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Abstract

Transformer-based models excel in various
tasks but their generalization capabilities, espe-
cially in arithmetic reasoning, remain incom-
pletely understood. Arithmetic tasks provide a
controlled framework to explore these capabil-
ities, yet performance anomalies persist, such
as inconsistent effectiveness in multiplication
and erratic generalization in modular addition
(e.g., modulo 100 vs. 101). This paper devel-
ops a unified theoretical framework for under-
standing the generalization behaviors of trans-
formers in arithmetic tasks, focusing on length
generalization. Through detailed analysis of ad-
dition, multiplication, and modular operations,
we reveal that translation invariance in addi-
tion aligns with relative positional encoding for
robust generalization, while base mismatch in
modular operations disrupts this alignment. Ex-
periments across GPT-family models validate
our framework, confirming its ability to pre-
dict generalization behaviors. Our work high-
lights the importance of task structure and train-
ing data distribution for achieving data-efficient
and structure-aware training, providing a sys-
tematic approach to understanding of length
generalization in transformers.

1 Introduction

Since the introduction of Transformer (Vaswani
et al., 2017), Transformer-based models including
large language models (LLMs) and large multi-
modal models (LMMs) have experienced a rapid
rise, excel in a wide range of tasks, such as natural
language processing, coding, mathematical reason-
ing, and vision understanding (Bubeck et al., 2023;
Lu et al., 2024). However, the generalization capa-
bilities of these transformer based foundation mod-
els are not yet fully understood in areas such as nat-
ural language understanding (Bender et al., 2021)
and mathematical reasoning (Anil et al., 2022; Je-
lassi et al., 2023).

*Corresponding authors.

The generalization capabilities are often link to
models’ capability to generalize beyond their train-
ing data (out-of-distribution (OOD) generalization)
in NLP tasks, which is much complex and challeng-
ing. LLMs perform exceptionally well on some
generalization tasks while produce factual errors or
misinformation on others e.g., (Bender et al., 2021;
Lu et al., 2024). Studies therefore try to figure
out why these differences exist between generaliza-
tion tasks (Briakou et al., 2023), what LLMs are
actually learning on failed ones (Xu et al., 2024),
and how they manage to generalize on successful
tasks (Jelassi et al., 2023; McLeish et al., 2024).

Given the complexity of next-token prediction
across diverse corpora and models’ opacity, mathe-
matical tasks (e.g., n-digit addition / multiplication
/ modular operations) serve as interpretable probes
for generalization analysis. In this paper we in-
troduce a unified theoretical framework for under-
standing generalization behavior of transformers
on arithmetic tasks. By clarifying the downward
and upward Out-of-Distribution (OOD) general-
ization and their requirement of task and training
data, we are able to connect the mysterious discrep-
ancies in models’ generalization capability found
in the literature summarized as the following:

(1) certain tasks (e.g., addition) succeed in un-
seen generalization with certain positional encod-
ings (e.g., relative) but not other tasks (e.g., mul-
tiplication), and (2) there is a significant general-
ization difference between very close moduli in
modular operations (e.g., modulo 100 and 101).
Specifically, previous studies have observed that
when training models with absolute positional em-
beddings (APE) on n-digit operations (e.g., addi-
tion), where both input operands are no longer than
n-digit in length such as 1234+5678 for n = 4, the
models successfully generalize on unseen n-digit
inputs such as 4321+8765 (termed in-distribution
(ID) generalization). However, they fail on longer
unseen cases such as 91234+15678 (termed OOD
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generalization) as shown by Anil et al. (2022), Je-
lassi et al. (2023), Lee et al. (2023), and Xu et al.
(2024). Besides, models with relative positional
embeddings (RPE) can generalize to longer unseen
inputs for addition tasks but struggle with multi-
plication tasks, according to Jelassi et al. (2023)
and McLeish et al. (2024). Additionally, models
trained on modular operations with specific moduli
such as 100 can perfectly generalize to any longer
unseen inputs with either absolute or relative posi-
tional embeddings. However, they fail to generalize
to longer unseen inputs for other very close mod-
uli such as 101, as noted by Jelassi et al. (2023).
These OOD generalization mysteries are cataloged
in Table 1.

Addition Multiplication
Modular Operations

p = 100 p = 101

APE ✗ ✗ ✓ ✗

RPE ✓ ✗ ✓ ✗

Table 1: Length Generalization of Transformers with
APE and RPE on Arithmetic Tasks

As we can summarize, these previous efforts ad-
dress generalization issues in specific tasks, mod-
ifying components of individual models, such
as altering positional encodings (Jelassi et al.,
2023; McLeish et al., 2024) or attention mecha-
nisms (Dubois et al., 2019). Their failure in fig-
uring out the underneath mechanism calls for a
reflective examination – we believe the field has
overlooked the differences in task properties (e.g.,
addition v.s. multiplication, modulo 102 v.s. mod-
ulo 102 +1) that may drive the difference in gen-
eralization property among tasks. The perspective
of mechanistic interpretability (Hernandez et al.,
2022; Liu et al., 2022) offers an angle in this direc-
tion. This data-driven and experimentally-based an-
alytical approach has helped identify and interpret
phenomena such as "grokking" (Liu et al., 2022)
and analyze the impact of repeated data on the per-
formance of LLMs (Hernandez et al., 2022).

In this paper, we present a unified theoretical
framework integrating properties of autogressive
transformer model, universal approximation capa-
bilities, and task-specific property analysis across
diverse arithmetic tasks. It assumes that general-
ization behaviors depend on task properties once
the model converges on the training data. For ex-
ample, digital addition is translation invariant with
a large probability, yielding consistent results de-

spite digit shifts, aligning with RPE’s preservation
of positional relationships, unlike multiplication.
This leads to well generalization of addition with a
large probability to unseen longer domains under
RPE but not for multiplication. The modulo (e.g.
100, 101) discrepancy stems from base alignment:
modulo 100 matches base 10, discarding higher
digits 11234 + 15678 ≡ 1234 + 5678 ≡ 34 + 78
(mod 100), whereas modulo 101 requires them.

We then perform more extensive generaliza-
tion analyzes assuming that transformer models
are trained in n-digit operations with at least one
operand having a length of n such as 1234+ 567
for n = 4. This differs from the literature where
the length of both operands is no longer than n.
We categorize generalization into two types: down-
ward OOD generalization and upward OOD gen-
eralization. Downward OOD generalization1 in-
volves generalizing to downward domains, such as
120+235 or 11+32, while upward OOD general-
ization involves generalizing to upward domains,
such as 12035 + 235 or 123456 + 323456. The
core conclusions of our theoretical analysis are
as follows: (1) For addition, under APE, Trans-
former models can generalize to the downward
(downward) OOD domain, but not to the upward
(upward) OOD domain. However, under RPE, the
models can generalize to both downward and up-
ward OOD domains, benefiting from the translation
invariance of digit addition. (2) For multiplication,
even RPE has limited effectiveness in the upward
OOD domain due to the lack of translation invari-
ance property. (3) For modular operations, if the
modulus p divides 10n, models can generalize to
both downward and upward OOD domains regard-
less of the positional encoding, due to the compat-
ibility with base 10 such that the information at
higher-digit positions of the operands do not affect
the result. When the modulus p does not divide
10n, models can only generalize to the downward
OOD domain. For upward OOD domains, we have
derived a theoretical accuracy formula based on the
information loss and identification of the model’s
final learned function.

The challenge in understand the generalization
capacity of LLM has significant implications for

1As a note, the downward OOD domain generalization is
not trivial. If a model is trained on a smaller domain with
a significant gap from the desired training dataset, such as
training on n-digit addition with both operands having a length
of n and the highest digits of both operands being greater than,
for example, 5, the model fails to generalize to the downward
OOD domain.

4722



LLM training, alignment, and application (Ji et al.,
2023). Our analysis highlights the importance of
training data distribution. If the data excluded
from the training dataset does not affect the desired
ground truth support set, such as when the down-
ward OOD domain is excluded during training, the
model can still learn to generalize to the excluded
downward OOD domain. However, if a significant
amount of data is omitted, or a large number of
training samples are mapped to the same answer,
as shown in our counterexample above, the down-
ward OOD domain generalization fails. Therefore,
when our goal is to align the model to generalize
certain OOD domains as expected, precise analysis
of the task nature and careful control of the training
data are necessary.

To validate our theoretical framework, we ex-
periment on various transformer that shares the
same architecture with many popular autoregres-
sive transformer-based language models, including
models of various sizes (Karpathy, 2023), and our
tasks involving n-digit addition, multiplication, and
modular operations. We further perform robustness
analysis across different model scales, dataset sizes,
and training data schemes.

Our main contributions are as follows:
1. Establishing a unified theoretical frame-

work for understanding generalization behavior
of transformers on arithmetic tasks: Our frame-
work is the first to address task differences in trans-
former models’ generalization ability in arithmetic
tasks. We also provided comprehensive experimen-
tal evidences validate our theoretical predictions
in Section 4 and Appendix H. We make our code
public to facilitate future research2.

2. Clarifying the downward and upward
OOD generalization and their requirement of
task and training data with an arithmetic setting.
We introduce the concepts of downward and up-
ward generalization, which more clearly delineates
the differences between generalization to down-
ward and upward domains.

2 Related Work

Generalization of Transformers and LLMs on
Arithmetic. Numerous studies have examined
the performance of Transformer-based language
models in tasks involving arithmetic operations
and mathematical reasoning. Brown et al. (2020),

2We opensource our code at https://github.com/
xingchengxu/ArithmeticLLM under the MIT license.

Bubeck et al. (2023) and Lu et al. (2024) investi-
gated various LLMs, such as GPT-3, GPT-4, and
Gemini, in performing basic arithmetic and mathe-
matical reasoning. Nogueira et al. (2021) explored
the limitations of Transformers in learning arith-
metic, highlighting the significant influence of sur-
face representation on model accuracy and the need
for improved tokenization and positional encoding
strategies. Subsequent research such as Qian et al.
(2022), Anil et al. (2022), Jelassi et al. (2023), Lee
et al. (2023), Xu et al. (2024), McLeish et al. (2024)
and Duan et al. (2024). Abbe et al. (2023) exam-
ined generalization on unseen logical functions.
While previous studies have mainly focused on
evaluating or improving generalization capabilities,
our work develops a unified theoretical framework
to analyze OOD generalization behaviors in Trans-
former models trained on arithmetic operations,
bridging the gap between empirical observations
and theoretical understanding.

