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Abstract

Social event detection (SED) is the task of iden-
tifying, categorizing, and tracking events from
social data sources such as social media posts,
news articles, and online discussions. Existing
state-of-the-art (SOTA) SED models predomi-
nantly rely on graph neural networks (GNNs),
which involve complex graph construction and
time-consuming training processes, limiting
their practicality in real-world scenarios. In this
paper, we rethink the key challenge in SED: the
informal expressions and abbreviations of short
texts on social media platforms, which impact
clustering accuracy. We propose a novel frame-
work, LLM-enhanced Social Event Detection
(LSED), which leverages the rich background
knowledge of LLMs to address this challenge.
Specifically, LSED utilizes LLMs to formal-
ize and disambiguate short texts by complet-
ing abbreviations and summarizing informal
expressions. Furthermore, we introduce hy-
perbolic space embeddings, which are more
suitable for natural language sentence repre-
sentations, to enhance clustering performance.
Extensive experiments on two challenging real-
world datasets demonstrate that LSED outper-
forms existing SOTA models, achieving im-
provements in effectiveness, efficiency, and
stability. Our work highlights the potential of
LLMs in SED and provides a practical solu-
tion for real-world applications. The code is
available at GitHub1.

1 Introduction

Social events are typically defined as unique occur-
rences at a specific time and location in the real
world (Peng et al., 2022; Cao et al., 2024). For
example, on 11 October 2012, the famous Chi-
nese writer Mo Yan won the 2012 Nobel Prize
in Literature. A defining characteristic of social
events is their ability to rapidly and widely propa-
gate through discussions on social media platforms.

1https://github.com/ZITAIQIU/LSED

(Liu et al., 2015). With the increasing number
of users, social media has become the primary
medium for both mainstream media and individu-
als to publish and disseminate information. Social
event detection (SED) aims to identify such events
from vast amounts of user-generated content, in-
cluding posts, tweets, and images (Li et al., 2022;
Atefeh and Khreich, 2015). Detecting social events
accurately is crucial for various real-world applica-
tions. First, it facilitates tasks such as disaster mon-
itoring, sentiment analysis, public opinion tracking,
and market regulation (Peng et al., 2021; Gaspar
et al., 2016; Nisar and Yeung, 2018; Marozzo and
Bessi, 2018). Second, by structuring messages into
event-based formats, SED improves information or-
ganization and monitoring, enabling more effective
event analysis (Wang et al., 2017; Allan, 2002).

Compared to traditional event detection tasks,
SED presents additional challenges due to the
brevity and informativeness of user-generated con-
tent. While such content conveys crucial informa-
tion in just a few words, most machine learning
techniques struggle to process and interpret it ef-
fectively (Song et al., 2014). Despite the efforts
made by existing research, an effective, efficient,
and stable SED model has not yet been fully im-
plemented.

Specifically, SED models based on text analysis
(Bollegala et al., 2018; Ramos, 2003) are ineffec-
tive due to the informal expression and lack of
co-occurrence words of short texts. Furthermore,
another factor affecting effectiveness is that most
SED models embed text representations into Eu-
clidean space, leading to distortion. Social mes-
sages, as natural language sentences, inherently ex-
hibit a hierarchical structure (Dhingra et al., 2018),
as shown in Figure 1. However, Euclidean space
struggles to capture hierarchical structures effec-
tively, while directly embedding such structures
into Euclidean space can introduce embedding dis-
tortions (Ganea et al., 2018; Chami et al., 2019).
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Figure 1: The constituency parse tree of a sentence.
Phrases in a sentence can be arranged into a component-
based parse tree, but this hierarchy is usually not anno-
tated in text corpora.

Furthermore, SED models leveraging heteroge-
neous graph neural networks (Qiu et al., 2025; Cao
et al., 2021, 2024; Peng et al., 2019, 2022; Yu et al.,
2023; Ren et al., 2022; Li et al., 2024) can integrate
multi-perspective information from social media.
While this approach effectively alleviates the spar-
sity of co-occurring words, the complexity of graph
construction and processing imposes challenges to
efficiency.

In addition, the spread of social events is driven
by user discussions on social platforms (Liu et al.,
2015), distinguishing them from traditional news
by the dynamic frequency and volume of events-
related messages. The duration of these discussions
varies based on user interest, with some lasting
for days, while others dissipate within hours or
even minutes. This dynamic nature of social data
presents a challenge to the stability of existing
SED models based on graph structure.

To address the above challenges, we propose
LSED, a novel framework that leverages large lan-
guage models (LLMs) to enhance Social Event
Detection (SED) by addressing key challenges in
social message processing. First, LSED leverages
LLMs to expand abbreviations and standardize tex-
tual expressions in short messages, mitigating in-
formation sparsity. Next, LSED embeds text repre-
sentations into hyperbolic space to better capture
hierarchical structures and reduce embedding dis-
tortion, enhancing model effectiveness. Finally,
LSED employs clustering techniques to enhance
common feature representations among social mes-
sages, thereby facilitating event detection. In par-
ticular, unlike existing SED models that rely on
graph structures, LSED operates independently of
these dependencies, leading to improved efficiency
and stability. In a nutshell, our major contributions
are as follows:

• To our knowledge, LSED is the first frame-
work to leverage LLMs for the SED task, ef-
fectively and simply addressing the challenges
posed by short text in SED.

• LSED does not rely on graph structure in-
formation in social message blocks, showing
a new perspective on event detection from
social media without additional information
from graph structures. This design enhances
LSED’s stability and practicality compared
to SED models based on graph structure in a
real-world scenario.

• Experimental results demonstrate that the hi-
erarchical structure of natural language sen-
tences impacts feature embedding. Using a
more suitable low-dimensional space to cap-
ture these hierarchical structures (like hyper-
bolic space) can better reduce the distortion
during embedding and improve the perfor-
mance of the framework.

• Through extensive experiments on two real-
world social event datasets, LSED outper-
forms baseline models. Further analysis, sup-
ported by ablation studies of its key compo-
nents, validates the overall design choices of
LSED.

