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Abstract

Discourse coherence theories posit relations be-
tween text spans as a key feature of coherent
texts. However, existing work on coherence
modeling has paid little attention to discourse
relations. In this paper, we provide empiri-
cal evidence to demonstrate that relation fea-
tures are correlated with text coherence. Then,
we investigate a novel fusion model that uses
position-aware attention and a visible matrix to
combine text- and relation-based features for
coherence assessment. Experimental results on
two benchmarks show that our approaches can
significantly improve baselines, demonstrating
the importance of relation features for coher-
ence modeling.

1 Introduction

Coherence is a property of well-written texts that
makes them easier to read and understand than
a sequence of randomly strung sentences (Lap-
ata and Barzilay, 2005). Its modeling has been
applied to many downstream tasks, such as text
summarization (Wu and Hu, 2018), machine trans-
lation (Tan et al., 2019), and document-level text
generation (Wang et al., 2021).

Discourse relations, such as Cause and Contrast,
describe the logical relation between two text spans.
In discourse coherence theory (Rohde et al., 2018;
Jurafsky and Martin, 2021), discourse relations be-
tween text spans play a key role in establishing
the coherence of texts. Referring to the example
in Figure 1, which contains four sentences. This
text is considered highly coherent because it is
organized with specific discourse relations. Specif-
ically, a Contrast relation is used to connect the
first two sentences, followed by an Instantiation
to provide more details for the strike, and finally,
a Cause relation is applied to introduce the last
sentence. Despite the potential usefulness of dis-
course relations, existing works on coherence mod-
eling primarily focus on integrating entity-based

Tom was late for the meeting this morning. 

However, it was not his fault but rather due to 
the citywide strike.

All the roads were blocked, and the buses 
were canceled.

Therefore, he had to walk to the office, which 
took a lot of time.

Contrast

Instantiation

Cause

Figure 1: A coherent text with discourse relations.

features (Barzilay and Lapata, 2008; Guinaudeau
and Strube, 2013; Tien Nguyen and Joty, 2017;
Jeon and Strube, 2022) or applying powerful pre-
trained models (Shen et al., 2021; Laban et al.,
2021; Abhishek et al., 2021; Liu et al., 2023), with
little attention paid to whether discourse relations
can contribute to coherence assessment.

To fill this gap, this paper empirically shows
that text coherence is correlated with the sequence
of discourse relations inferred from documents.
Specifically, we first use a PDTB parser to obtain
discourse relations in documents. Then, we con-
duct a statistical analysis to demonstrate that text
coherence is correlated with discourse relation tran-
sition patterns. Finally, we construct a BiLSTM
classifier based on the discourse relation sequence
in documents for coherence assessment and show
that its performance is comparable to a counterpart
built on the textual input of documents.

Based on these observations, we further inves-
tigate whether discourse relations can be used to
enhance the performance of existing neural coher-
ence models. To this end, we propose a novel
fusion model to combine text- and relation-based
features for coherence assessment. Specifically, we
convert sentences and relations of a document into
a flat structure so that the Transformer can simul-
taneously handle these two different inputs. To
promote the correct interaction between sentences
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and relations, we further investigate position-aware
attention and a visible matrix to guide the attention
between these two types of inputs.

We evaluate our methods on two benchmark
tasks: assessing discourse coherence and automatic
essay scoring. Experiments1 show that our model
outperforms strong baselines, indicating the impor-
tance of relation features for coherence modeling.
Furthermore, we conduct a detailed analysis show-
ing that relation features contribute to learning co-
herence patterns, which achieve better performance
in long documents and cross-domain settings.

2 Related Work

There is a continued research interest in assess-
ing text coherence. Early work is dominated by
entity-based approaches. Motivated by the Cen-
tering Theory (Grosz et al., 1995), Barzilay and
Lapata (2005) propose the well-known entity-grid,
which represents entities in a two-dimensional ar-
ray to track their transitions between sentences for
coherence modeling. The entity-grid was extended
by many subsequent studies, such as considering
semantically-related entities (Filippova and Strube,
2007), adding entity-specific features (Elsner and
Charniak, 2011), and modeling entity transition be-
yond adjacent sentences (Guinaudeau and Strube,
2013). With the advent of deep learning, subse-
quent studies have employed neural networks for
coherence modeling. For example, Tien Nguyen
and Joty (2017); Joty et al. (2018) extend the entity-
grid with convolutional neural networks while Mes-
gar and Strube (2018) use LSTM to learn text
representations. More recently, pre-trained model-
based methods have soon been popular for coher-
ence modeling due to their powerful representa-
tion learning. Abhishek et al. (2021) design differ-
ent transformer-based models for coherence assess-
ment while Shen et al. (2021) examine the perfor-
mance of a broad range of pre-trained Language
Models (LM) for this task. Our work also uses
neural networks and pre-trained LM for coherence
assessment. However, we focus on investigating
the benefits of discourse relations to the task.

Lin et al. (2011) is one of the few studies that
use discourse relations for coherence assessment.
Specifically, they follow an idea similar to the
entity-grid to build a two-dimensional matrix for
texts, where rows and columns are sentences and
entities, respectively. Each cell (si, ej) corresponds

1https://github.com/liuwei1206/RelCoh

to the set of discourse relations entity ej is involved
within sentence si. Feng et al. (2014) propose a sim-
ilar approach but replace the PDTB relations with
RST ones. However, Mesgar and Strube (2015)
point out that these methods are intuitively implau-
sible because they treat discourse relations as fea-
tures of entities, which contradicts the definition
of discourse relations working between sentences
(or elementary discourse units). Additionally, these
works are constrained by the performance of the
discourse parser at that time. For example, the
PDTB parser used in Lin et al. (2011) obtains an
F1-score of only 25.46 in the top-level implicit
relations recognition. By contrast, our study in-
vestigates the benefits of discourse relations at the
sentence level and is based on a more advanced
discourse parser.