Mechanistic Interpretability and General Un-
derstanding. Many studies have focused on un-
derstanding and interpreting the working dynamics
of neural networks and Transformer models (Zhang
et al., 2021; Hernandez et al., 2022; Elhage et al.,
2022; Bills et al., 2023; Templeton, 2024). From
the perspective of universal approximation, Yun
et al. (2019) and Alberti et al. (2023) demonstrated
that Transformer models equipped with trainable
positional encodings can act as universal approxi-
mators for continuous functions in a compact do-
main under the Lp norm or the supremum norm.

From a mechanistic viewpoint, Hernandez et al.
(2022) investigated the impact of repeated data on
the performance of LLMs, highlighting significant
performance degradation when a small fraction of
data is repeated multiple times. Liu et al. (2022) ad-
dressed the phenomenon of delayed generalization
or "grokking" using addition and modular addition
tasks, and Zhong et al. (2023) utilized modular
addition to mechanistically explain algorithm dis-
covery in neural networks.

Our work contributes to this growing field of
mechanistic interpretability by providing a macro-
scopic explanation specifically for Transformer
models. We systematically identify systematic bi-
ases and understand model behaviors in arithmetic
reasoning scenarios.
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3 Theoretical Analysis on Generalization
for Arithmetic Reasoning

We first review the Transformer model and the uni-
versal approximation theorem, and then conduct
theoretical analyses of the downward and upward
OOD generalization capabilities of the Transformer
in solving tasks related to addition, modular addi-
tion, multiplication, and modular multiplication.

3.1 Preliminaries on Transformer and
Universal Approximation

A Transformer model (Vaswani et al., 2017) pre-
dicts the next token based on the preceding tokens
within the input sequence. Its output is subse-
quently used as input for the next prediction. For
a target token xi at position i in the sequence, the
model generates a probability distribution over the
vocabulary of the next potential tokens. To be pre-
cise, let x = x1x2 . . .xT ∈ VT denote the input se-
quence of tokens. The probability of observing this
sequence with respect to a Transformer model is
given as follows:

Pθ (x) =
T

∏
i=1

Pθ (xi|x1,x2, ...,xi−1) =
T

∏
i=1

Pθ (xi|x<i).

The conditional probability Pθ (xi|x<i) is computed
using softmax applied to the last hidden state.

Universal approximation theorem for Trans-
former models: Transformer models have the
capacity to universally approximate any arbitrary
continuous sequence-to-sequence function within a
compact domain. Yun et al. (2019) and Alberti et al.
(2023) have shown that, when equipped with train-
able positional encodings, Transformers can serve
as universal approximators for continuous func-
tions in a compact domain under the Lp norm or
the supremum norm. These characterizations high-
light the representation power of fixed-width Trans-
former networks, despite the intrinsic parameter
sharing and permutation equivariance. To facilitate
the reader’s navigation of the subsequent mathemat-
ical analysis, we first establish an intuitive under-
standing grounded in the Universal Approximation
Theorem (UAT). The UAT demonstrates that Trans-
formers, provided with appropriate conditions such
as trainable positional encodings, are theoretically
capable of approximating any continuous function
within a compact domain. This inherent represen-
tational power leads to a critical insight regarding
generalization: a Transformer’s inability to general-
ize to an upward out-of-distribution (OOD) domain

(e.g., longer-digit sequences) does not stem from a
fundamental representational deficit. Rather, it sig-
nifies that the model, trained on a limited support
(e.g., inputs up to length n), has learned a function
whose approximation is effectively truncated at the
boundary of its observed data. We leverage the
UAT as a contrastive lens to argue that, when a
Transformer fails in OOD scenarios despite its ca-
pacity to learn the correct function, the root causes
lie in the interplay of task structure, the specific
nature of positional encoding (e.g., Absolute Po-
sitional Encoding), and the characteristics of the
training distribution.

3.2 Theoretical Analysis on Addition
Consider two natural numbers a = ∑n

i=1 ai ×
10i−1 = (a1,a2, · · · ,an) and b = ∑n

i=1 bi ×10i−1 =
(b1,b2, · · · ,bn). The addition of these n-digit num-
bers, denoted as f (a,b) = a+ b, is expressed by
c = ∑n+1

i=1 ci ×10i−1 = (c1,c2, · · · ,cn,cn+1).
Let the dataset Dn := {(a,b) ∈ N2 : an ∨ bn ≥

1,ai = bi ≡ 0,∀i > n}. For notation simplicity, as-
sume (0,0) ∈ D1. Here, an ∨ bn = max{an,bn}.
Note that Dn ∩ Dm = /0 for n ̸= m and N2 =⋃∞

n=1Dn. Denote the downward (downward) do-
main D<n :=

⋃n−1
m=1Dm and the upward domain

D>n :=
⋃∞

m=n+1Dm.

Theorem 1. (Informal) Assume a Transformer
model with absolute positional embedding (APE)
is trained on a multi-digit addition dataset for the
operands (a,b) ∈ Dn (n ≥ 2) with infinite training
computation, then the learned model can perfectly
generalize for the downward OOD domain D<n,
but fail for the upward OOD domain D>n.

Proof Sketch. Assume a Transformer model is
trained on this dataset Dn using absolute positional
embeddings (APE). The model is trained to approx-
imate the function that computes the sum digit by
digit, with carries propagated as follows:

ci = ζ (ai +bi + cχ
i−1),

where cχ
i−1 is the carry from the previous position,

and ζ is a function taking the units of the input.
Case I: Downward OOD Domain (D<n)

For positions i ≤ n, the model can generalize
well to the downward OOD domain D<n by univer-
sal approximation theorem for Transformer mod-
els. Since the model has seen all possible carry
combinations during training, it can correctly pre-
dict the digit sums at positions i = 1,2, · · · ,n. For
position i = n + 1, the model predicts the carry
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cn+1 = cχ
n ∈ {0,1} for all pairs where an ∨bn ≥ 1,

and when both an = bn = 0, the model learns
cn+1 = 0. For positions i > n+ 1, the model pre-
dicts zero, since the input digits ai and bi are zero
beyond the n-th position. Thus, the model perfectly
generalizes to D<n.
Case II: Upward OOD Domain (D>n)

For positions i ≤ n, the model behaves similarly
to the downward OOD case. However, when i =
n+1, the model is unable to predict the correct sum.
The probability distribution learned by the model at
this position only supports values in {0,1}, but for
the model to correctly predict the carry, the support
must include {0,1, · · · ,9}. Since the model has
never seen pairs where both an+1 and bn+1 are non-
zero, it cannot generalize correctly to the upward
OOD domain. Beyond position n+ 1, the model
will predict zeros, as ai = bi = 0 for all i > n. Thus,
the model fails to generalize to D>n.

Based on the analysis above, we can immediately
draw the following conclusion, which provides an
explanation for the findings by Xu et al. (2024).

Corollary 2. (Informal) The learned Trans-
former model with APE approximates the function
f̂ (a,b) = (a mod 10n)+(b mod 10n). The OOD
generalization error is zero for the downward OOD
domain D<n, but not less than 10n for every point
in the upward OOD domain D>n.

We are curious about the conditions under which
a Transformer model can learn to perform addi-
tion operations. With APE, the model successfully
generalizes downward, but fails to generalize up-
ward. What would be the conclusion under RPE?
Through theoretical and experimental analysis, we
have arrived at the following conclusions.

Theorem 3. (Informal) Assume a Transformer
model with relative/abacus positional embedding
(RPE) is trained on a multi-digit addition dataset
for the operands (a,b) ∈ Dn (n ≥ 2) with infinite
training computation, then the learned model can
perfectly generalize for the downward OOD do-
main D<n and generalize well for the upward OOD
domain D>n, with a probability of failure in the up-
ward domain being less than 1/10n−1.

Proof Sketch. A Transformer model with relative
positional embeddings (RPE) has a key property
of translation invariance. This means the model’s
predictions at any position i depend only on the
relative distances between positions, not their abso-
lute locations.

Special Case: Translation Invariance
Translation invariance can be expressed as:

Pθ (ci | a≤i,b≤i) = Pθ (ci | ai−1,ai,bi−1,bi),

ensuring that the carry at each position is deter-
mined by the preceding digits ai−1,bi−1, not their
absolute positions. Thus, the sum at position i is:

ci = ζ (ai +bi + cχ
i−1),

where cχ
i−1 = χ(ai−1 + bi−1), as long as ai−1 +

bi−1 ̸= 9.
General Case: Extended Translation Invariance

For longer sequences, the prediction
for ci depends on the relative positions
ai−n+1, · · · ,ai,bi−n+1, · · · ,bi. The translation
invariance fails when carry propagation extends
past the n-th digit, which happens if ai−k+bi−k = 9
for all k = 1, · · · ,n − 1. The probability of this
failure is small, less than 1/10n−1. Thus, the model
effectively handles longer sequences by mapping
them to shorter ones with similar relative distances,
with the failure probability in the upward domain
being less than 1/10n−1.

3.3 Theoretical Analysis on Modular Addition
Consider the function for modular addition with a
modulus p, expressed as f (a,b) = (a+b) mod p,
which will be the focus of our analysis in the follow-
ing section. Subsequently, we will also represent
modular addition using the notation cp = a+b

p
.

For simplicity, we will omit the superscript p when
it is clear from the context.

Scenarios on Divisibility of 10’s Power by Mod-
ulus
Theorem 4. (Informal) Assume a Transformer
model with either absolute or relative/abacus posi-
tional embedding is trained on a multi-digit modu-
lar addition dataset with a modulus p that divides
10m for the operands (a,b)∈Dn (n ≥ 2 and m ≤ n)
with infinite training computation, then the learned
model can perfectly generalize both for the down-
ward OOD domain D<n and the upward OOD do-
main D>n.