2 Related Work

2.1 Social Event Detection (SED)

Early event detection models, such as LDA (Bolle-
gala et al., 2018) and TF-IDF (Ramos, 2003), are
based on text analysis and are primarily designed
for traditional news manuscripts. Their approach
of determining topics through word frequency anal-
ysis proves ineffective on social platforms, where
short texts dominate.

Currently, the primary direction of the SED
methods is based on graph neural networks (GNNs)
or graph structure information between social mes-
sages. These methods combine rich semantic in-
formation and structural information on social net-
works to address the challenges of informal expres-
sion in social messages. For supervised models,
like KPGNN (Cao et al., 2021) constructs event
message graphs by incorporating users, keywords,
and entity attributes; FinEvent (Peng et al., 2022)
and Re-DHAN (Yu et al., 2023) combine rein-
forcement learning with GNN to help the model
select the optimal aggregation threshold through
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reinforcement learning; DAMe (Yu et al., 2024)
combines federated learning with GNN to allow
the model to learn more features; GraphHAM (Qiu
et al., 2024) better embeds social messages by au-
tomatically selecting meta-paths; LTS (Ma et al.,
2024) and DWMM (Ma et al., 2025) further opti-
mize the efficiency and effectiveness of meta-path
selection. For unsupervised models, like HISEvent
(Cao et al., 2024) uses structural entropy to improve
the relevance between messages and better enhance
the effectiveness of SED; HyperSED (Yu et al.,
2025) models social messages as semantic-based
message anchors to further improve the efficiency
of unsupervised SED.

However, constructing these graph structures is
complex and time-consuming, requiring significant
computational training resources. Moreover, due
to the dynamic social messages, the models’ per-
formance relies on the graph structure, which is un-
stable. Therefore, we refocus on the core challenge
of SED (concise texts and informal expressions),
highlighting that effectively solving the short-text
problem and maintain the stability of the frame-
work.

2.2 Short Text Classification
With the development of mobile devices and social
platforms, short text has become ubiquitous in var-
ious online interactions, including instant messag-
ing, chat logs, news comments, and microblogging
services like Twitter. However, short texts present
challenges for classification due to their brevity,
limited contextual information, and high ambiguity.
Existing short-text classification methods can be
broadly categorized into two approaches: single-
source and multi-source methods. Single-source
methods like RCNN (Lai et al., 2015) employ
a recurrent convolutional neural network to cap-
ture contextual features essential for classification,
while ClassiNet (Bollegala et al., 2018) leverages
unlabeled data to construct word co-occurrence
graphs and explore feature relationships to address
word sparsity.

However, single-source approaches still suffer
from data sparsity issues, leading to the develop-
ment of multi-source methods, which rely on ex-
ternal knowledge. These methods enhance text
representation by retrieving information from ex-
ternal sources and using attention mechanisms to
determine the significance of different concepts.
For example, DE-CNN (Xu and Cai, 2019) in-
tegrates contextual knowledge into convolutional

neural networks for short text classification, and
HGAT (Yang et al., 2021) utilizes a heterogeneous
information network to incorporate additional in-
formation and relationships from open knowledge
bases, helping mitigate semantic sparsity problems.
Although these approaches show promising results,
they highly depend on large-scale training data to
effectively build models, which makes the collec-
tion of suitable training instances costly.

2.3 Prompts for Large Language Models
(LLMs)

LLMs have made significant progress in various
natural language tasks such as dialogue, machine
translation, and reasoning (Shi et al., 2024; Wan
et al., 2024). Prompts serve as a crucial bridge
between users and LLMs, enabling the communi-
cation of task descriptions. By guiding LLMs to
adapt to diverse downstream tasks, prompts unlock
their vast potential. For example, LAMP (Shi et al.,
2024) uses prompts to enable LLMs to use their
rich historical knowledge and reasoning capabili-
ties to associate the relationship between subjects
and predict events; TnT-LLM (Wan et al., 2024)
designs a quantifiable and traceable framework
to cluster text and generate pseudo-labels using
LLMs. Therefore, leveraging prompts to enhance
SED with LLMs is desirable, as LLMs have been
trained on extensive textual data and expressions
that may not be directly accessible to SED models
but could still provide valuable insights.

2.4 Hyperbolic Embeddings for Natural
Language Processing (NLP)

Most real-world data exhibit hierarchical structures,
either explicitly, such as in WordNet, or implicitly,
as seen in social networks and natural language
sentences (Dhingra et al., 2018). Recent work sug-
gests that hyperbolic space is a promising alterna-
tive to standard Euclidean space to represent these
hierarchical structures better when learning repre-
sentations (Ganea et al., 2018; Chami et al., 2019).

However, there are few works exploring the use
of hyperbolic space for NLP tasks, and most of
them explore the hierarchical structure of graph
neural networks combined with NLP tasks (Chen
et al., 2021). For example, HMLC (Chen et al.,
2020) uses hyperbolic space to better express the
multiplication structure of labels; HypEmo (Chen
et al., 2023) constructs emotions into a graph struc-
ture and uses hyperbolic space to improve the per-
formance of multiemotion classification; Graph-
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HAM (Qiu et al., 2024) and HyperSED (Yu et al.,
2025) apply hyperbolic space to the graph structure
constructed by social messages and achieves good
performance. While these approaches improve the
representation of hierarchical structures in graph
structures, it is unclear whether hyperbolic spaces
can improve the representation of natural language
sentences.

3 Preliminaries

This section summarizes concepts related to our
work context, including social message stream, so-
cial event, SED algorithm, incremental SED, and
hyperbolic representation.

Definition 2.1. Social message stream denoted
as S = {M0,M1, ...,Mn} is temporal and con-
tinuous of blocks of social messages, where Mi

is a message block that contains all social mes-
sages {m0,m1, ...,mk} that arrive during time
{ti, ti+1}.