Our work is also related to studies using dis-
course relations for downstream NLP tasks. Hewett
et al. (2019) use discourse relations as extra fea-
tures for predicting argumentation structure. Mi-
haylov and Frank (2019) propose a discourse re-
lation guided attention mechanism to enhance the
transformer for reading comprehension. Liu et al.
(2021b) design a method to fuse discourse infor-
mation with contextualized features derived from
pre-trained models for argument impact classifica-
tion. Lei and Huang (2023) utilize discourse struc-
tures to guide propaganda identification via knowl-
edge distillation. Our work differs from the above
studies in both motivation and approach. For ex-
ample, the key inspiration of this work is derived
from the linguistic definition of text coherence.

3 Discourse Relations and Coherence

In this section, we first briefly introduce discourse
relations and how to extract relations from docu-
ments. Then, we provide empirical evidence to
demonstrate the correlation between relation fea-
tures and coherence levels. Finally, we show that
a BiLSTM classifier using relation sequences as
input is able to achieve performance comparable to
the counterpart based on textual input.

3.1 Discourse Relations

Discourse relations are a means of logically con-
necting two segments of discourse. Over the past
few decades, various frameworks have been in-
troduced to annotate discourse relations. Among
them, the most widely used are Rhetorical Struc-
ture Theory (RST, Mann and Thompson, 1988) and

4749

https://github.com/liuwei1206/RelCoh


GCDC Enron TOEFL P1

coef p-value coef p-value

2-gram
Synchronous → Conjunction 0.3924 <0.01 Disjunction → Cause 0.5242 <0.01
Asynchronous → Asynchronous 0.3675 <0.01 Synchronous → Conjunction 0.4733 <0.01
Level-of-detail → Asynchronous 0.3040 0.042 Instantiation → Level-of-detail 0.3483 <0.01
Cause → NoRel -0.2300 0.015 Conjunction → Synchronous 0.3477 <0.01

3-gram
Cause → NoRel → Conjunction -0.4835 <0.01 Level-of-detail → Conjunction → Instantiation 0.5239 <0.01
NoRel → Conjunction → Cause -0.4359 <0.01 Conjunction → Contrast → Conjunction 0.5234 <0.01
Cause → Level-of-detail → Conjunction 0.4160 0.012 Conjunction → Conjunction → Contrast 0.5227 <0.01
Conjunction → Cause → Asynchronous 0.3133 0.056 Level-of-detail → Concession → Cause 0.4882 <0.01

Table 1: Correlation between discourse relation N-gram patterns and coherence levels. Only the top four patterns
with the highest absolute correlation coefficients are shown.

the Penn Discourse Treebank (PDTB, Prasad et al.,
2008). In the RST framework, a text is represented
as a hierarchical discourse tree, where relations
are used to link different text spans. By contrast,
PDTB does not postulate any structural constraints
on discourse relations and focuses on labeling local
discourse relations between sentences and clauses.
In this work, we follow previous work (Lin et al.,
2011) adopting PDTB relations and leave the RST
relations for future work.

Specifically, we choose the discopy (Knaebel,
2021) as discourse parser to extract relations from
documents, but make some adjustments. First, we
use the relations in PDTB 3.0 (Webber et al., 2019)
instead of PDTB 2.0 (Prasad et al., 2008) since
the former defines more relations and is an im-
proved version of the latter. Second, we adopt
the connective-enhanced approach from Liu and
Strube (2023) for implicit relation recognition as
it achieves state-of-the-art performance. We train
the parser on the PDTB 3.0 corpus using the data
split introduced by Ji and Eisenstein (2015), and
evaluate its performance on second-level relations.
It can achieve an accuracy of 89.61% on explicit re-
lations and 67.80% on implicit ones. This suggests
that the parser performs quite well, laying a solid
foundation for further analysis. See Appendix A
for more information about the parser.

3.2 Correlation Analysis

In coherence theories, discourse relations between
text spans play a key role in achieving text co-
herence (Jurafsky and Martin, 2021). Further-
more, Lin et al. (2011) observed that coherent text
exhibits preferences for specific discourse relation
ordering. This is somehow verified by Biran and
McKeown (2015), which shows that relation N-
gram planning (transitions between discourse re-
lations) helps generate coherent text. Inspired by

these works, we aim to provide evidence to demon-
strate the correlation between relation N-gram pat-
terns and text coherence.
Dataset. We conduct analyses on two widely
used corpora in coherence modeling: the Gram-
marly Corpus of Discourse Coherence (GCDC)
dataset (Lai and Tetreault, 2018) and the TOEFL
dataset (Blanchard et al., 2013). GCDC is a cor-
pus constructed for assessing discourse coherence
(ADC), containing texts from four domains, Yahoo
online forum posts, emails from Enron, emails
from Hillary Clinton’s office, and Yelp online busi-
ness reviews. Each text in this corpus is annotated
by expert raters with scores of {1, 2, 3}, repre-
senting low, medium, and high levels of coherence,
respectively. The TOEFL dataset was originally
used for automated essay scoring (AES) but has
been used to evaluate coherence models (Burstein
et al., 2010; Jeon and Strube, 2020b). It contains
essays from eight prompts (P1 to P8) along with
score levels (low/medium/high) for each essay. See
Appendix B for statistics on these two corpora.