Scenarios on Non-Divisibility of 10’s Power by
Modulus
Theorem 5. (Informal) (1) Assuming a Trans-
former model equipped with absolute positional
embeddings is trained on a multi-digit modular
addition dataset Dn (n ≥ 2) where the modulus
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p neither divides 10n nor exceeds 10n, and pro-
vided that infinite training computation is allocated,
then the resulting trained model is capable of per-
fect generalization to the downward OOD domain
D<n, while encountering difficulties in general-
izing to the upward OOD domain D>n. (2) The
function that the model has learned is f̂ p(a,b) =

a10n
+b

10n p
. (3) Furthermore, the test accuracy

on D̃ntest (ntest > n) is given by Acc(p,n,ntest) ≈
gcd(p,10n)

p if ntest ≥ n+ log10(p′/2+ 1), otherwise
Acc(p,n,ntest) = 0, where gcd(p,10n) represents
the greatest common divisor of p and 10n, and
p′ = p/gcd(p,10n).

3.4 Theoretical Analysis on Multiplication
Theorem 6. (Informal) (1) Assuming a Trans-
former model equipped with absolute positional
embeddings is trained on a multi-digit multiplica-
tion dataset Dn (n ≥ 2), and provided that infinite
training computation is allocated, then the result-
ing trained model is capable of perfect general-
ization to the downward OOD domain D<n, while
it cannot generalize to the upward OOD domain
D>n. (2) The function that the model has learned
is f̂ (a,b) = a10n ×b

10n

.

3.5 Theoretical Analysis on Modular
Multiplication

Theorem 7. (Informal) (1) Assume that a Trans-
former model with absolute or relative/abacus
positional embedding is trained on a multidigit
modular multiplication dataset with a modulus p
that divides 10m for operands (a,b) ∈ Dn (n ≥ 2
and m ≤ n) with infinite training computation,
then the learned model can perfectly generalize
both for the downward OOD domain D<n and
the upward OOD domain D>n. (2) If the mod-
ulus p neither divides 10n nor exceeds 10n, and
provided that infinite training computation is allo-
cated, then the resulting trained model is capable
of perfect generalization to the downward OOD
domain D<n, while encountering difficulties in gen-
eralizing to the upward OOD domain D>n. The
function that the model with APE has learned is

f̂ p(a,b) = a10n ×b
10n p

.

4 Experiments

In this section, we describe our experiment design
with result outcome validating the prediction make
using our theoretical framework. We also con-
ducted additional experiment providing detailed

investigation into the the learning mechanism as
well as checking for robustness of our result with
different model scale, data digits, and with yet-to-
converged models, provided in Appendix H.1.

4.1 Experimental Design
Model Description: In line with most LLMs,
we utilize a decoder-only architecture consisting
of multiple layers and multi-head attentions. Our
models are trained from scratch with varying model
scale3 in 2. Detailed configuration of training and
architecture are provided in Table 5 in Appendix F.

Hyperparameter NanoGPT MicroGPT MiniGPT

num layer 3 4 6
num head 3 4 6
dim embd 48 128 384
vocab size 16 16 16

context window 256 256 256

Table 2: Model Scale

Data Description: We employ four primary
arithmetic operations with different symmetric
property as well as difficulty in term of how much a
digit can have impact in term of upward/downward
generalization, which are described here:
• Addition: c = a+b
• Modular addition: c ≡ a+b (mod p)
• Multiplication: c = a×b
• Modular multiplication: c ≡ a×b (mod p)

We randomly generate datasets for each arith-
metic task. Following (Lee et al., 2023; Xu
et al., 2024) we organize our training data as a
sequence of operand pairs in natural order, with
the results of the operations in reversed order
with character-level tokenization4, which has been
shown to be more effective for learning in next-
token prediction models in arithmetic tasks5. An
example input would look like "[bos]an · · ·a2a1 +
bn · · ·b2b1 =" for addition, and the model out-
put would be in the format "c1 · · ·cncn+1[eos]; \n",
where a1, · · · ,an,b1, · · · ,bn,c1 · · ·cn are single digit

3The models architecture are in respect NanoGPT, Mi-
croGPT, and MiniGPT (Karpathy, 2023)

4After the tokenization, ";", "[bos]", and "[eos]", a "line
break" token are added to the beginning and the end of each
line of data, resulting in a vocabulary size of 16. When the
context window exceeds the required size for n-digit arithmetic
operations, we pad zeros before the numbers "a", "b", and "c".

5For example, consider an n-digit addition a+b = c, rep-
resented in standard format as "an · · ·a2a1 + bn · · ·b2b1 =
cn+1 · · ·c2c1". By reversing the order of the output "c", we
obtain the reversed data format "an · · ·a2a1 + bn · · ·b2b1 =
c1 · · ·cncn+1".
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integers and "[bos]", "[eos]", ";", and a special "line
break token" are special tokens. The data format
that can be used to train other arithmetic tasks can
be obtained respectively.6

DataSet Description Obs.Num

D4 n = 4,m = 4 100,000
D5 n = 5,m = 5 100,000
D4,5 0.5D4+0.5D5 100,000

Table 3: Data Scale: Training Data

Note: We provided a more detailed DataSet description
table in Table 6 at Appendix G.

We control the length of arithmetic operations n
and randomly generate datasets from Dn for differ-
ent lengths n. These datasets for each arithmetic
task are categorized into three distinct subsets: a
training set, an in-distribution (ID) test set, and ad-
ditional out-of-distribution (OOD) test sets which
we further break down by the upper bound digit
for upward generalization, sampled from m-digit
operations with m ̸= n. The case where m < n
is referred to as the downward (downward) OOD
domain, and the case where m > n is termed the
upward (upward) OOD domain. We also construct
numerous combination sets of samples from dif-
ferent domains Dn, such as Dn−1,n, to be used as
training and ID test datasets. In the demonstrative
example, the OOD test sets are sampled from Dm

with m ̸= n− 1 and n. The test accuracy is mea-
sured using maximum probability sampling. For
the modular addition tasks and modular multipli-
cation tasks, we selected moduli with varying rela-
tionships to 10n, namely varied by the divisibilily
by 10n, coprime relationship to 10n, and whether
do the moduli has a greatest common divisor with
10n that is neither 1 nor p (the modulus). The
choice of p is made to demonstrate the relationship
between the modulus p in modular arithmetic and
the maximum length n of the training set.

4.2 Experiments on Addition

In this subsection, we trained multiple models on
different datasets (e.g. D4, D5, D4,5) and tracked
the changes in their accuracy. Additionally, we
demonstrated how the models learn each digit dur-
ing the training process.

6We also provided code and data for generate training data
and training the models in our repository at https://github.
com/xingchengxu/ArithmeticLLM.

D1 Task D2 Task

D3 Task D4 Task

D5 Task D6, · · · ,D9 Tasks

Figure 1: Test Accuracy of Transformer Models with
APE for Different Multi-digit Addition Tasks

Note: This figure presents results from three ex-
periments using different training datasets with the
MiniGPT model and a learned APE. The labels D4,
D5, and D4,5 indicate training on random samples from
D4, D5, and a combined subset of both, respectively.
Each subfigure shows test accuracy across different do-
mains Di during training.

4.2.1 Generalization for Different Digit Tasks

In Figure 1, we present the results of three different
experiments using distinct training datasets (i.e.,
D4, D5, D4,5). For all experiments, we employ
the MiniGPT model equipped with a learned APE.
Each subfigure illustrates the test accuracy on dif-
ferent test domains Di for these models throughout
the training process. Figure 1 verifies our Theo-
rem 1. It demonstrates that models incorporating
APE are unable to generalize to longer digits than
those they are trained on but can succeed with lower
digits. Additionally, the model trained on D5 has a
much more challenging training process compared
to the model trained on D4, while the model trained
on D4,5 experiences the easiest and smoothest train-
ing process among the three models. The reason, as
explained in Theorem 1, is that for D4,5, the model
learns addition tasks on lower digits directly from
the training data. In contrast, D4 and D5 require
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Test Accuracy (%) w.r.t. the Ground Truth on the Domain D̃i Theory
Modulus 1 2 3 4 5 6 7 8 9 1/p′

p = 50 100 100 100 100 99.3 92.0 93.1 95.2 91.4 100
p = 51 100 98.5 99.9 99.3 0.3 1.8 1.9 1.9 1.6 1.96
p = 100 100 100 100 100 100 100 100 100 100 100
p = 101 100 100 100 100 0.0 1.2 0.9 1.1 1.0 0.99
p = 150 100 100 100 100 33.2 33.6 32.3 33.0 33.7 33.3
p = 151 100 99.9 99.9 100 0.0 0.6 0.7 0.7 0.6 0.66
p = 200 100 100 100 100 99.8 98.9 93.7 94.1 93.5 100
p = 201 100 100 99.9 99.9 0.0 0.0 0.5 0.4 0.5 0.50

Table 4: Modular Addition: Test Accuracy w.r.t. the Ground Truth f p(a,b) = a+b
p

on D̃i

Note: All the Transformer models in above experiments are instances of MiniGPT with a learned APE, which have
been trained on a random sample drawn from D4 with 100,000 random training sample (except p = 150). The
accuracy is tested on 10,000 random test samples (when n > 2), otherwise on the entire dataset. The outputs of
models are generated using maximum probability sampling.

OOD generalization for the edge positions.
More results can be found in Table 7 and Ta-

ble 8. We test the final trained model on datasets
with varying digit lengths. While the models do
not learn the addition of higher digits, they suc-
cessfully learn the operation f̂ (a,b) = a10n

+b
10n

,
supporting our Corollary 2.

We also conduct extensive experiments using
various training datasets, model scales, and data
scales. The results of these experiments are robust,
and presented in Appendix H.

4.2.2 Learning Dynamics for Each Digit
Position

The models and training datasets are identical to
those described in Figure 1. We have assembled a
comprehensive test dataset that contains a random
sample from D1 to D9. Our objective is to demon-
strate how these Transformer models equipped with
APE learn each digit at every position throughout
the training phase. The digit-wise test accuracy is
defined as the accuracy of the prediction for each
position in the result c.