Definition 2.2. Social event ei = {mi, ...,mj}
is a set of correlated social messages that discuss
the same real-world happening. Here, we assume
that each social message belongs to at most one
social event.

For example, Mo Yan’s winning of the 2012
Nobel Prize in Literature sparked widespread dis-
cussion on Twitter. Here 2012 Nobel Prize in Liter-
ature can be defined as a social event.

Definition 2.3. We adopt the Incremental SED
setting from FinEvent (Peng et al., 2022). It is in-
dicated as f0, ..., f0+w, ..., ft−w, ft, ..., where w is
the window size for updating the model parameters.

Definition 2.4. Hyperbolic Representation aims
to map the features from Euclidean space to hyper-
bolic space via hyperbolic embedding methods. In
this work, we adopt two types of hyperbolic em-
bedding models: P for the Poincaré Ball model and
H for the Hyperboloid model. For the Poincaré
Ball model, we denote EoPd,c as the Euclidean
space and Pd,c as the hyperbolic representation
via the Poincaré Ball model, where o is the cen-
ter of the space, d is the dimensions, and c is the
curvature of this space. Thus, the mapping pro-
cess from Euclidean space to hyperbolic space is
expco : EoPd,c → Pd,c, and the opposite mapping
is logco : Pd,c → EoPd,c. Specifically, for a node
a ∈ EoPd,c and a′ ∈ Pd,c , we have: expco(a) = a′

and logco(a
′) = a, where

expco(a) = tanh(
√
c∥a∥) a√

c∥a∥ , (1)

logco(a
′) = artanh(

√
c∥a′∥) a′√

c∥a′∥ . (2)

For the hyperboloid model, we denote EoHd,c

as the Euclidean space and Hd,c as the hyperbolic
representation via the hyperboloid model and the
expco and logco functions are defined as:

expco(x) = cosh

(∥x∥√
c

)
y′+

√
c ·sinh

(∥x∥√
c

)
x

∥x∥ , (3)

logco(x
′) = dcH(x

′, y′)
y′ + 1

c ⟨x′, y′⟩Mx′

∥y′ + 1
c ⟨x′, y′⟩Mx′∥ , (4)

where x′, y′ ∈ Hd,c, x ∈ EoHd,c with x′ ̸= y′,
x ̸= 0, and dcH(·) is the function calculates the
distance between two nodes in hyperbolic space
and ⟨., .⟩M is the Minkowski inner product.

4 Methodology

This section introduces our framework, LLM-
enhanced Social Event Detection (LSED). Figure
2 gives an overview of this framework. In gen-
eral, LSED contains four main steps: (1) Prompt
the LLM to summarize the initial social messages
based on its knowledge. (2) Vectorize the sum-
marized social messages through the pre-trained
language model. (3) Project the vectors into hy-
perbolic space and cluster them into events. (4)
Update LSED according to window size and de-
tect social events in changing message blocks. The
process of our framework is shown in Algorithm 1.

4.1 Prompting
One of the primary goals of this work is to improve
the effectiveness of the SED model on social mes-
sages. The key challenge lies in the lack of context,
along with the frequent use of abbreviations and
informal expressions, which can lead to ambigu-
ity and loss of meaning. Therefore, LSED applies
three state-of-the-art open-source LLMs through
OLLama2: Meta’s Llama3.1-8B (Llama Team,
2024), Alibaba’s Qwen2.5-7B (Yang et al., 2024),
and Google’s Gemma2-9B (Gemma Team, 2024)
(we will refer to them as Llama3.1, Qwen2.5, and
Gemma2 below). To take advantage of the ability
of LLMs to summarize, complete abbreviations,
and provide additional context, we design and test
a series of prompts on Llama 3.1 as follows.

“Summarize” or “Paraphrase”: To ensure the
LLM’s response aligns with our expectations, we
first focus on selecting keywords in the prompt,

2https://ollama.com/
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Figure 2: An overview of LSED. The LSED contains three main steps: Step (1): Prompt LLM to summarize social
messages; Step (2): Vectorize the summaries and timestamps; Step (3): Hyperbolic representation; Step (4): LSED
maintenance and event detection.

Prompt
Summarize the following sentences: 
<Input text>.

Summarized Sentence
The Twitter user @marvicleonen asked if 
UP (University of the Philippines) had won 
the UAAP (University Athletic Association of 
the Philippines) basketball title, and 
someone replied "Next year" with a sense 
of certainty ("Sure na 'yan!") implying that UP 
will indeed win it next year.

(a) Summarize Prompt

Prompt
Paraphrase the following sentences: <Input 
text>. 

Paraphrased Sentence
Person A asks on Twitter if UP won the 
UAAP basketball championship and Person 
B replies, "Yes, they will win next year for sure!

(b) Paraphrase Prompt

Figure 3: Compare the responses to the “Summarize”
and “Paraphrase” prompts.

as they play a crucial role in guiding the model’s
generation. Usually, “summarize” is used to sum-
marize long texts, but the social message is short,
so it seems that “summarize” is not exceptionally
applicable here. “Paraphrase” usually replaces
a sentence without changing its meaning, which
seems more suitable for our situation. So we test
the two prompts “summarize” and “paraphrase”
on the initial message “@marvicleonen: Is it true
that UP won UAAP basketball? – Next year, Dean.
Sure na ’yan!” in Llama3.1, as shown in Figure
3. Counterintuitively, “summarize” can better ex-
pand the initial social message. Specifically, it
can explain the meaning of the two abbreviations
“UP” and “UAAP” in combination with background
knowledge, as shown in Figure 3 (a). In addition,
we test the impact of “summarize” and “paraphrase”
on LSED (see Table 8 in Appendix D). The results
show that “summarize” performs better than “para-
phrase”. Therefore, in this work, we uniformly

Prompt
Summarize the following sentences: <Input 
text>. If you come across some abbreviations, 
expand them.

Summarized Sentence
L'Algérie va réexaminer le cas de Djamel 
Beghal, qui a été condamné à 20 ans de 
prison en 2003 par contumace (c'est-à-dire 
sans avoir été présent).