For each document d in the two corpora, we
use Stanza (Qi et al., 2020) to segment it into sen-
tences {s1, s2, ..., sL} and employ the enhanced
discopy to recognize the relations between ad-
jacent sentences, obtaining a relation sequence
{r1, r2, ..., rL−1}, where ri denotes the parsed re-
lation between si and si+1. Then, we extract tran-
sition patterns, i.e., relation N-grams, from the re-
lation sequence, and count their frequency. Finally,
we calculate Spearman’s rank correlation2 between
each n-gram pattern and the ground-truth coher-
ence label.
Results. Table 1 shows the results on the GCDC
Enron and TOEFL P1 datasets. In general, rela-
tion N-gram features are empirically correlated

2We choose Spearman’s rank correlation because coher-
ence level and relation N-gram frequency are ranked variables.

4750



Input Type
GCDC Enron TOEFL P1

Acc F1 Acc F1

Raw Text 46.200.77 42.860.97 57.551.24 50.390.78

Rel Sequence 44.150.92 39.431.24 59.170.87 53.510.99

Rel Sequence (shuffled) 37.401.05 31.621.07 50.540.92 43.031.53

Table 2: The performance (with std) of BiLSTM clas-
sifier when using text, relation sequence, and shuffled
relation sequence as input, respectively.

with coherence levels. For example, in GCDC
Enron, the relation 3-grams containing NoRel, e.g.,
Cause → NoRel → Conjunction, are negatively
correlated with coherence level. In the TOEFL
P1 dataset, essays containing Cause and Level-of-
detail relations, e.g., Disjunction → Cause, tend
to be more coherent. This aligns with existing the-
ories where discourse relations play a key role in
achieving text coherence (Rohde et al., 2018). The
relation 3-gram patterns seem to be more corre-
lated with text coherence than the relation 2-gram
ones. Taking results on TOEFL P1 as an example,
the correlation coefficients for 3-gram patterns are
generally above 0.5, higher than that of around 0.4
for 2-gram ones. We also observe that the two cor-
pora have different relation N-gram patterns which
are correlated with text coherence. This may be
due to the genre distinctions (Webber, 2009) for
discourse in different texts. In the TOEFL cor-
pus, essays are viewpoint-oriented, using evidence
(Cause relation) and examples (Instantiation rela-
tion) to support opinions. In contrast, the docu-
ments in the GCDC Enron dataset are narrative
texts, typically employing Conjunction relations.
See Appendix C.1 for the distribution of discourse
relations parsed from the two corpora.

3.3 Text vs. Relations

We devise another experiment to demonstrate the
importance of discourse relations for coherence
modeling. Specifically, we train two BiLSTM clas-
sifiers for coherence assessment, in which the first
uses the raw text of the document as input while the
other inputs the discourse relation sequence parsed
from the document.

Table 2 shows the accuracy and macro-f1 re-
sults on GCDC Enron and TOEFL P1 datasets.
Surprisingly, the classifier built on the discourse
relation sequence (Rel Sequence) can achieve com-
parable performance to that built on raw text. On
the GCDC Enron dataset, the classifier based on
the relation sequence only lags behind that on raw
text by 2 to 3 points, despite the relation sequence

(a) Concatenation

𝑠! 𝑠" 𝑠#

Text Encoder

Transformer Transformer

Text Feature Rel Feature

𝑟!

Rel Embed

𝑟$𝑠$ 𝑟"

(b) Fusion

𝑠! 𝑠" 𝑠#

Text Encoder

Fusion Transformer

𝑟!

Rel Embed

𝑟$𝑠$ 𝑟"

Fused Feature

Figure 2: Two ways to combine text- and relation-based
features: concatenation vs. fusion.

being much shorter than the word sequence of the
text. The results on the TOEFL P1 dataset are more
encouraging, with the BiLSTM classifier using rela-
tions as input outperforming the counterpart based
on raw text. These results indicate that discourse
relations parsed from the document are useful for
coherence modeling. We further investigate the
importance of the relation order by training an-
other classifier on the shuffled relation sequence,
and show the result in Table 2. The results of the
classifier trained on the shuffled relations lag be-
hind the counterpart trained on the original relation
sequence by more than 7 points, suggesting that
transition patterns between relations are crucial for
coherence modeling. Finally, we compare the cor-
rect predictions between classifiers trained on raw
text and the relation sequence, and find that only
about 60% of them are overlapping. This suggests
that raw text and the relation sequence provide dif-
ferent information for coherence assessment.

4 Discourse Relation-Enhanced
Coherence Modeling

Inspired by the above analysis, in this section, we
explore approaches to combine text- and relation-
based features for coherence modeling. A straight-
forward way to use both types of information is
to extract text- and relation-based features sepa-
rately, concatenate them, and feed them into a clas-
sifier (as shown in Figure 2a). However, simple
concatenation does not consider any potential in-
teraction between two types of features. Prior stud-
ies (Ji et al., 2016; Yu et al., 2022) have demon-
strated that incorporating discourse relations into
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(a) Sentences with Relations

(b) Flat Sentences-Relations with Positions

Figure 3: Converting original sentences and parsed rela-
tions (a) into a flat sentence-relation structure (b), where
start_pos and end_pos denote the start and end positions
of the node in the original sentence sequence.

language models can lead to better text representa-
tions. Therefore, we investigate a fusion model to
facilitate the interaction between text and relation
information.

Figure 2b shows the overall architecture of the
proposed model. First, we use a text encoder and
a relation embedding layer to generate sentence
and relational representations, respectively. Specif-
ically, given a text d = {s1, s2, ..., sL} with L sen-
tences, we input the entire text to a text encoder to
obtain representations of tokens {et1, et2, ..., etN},
where N is the number of tokens in the text. The
text encoder can be a pre-trained language model
(PLM), such as RoBERTa (Liu et al., 2019b),
or a large-scale language model (LLM), such as
LLama (Touvron et al., 2023). Following pre-
vious work (Jeon and Strube, 2022), we derive
sentence representation by averaging representa-
tions of tokens3 contained in the sentence, i.e.,
esj =

1
M

∑
ti∈sj e

t
i, where M is the number of to-

kens in sentence sj . Regarding discourse relations
{r1, ..., rL−1} parsed from the text, we embed each
relation rj into a vector erj = Embed(rj), where
Embed denotes a relation embedding lookup table.
Then, we input sentences and relations into a fusion
transformer. The challenge here is how to promote
the interaction between sentence and relation rep-
resentations while ensuring that sentences attend
to the right relations (and vice versa). We address
it through three components: (1) a flat structure of
sentences and relations with positional information;
(2) a position-aware attention; and (3) a visibility
matrix between sentences and relations.