The plots in Figure 4 (see Appendix) visually
represent whether these models are capable of accu-
rately predicting the digits ci at all positions. These
graphs effectively illustrate the learning dynamics
for each token in the context of addition tasks. The
models exhibit high accuracy for the first four or
five digits, with accuracy approaching 1.0 as train-
ing progresses, for datasets D4, or D5, and D4,5,
respectively. However, accuracy sharply declines
for the 5th or 6th digits and remains near zero for

the 7th, 8th, and 9th digits. These findings illus-
trate that while the models can effectively learn and
predict lower-position digits, they struggle signifi-
cantly with higher-position digits. This aligns with
the theorem that Transformer models with APE can
generalize well for downward OOD domains but
fail for upward OOD domains.

4.2.3 Generalization Under Relative/Abacus
Positional Embeddings

McLeish et al. (2024) conducted experiments using
a 16-layer Transformer (decoder only) model with
abacus positional embedding, trained on a random
sample from D≤20. It can generalize on 100-digit
addition problems (Figure 7 in Appendix H) 7. Ad-
ditionally, Jelassi et al. (2023) demonstrated that
relative positional embeddings enable length gen-
eralization in addition tasks. In their work, models
such as Transformer and Universal Transformer
(encoder only) trained to add 5-digit numbers could
generalize to 20-digit operands.

These results provide empirical evidence validat-
ing our Theorem 3 for upward OOD generalization.
The findings are clear, and we will not replicate
the procedures here. Instead, we reference these
studies in the present context.

4.3 Experiments on Modular Addition

The results in Table 4 validate Theorem 4, which
states that Transformer models with absolute po-
sitional embeddings trained on multi-digit modu-

7Code to reproduce the results can be found on GitHub:
https://github.com/mcleish7/arithmetic.
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lar addition datasets exhibit distinct generalization
capabilities based on the modulus p. For mod-
uli such as p = 50,100,200 that divide 10n, the
models achieve perfect test accuracy across all
digit domains, demonstrating their ability to gen-
eralize flawlessly to both downward and upward
OOD domains. In contrast, for moduli such as
p = 51,101,150,151,201 that do not divide 10n,
the models maintain high accuracy for lower digit
domains but show significant performance degra-
dation for higher digit positions8.

The OOD test accuracy in Table 4 for high-order
digits can be completely expected using Theorem 5,
which states that the test accuracy on D̃ntest (ntest >
n) is given by Acc(p,n,ntest) ≈ 1/p′ if ntest ≥
n+ log10(p′/2+1), otherwise Acc(p,n,ntest) = 0.
These observations align well with the theoretical
expectations outlined in Theorem 4 and Theorem 5,
also explaining the experimental results found in
the literature (see, e.g., Jelassi et al. (2023)) in han-
dling modular addition tasks with different moduli.

Furthermore, the results in Table 9 (see Ap-
pendix) support Theorem 5, indicating that Trans-
former models with absolute positional embed-
dings trained on multi-digit modular addition

datasets learns the function f̂ p(a,b) = a10n
+b

10n p

for any modulus p. These findings fully align with
the theoretical predictions.

4.4 Experiments on Multiplication and
Modular Multiplication

We also conducted extensive experimental analyses
for multiplication and modular multiplication tasks,
examining the performance and generalization ca-
pabilities of Transformer models. These experi-
ments are designed to test various configurations,
including different positional encodings, model
size and training data schemes. Detailed results and
additional analyses are available in Appendix.The
experimental outcomes consistently support our
theoretical framework, demonstrating the robust-
ness of our approach and providing further insights
into the behavior of Transformer models in arith-
metic reasoning tasks.

5 Discussion

Our study sheds light on the mechanistic inter-
pretability of Transformer models. Understanding

8The task of performing addition modulo 150 requires an
extended training duration in our experiment. To facilitate
this, we prime the training process with samples that have
downward additions.

the learning mechanisms is crucial for ensuring the
meaningfulness of learned representations.

Additionally, our work identifies challenges asso-
ciated with different training data schemes, such as
concatenation training without padding9 and line-
by-line padding training10. These approaches can
significantly impact model performance and gener-
alization. Further understanding on these problems
is essential for refining training strategies to im-
prove model robustness and generalization.

6 Conclusion

In this paper, we developed a unified theoretical
framework to explain OOD generalization in Trans-
former models trained on arithmetic operations,
categorizing generalization into downward OOD
(downward domains) and upward OOD (upward
domains). Our analysis highlights the interac-
tions among task properties, training data cover-
age, and model characteristics. Experiments with
NanoGPT, MicroGPT, and MiniGPT validate our
predictions, highlighting the framework’s robust-
ness. This work clarifies generalization mecha-
nisms and provides insights for efficient model
training and AI alignment. Future research should
extend this framework to more complex tasks and
factors influencing OOD generalization.

7 Limitation

This paper presents a unified theoretical framework
for understanding generalization in transformers
applied to arithmetic tasks. However, there are no-
table limitations to our analysis. Firstly, our focus
on length generalization may overlook other crit-
ical aspects of out-of-distribution (OOD) general-
ization, as the representations learned for different
tasks can exhibit varying relationships with length.

We selected arithmetic tasks for this study due to
their clarity in distinguishing between downward
and upward OOD generalization, as well as our
ability to control the training data distribution effec-
tively. Nonetheless, our framework’s predictions
are predicated on the assumption that the model
has converged on the training data, which may not
always hold true in practice, particularly given that
many LLMs remain undertrained.

Additionally, while our findings provide insights
into generalization behaviors, they may not fully

9e.g. "123+45 = 168;267+1 = 268;" as input.
10e.g. "123+45 = 168;[pad][pad][pad]" as input.
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encompass the complexities involved in more in-
tricate mathematical reasoning or other types of
sequence-to-sequence tasks. Future work should
explore these broader contexts to enhance our un-
derstanding of transformer generalization.
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A Appendix on Transformer

A Transformer model (Vaswani et al., 2017) pre-
dicts the next token based on the preceding tokens
within the input sequence. Its output is subse-
quently used as input for the next prediction. For
a target token xi at position i in the sequence, the
model generates a probability distribution over the
vocabulary of potential next tokens. To be pre-
cise, let x = x1x2 . . .xT ∈ VT denote the input se-
quence of tokens. The probability of observing this
sequence with respect to a Transformer model is
given as follows:

Pθ (x) =
T

∏
i=1

Pθ (xi|x1,x2, ...,xi−1) =
T

∏
i=1

Pθ (xi|x<i).

The conditional probability Pθ (xi|x<i) is computed
using the softmax function applied to the last hid-
den state. One way to design this model (see e.g.
Karpathy (2023), Brown et al. (2020)) is as follows:

aℓ−1 = hℓ−1 +MHAℓ(LNA
ℓ (h

ℓ−1))

hℓ = aℓ−1 +MLPℓ(LNF
ℓ (a

ℓ−1))

for ℓ= 1,2, . . . ,L, with the initial embedding h0 =
etok + epos, where etok represents the initial to-
ken embedding and epos represents the positional
embedding. In the context of GPT-series LLMs,
MHAℓ refers to the masked multi-head attention
of the ℓ-th layer, MLPℓ is a multi-layer perception
with one hidden layer, and LN represents layer
normalization. Define fℓ such that hℓ = fℓ(hℓ−1).
Consequently, the final hidden state of this LLM is

hL = fL ◦ . . .◦ f2 ◦ f1(h0) ∈ Rdm×T ,

where dm is the embedding dimension.
Let X = LN(hL) = [X1,X2, . . . ,XT ]. The final

output conditional probability matrix

Pθ = softmax(WX)

=

(
exp(WXi)

∑N
j=1 exp(WXi) j

)

i=1,2,··· ,T
∈ [0,1]NV×T ,

where W ∈ RNV×dm is a weight matrix. The i-th
column of the matrix Pθ represents the conditional
probability Pθ (x̃i|x<i) for any x̃i ∈ V . By training
on a large corpus of language texts, the LLMs pro-
vide the estimated probabilities.
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B Proofs of Theorems

B.1 Proof of Theorem 1
Define the functions

χ(x) := ⌊x/10⌋ and ζ (x) := x mod 10, for x ∈N.

Then ci = ζ (ai +bi + cχ
i−1),∀i, and the carry cχ

i =
χ(ai+bi+cχ

i−1). For simplicity, assume a0 = b0 =
0.

We define three forms of approximation:

• Strong form: If Pθ (c̃ = ci | a+ b = c<i) = 1
for any i ≥ 1. This means the model Pθ (· |
a+b = c<i) can perfectly learn the function
ci = ζ (ai +bi + cχ

i−1),∀i.

• Standard form: If ci = argmaxc̃ Pθ (c̃ | a+b =
c<i) for any i ≥ 1. This means the model
Pθ (· | a+b = c<i) can approximate the func-
tion ci = ζ (ai +bi +cχ

i−1),∀i with the highest
probability.

• Weak form: If Pθ (c̃ = ci | a+b = c<i)> 0 for
any i≥ 1. This means the model Pθ (· | a+b=
c<i) can approximate the function ci = ζ (ai +
bi + cχ

i−1),∀i with a non-zero probability.

In the following, we will use the standard form
to demonstrate out-of-distribution (OOD) general-
ization. When training a Transformer model on
Dn-addition using absolute positional embedding
(APE), the learned model approximates the func-
tion at each position of c:

Pθ (ci | a≤i,b≤i)→ ci = ζ (ai +bi + cχ
i−1).