(a) Without language restric-
tion

Prompt
Summarize the following sentences: <Input 
text>. If you come across some abbreviations, 
expand them.  Please respond in English.

Summarized Sentence
Algeria will retry Djamel Beghal, who was 
convicted to 20 years in prison by default in 
2003 (i.e., he was not present at his 
original trial and therefore 
considered absent or "in contumacy", but 
now will face a new trial).

(b) With language restriction

Figure 4: Comparison of responses with and without
language restriction.

use “summarize” as the keyword in the prompt.
However, during testing, the LLM does not always
expand all abbreviations in the initial message, so
we improve the prompt to “Summarize the follow-
ing sentences: <Input text>. If you come across
some abbreviations, expand them”. This restric-
tion helps LLMs meet our needs well.

Multilingual: The datasets we used consist of
collections of tweets in both English and French.
Although we employ English prompts to interact
with the LLM, the model occasionally generates
responses in the original language of the tweet. For
example, we test the initial tweet “L’Algérie va
rejuger Djamel Beghal, condamné à 20 ans par
contumace en 2003”, as shown in Figure 4 (a), the
response of Llama3.1 is still in French. We add
another restriction to the prompt: “Please respond
in English”, as shown in Figure 4 (b). This setting
will help LSED applies the translation ability of the
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LLM to solve the problem of multiple languages.
Therefore, the prompt we apply in this work is:
“Summarize the following sentences:<Input text>.
If you come across some abbreviations, expand
them. Please respond in English”. For the social
message block Mi from a social message stream S,
we have:

ms
j = LLM(mj), (5)

where mj ∈Mi and ms
j is the summary of social

message mj via LLM.
Additionally, the hallucination problem in LLMs

is another issue that warrants attention. However,
in general, this problem has minimal impact on
LSED. An analysis of the hallucination problem in
LSED can be found in Appendix C.

4.2 Vectorization
To embed summarized social messages into hyper-
bolic space, we transform summarized social mes-
sages into vectors through a pre-trained language
model (PLM). In this work, we select SBERT
(Reimers, 2019) as PLM based on the experimental
result in Section 5.3.1. Thus, for a summarised
social message ms

j , we have:

vms
j
= PLM(ms

j). (6)

In addition, the timestamp also plays a crucial
role in social messages. Therefore, we adopt the
time vectorization approach from KPGNN (Cao
et al., 2021) to encode the timestamp. We cover
each timestamp with an Object Linking and Em-
bedding (OLE) date, and its fractional and integer
parts form a two-dimensional vector. Thus, we
have:

TIME(t) = (
tdays
Dmax

,
tseconds
Smax

), (7)

where tdays and tseconds are the days and seconds
in the timestamp, Dmax = 100000 is the normal-
ization factor for days, which controls the scaling
range of days. Smax = 86400 is the number of
seconds in a day. They ensure that the vector is
normalized to [0, 1]. So, for the timestamp tj for
mj , we have:

vtj = TIME(tj). (8)

Then, we add (direct addition in vector dimen-
sions) the summarized social message vector and
its timestamp vector, defined as ADD(Rn,Rm) =
Rn+m. The final vector of the summarized mes-
sage ms

j is:

vj = ADD(vms
j
, vtj). (9)

4.3 Hyperbolic Encoder and Clustering
LSED utilizes the hyperbolic space as a low-
dimensional embedding space to capture the hier-
archical structure of sentences in natural language.
To achieve this, we adopt the hyperbolic encoder
H(·) from HGCN (Chami et al., 2019). Based on
Eq. 1 or Eq. 3 in Section 3. Thus, we have:

ej = H(vj). (10)

After embedding social message vectors into the
hyperbolic space, we cluster messages based on
the learned message representations. In this work,
we adopt distance-based clustering algorithm K-
Means (MacQueen et al., 1967).

5 Experiments

We conduct extensive experiments on two real-
world datasets to demonstrate the performance of
LSED. First, we outline the experimental setup,
including the datasets and baselines. Next, we
present the overall results for both the offline and
online scenarios. An ablation study also highlights
the components that contribute to performance im-
provement, and parameter analysis validates the
sensitivity of LSED to key parameters.

5.1 Experimental Setup
5.1.1 Datasets
Two datasets cover a wide range of social event
classes and two languages. Events2012 (McMinn
et al., 2013) is an English tweet dataset that con-
tains 68,841 tweets belonging to 503 event classes,
and Events2018 (Mazoyer et al., 2020) is a French
tweet dataset that includes 64,516 tweets belonging
to 257 event classes. The datasets are divided into
two parts for different scenarios: offline and on-
line. For the offline scenario, the first seven days of
tweets in both datasets are collected as offline data,
which is called the message block M0. For the on-
line scenario, all remaining data except M0 are di-
vided into {M1,M2, . . . ,Mn} daily. Here, n = 21
for Events2012 and n = 16 for Events2018. De-
tailed statistical information is shown in Tabels 6
and 7 in Appendix A.

5.1.2 Baselines and Metrics
To fairly evaluate the overall performance of LSED,
we compare LSED with ten supervised baseline
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Methods M0 in Events2012 M0 in Events2018
NMI AMI NMI AMI

TwitterLDA (2011) .26±.00 .17±.00 .22±.00 .16±.00
Word2Vec (2013) .47±.00 .21±.00 .24±.00 .20±.00

BERT (2018) .63±.01 .44±.00 .42±.00 .34±.00
PP-GCN (2019) .70±.02 .56±.01 .60±.01 .49±.02

EventX (2020) .68±.00 .29±.00 .57±.00 .56±.00
KPGNN (2021) .76±.02 .64±.02 .66±.03 .60±.02
QSGNN (2022) .79±.01 .68±.01 .71±.02 .64±.02
FinEvent (2022) .86±.01 .77±.01 .78±.01 .74±.01

GraphHAM (2024) .78±.01 .74±.00 .75±.00 .73±.00
RPLM (2024) .87±.01 .84±.00 .92±.00 .91±.01