4.1 Flat structure with positions

After applying the discourse parser, we obtain sen-
tences of the text (the lower part of Figure 3a) and

3We also experimented with [CLS] pooling but found av-
erage pooling is consistently better, see Appendix D.2.
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Figure 4: Fusion Transformer.

discourse relations between adjacent sentences (the
upper part of Figure 3a), forming a graph struc-
ture. However, since the Transformer is designed
for sequence modeling (Vaswani et al., 2017), it is
not straightforward for the Transformer to process
a graph-structured input. One possible solution is
to insert relations into the sentence sequence, i.e.,
[s1, r2, s2, ...], but the resulting new sequence is no
longer natural text.

To address these issues, we introduce a flat struc-
ture to organize sentences and relations, in which
these two types of sequences are concatenated and
equipped with positional information (as shown in
Figure 3b). Specifically, sentences and relations
are represented as a sequence of triples, where each
triple contains three elements: (1) a node, which
can be either a sentence or a relation; (2) start_pos
and (3) end_pos, denoting the start and end posi-
tion of the node in the original sentence sequence,
respectively. If the node is a sentence, the start and
end positions are the same. If the node is a relation,
the start and end positions are different, indicating
which two sentences the relation works on. For
example, (s1, 1, 1) denotes that this is the first sen-
tence in the text, while (r1, 1, 2) means that this
is a discourse relation connecting the first and sec-
ond sentences of the text. With this flat structure,
we can maintain the original order information of
sentences while facilitating the Transformer’s pro-
cessing of these two features (see next section).

4.2 Position-aware attention
The vanilla Transformer encodes the sequence us-
ing absolute positions, which does not apply to our
flat structure input. Taking s1 and r1 in Figure 3b as
an example, they are related, but their absolute po-
sitions are far apart. Inspired by the self-attention
in Dai et al. (2019) and Li et al. (2020), we in-
vestigate position-aware attention to facilitate the
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interaction between relevant sentence and relation
nodes. The position-aware attention between the
i-th and the j-th nodes is defined as:

Aij = qik
T
j + qir

T
i−j + ukT

j + vrTi−j (1)

where qi,kj , ri−j = eiWq, ejWk,pei−jWr, ei
means the representation of the i-th node, pei−j de-
notes the relative position embedding between the i-
th and the j-th nodes, and Wq, Wk, Wr, u, v are
trainable parameters. The first and third terms in
Eq. 1 are content-based addressing, where the for-
mer calculates weight between query and key, and
the latter governs a global content bias (Dai et al.,
2019). The second and last terms compute weight
with relative positional information, which can be
used to guide the attention between relevant sen-
tences and relations. Specifically, since each triple
in the flat structured input contains two positional
information (i.e., start_pos and end_pos), we can
calculate four types of relative distances between
the i-th and the j-th nodes: (i) starti − startj; (ii)
starti−endj; (iii) endi− startj; (iv) endi−endj.
Under the guidance of relative positional informa-
tion, a sentence will not only attend neighboring
sentences but also the relation that acts upon it.
Taking s1 and r1 in Figure 3b as an example, the
distance between the start positions (start_pos) of
the two nodes is 0, indicating they are very related.
The final relative position embedding between the
i-th and the j-th nodes, i.e., pei−j , is defined as
a non-linear transformation over the four relative
distances:

pei−j = (psi−sj ⊗psi−ej ⊗pei−ej ⊗pei−ej )Wp

(2)
The position embedding p is initialized as in Trans-
former, where p2k

pos = sin
(
pos/100002k/dmodel

)

and p2k+1
pos = cos

(
pos/100002k/dmodel

)
(Vaswani

et al., 2017).

4.3 Visible matrix

While relative position embedding can effectively
guide attention calculation, sentence nodes may
still attend to irrelevant relation nodes, such as s1
attending to r3 (see Figure 3a), leading to a poor
text representation. Thus, we further introduce a
visible matrix M to prevent this. The M is defined
as:

Mij =

{
0, if cond1 | cond2 | cond3
−∞, otherwise

(3)

where cond1 and cond2 are defined as nodes i and
j are both sentences or relations, and cond3 is de-
fined as nodes i and j is one sentence and one re-
lation, and the relation works on the sentence. We
apply the visible matrix to the attention calculation:

A∗ = Softmax(A+M) (4)

Then layer normalizations and a feed-forward net-
work (as shown in Figure 4) are applied to produce
the text representation v. Finally, we input v into
a softmax classifier, and use the cross-entropy loss
for training.