Case I: Downward OOD Domain
Let us consider the Downward OOD domain

D<n case. If i < n, the model trained on a sample
dataset in Dn can at least approximate the function
ci in the standard form. If i = n,

Pθ (cn | a≤n,b≤n)→ cn = ζ (an +bn + cχ
n−1)

for every an ∨bn ≥ 1 except the case an = bn = 0
simultaneously. If i = n+1,

Pθ (cn+1 | a≤n+1,b≤n+1)→ cn+1 = cχ
n ∈ {0,1}

for every pair (an,bn) with an ∨bn ≥ 1 and an+1 =
bn+1 = 0. In the case where an = bn = 0, the condi-
tions for both i = n and i = n+1 necessitate OOD
generalization. Since the model has been trained
to approximate cn accurately for an ∨bn ≥ 1, it has

learned the function for the carry-over mechanism
properly. When an = bn = 0, the digit cn purely
depends on the carry from the previous position.
For i = n+1, the carry cχ

n is correctly learned such
that it maps {0,1} depending on whether there was
a carry from the n-th digit. With an = bn = 0, the
model correctly sets cn+1 = 0. The training on Dn

includes all possible carry scenarios and digit sum-
mations for an,bn ∈ {0, . . . ,9}. The zero cases are
naturally included in the learned patterns11. For
i ≥ n+2,

Pθ (ci | a≤i,b≤i)→ ci = ζ (ai +bi + cχ
i−1)≡ 0,

since ai = bi ≡ 0 for any (a,b) ∈Dn with i ≥ n+1.
Thus, the model Pθ can approximate the function of
c at every position for the downward OOD domain
D<n.
Case II: Upward OOD Domain

Consider the Upward OOD domain D>n case. If
i ≤ n, the analysis remains the same as above. The
learned model Pθ can predict the correct numbers
at these positions. However, when i = n+1,

Pθ (cn+1 | a≤n+1,b≤n+1)→ cn+1 = cχ
n ∈ {0,1}

for every pair (an,bn) with an ∨bn ≥ 1 and an+1 =
bn+1 = 0. Note that for inference in the OOD
domain D>n, the model needs to predict each
sample with (an+1,bn+1) at least for every an+1 ∨
bn+1 ≥ 1. However, the support of probability
measure learned by the model Pθ is suppPθ =
{0,1}. For the model to predict cn+1 correctly
even in the weak form, the support should be
suppPθ = {0,1, · · · ,9}. This indicates that the
model Pθ cannot predict the number at posi-
tion n+ 1. Additionally, the learned probability
Pθ (cn+1 | a≤n+1,b≤n+1) is actually independent of

11If the training dataset has significant gaps, such as when
a model is trained on n-digit addition but only with an,bn ≥
n0 (e.g., an,bn ≥ 6), it means the model never encounters
pairs where both an < 6 and bn < 6. While the digit-wise
addition and carry mechanisms for positions 1 through n−1
are learned correctly, since these positions involve a full range
of digit pairs during training, the model fails to learn proper
behavior for the n-th and (n+1)-th positions. Specifically, for
these positions, the model will not encounter any pairs where
both digits are simultaneously less than 6. In this scenario,
ζ (an + bn) ∈ {2,3, . . . ,8} (missing the digits 0, 1, 9), and
cχ

n ≡ 1 (missing the digit 0). Consequently, the training dataset
lacks complete coverage of all possible carry scenarios and
digit summations. This substantial gap negatively affects the
model’s ability to handle these edge situations. Thus, the final
learned model cannot generalize to the OOD domain D<n.
Specifically, you will observe that the (n+1)-th position value
cn+1 ≡ 1 for all samples in D<n.
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(an+1,bn+1). For i ≥ n+2,

Pθ (ci | a≤i,b≤i)→ ci ≡ 0,

since ai = bi ≡ 0 for any (a,b) ∈Dn with i ≥ n+1.
This means that the learned model maps all in-
puts to zeros for positions i ≥ n+2. If the model
could predict the numbers at positions i ≥ n+ 2,
the requirement even in the weak form is that at
least {0,1} ⊂ suppPθ (ci | · · ·). This contradicts
suppPθ (ci | · · ·) = {0}. Combining the above
analysis, we conclude that the learned model Pθ
cannot solve the problems in the OOD domain
D>n but instead outputs the result (a mod 10n)+
(b mod 10n) for every sample in D>n.

B.2 Proof of Theorem 3.
We begin by noting the key property that under
the assumption of relative positional embedding
(RPE), the Transformer model possesses a form of
translation invariance. This property implies that
the prediction at any position i is invariant to the
shift of the entire sequence, as long as the relative
distances between positions remain unchanged.
Special Case:

The translation invariance property is mathemat-
ically expressed as:

Pθ (ci | a≤i,b≤i) = Pθ (ci | ai−1,ai,bi−1,bi)

= Pθ (ci+ j | ai+ j−1,ai+ j,bi+ j−1,bi+ j),

for any i, j ∈ N, provided that ai−1 +bi−1 ̸= 9.
This translation invariance arises when the carry

cχ
i−1 is determined by the previous digits ai−1 and

bi−1, and thus does not depend on any global po-
sition or the absolute positions of the digits in the
sequence. In fact, we have:

ci = ζ (ai +bi + cχ
i−1),

where cχ
i−1 = χ(ai−1 +bi−1), provided that ai−1 +

bi−1 ̸= 9.
General Case:

The failure of the above translation invariance
property occurs when the carry cχ

i−1 is influenced
by more digits beyond ai−1 and bi−1. A generalized
translation invariance property should be used, i.e.,

Pθ (ci | a≤i,b≤i)

= Pθ (ci | ai−n+1, · · · ,ai,bi−n+1, · · · ,bi)

= Pθ (ci+ j | ai+ j−n+1, · · · ,ai+ j,bi+ j−n+1, · · · ,bi+ j).

The failure for above formula happens when carry
propagation extends beyond the maximum length

n seen during training, i.e., when the carry is in-
fluenced by positions greater than n. The case
only happens when ai−k + bi−k = 9 for all k =
1, · · · ,n−1.

The probability of this failure is quite small.
Specifically, it is less than 1/10n−1, because the
probability of the carry propagating beyond the
maximum digit position n (in a dataset where all
digits are restricted to the range 0-9) diminishes ex-
ponentially as the length of the sequence increases.
This ensures that such failures are rare, especially
for large n.

For the upward OOD domain D>n, the model
faces the challenge of predicting the carry prop-
agation for positions i > n. However, since the
model and addition satisfies translation invariance,
this ensures that the model can handle longer se-
quences by effectively "folding" them into smaller,
equivalent-length sequences with the same relative
distances between digits, with only a probability
of failure in the upward domain being less than
1/10n−1.

Remarks on APE and RPE: APE encodes po-
sitional information based on the absolute posi-
tions of tokens in a sequence. This approach can
limit a model’s ability to generalize to sequences
of different lengths or to handle out-of-distribution
scenarios effectively. In contrast, RPE captures
translation-invariant positional dependencies by en-
coding the relative distances between tokens. This
method allows the model to focus on the relation-
ships between tokens regardless of their absolute
positions, enhancing its ability to generalize across
varying sequence lengths and to better understand
contextual relationships. Consequently, RPE is
more robust and adaptable in the addition context
compared to APE. Our theoretical framework can
explain the addition-based experimental findings
reported in the following references: Jelassi et al.
(2023), Xu et al. (2024), Duan et al. (2024), and
McLeish et al. (2024).

B.3 Proof Sketch of Theorem 4.

We will initially focus on the scenario where p =
10m, and subsequently explore the general case
where p is a divisor of 10m.

Case I: Let us revisit the equation for modular
addition, which states that cp = a+b

p
= ap +b

p p
.

The above equation shows that for the case p= 10m,
the digits in positions higher than m in numbers a
and b do not affect the result cp; only the digits in
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positions m and lower have an impact. Furthermore,
we have cp = (cp

1 ,c
p
2 , · · · ,c

p
m) = (c1,c2, · · · ,cm),

where c = a+b. A model trained on Dn is capable
of approximating the digits at positions ranging
from 1 to m. This can be expressed as:

Pθ (c
p
i | a≤i,b≤i)→ cp

i = ζ (ai +bi + cχ
i−1),

for i = 1, · · · ,m. All these functions are learned
directly from the training data without the need for
out-of-distribution (OOD) generalization if m <
n, while m = n, only the n-th term cp

n need OOD
generalization. For i > m, the probability Pθ (c

p
i |

·) ≡ 0. The aforementioned conclusions apply to
both domains D<n and D>n.

Case II: Consider the case where p is a divisor

of 10m. Since we have cp = a+b
p
= a+b

10m p
,

the result cp is indeed not influenced by the digits
in positions higher than m in numbers a and b.
If let m be the minimum number which the m-th
power of 10 can be divided by the modulus p, i.e.
m = argmin{m̃ : p | 10m̃}, the model approximates
the function at each position i:

Pθ (c
p
i | a≤m,b≤m)→ cp

i = f p
i (a≤m,b≤m),

for i = 1, · · · ,m, where f p
i is the function for cp

i
at the position i. As an aside, it is worth noting
that in the case described above, the function is
more intricate than standard addition or modular
addition with a modulus that divides a power of
10. These functions generally rely on the digits at
all positions of the numbers a and b, from position
1 through m. All these functions can be learned
directly from the training data without the need for
OOD generalization when training on Dn (n ≥ m)
except the term cp

n .

B.4 Proof Sketch of Theorem 5.
In this case, the model approximates the function
for each position i as follows when training on Dn:

Pθ (c
p
i | a≤n,b≤n)→ cp

i = f p
i (a≤n,b≤n),

for i = 1, · · · ,n, where f p
i represents the func-

tion for cp
i at position i. Generally, the function

f p(a,b) = (a+ b)−⌊(a+ b)/p⌋p. Each digit f p
i

depends on all positions of a and b. If the model
is trained on Dn, the aforementioned probabili-
ties have been trained exclusively on scenarios
where an ∨ bn ≥ 1. The case where an = bn = 0
requires OOD generalization for samples on the
downward domain D<n. This can be addressed

by aligning with the model trained on the do-
main containing Dn−1,n. If the model is trained
on the dataset Dn−1,n, which includes the case
where an = bn = 0, it learns the relevant patterns
directly from the training data without the need
for OOD generalization on the domain D<n. How-
ever, the model typically struggles to generalize
to the upward domain D>n. This is because the
model is expected to approximate the functions
f p(a,b) = a+b

p
, which consider all digits of a

and b. Since the model is trained on Dn, it learns

the function f̂ p(a,b) = a10n
+b

10n p
, which is inde-

pendent of the positions i > n of the numbers a and
b.