LSEDLlama3.1 .96±.00 .95±.00 .93±.01 .93±.01
LSEDQwen2.5 .97±.01 .97±.01 .97±.00 .97±.00
LSEDGemma2 .97±.00 .96±.00 .82±.00 .80±.00

Improvement 10% ↑ 13% ↑ 5% ↑ 6% ↑

Table 1: Evaluation on the offline scenario (best results
in bold).

models ranging from traditional to state-of-the-art
SED models. The baselines include: TwitterLDA
(Zhao et al., 2011), Word2Vec (Mikolov et al.,
2013), BERT (Devlin et al., 2018), PP-GCN (Peng
et al., 2019), EventX (Liu et al., 2020), KPGNN
(Cao et al., 2021), QSGNN (Ren et al., 2022), Fin-
Event (Peng et al., 2022), GraphHAM (Qiu et al.,
2024), and RPLM (Li et al., 2024).

Normalized Mutual Information (NMI) (Estévez
et al., 2009) and Adjusted Mutual Information
(AMI) (Vinh et al., 2009) are applied as metrics to
evaluate the performance of the models, which are
widely used in previous studies (Cao et al., 2024,
2021). Details of the model implementation set-
tings are given in Appendix B.

5.2 Overall Results
This section experiments with LSED in two sce-
narios and the different LLMs. The different
LLMs in LSED are represented as LSEDLlama3.1,
LSEDQwen2.5, and LSEDGemma2, respectively.

Table 1 reports the experimental results of the
offline scenario. In general, LSED outperforms
all baseline models on both datasets. Compared
to the latest RPLM model, the NMI and AMI on
the Events2012 and Events2018 datasets are im-
proved by 10%, 13%, 5%, and 5%, respectively.
It is obvious that the traditional event detection
model, like TwitterLDA, performs poorly due to
the influence of short texts. SED models (PP-GCN,
KPGNN, QSGNN, FinEvent, and GraphHAM) that
use graph structures to supplement external infor-
mation perform better. However, their reliance on
explicit structural relations for representation learn-
ing hinders them from performing better. In con-
trast, RPLM achieves the best performance among

Methods Events2012 (AVG.) Events2018 (AVG.)
NMI AMI NMI AMI

TwitterLDA (2011) .27±.00 .19±.00 .19±.00 .16±.00
Word2Vec (2013) .36±.00 .26±.00 .34±.00 .31±.00

BERT (2018) .65±.01 .62±.00 .39±.00 .34±.00
PP-GCN (2019) .48±.01 .44±.01 .55±.01 .54±.01

EventX (2020) .60±.00 .17±.00 .45±.00 .16±.00
KPGNN (2021) .70±.01 .67±.01 .57±.00 .56±.00
QSGNN (2022) .71±.00 .69±.01 .59±.02 .58±.02
FinEvent (2022) .79±.01 .78±.01 .68±.01 .63±.01

GraphHAM (2024) .69±.01 .63±.00 .74±.00 .72±.00
RPLM (2024) .88±.01 .86±.00 .76±.00 .75±.01

LSEDLlama3.1 .98±.01 .98±.00 .97±.01 .96±.01
LSEDQwen2.5 .99±.00 .99±.00 .97±.00 .97±.00
LSEDGemma2 .98±.00 .98±.00 .97±.01 .97±.01

Improvement 11% ↑ 13% ↑ 21% ↑ 22% ↑

Table 2: Evaluation on the online scenario. This table
reports the average experimental results of the message
blocks (best results in bold).

the baselines as it eliminates the reliance on explicit
structures and effectively captures the relationship
between structure and semantics. However, since it
mitigates the impact of short texts from an external
perspective rather than directly addressing the in-
herent challenges, its performance remains inferior
to that of LSED.

In the online scenario, we apply the first week’s
data as the message block M0 to train the initial
framework. Then LSED maintains training or in-
ference according to the window size w. Table
2 reports the average performance of all message
blocks in the online scenario (the specific perfor-
mance of each message block can be found in Ta-
bles 9 and 10 in Appendix E). LSED outperforms
all baseline methods in the online scenario, con-
sistently leading in evaluation metrics across all
message blocks. The baseline models exhibit per-
formance similar to that in the offline scenario,
with RPLM remaining the best among them, fur-
ther supporting our analysis in the offline scenario.
However, LSED still performs better than RPLM
on both datasets. On the Events2012 dataset, the
average NMI and AMI increased by 11% and 12%,
respectively. On the Events2018 dataset, the av-
erage NMI and AMI increased by 21% and 22%,
respectively.

Furthermore, we evaluate the stability of LSED
in the online scenario (see Appendix E for details).
In general, text analysis-based SED models exhibit
stability but struggle to effectively capture the char-
acteristics of social messages. Graph-based SED
models achieve strong performance but suffer from
instability. In contrast, LSED harnesses the ca-
pabilities of LLMs for short-text processing and
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Datasets Events2012 Events2018

Message Block M0 NMI AMI NMI AMI

LSEDW2V w/o time .85±.01 .82±.01 .74±.03 .72±.03
LSEDSBERT w/o time .94±.00 .93±.00 .92±.01 .91±.01
LSEDW2V .87±.01 .83±.02 .76±.06 .74±.07
LSEDSBERT .96±.00 .95±.00 .94±.00 .94±.00

Table 3: Comparions between SBERT and Word2Vec
with or without time vector (best results in bold).

leverages hyperbolic space embeddings, ensuring
both efficiency and stability while eliminating re-
liance on graph structures, thereby demonstrating
its robustness in dynamic social message environ-
ments.

5.3 Ablation Studies

To evaluate the impact of different components in
LSED, we conduct a series of ablation experiments,
including comparing the choice of model during
text vectorization, the hierarchical structure of so-
cial messages, and the impact of hyperbolic space.
Since the performance between the three LLMs
in this work is close, in ablation studies, we only
report the experiments under Llama3.1.