5 Experiments

We conduct experiments on the GCDC (Lai and
Tetreault, 2018) and TOEFL (Blanchard et al.,
2013) datasets to show the effectiveness of rela-
tion features for coherence modeling.
Implementation Details. We implement our
model using the Pytorch library, experiment with
two different text encoders, a pre-trained language
model RoBERTabase (Liu et al., 2019b), and a
large language model LLama27B (Touvron et al.,
2023), and initialize the relation embedding with
Glove (Pennington et al., 2014). We use the
AdamW optimizer with an initial learning rate of
1e-3, a batch size of 32, and a maximum epoch
number of 20 for training. Considering the train-
ing variability in GCDC, we follow the setting
in Lai and Tetreault (2018) to perform 10-fold
cross-validation over the training dataset. Regard-
ing the TOEFL dataset, we conduct 5-fold cross-
validation on the dataset of each prompt, which is
a common setting for the AES task (Taghipour and
Ng, 2016). Like previous work (Farag and Yan-
nakoudakis, 2019; Jeon and Strube, 2022), we use
standard accuracy (Acc, %) as evaluation metrics.4

We show more detailed settings in Appendix D.1.
Baselines. To investigate the usefulness of dis-
course relations, we compare with a baseline using
only textual input without any relation information:

• TextOnly. This model consists of a text encoder
to obtain sentence representation, a sentence-
level transformer to extract coherence patterns,
and a softmax classifier for prediction.

To show the effectiveness of our fusion strategy, we
compare it with the concatenate baseline:

4We also report the results of Macro-F1 in Appendix D.3.
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Model Clinton Enron Yahoo Yelp Avg

Jeon and Strube (2022) 64.200.40 55.300.30 58.400.20 57.300.20 58.90
Liu et al. (2023) 66.200.81 57.000.81 63.650.74 58.051.21 61.23

LLama-Prompt 62.601.59 57.351.42 60.051.41 57.501.02 59.36
GPT4-Prompt 53.00 53.00 50.00 49.00 51.25

RoBERTa

TextOnly 64.550.69 57.500.89 60.050.35 58.200.75 60.10
Concat 65.450.79 58.300.56 61.350.67 59.050.57 61.04
Our Method 66.250.64 59.601.26 63.050.42 60.200.95 62.28

LLama

TextOnly 63.900.49 57.050.79 59.600.49 57.350.74 59.47
Concat 64.100.66 57.150.50 61.150.81 58.350.71 60.19
Our Method 65.750.46 59.300.98 61.700.78 59.450.99 61.55

Table 3: Mean accuracy results (with std) on the GCDC dataset.

• Concat. This baseline simply concats text- and
relation-based features without considering inter-
actions between them (see Figure 2a).

Recently, prompt-based methods using LLM have
significantly impacted various NLP tasks. There-
fore, we also compare to baselines of this trend:

• LLama-Prompt. Using LoRA (Hu et al., 2022)
to tune LLama2-7B, and predict the coherence of
an input document with the designed template.5

• GPT4-Prompt. Calling GPT 4 API and apply-
ing in-context learning5 (Min et al., 2022) for
coherence assessment.

Further, we compare our method against previous
state-of-the-art models on each corpus.

5.1 Overall Results

GCDC. Table 3 presents the results on the GCDC
dataset, where the last two blocks show the re-
sults based on RoBERTa and LLama. When us-
ing RoBERTa as the text encoder, both Concat and
Our Method outperform the TextOnly baseline, in-
dicating that relation features are helpful for co-
herence assessment. The improvement of Concat
over the TextOnly baseline is limited, with an in-
crease in accuracy of less than one point (60.10
→ 61.04). We argue simply concatenating text-
and relation-based features can not fully utilize
relation information since the two features are pro-
cessed separately, without considering the inter-
action between them. Compared to Concat, Our
Method shows a greater improvement, increasing
by 2.18% in accuracy, suggesting that our approach
is more efficient in utilizing relation information.

5We show the prompts used for LLama and GPT 4 base-
lines in figures 6 and 7.

When using LLama as the text encoder, similar re-
sults are observed, showing that relation features
are useful across different encoders. Surprisingly,
our method implemented with RoBERTa performs
better than the counterpart with LLama (62.28 vs.
61.55) despite the latter having more parameters
and pre-trained on more corpus than the former.
We suspect this is because RoBERTa learns bidirec-
tional context-aware representation while Llama is
limited by its uni-directional context (Yang et al.,
2019). Recent work also observed similar results of
RoBERTa and LLama on other text classification
tasks (Rodriguez-Garcia et al., 2024).

The second block in Table 3 shows the results of
prompt-based methods, including LLama-Prompt
and GPT4-Prompt. Similar to using LLama as a
text encoder, the performance of LLama-prompt
also underperforms our method using RoBERTa,
with an accuracy gap of 2.92%. The performance
of GPT 4 on this task is even worse, lagging be-
hind our method (RoBERTa) by 11% in accuracy.
This is consistent with previous findings that GPT
4 achieves a certain level of accuracy in scoring es-
says but still underperforms trained models (Mizu-
moto and Eguchi, 2023). To further show the im-
portance of relation features and the efficiency of
our method, we compare against two state-of-the-
art models (Jeon and Strube, 2022; Liu et al., 2023)
on this corpus. The two models are entity-based,
and their results are shown in the first block of Ta-
ble 3. Our method, using relation features, outper-
forms the two entity-based models for coherence
assessment, indicating its superiority for this task.
TOEFL. Results on the TOEFL dataset are shown
in Table 4. Similar to the observations on the
GCDC dataset, relation features contribute to coher-
ence modeling. When using RoBERTa as the text
encoder, Concat and Our Method outperform the
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Model
Prompt

Avg
1 2 3 4 5 6 7 8

Jeon and Strube (2022) 78.380.00 75.700.30 76.580.00 76.560.00 79.100.00 76.410.00 75.030.00 74.540.00 76.54
Liu et al. (2023) 75.791.14 76.251.07 74.141.18 75.810.71 77.010.94 77.081.14 73.550.80 72.910.66 75.34

LLama-Prompt 76.811.36 76.121.12 76.571.23 75.551.06 76.931.16 76.331.04 76.100.96 74.731.37 76.14
GPT4-Prompt 59.21 58.65 64.28 58.27 58.48 65.10 60.23 59.34 57.25