OOD Test Accuracy Analysis for Longer Length.
For the model’s output to be correct, it must satisfy

the condition a+b
p
= a10n

+b
10n p

. This require-
ment also provides us with a method to estimate
the OOD test accuracy on the upward domain D>n.

Let Hn = a10n
+b

10n

, and Rn = (a+b)−Hn. The
OOD generalization error is then

f p(a,b)− f̂ p(a,b)=Rn−(⌊(a+b)/p⌋−⌊Hn/p⌋) p.

Denote εR
n := Rn

p −⌊Rn
p ⌋ ∈ [0,1) and εH

n := Hn
p −

⌊Hn
p ⌋ ∈ [0,1). Then

f p(a,b)− f̂ p(a,b)

= (Rn/p−⌊(Rn +Hn)/p⌋+ ⌊Hn/p⌋)p

= (εR
n −⌊εR

n + εH
n ⌋)p.

That is,

f p(a,b)− f̂ p(a,b)

=

{
εR

n p ≥ 0, if εR
n + εH

n ∈ [0,1)
(εR

n −1)p < 0, if εR
n + εH

n ∈ [1,2)
.

For the special case where εR
n = 0 (i.e. Rn is divis-

ible by p), we have f̂ p(a,b) = f p(a,b). This im-
plies that the OOD test accuracy for a finite OOD
test dataset may be greater than 0.

The OOD test accuracy on the domain (denote
as D̃ntest and ntest > n) in which the length of a,b

are both ntest is Acc(p,n,ntest) =
#{(a,b)∈D̃ntest :εR

n =0}
#D̃ntest

.

This can be calculated by counting the number of
Rn divisible by p in this domain. The theoretical
test accuracy on D̃ntest is given by Acc(p,n,ntest)≈
1
p′ if ntest ≥ n+ log10(p′/2+1), otherwise 0. The
proof can be found in the following section on test
accuracy analysis.
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Let’s consider some examples. For p = 151 and
n = 4, since gcd(151,10n)≡ 1, the test accuracy is
Acc(151,4,ntest) =

1
151 ≈ 0.66% if ntest ≥ 6, but 0

when ntest = 5. For p= 201 and n= 4, the test accu-
racy is Acc(201,4,ntest) =

1
201 ≈ 0.5% if ntest ≥ 7,

but 0 when ntest = 5,6. Another example is p= 150
and n = 4, where the greatest common divisor is
gcd(150,104) = 50 and p′ = 3, resulting in a test
accuracy of Acc(150,4,ntest) =

50
150 ≈ 33.3% for

all ntest ≥ 5. In the extreme case where p is a divisor
of 10n, the test accuracy Acc(p,n,ntest) ≡ 100%.
This aligns with the results for the scenarios on the
divisibility of a power of 10 by the modulus. All
these findings are confirmed by our experimental
analysis (see Table 4 and Table 9).

B.5 Proof Sketch of Theorem 6.
Given two natural numbers a and b, each repre-
sented by n-digit sequences (a1,a2, . . . ,an) and
(b1,b2, . . . ,bn), respectively, the product ab is ex-
pressed as a 2n-digit number c = (c1,c2, . . . ,c2n).

To express each digit ci of the product c in terms
of the digits of a and b, we need to understand the
multiplication task and how the digits interact. The
product ab can be represented as:

ab =

(
n

∑
i=1

ai ·10i−1

)(
n

∑
j=1

b j ·10 j−1

)

=
n

∑
i=1

n

∑
j=1

aib j ·10(i−1)+( j−1).

This gives us a double sum where each term aib j

contributes to a specific power of 10. To express
the digit ck (where 1 ≤ k ≤ 2n) of the product, we
need to collect all terms from the expansion that
contribute to the 10k−1 place.

For ck, we consider all pairs (i, j) such that i+
j − 2 = k − 1, which simplifies to i+ j = k + 1.
Define that the raw sum cR

k at the k-th position as
follows:

cR
k = ∑

1≤i, j≤n
i+ j=k+1

aib j.

However, since this is a digital product and carries
might affect higher places, the correct formulation
needs to account for carries from previous steps.
The process of digit-wise calculation and adjust-
ment with carries are as follows:

1. Initialize carry cχ
0 = 0.

2. Calculate the sum for each digit place:

Si = cR
i + cχ

i−1 = ∑
1≤i′, j′≤n
i′+ j′=i+1

ai′b j′ + cχ
i−1,

where ai′ and b j′ are zeros if their indices are out
of bounds.

3. Determine the digit and carry:

ci = ζ (Si), cχ
i = χ(Si).

Here, ζ (x) := x mod 10 and χ(x) := ⌊x/10⌋, for
x ∈ N. This recursive formula provides the digits
of the product considering the carries correctly. De-
note that ci = fi(a1, · · · ,ai∧n,b1, · · · ,bi∧n) for i =
1,2, · · · ,2n. A Transformer model Pθ (ci | a×b =
c1 · · ·ci−1) = Pθ (ci | a1, · · · ,ai∧n,b1, · · · ,bi∧n) will
learn to approximate these functions fi when given
enough data and computation power.

Consider the longer length OOD domain (a,b)∈
D>n. Let a = a10n

and b = b
10n

. The function
learned by a Transformer model with absolute
positional embeddings (APE) when trained with
(a,b) ∈ Dn−1,n is then

f̂ (a,b) = a10n ·b10n

= c = (c1,c2, · · · ,c2n,0, · · · ,0)

with ci = fi(a1, · · · ,ai∧n,b1, · · · ,bi∧n), 1 ≤ i ≤ 2n,
as all terms related to ai,bi for i > n are discarded
during the training process. If the true value of
ab is c, then ci = ci for 1 ≤ i ≤ n, but generally
differs from ci when i > n since ci neglects the
contribution of higher terms (greater than n) of a
and b.

Note that when a Transformer model is trained
on domain Dn, if i < n, the model learns the func-
tion fi(a1, · · · ,ai∧n,b1, · · · ,bi∧n) directly from the
training data. However, when i ≥ n, the model
learns the function fi(a1, · · · ,an,b1, · · · ,bn) only
for the case where an ∨ bn ≥ 1. In the scenario
where an = bn = 0, the model requires OOD gener-
alization. The training on Dn includes all possible
carry scenarios and digit summations (here, we
only need consider the units and tens digits of cR

i
and cχ

i−1) for an,bn ∈ {0, . . . ,9}. The zero cases
where an = bn = 0 are naturally included in the
learned patterns.

B.6 Proof Sketch of Theorem 7.

The proof resembles the process for modular ad-
dition. Suppose cp = ab

p
. When p is a divisor of

10m, we have cp = ab
10m p

. The value of cp remains
unaffected by the digits in positions beyond m in
the numbers a and b. Now, let m be the smallest
number such that the m-th power of 10 is divisible
by the modulus p, i.e., m = argmin{m̃ : p | 10m̃}.
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The model approximates the function for each po-
sition i as follows:

Pθ (c
p
i | a≤m,b≤m)→ cp

i = f p
i (a≤m,b≤m),

for i = 1, · · · ,m, where f p
i represents the function

for the i-th digit of cp. All these functions can be
learned directly from the training data without the
need for OOD generalization when training on Dn

(n ≥ m) except the term cp
n .

When p is not a divisor of 10n and p < 10n,
the model approximates the function f̂ p(a,b) =

a10n ×b
10n p

at each position i.This is because the
model has been trained on Dn, which is agnostic to
the digits in positions i > n of the numbers a and
b.

C Remarks

Remarks on Theorem 1: The challenging as-
pect of model prediction in the downward OOD
domain D<n arises from the need to generalize the
n-th and (n+ 1)-th positions in the result c when
trained on Dn. Specifically, these positions must
be generalized to the scenario where an = bn = 0.
Through our experimental analysis, we confirmed
that the positions n and n+ 1 are the last to be
learned during the training process. An additional
observation is that if the model is trained on the
domain Dn−1,n :=Dn−1 ∪Dn, the previously men-
tioned challenge is mitigated. This is because the
case with an = bn = 0 is already incorporated into
the training dataset. Consequently, the positions
n and n+ 1 do not require OOD generalization;
instead, they are learned directly from the training
data. We have also conducted experiments based
on this training scheme and found that learning
on the domain that includes Dn−1,n is significantly
easier than learning on Dn alone.

Remark on Transformer models based on rel-
ative/abacus positional embedding: The stan-
dard addition benefits from the property of transla-
tion invariance, whereas modular addition or mod-
ular multiplication with a modulus p that does not
divide 10n lacks this property. Consequently, there
is no apparent advantage to be gained from lever-
aging this characteristic.

D Difficulty for Learning Multiplication

Transition Invariance Property in Multiplica-
tion. The transition invariance property for multi-
plication refers to the idea that the position of digits

in the multiplication process can be shifted or "tran-
sitioned" in a systematic way that still respects the
overall structure of multiplication. In the context
of digit-wise multiplication, each digit ci should
be adjusted by the previous carry. This process is
transition invariant because each digit’s place cal-
culation transitions in a smooth and systematic way
from one digit place to the next, maintaining the
structure of the multiplication.

Transformers can utilize properties like transi-
tion invariance to learn multiplication using proper
positional embeddings such as relative or abacus
PE. In fact, the structured nature of multiplica-
tion, especially when broken down into steps that
involve digit-by-digit operations and carry propa-
gation, aligns well with the capabilities of Trans-
former models to capture sequential dependencies
and patterns. However, the most challenging as-
pect is computing the raw sums cR

i at each position.
Each cR

i results from a sum of specific pairs of dig-
its from the input sequences a and b. For a given
cR

i , the valid pairs (i′, j′) must satisfy i′+ j′ = i+1.
Identifying these pairs involves that (1) ensuring
1 ≤ i′, j′ ≤ n, i.e., the indices must be within the
bounds of the sequences. (2) For each i, determin-
ing which pairs contribute to cR

i involves iterating
through potential values of i′ and j′ and checking if
their sum equals i+1. Digit multiplication depends
on the positional significance of digits. Misalign-
ment in positions can lead to incorrect contributions
to the product. Therefore, positional encoding and
accurate handling of positional values are neces-
sary to ensure correct multiplication results. There
are also efficiency considerations. Multiplication
of large numbers involves many such sums. For
large n, directly computing cR

i for each i involves
nested loops or checks, leading to a time complex-
ity of O(n2) in the worst case. This poses a great
difficulty for computing the raw sum cR

i .
This challenge can be understood through the

following analysis. Suppose the model is provided
with Chain-of-Thought (CoT) style intermediate
steps of multiplication as part of the training data.
The CoT-like training data format is:

a×b → (cR,cχ)→ c.