5.3.1 Impact of Vectorization Methods
In this work, we adopt two widely used pre-trained
language models, SBERT (Reimers, 2019) and
Word2Vec (Mikolov et al., 2013), to vectorize so-
cial messages. The difference between SBERT
and Word2Vec is that SBERT can contain more
semantic information and hierarchical structures of
sentences. To verify this, we experiment with the
messages summarized by Llama3.1 in the message
block M0. We also study the effect of the time
vector.

As shown in Table 3, we use “W2V” represent
“Word2Vec” and “w/o time” to represent LSED train-
ing without time vector. LSED achieves an aver-
age performance improvement of 8% when using
vectors generated by SBERT compared to those
generated by Word2Vec. This demonstrates the
suitability of SBERT for LSED and indirectly in-
dicates that SBERT provides richer information
and further improves the capabilities of hyperbolic
space.

In addition, incorporating the time vector of each
social message further enhances LSED’s perfor-
mance. While the improvement is not as significant
as the transition from Word2Vec to SBERT, it still
increases NMI and AMI by approximately 2% on

Datasets Events2012 Events2018

Sentence Depth Ai
d = 3.92 → As

d = 5.17 Ai
d = 4.19 → As

d = 6.73

Message Block M0 NMI AMI NMI AMI

LSED w/o LLM & H .53±.02 .47±.02 .38±.03 .35±.03
LSED w/o LLM .87±.02 .84±.02 .78±.09 .75±.09
LSED w/o H .68±.01 .64±.01 .50±.01 .48±.01
LSEDH .72±.03 .67±.04 .62±.04 .59±.05
LSEDP .96±.00 .95±.00 .94±.00 .94±.00

Table 4: The impact of hyperbolic space and sentence
depth on performance (best results in bold). Here,
“Ai

d” means the average depth of initial messages in
the dataset; “As

d” means the average depth of the sum-
marised messages in the dataset; “w/o LLM & H” means
the LSED does not use LLMs and hyperbolic encoder;
“w/o LLM” means not use LLM; “w/o H” means not use
hyperbolic encoder; “LSEDH” means LSED embeds
vectors into hyperbolic space through the Hyperboloid
model; “LSEDP” means LSED embeds vectors into
hyperbolic space through the Poincaré Ball model.

both datasets.

5.3.2 Effect of Hierarchical Structure and
Hyperbolic Embedding

To quantify the hierarchical structure of a sentence,
we use a dependency tree to calculate the depth of a
sentence. The deeper the depth, the more complex
the sentence. We calculate the average sentence
depth of initial messages and summarised messages
in the Events2012 and Events2018 datasets, de-
fined as Ai

d and As
d. Table 4 shows that the av-

erage sentence depth of the datasets summarized
by Llama3.1 has increased, which helps LSED’s
NMI increase by 19% on the Events2012 dataset
and 12% on the Events2018 dataset. However, the
performance gains from capturing the hierarchi-
cal structure of sentences appear to surpass those
achieved through the use of LLMs. The hyper-
bolic embedding plays a more significant role, help-
ing LSED’s NMI to improve by 34% and 37% on
Events2012 and Events2018, respectively. There-
fore, we recommend prioritizing the hyperbolic
space as a low-dimensional embedding space when
computational resources are limited. While LLMs
can mitigate limitations in short texts, selecting an
appropriate embedding space is more crucial for
ensuring efficiency and effectiveness.

Notably, we evaluate two hyperbolic embedding
methods and find that while both effectively project
features into hyperbolic space, the Poincaré Ball
model better captures the hierarchical structure of
sentences. This highlights the importance of select-
ing an appropriate embedding model when lever-
aging hyperbolic space for feature representation.
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Figure 5: LSED’s hidden layers and hidden dimensions.
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Figure 6: The performance of LSED with different win-
dow sizes. ∞ means we only train LSED on message
block M0 and directly infer all subsequent message
blocks.

5.4 Parameter Sensitivity Analysis
We investigate the sensitivity of LSED concerning
parameters: the number of hidden layers, hidden di-
mensions, and window size w. Figure 5 shows that
the hidden layer has no significant effect on LSED,
but LSED performs best when the hidden layers
are 3. As for hidden dimensions, the framework
performs best when the hidden dimensions are 32
to 128. Therefore, our strategy is to set the number
of hidden layers to 3 and the hidden dimension size
to 64.

Figure 6 shows the performance of LSED with
different window sizes w on two datasets. We com-
pute the mean NMI of all message blocks, exclud-
ing M0. LSED performs best when w = 1, and the
average performance of LSED slowly decreases as
w increases. In particular, LSED performs better
on the Events2012 dataset and maintains a good
inference ability when w = ∞. In contrast, the
performance of LSED on the Events2018 dataset
decreases faster when w increases, which means
that when the dataset is more complex, LSED needs
a smaller window size to maintain its performance.

5.5 Time Efficiency
This section shows the inference time cost of us-
ing LLM in LSED, and also demonstrates that the
time cost of using LLM is better than that of SED

Datasets Events2012 Events2018

Models Inference Time Total Time Inference Time Total Time

KPGNN – > 24 h – > 24 h
FinEvent – > 24 h – > 24 h

LSEDLlama3.1 19 h 07 m 19 h 10 m 17 h 55 m 17 h 58 m
LSEDQwen2.5 12 h 25 m 12 h 28 m 11 h 39 m 11 h 42 m
LSEDGemma2 15 h 18 m 15 h 21 m 14 h 20 m 14 h 23 m

Table 5: Inference time of LLMs in LSED.

models based entirely on GNNs (such as KPGNN
and FinEvent) under the same experimental envi-
ronment (a V100 GPU).

Table 5 reports the inference time and the total
training time of LSED based on different LLMs
and compares with some GNN-based SED models
on the Events2012 and Events2018 datasets. The
LLM inference time in LSED constitutes the ma-
jority of the total time cost. Among them, LSED
based on Qwen2.5 requires the least time. In con-
trast, GNN-based models, KPGNN and FinEvent,
exceed 24 hours on both datasets. This shows that
LSED has a clear advantage over SED models re-
liant on GNNs, particularly in terms of efficiently
processing large datasets and adjusting parameters.