RoBERTa

TextOnly 76.360.90 75.101.03 75.290.51 75.331.47 75.901.01 75.611.88 73.760.91 73.341.06 75.08
Concat 77.631.31 75.870.36 76.720.93 76.661.87 78.201.14 77.081.31 75.480.69 74.921.15 76.57
Our Method 78.970.75 77.210.99 77.590.92 77.190.90 78.451.14 78.221.57 76.780.96 75.851.06 77.49

LLama

TextOnly 74.961.17 74.451.55 74.710.43 73.811.45 75.651.55 75.620.96 74.640.93 73.341.02 74.65
Concat 75.940.75 75.851.21 75.310.56 74.471.47 76.501.19 76.350.98 75.120.74 73.581.23 75.39
Our Method 77.161.12 76.891.33 76.290.71 76.191.04 77.411.12 77.291.06 76.310.82 75.190.94 76.59

Table 4: Mean accuracy results (with std) on the TOEFL dataset.
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Figure 5: Accuracy against text length.

TextOnly baseline by 1.49% and 2.41% in accuracy,
respectively. The same results are observed when
using LLama as a text encoder, where the improve-
ment of Concat and Our Method over the TextOnly
baseline is 0.72% and 2.05%, respectively. In
both settings, Our Method outperforms Concat,
demonstrating the effectiveness of fusion for text-
and relation-based features. Despite being quite
popular in recent research, prompt-based methods,
including LLama-Prompt and GPT4-Prompt, are
comparable to other baselines and slightly inferior
to our method using RoBERTa or LLama as the
text encoder. We further compare our method with
previous entity-based approaches. Results in Table
4 show that our approach performs better than the
two models, highlighting the usefulness of relation
features for this task.

5.2 Performance Analysis

We conducted two analyses to understand why rela-
tion features perform well in coherence assessment.
First, we compare the performance of Our Method
and Concat with the TextOnly baseline across dif-
ferent document lengths (in terms of sentence num-
ber). Figure 5 shows the accuracy trends of these
three models (using RoBERTa) on the TOEFL P1
dataset as the number of sentences increases. Our

Model
Enron → Others TOEFL P1 → Others

RoBERTa LLama RoBERTa LLama

TextOnly 51.83 47.50 71.88 67.70
Concat 53.50(+1.67) 49.83(+2.33) 74.86(+2.98) 70.93(+3.23)
Our Method 56.33(+4.50) 52.33(+4.83) 75.52(+3.64) 72.49(+4.79)

Table 5: Cross-domain accuracy of models.

Method and Concat show comparable performance
to the TextOnly baseline at the beginning but grad-
ually outperform the baseline when the sentence
number increases, demonstrating that relation in-
formation contributes to learning better coherence
patterns for long documents. Our Method con-
sistently outperforms Concat, indicating that it is
more efficient in exploiting relation features.

To probe whether our model has truly learned
better coherence patterns, we further examine its
transferability in cross-domain settings. Specifi-
cally, we train TextOnly, Concat, and Our Method
on Enron of GCDC (or Prompt 1 of TOEFL), and
evaluate their performance on other parts of GCDC
(or other prompts of TOEFL) datasets. Table 5
shows the results of these three models. With rela-
tion information, Concat and Our Method consis-
tently show better performance than the TextOnly
baseline in the cross-domain setting, indicating the
relation sequence of texts can serve as domain-
agnostic features for coherence assessment. Our
Method outperforms the Concat baseline in all
cross-domain experiments, showing the superiority
of fusion toward simple concatenation.

5.3 Ablation Study

We conduct ablation studies to evaluate the effec-
tiveness of position-aware attention (PAA) and vis-
ible matrix (VM). Specifically, we first remove the
visible matrix, and then replace the position-aware
attention with a vanilla one. Table 6 shows the
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Model
RoBERTa LLama

Enron TOEFL P1 Enron TOEFL P1

Our Method 59.60 78.97 59.30 77.16
- VM 59.20 78.12 58.55 76.26
- VM, PAA 58.15 77.24 57.40 75.68

Table 6: Ablation study for visible matrix (VM) and
position-aware attention (PAA) in our method.

results on the GCDC Enron and TOEFL P1 dataset
using RoBERTa. We can observe that each com-
ponent contributes to the performance, showing
their essential to achieve good performance. Fur-
thermore, the performance drop from removing the
position-aware attention mechanism is greater than
that from eliminating the visible matrix, indicating
that relative position information is more important
in guiding fusion.

6 Conclusions

In this paper, we provide empirical evidence to
demonstrate the correlation between discourse re-
lations and text coherence. Then, we introduce a
novel fusion model to combine text- and relation-
based features for coherence assessment. Experi-
ments on two benchmarks show that our method
consistently outperforms various baseline models,
demonstrating the importance of relation features
and the effectiveness of our approach.

7 Limitations

This study focuses on investigating whether dis-
course relations contribute to coherence assessment.
Despite achieving position results, our method has
several limitations that can be further explored in
future work. Firstly, the performance of the PDTB
parser used in this work is far from perfect. Fu-
ture efforts should focus on building more power-
ful parsers to facilitate the analysis of discourse
relations’ role in coherence modeling. Secondly,
we only experiment with PDTB relations. Extend-
ing our findings to other relations, such as RST
relations (Mann and Thompson, 1988), would be
very interesting. Finally, this study only considered
discourse relations for coherence modeling and
did not investigate whether they can be combined
with other coherence patterns, such as entity-based
patterns (Barzilay and Lapata, 2008). Therefore,
exploring the integration of different patterns to
improve coherence assessment would be an encour-
aging direction.
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Explicit Distribution Implicit Distribution
Asynchronous 8.69% Asynchronous 4.64%
Cause 7.87% Cause 24.23%
Concession 19.94% Cause+Belief 0.82%
Condition 5.99% Concession 6.72%
Conjunction 36.55% Condition 0.85%
Contrast 4.58% Conjunction 20.84%
Disjunction 1.23% Contrast 3.86%
Instantiation 1.30% Equivalence 1.21%
Level-of-detail 1.01% Instantiation 6.84%
Manner 1.23% Level-of-detail 14.60%
Negative-condition 0.54% Manner 0.74%
Purpose 1.63% Purpose 3.31%
Similarity 0.42% Substitution 1.34%
Substitution 0.96% Synchronous 2.35%
Synchronous 8.07% NoRel 8.18%

Table 7: Explicit and Implicit relations used in this study
and their distribution in the training corpus.