In digit-wise format, this is:

(a1, · · · ,an)× (b1, · · · ,bn)

→ (cR
1 ,c

χ
1 , · · · ,cR

2n−1,c
χ
2n−1)

→ (c1, · · · ,c2n).
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The conditional probability equation is then given
by:

Pθ (ci | a1, · · · ,ai∧n,b1, · · · ,bi∧n)

= Pχ
θ (c

χ
i−1 | a1, · · · ,a(i−1)∧n,b1, · · · ,b(i−1)∧n)

×PR
θ (c

R
i | a1, · · · ,ai∧n,b1, · · · ,bi∧n)

×Pθ (ci | cR
i ,c

χ
i−1),

and

Pχ
θ (c

χ
i | a1, · · · ,ai∧n,b1, · · · ,bi∧n)

= Pχ
θ (c

χ
i−1 | a1, · · · ,a(i−1)∧n,b1, · · · ,b(i−1)∧n)

×PR
θ (c

R
i | a1, · · · ,ai∧n,b1, · · · ,bi∧n)

×Pχ
θ (c

χ
i | cR

i ,c
χ
i−1).

For the carry at the i-th position, we then have that

Pχ
θ (c

χ
i | a1, · · · ,ai∧n,b1, · · · ,bi∧n)

=
i

∏
j=1

PR
θ (c

R
j | a1, · · · ,a j∧n,b1, · · · ,b j∧n)

×Pχ
θ (c

χ
j | cR

j ,c
χ
j−1).

Note that Pθ (ci | cR
i ,c

χ
i−1) and Pχ

θ (c
χ
i | cR

i ,c
χ
i−1) ex-

hibit transition invariance. This could be handled
by relative or abacus positional embedding. The
difficulty lies in the computation of the raw sums
PR

θ (c
R
i | a1, · · · ,ai∧n,b1, · · · ,bi∧n) even when using

relative or abacus positional embedding.
Experiments on Transformer models using rela-

tive or abacus positional embeddings to learn mul-
tiplication have been presented in the literature.
Jelassi et al. (2023) and McLeish et al. (2024) show
that addition can successfully generalize to OOD
regions with higher numerical digits, but multi-
plication has largely not succeeded. Our analysis
provides insights into the difficulties behind gener-
alizing to higher numerical digits, which helps us
understand the reasons for the failure in learning
multiplication.

E Theoretical OOD Test Accuracy for
Modular Arithmetic

E.1 Theoretical OOD Test Accuracy for
Modular Addition Learning

To derive an accurate analytic formula (in The-
orem 5) for the OOD test accuracy on D̃m with
m > n when a Transformer model is trained on the
domain Dn, we must carefully count the valid pairs

(a,b) ∈ D̃m that satisfy a+b
p
= a10n

+b
10n p

.

Let a = A ·10n +a0 and b = B ·10n +b0, where
A,B range from 1 to 10m−n − 1 and a0,b0 range
from 0 to 10n − 1. We require a + b ≡ (a
mod 10n + b mod 10n) (mod p), which simpli-
fies to that

(A+B) ·10n ≡ 0 (mod p).

Let p′ = p
gcd(p,10n) . We are then left with the condi-

tion (A+B)≡ 0 (mod p′).
The number of such pairs is determined by the

frequency of multiples of p′ in the valid range. The
total number of pairs (A,B) is (10m−n −1)2. There
are (10m−n − 1) valid values for A. For each A,
the number of valid B values is determined by the
number of multiples of p′ in the range. That is,
for each A, the number of valid B values is about
(10m−n − 1)/p′. The test accuracy is the ratio of
valid pairs, i.e. the number of valid pairs divided
by the total number of pairs.

Note that for m ≥ n+ log10(p′/2+1), the range
1 ≤ A,B < 10m−n must include at least one com-
plete cycle of p′ to ensure some pairs (A,B) satisfy
A+B ≡ 0 (mod p′). This condition ensures that
the number of digits in A and B is large enough to
cover a full period of p′. Otherwise, there exists no
pair (A,B) for which A+B ≡ 0 (mod p′).

The ultimate formula is as follows:

Acc(p,n,m) =
Number of Valid Pairs
Total Number of Pairs

≈
(10m−n −1) ·

(
10m−n−1

p′

)

(10m−n −1)2 =
1
p′

for m ≥ n+ log10(p′/2+1), otherwise 0.
Given that p′ = p

gcd(p,10n) , we have that

Acc(p,n,m)

≈
{

gcd(p,10n)
p , if m ≥ n+ log10(p′/2+1)

0, otherwise
.

E.2 Theoretical OOD Test Accuracy for
Modular Multiplication Learning

To count the valid pairs (a,b) ∈ D̃m that satisfy
a× b ≡ ((a mod 10n)× (b mod 10n)) (mod p),
denote a and b can be written as a=A ·10n+a0 and
b = B ·10n +b0, where A,B are the upper (m−n)-
digit parts and a0,b0 are the lower n-digit parts.
A,B range from 1 to 10m−n −1 (since they are non-
zero leading digits). a0,b0 range from 0 to 10n −1.
We need

(A ·10n+a0)×(B·10n+b0)≡ (a0×b0) (mod p).
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This simplifies to that

A ·B ·102n +(A ·b0 +B ·a0) ·10n ≡ 0 (mod p).

This further simplifies to that

A ·B ·10n +A ·b0 +B ·a0 ≡ 0 (mod p′),

p′ =
p

gcd(p,10n)
.

The theoretical closed expression for this prob-
lem is challenging to derive, but the numerical so-
lution can be computed through an algorithmic
program for small-scale cases.

F Model and Training Hyperparameters

We follow the architecture at https://github.
com/karpathy/nanoGPT and https://github.
com/karpathy/minGPT for building our research
code, which is compliant with the MIT license that
the github repositories are under.

Detailed hyperparameters of the models and
training are provided in Table 5.

Hyperparameter NanoGPT MicroGPT MiniGPT

num layer 3 4 6
num head 3 4 6
dim embd 48 128 384
vocab size 16 16 16

context window 256 256 256
dropout prob 0.2 0.2 0.2

optimizer AdamW AdamW AdamW
learning rate 0.001 0.001 0.001

betas (0.9, 0.99) (0.9, 0.99) (0.9, 0.99)
weight decay True True True

grad norm clip 1.0 1.0 1.0

Table 5: Hyperparameter for Arithmetic Operations
Training

G Training DataSet Parameter

DataSet Description Obs.Num

D4 n = 4,m = 4 100,000
D5 n = 5,m = 5 100,000
D6 n = 6,m = 6 100,000
D7 n = 7,m = 7 100,000
D4,5 .5D4+.5D5 100,000
D5,6 .5D5+.5D6 100,000
D6,7 .6D6+.6D7 120,000

Table 6: Data Scale: Training Data (Cont.)
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H Further Results

H.1 Further Results on Addition

Training Loss In Sample Accuracy

Figure 2: Training Loss & Out of Sample In-Distribution Test Accuracy on Addition

Note: Di is trained on two number addition task with at least one number to be a i-digit number, Di, j is trained on
the combined training dataset of Di and D j.

Training Loss In Sample Accuracy

Figure 3: Training Loss & Out of Sample In-Distribution Test Accuracy on Addition

Note: Robustness study on model and data scales. All models are trained on D4 where a and b are at least one to be
a 4-digit number. NanoGPT represents the smallest model, with MicroGPT being of medium size and MiniGPT the
largest. The designations "100k" and "200k" indicate that the training sets are 90% the size of 100,000 or 200,000,
respectively.

H.1.1 How Digits are Learned During Training?
The experiment results depicted in Figure 5 illustrate the learning dynamics of each function ci during
the training of Transformer models, using DecisionTreeRegressor to approximate these functions. The
R2 values, which measure how well the model’s predictions fit the actual data, indicate that the models
effectively learn lower-order digits with high accuracy, achieving R2 values close to 1. However, higher-
order digits present more challenges, resulting in lower and less stable R2 values. Furthermore, at the
early stages of training, the models first learn the higher-order digits (with higher R2 values) and then
proceed to learn the lower-order digits.

From Figure 5, it is evident that the Transformer model trained on D4 initially focuses on learning the
digits at positions 4 and 5 before addressing positions lower than 4. Here, position 6 is trivial since it
always equals zero. The Transformer model trained on D5 first attempts to learn the digits at positions 5
and 6, then proceeds to positions lower than 5. The Transformer model trained on D4,5 starts by learning
the digits at positions 4, 5, and 6, and then moves to positions lower than 4. In our theoretical analysis, the
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1st digit 2nd digit 3rd digit

4th digit 5th digit 6th digit

7th digit 8th digit 9th digit

Figure 4: Digit-Wise Test Accuracy of Transformer Models with APE for Addition Tasks

Note: In this figure, we present the results of three different experiments using distinct training datasets. For all
experiments, we employ the MiniGPT model equipped with a learned APE. In the legend, the label D4 indicates
that the MiniGPT model is trained on a random sample from dataset D4. The label D5 denotes training on a random
sample from dataset D5, while D4,5 signifies training on a combined subset from D4 and D5. Each subfigure
illustrates the digit-wise test accuracy on a combined random sample sets D≤9 for these models throughout the
training process.
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Test Accuracy (%) w.r.t. the Ground Truth on the Domain Di

Training Data 1 2 3 4 5 6 7 8 9

D4 100 100 100 100 0 0 0 0 0
D̃4 100 100 72.6 100 0 0 0 0 0
D5 100 100 100 100 100 0 0 0 0
D6 100 100 100 100 100 100 0 0 0
D4,5 100 100 100 100 100 0 0 0 0
D5,6 100 100 100 100 100 100 0 0 0
D6,7 100 100 100 100 100 100 100 0 0

Table 7: Standard Addition: Test Accuracy w.r.t. the Ground Truth f (a,b)= a+b on the Domain Di for i= 1,2 · · · ,9.
All models are instances of MiniGPT. The accuracy is tested on 10,000 random test samples (when n > 2), otherwise
on the entire dataset. The outputs of models are generated using maximum probability sampling.