6 Conclusion

In this work, we propose LSED, a novel frame-
work for social event detection (SED) that takes
advantage of LLMs and hyperbolic embeddings
to enhance effectiveness, efficiency, and stabil-
ity. Unlike existing Graph Neural Network (GNN)-
based or graph structure-based approaches, LSED
focuses solely on textual information, rethinking
the core challenge of SED. By utilizing LLMs to
summarize and reformat social messages, LSED
effectively mitigates the impact of abbreviations
and informal expressions and improves clustering
performance. Moreover, not relying on graph struc-
tures can better improve the stability of the frame-
work in dynamic messages and make it more suit-
able for practical applications.

Additionally, this work demonstrates that hy-
perbolic space embeddings capture the implicit hi-
erarchical structures in natural language, further
enhancing event detection. Experimental results on
two real-world datasets show that LSED achieves
competitive and superior performance compared to
SOTA SED models. Our findings highlight the po-
tential of the LLM-driven method and hyperbolic
space embedding for efficient and scalable SED.
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Limitations

Our work focuses on accurately detecting social
events without relying on graph structures, with
LLMs serving only as an auxiliary component in
LSED. Consequently, we did not investigate the
relationship between prompt design and LLM hal-
lucinations, nor the impact of hallucination levels
on LSED performance. However, hallucinations
remain a critical challenge in LLM applications.
While we conducted a hallucination analysis on the
first 100 tweets from Events2012, this evaluation
does not provide a comprehensive understanding of
hallucination prevalence across the entire dataset.
In addition, our hallucination detection prompt is
specifically designed for English tweets, and we
currently lack a solution for Events2018, which
contains French tweets. Future research should
address these limitations to further enhance the ro-
bustness and generalizability of SED models.
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A Datasets

Two widely used real-world datasets are used
to verify LSED’s ability to cluster social events:
Events2012 (McMinn et al., 2013), and Events2018
(Mazoyer et al., 2020). These two datasets collect

Message Block M0 Events2012 Events2018

No. of Messages 20,254 14,328
No. of Event Types 155 79

Table 6: Offline data statistics.

a large number of tweets through the API provided
by Twitter. Events2012 is an English tweet dataset
that contains 68,841 tweets covering 503 social
events; Events2018 is a French tweet dataset that
contains 64,516 tweets covering 257 social events.
To verify the ability of LSED to detect incremental
social events, the datasets are divided into two parts
according to the time order: offline and online. For
the offline scenario, the first seven days of tweets
in both datasets are collected as offline data, which
is called the message block M0. For the online
scenario, all remaining data except M0 are divided
into {M1,M2, . . . ,Mn} daily. Here, n = 21 for
Events2012 and n = 16 for Events2018. Tables 6
and 7 present the statistics for the offline and online
scenarios in both datasets.

B Implementation Settings

In LSED, we implement SBERT using “all-
MiniLM-L6-v2” from SBERT.net3, and imple-
ment Word2Vec using “en-core-web-sm” from
spaCy4 to vectorize text messages. We employ
the Adam optimizer for training for model configu-
ration, with a learning rate of 0.01 and a window
size of 1. Since the hyperbolic encoder of LSED is
based on MLP, we set the number of hidden layers
to 3 and the hidden dimensions to 64. The datasets
are divided into train, validation, and test sets using
a split ratio of 70%− 10%− 20%. All the exper-
iments are conducted on 1 NVIDIA V100 GPU
with 32G RAM. We run five tests to test generaliz-
ability and report the average result and standard
deviation.

C Hallucination Analysis

In LSED, an LLM serves as an auxiliary compo-
nent. We do not directly use LLM-generated out-
puts for prediction, nor do we rely on their results.
Instead, LLM is employed to summarize short texts,
helping to mitigate the impact of abbreviations
and informal expressions without introducing new
content. To further verify the LLMs’ generated

3https://www.sbert.net/index.html
4https://spacy.io/models/en
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Blocks M1 M2 M3 M4 M5 M6 M7

Datasets 2012 2018 2012 2018 2012 2018 2012 2018 2012 2018 2012 2018 2012 2018

No. of Messages 8,722 5,356 1,491 3,186 1,835 2,644 2,010 3,179 1,834 2,662 1,276 4,200 5,278 3,454
No. of Event Types 41 22 30 19 33 15 38 19 30 27 44 26 57 23

Blocks M8 M9 M10 M11 M12 M13 M14

Datasets 2012 2018 2012 2018 2012 2018 2012 2018 2012 2018 2012 2018 2012 2018

No. of Messages 1,560 2,257 1,363 3,669 1,096 2,385 1,232 2,802 3,237 2,927 1,972 4,884 2,956 3,065
No. of Event Types 53 25 38 31 33 32 30 31 42 29 40 28 43 26

Blocks M15 M16 M17 M18 M19 M20 M21

Datasets 2012 2018 2012 2018 2012 2018 2012 2018 2012 2018 2012 2018 2012 2018

No. of Messages 2,549 2,411 910 1,107 2,676 − 1,887 − 1,399 − 893 − 2,410 −
No. of Event Types 42 25 27 26 35 − 32 − 28 − 34 − 32 −

Due to length limitations, in this table, we represent the datasets “Events2012” and “Events2018” as “2012” and “2018”, respectively.

Table 7: Online data statistics.

data, we selected 100 samples from the Events2012
dataset to analyze hallucination. The results indi-
cate that 96% of the summaries did not contain
hallucinated information, suggesting that the con-
tent generated by LLM remains largely faithful to
the original input. Figure 7 shows the prompt for
the analysis of hallucinations in this work.

Prompt

You are a helpful and impartial assistant. You will 
receive an original text and a version rewritten by 
AI. Your task is to evaluate whether the AI-
generated text contains any factual inaccuracies 
or irrelevant information based on the original text.