A PDTB Parser

We use an updated version of discopy (Knaebel,
2021) to parse discourse relations from documents.
The first update is to replace PDTB 2.0 (Prasad
et al., 2008) relations with PDTB 3.0 (Webber et al.,
2019) ones. In detail, we consider explicit and im-
plicit relations between adjacent sentences of a text.
For the explicit part, we use 15 discourse relations
since they have enough examples for training (Liu
et al., 2024). Similarly, we use the 14 most com-
mon relations and also one "NoRel" label since no
relation is common in low coherent texts. Table
7 shows the relations used in this work and their
distributions in PDTB 3.0. The second update is
to adopt the model of Liu and Strube (2023) for
implicit relation recognition since it achieves state-
of-the-art performance. We implement this parser
with RoBERTa and train it on the PDTB 3.0 us-
ing the data splitting of Ji and Eisenstein (2015).
This parser achieves an accuracy of 89.61% and
67.80% on explicit and implicit test sets of PDTB
3.0, respectively.

B Dataset

The GCDC dataset contains texts from four do-
mains: Yahoo online forum posts, emails from En-
ron, emails from Hillary Clinton’s office, and Yelp
online business reviews. Similarly, the TOEFL
dataset consists of essays from eight different
prompts. The statistics of the GCDC and TOEFL
datasets are shown in Table 8.

Dataset Split #Doc Avg #Sent Avg #Word

GCDC

Clinton
Train 1000 8.9 182.9
Test 200 8.8 186.0

Enron
Train 1000 9.2 185.1
Test 200 9.3 191.1

Yahoo
Train 1000 7.8 157.2
Test 200 7.8 162.7

Yelp
Train 1000 10.4 178.2
Test 200 10.1 179.1

TOEFL

Prompt 1 Total 1656 13.7 339.1
Prompt 2 Total 1562 15.7 357.8
Prompt 3 Total 1396 14.7 343.5
Prompt 4 Total 1509 15.1 338.0
Prompt 5 Total 1648 15.2 358.4
Prompt 6 Total 960 15.3 358.3
Prompt 7 Total 1686 14.0 336.6
Prompt 8 Total 1683 14.7 340.9

Table 8: Statistics of datasets, where #Doc, #Sent, and
#Word mean the number of documents, sentences, and
words, respectively.

Relation GCDC Enron TOEFL P1
Conjunction 33.47% 19.29%
Cause 25.72% 37.40%
Concession 8.92% 7.60%
Level-of-detail 13.48% 11.99%
Asynchronous 4.51% 1.69%
Synchronous 0.80% 0.61%
Contrast 1.09% 4.65%
Instantiation 1.49% 10.58%
NoRel 8.55% 1.12%
Condition 0.32% 0.41%
Purpose 0.32% 0.17%
Substitution 0.57% 1.31%
Manner 0.01% 0.01%
Disjunction 0.01% 0.06%
Equivalence 0.39% 2.56%
Cause+belief 0.26% 0.37%
Negative-condition 0.08% 0.14%
Similarity 0.01% 0.04%

Table 9: The distribution of discourse relations parsed
from GCDC Enron and TOEFL P1 corpora.

C More Analysis Results

C.1 Distribution of parsed relations
Table 9 shows the distribution of parsed relations
from GCDC Enron and TOEFL P1 datasets. Texts
in the Enron dataset are emails, using Conjunc-
tion relations frequently to link pieces of informa-
tion. By contrast, essays in TOEFL datasets are
viewpoint-oriented, using Cause and Instantiation
relations to support their opinions. Therefore, we
see the relation distribution of the two corpora are
very different.

C.2 Top-level or second-level relations?
In Sections 3.2 and 3.3, we use the second-level dis-
course relations for analysis because fine-grained
relations can provide more information for co-
herence assessment. To verify this point, we re-
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Model Clinton Enron Yahoo Yelp Avg

Liu et al. (2023) 48.491.61 45.671.57 51.921.06 44.181.10 47.66

LLama-Prompt 47.631.91 51.371.87 47.501.96 46.411.87 48.23
GPT4-Prompt 44.22 45.03 43.00 41.96 43.55

RoBERTa

TextOnly 47.581.09 48.741.05 45.710.86 45.630.78 46.92
Concat 50.491.21 49.421.25 47.971.29 46.740.98 48.66
Our Method 52.281.02 52.511.58 49.611.80 47.440.95 50.46

LLama

TextOnly 48.511.10 48.990.84 47.311.25 46.380.98 47.80
Concat 51.980.43 48.691.00 48.421.34 46.931.34 49.00
Our Method 52.901.17 52.620.79 49.941.02 47.670.52 50.78

Table 10: Mean macro-F1 results (with std) on the GCDC dataset.