Test Accuracy (%) w.r.t. the Modular Truth on the Domain Di

Training Data 1 2 3 4 5 6 7 8 9

D4 100 100 100 100 100 100 100 100 100
D̃4 100 99.9 72.3 100 99.7 99.7 99.6 99.7 99.5
D5 100 100 100 100 100 100 100 100 100
D6 100 100 100 100 100 100 100 100 100
D4,5 100 100 100 100 100 100 100 100 100
D5,6 100 100 100 100 100 100 100 100 100
D6,7 100 100 100 100 100 100 100 100 100

Table 8: Standard Addition: Test Accuracy w.r.t. the Modular Truth f̂ (a,b) = a10n
+b

10n
on the Domain Di for

i = 1,2 · · · ,9. All models are instances of MiniGPT, and test methods are indicated as above.

most challenging parts are cn and cn+1 when training the model with data in Dn, since these positions
never encounter an = bn = 0 and require OOD generalization. The models prioritize learning the hardest
positions first, followed by the easier positions in these experiments.

Another notable result from the experiments is that the correlation of R2 values between different digit
pairs is around zero (see Figure 6 in this Appendix). This indicates that changes in the approximation for
one position have little impact on other positions. This finding suggests that the Transformer model is
flexible enough to handle different tokens independently, even though they share parameters.

H.1.2 Learning Addition Under Relative Positional Embedding
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D4 D5 D4,5

Figure 5: Learning Dynamics of Each Function ci = ζ (ai +bi + cχ
i−1) for Addition

Note: D4 is trained on two number addition task with at least one number to be a four digit number, D5 is trained on
two number addition task with at least one number to be a 5 digit number, D4,5 is trained on the combined training
dataset of D4 and D5. for D4 the model never quite learn to approximate ci = ζ (ai +bi + cχ

i−1) yet only learn to
output 0 as in its training data there’s only 0 at its 6th digit.

H.2 Further Results on Modular Addition

Test Accuracy (%) w.r.t. the Modular Truth on the Domain D̃i

Modulus 1 2 3 4 5 6 7 8 9

p = 50 100 100 100 100 99.3 92.0 93.1 95.2 91.4
p = 51 100 98.5 99.9 99.3 95.1 94.4 92.6 91.3 92.4
p = 100 100 100 100 100 100 100 100 100 100
p = 101 100 100 100 100 100 100 100 100 100
p = 150 100 100 100 100 100 100 100 99.8 99.7
p = 151 100 99.9 99.9 100 99.9 99.7 99.6 99.1 99.2
p = 200 100 100 100 100 99.8 98.9 93.7 94.1 93.5
p = 201 100 100 99.9 99.9 96.4 96.6 95.7 90.4 91.2

Table 9: Modular Addition: Test Accuracy w.r.t. the Modular Truth f̂ p(a,b) = a10n
+b

10n p
on the Domain D̃i for

i = 1,2 · · · ,9.

Note: All the Transformer models in above experiments are instances of MiniGPT, which have been trained on a
random sample drawn from D4 (except p = 150). The accuracy is tested on 10,000 random test samples (when
n > 2), otherwise on the entire dataset. The outputs of models are generated using maximum probability sampling.
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D4, Ref digit 4 D5, Ref digit 5

D4,5, Ref digit 4 D4,5, Ref digit 5

Figure 6: Correlation Between Digit Pairs of Learning ci and c j for Addition

Note: D4 is trained on two number addition task with at least one number to be a four digit number, D5 is trained on
two number addition task with at least one number to be a 5 digit number, D4,5 is trained on the combined training
dataset of D4 and D5.

Figure 7: Test Accuracy on Addition When Training Short and Testing Long using a 16-Layer Transformer (Decoder
only) Model with Abacus Positional Embedding.

Note: The image is extracted from the work McLeish et al. (2024) and is a screenshot of their Figure 1. The interior
of the red box represents the training data domain D≤20. Code to reproduce the result can be found on the GitHub:
https://github.com/mcleish7/arithmetic. The obtained result constitutes empirical evidence that validates
our Theorem 3. The result is very clear. We will not repeat the same procedures. Use this as a reference in the
present context.
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Digit-wise Accuracy In Sample Accuracy

Figure 8: Digit-wise In-Distribution Test Accuracy & Total Accuracy for Modular addition

Note: These results correspond to modular addition tasks with the modulus p taking values in the set
{50,51,100,101,150,151,200,201}. Each model is trained using the MiniGPT model with a sample drawn
from the domain D4 (except p = 150, which is on D≤4).

H.3 Further Results on Multiplication

Digit-wise Accuracy In Sample Accuracy

Figure 9: Digit-wise In-Distribution Test Accuracy & Total Accuracy for Multiplication

Note: These results correspond to multiplication tasks. The models trained on D1,2 and D2 are instances of
MicroGPT, while others are of MiniGPT.
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Test Accuracy (%) w.r.t. the Ground Truth on Di

Training Data 1 2 3 4 5 6 7 8 9

D1,2 100 100 0.1 0 0 0 0 0 0
D2 80.0 99.4 0.1 0 0 0 0 0 0
D3 100 96.4 99.0 0 0 0 0 0 0
D2,3,4 100 100 98.9 80.5 0 0 0 0 0

Table 10: Standard Multiplication: Test Accuracy w.r.t. the Ground Truth f (a,b) = a · b on the Domain Di for
i = 1,2 · · · ,9. The models trained on D1,2 and D2 are instances of MicroGPT, while others are of MiniGPT. The
accuracy is tested on 10,000 random test samples (when n > 2), otherwise on the entire dataset. The outputs of
models are generated using maximum probability sampling.

Test Accuracy (%) w.r.t. the Modular Truth on Di

Training Data 1 2 3 4 5 6 7 8 9

D1,2 100 99.9 93.0 90.1 86.0 82.6 80.6 78.2 77.7
D2 85.0 99.4 98.1 96.7 89.0 88.9 88.4 89.8 88.7
D3 100 96.2 98.8 98.9 99.0 97.9 97.9 97.2 97.1
D2,3,4 100 100 98.9 81.0 75.6 76.2 73.8 67.5 66.9

Table 11: Standard Multiplication: Test Accuracy w.r.t. the Modular Truth f̂ (a,b) = a10n ·b10n
on the Domain Di

for i = 1,2 · · · ,9. The models and test methods are indicated as above.

H.4 Further Results on Modular Multiplication
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Figure 10: Test Accuracy on Multiplication When Training Short and Testing Long using a Looped Transformer
Models with Abacus Positional Embedding.

Note: The image is extracted from the work McLeish et al. (2024) and is a screenshot of their Figure 5. The interior
of the red box represents the training data domain D≤15.

Digit-wise Accuracy In Sample Accuracy

Figure 11: Digit-wise In-Distribution Test Accuracy & Total Accuracy for Modular Multiplication

Note: These results correspond to modular multiplication tasks. The models are instances of MiniGPT and trained
on D3.
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Test Accuracy (%) w.r.t. the Ground Truth on the Domain D̃i Theor.
Modulus 1 2 3 4 5 6 7 8 9 Acc.

p = 50 100 100 100 100 100 100 100 100 100 100
p = 51 100 100 99.7 2.6 2.5 2.8 2.4 2.5 3.2 2.4
p = 100 100 100 100 100 100 100 100 100 100 100
p = 101 100 100 100 1.1 1.0 1.2 0.9 1.1 1.0 1.0
p = 150 30.0 56.4 55.5 46.9 46.5 46.3 47.4 46.9 47.0 40.8
p = 200 100 63.3 61.8 62.1 62.6 62.9 62.4 61.7 62.6 100
p = 201 80.0 78.3 92.2 0.7 0.6 0.5 0.6 0.6 0.6 0.6

Table 12: Modular Multiplication: Test Accuracy w.r.t. the Ground Truth f p(a,b) = a ·bp
on D̃i

Note: All the Transformer models in above experiments are instances of MiniGPT, which have been trained on a
random sample drawn from D3. The accuracy is tested on 10,000 random test samples (when i > 2), otherwise on
the entire dataset. The outputs of models are generated using maximum probability sampling. When p = 150 and
p = 200, there is a significant difference between the experimental accuracy and the theoretical accuracy, which is
due to the fact that these two models have not yet achieved sufficient training on the training set, or in other words,
they are under-trained. This can be observed from the test accuracy in columns 1, 2, and 3 of the table above.

Test Accuracy (%) w.r.t. the Modular Truth on D̃i

Training Data 1 2 3 4 5 6 7 8 9

p = 50 100 100 100 100 100 100 100 100 100
p = 51 100 100 99.7 99.8 98.4 84.4 81.9 68.6 57.2
p = 100 100 100 100 100 100 100 100 100 100
p = 101 100 100 100 86.6 73.6 71.7 68.1 65.7 54.5
p = 150 42.0 55.7 56.0 51.0 51.2 50.0 50.0 50.3 50.1
p = 200 100 62.6 62.2 62.7 62.3 62.4 62.7 62.3 61.9
p = 201 71.0 79.5 92.1 90.9 90.7 90.5 88.7 87.9 85.0

Table 13: Modular Multiplication: Test Accuracy w.r.t. the Modular Truth f̂ p(a,b) = a10n ·b10n p
on the Domain D̃i

for i = 1,2 · · · ,9. The models and test methods are as indicated in the above table.
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