizhong Wang, Swaroop Mishra, Pegah Alipoor-
molabashi, Yeganeh Kordi, Amirreza Mirzaei,
Anjana Arunkumar, Arjun Ashok, Arut Selvan
Dhanasekaran, Atharva Naik, David Stap, et al.
2022b. Super-naturalinstructions: Generalization via
declarative instructions on 1600+ nlp tasks. arXiv
preprint arXiv:2204.07705.

Zengzhi Wang, Qiming Xie, Zixiang Ding, Yi Feng,
and Rui Xia. 2023d. Is chatgpt a good sentiment
analyzer? a preliminary study. arXiv preprint
arXiv:2304.04339.

Alex Warstadt, Amanpreet Singh, and Samuel R. Bow-
man. 2018. Neural network acceptability judgments.
arXiv preprint 1805.12471.

Xiang Wei, Xingyu Cui, Ning Cheng, Xiaobin Wang,
Xin Zhang, Shen Huang, Pengjun Xie, Jinan Xu,
Yufeng Chen, Meishan Zhang, et al. 2023. Zero-
shot information extraction via chatting with chatgpt.
arXiv preprint arXiv:2302.10205.

David Wingate, Mohammad Shoeybi, and Taylor
Sorensen. 2022. Prompt compression and con-
trastive conditioning for controllability and toxic-
ity reduction in language models. arXiv preprint
arXiv:2210.03162.

Yuhuai Wu, Markus N Rabe, DeLesley Hutchins, and
Christian Szegedy. 2022. Memorizing transformers.
arXiv preprint arXiv:2203.08913.

Sang Michael Xie, Aditi Raghunathan, Percy Liang, and
Tengyu Ma. 2021. An explanation of in-context learn-
ing as implicit bayesian inference. arXiv preprint
arXiv:2111.02080.

Xianjun Yang, Yan Li, Xinlu Zhang, Haifeng Chen, and
Wei Cheng. 2023. Exploring the limits of chatgpt
for query or aspect-based text summarization. arXiv
preprint arXiv:2302.08081.

509

https://github.com/vivo-ai-lab/BlueLM
https://github.com/vivo-ai-lab/BlueLM

Susan Zhang, Stephen Roller, Naman Goyal, Mikel
Artetxe, Moya Chen, Shuohui Chen, Christopher De-
wan, Mona Diab, Xian Li, Xi Victoria Lin, et al. 2022.
Opt: Open pre-trained transformer language models.
arXiv preprint arXiv:2205.01068.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,
Zhuohan Li, Dacheng Li, Eric Xing, et al. 2023.
Judging llm-as-a-judge with mt-bench and chatbot
arena. arXiv preprint arXiv:2306.05685.

Lin Zheng, Chong Wang, and Lingpeng Kong. 2022.
Linear complexity randomized self-attention mecha-
nism. In International conference on machine learn-
ing, pages 27011–27041. PMLR.

510