Input Type
GCDC Enron TOEFL P1

Acc F1 Acc F1

Raw Text 46.200.77 42.860.97 57.551.24 50.390.78

Rel Sequence (Top) 41.350.74 34.750.84 55.560.71 49.161.29

Rel Sequence (Second) 44.150.92 39.431.24 59.170.87 53.510.99

Table 11: The performance (with std) of BiLSTM clas-
sifier when using text, top-level relation sequence, and
second-level relation sequence as input.

conduct the analysis in Section 3.3 but replace
the second-level relations with the top-level ones6.
Table 11 shows the performance comparison be-
tween different settings. The classifier trained on
the second-level relations consistently outperforms
the counterpart trained on the top-level relations,
with a gap of about 3 to 4 points. This demonstrates
that more fine-grained relations are more helpful in
coherence assessment.

D Experiments

D.1 Detailed experimental setting

For experiments on both GCDC and TOEFL
datasets, whether using RoBERTa or LLama as
the text encoder, we use an Adam optimizer with
an initial learning rate of 0.001, a batch size of 32,
and a maximum epoch number of 20 for training.
However, different dropout values are used for dif-
ferent text encoders, with RoBERTa and LLama
using values of 0.1 and 0.5, respectively. Follow-
ing the previous work (Lai and Tetreault, 2018), we
perform 10-fold cross-validation over the training
dataset for the GCDC corpus. Similarly, a 5-fold
cross-validation is performed on the dataset of each
prompt, which is the common setting for this cor-
pus (Jeon and Strube, 2020a). All the experiments

6This is achieved by training the same discourse parser
but with top-level relation set, i.e., Contingency, Comparison,
Expansion, and Temporal relations.

Text: [Tom was late for the meeting this morning. However, it was ….]

Level of Coherence: High

Figure 6: Template for the Llama-Prompt baseline.

Replace the MASK token by selecting only one of the following

coherence labels: [low, medium, high].

Examples:

Text: [text_1]

Coherence level: low

Text: [text_2]

Coherence level: medium

Text: [text_3]

Coherence level: high

<other two examples for each coherence level>

Text: [target_text]

Coherence level: [MASK]

Figure 7: Template for the GPT4-Prompt baseline.

are run on a single Tesla P40 GPU with 24 GB
memory.

For the LLama-Prompt baseline, we follow ex-
isting work (Rodriguez-Garcia et al., 2024) formu-
lating the coherence modeling as a generation task
and using LoRA (Hu et al., 2022) to efficiently tune
the LLama on the training set. For LoRA, we set
the rank r as 64, lora_alpha as 16, lora_dropout
as 0.1, and target_modules as ["q_proj", "o_proj",
"k_proj", "gate_proj", "up_proj", "down_proj"].
The template we used for the LLama-Prompt base-
line is shown in Figure 6. Regarding the GPT4-
Prompt baseline, we employ in-context learning
with 3 examples for each coherence level. The ver-
sion of GPT used in this work is "GPT-4o", which
is very fast for generation and also affordable for us.
We show the template for this baseline in Figure 7.

D.2 [CLS] pooling or average pooling

We have tried both [CLS] pooling and average
pooling in our experiments. We found that using
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Model
Prompt

Avg
1 2 3 4 5 6 7 8

Liu et al. (2023) 72.561.65 72.311.68 73.141.90 74.391.49 73.021.70 73.931.25 71.661.16 70.391.40 72.68

LLama-Prompt 74.102.41 72.772.18 74.501.00 73.371.34 74.872.19 74.411.96 73.272.68 72.551.61 73.73
GPT4-Prompt 53.37 50.25 64.12 58.57 50.53 64.92 59.29 56.91 57.25

RoBERTa

TextOnly 73.071.24 71.360.68 74.440.59 72.281.60 72.911.28 72.251.79 71.281.46 70.301.50 72.23
Concat 74.351.56 72.311.18 74.310.76 74.082.06 74.061.53 74.051.23 72.991.35 71.742.40 73.49
Our Method 76.421.24 72.861.86 75.600.76 75.371.46 75.700.43 75.731.57 72.762.02 73.021.64 74.71

LLama

TextOnly 71.000.49 69.381.30 71.130.87 71.291.37 71.230.87 71.581.42 69.710.98 68.641.70 70.49
Concat 71.901.04 71.630.64 72.141.03 71.910.85 72.781.31 72.821.58 70.051.07 70.571.50 71.72
Our Method 73.361.10 72.891.30 72.881.04 73.500.92 73.231.19 73.381.64 71.820.80 70.551.09 72.70

Table 12: Mean macro-F1 results (with std) on the TOEFL dataset.

the average pooling (to get sentence representa-
tions) consistently outperforms the [CLS] pooling.
For instance, on the TOEFL P1 dataset (using a
RoBERTa encoder), the accuracy of the TextOnly
baseline and our method with average pooling are
76.36% and 78.97%, respectively, compared to
72.58% and 76.32% with [CLS] pooling. Aver-
age pooling captures information from all tokens in
the sequence, preserving richer linguistic features,
whereas [CLS] pooling relies solely on the [CLS]
token representation, which may omit important
contextual details. Similar findings are reported
in Mosbach et al. (2020).

D.3 Macro-F1 results
Typically, accuracy is commonly used as an evalua-
tion metric for NLP tasks (Liu et al., 2019a, 2021a;
Fu and Frank, 2023, 2024a,b), including coherence
assessment (Farag and Yannakoudakis, 2019; Lai
and Tetreault, 2018; Jeon and Strube, 2020a). Due
to the uneven distribution of labels in the GCDC
and TOEFL dataset, Liu et al. (2023) suggests to
also report the Macro-F1 results for this task. We
follow this setup and show the Macro-F1 results on
the GCDC and TOEFL datasets in Tables 10 and
12, respectively. We can see from the tables 10 and
12 that the trend of the Macro-F1 results is similar
to that of the accuracy results, where relation fea-
tures contribute to performance and Our Method
utilizes relations more efficiently than the Concat
baseline.
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