Please note that if the AI-generated text 
introduces new, factually correct information or 
elaborates on the original text in a reasonable way, 
it should not be considered a hallucination.

Please use the following scale to rate your 
evaluation:

Rating: [[2]]: The AI-generated text is mostly 
consistent with the original text, and any new 
information provided is factually correct and 
relevant.
Rating: [[1]]: The AI-generated text contains 
factual inaccuracies, irrelevant additions, or 
misinterpretations of the original text.

Provide your rating strictly in this format: "Rating: 
[[rating]]", where the rating inside the double 
brackets must be either 1 or 2.

Figure 7: The prompt to verify whether the summary
text is hallucinated.

D Effect of Prompts on LSED
Performance

We report the effect of different prompts on the
LSED performance. Table 8 shows the impact of
using the “summarize” and “paraphrase” prompts
on LSED’s NMI on Llama3.1. The experiments are
conducted on the Events2012 dataset. We report
the results of all the message blocks in the online
scenario and the average results as shown in Table
8.

In general, these two prompts have little effect
on LSED. LSED using “summarize” and LSED
using “paraphrase” perform similarly in different
message blocks, but the average results show that
LSED using “summarize” performs better. There-
fore, we still recommend using “summarize” as the
keyword in the LSED prompt.

E Online Experimental Results and
Stability Analysis

Tables 9 and 10 report the performance of the base-
line models and the LSED for each message block
on the Events2012 and Events2018 datasets in an
online scenario. The GNN-based SED models (PP-
GCN, KPGNN, QSGNN, FinEvent, and Graph-
HAM) exhibit performance degradation in certain
message blocks of Events2012 (e.g., M7, M12,
M15) and Events2018 (e.g., M3, M5, M6). While
RPLM mitigates the dependence on explicit graph
structures, its performance remains volatile across
different message blocks. In contrast, LSED main-
tains stable performance across all message blocks,
demonstrating its robustness to structural changes
in message blocks.
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Blocks (#events) M1 (41) M2 (30) M3 (33) M4 (38) M5 (30) M6 (44) M7 (57) M8 (53) M9 (38) M10 (33) M11 (30)

LSEDSummarize
LLama3.1 .97±.00 .98±.02 .99±.01 .96±.01 .97±.00 .99±.00 .98±.00 .98±.01 .99±.01 1.0±.00 .99±.00

LSEDParaphrase
LLama3.1 .96±.01 .97±.01 .99±.01 .97±.02 .99±.01 .99±.01 .98±.00 .99±.00 .99±.00 .99±.01 .99±.01

Blocks (#events) M12 (42) M13 (40) M14 (43) M15 (42) M16 (27) M17 (35) M18 (32) M19 (28) M20 (34) M21 (32) AVG.

LSEDSummarize
LLama3.1 .97±.00 .99±.00 .97±.00 .98±.01 .99±.01 .98±.02 .98±.01 .99±.01 .97±.01 .96±.02 .9819

LSEDParaphrase
LLama3.1 .97±.01 .98±.01 .98±.00 .98±.01 1.0±.00 .98±.01 .97±.00 .99±.01 .97±.01 .98±.01 .9809

Table 8: Effects of different prompts on LSED’s NMI performance on Events2012 (best results in bold).

Blocks (#events) M1 (41) M2 (30) M3 (33) M4 (38) M5 (30) M6 (44) M7 (57)
Metrics NMI AMI NMI AMI NMI AMI NMI AMI NMI AMI NMI AMI NMI AMI

TwitterLDA (2011) .11±.00 .08±.00 .27±.01 .20±.01 .28±.00 .22±.01 .25±.00 .17±.00 .26±.00 .21±.00 .32±.00 .20±.00 .18±.01 .12±.01
Word2Vec (2013) .19±.00 .08±.00 .50±.00 .41±.00 .39±.00 .31±.00 .34±.00 .24±.00 .41±.00 .33±.00 .53±.00 .40±.00 .25±.00 .13±.00

BERT (2018) .36±.00 .34±.00 .78±.00 .76±.00 .75±.00 .73±.00 .60±.00 .55±.00 .72±.00 71±.00 .78±.00 .74±.00 .54±.00 .50±.00
PP-GCN (2019) .23±.00 .21±.00 .57±.02 .55±.02 .55±.01 .52±.01 .46±.01 .42±.01 .48±.01 .46±.01 .57±.01 .52±.02 .37±.00 .34±.00

EventX (2020) .36±.00 .06±.00 .68±.00 .29±.00 .63±.00 .18±.00 .63±.00 .19±.00 .59±.00 .14±.00 .70±.00 .27±.00 .51±.00 .13±.00
KPGNN (2021) .39±.00 .37±.00 .79±.01 .78±.01 .76±.00 .74±.00 .67±.00 .64±.01 .73±.01 .71±.01 .82±.01 .79±.01 .55±.01 .51±.01
QSGNN (2022) .43±.01 .41±.02 .81±.02 .80±.01 .78±.01 .76±.01 .71±.02 .68±.01 .75±.00 .73±.00 .83±.01 .80±.01 .57±.01 .54±.00
FinEvent (2022) .84±.01 .84±.01 .84±.01 .84±.01 .89±.00 .89±.01 .71±.01 .69±.00 .83±.00 .82±.00 .83±.00 .82±.02 .73±.01 .72±.00

GraphHAM (2024) .71±.00 .68±.00 .75±.01 .71±.01 .76±.00 .70±.00 .67±.00 .61±.00 .69±.00 .60±.00 .80±.01 .74±.01 .66±.00 .60±.00
RPLM (2024) .91±.02 .91±.01 .91±.01 .91±.00 .93±.00 .93±.00 .83±.01 .81±.01 .85±.02 .84±.02 .92±.00 .91±.00 .88±.01 .88±.01

LSEDLlama3.1 .97±.00 .97±.00 .98±.02 .98±.02 .99±.01 .99±.01 .96±.01 .95±.01 .97±.00 .97±.01 .99±.00 .98±.00 .98±.00 .99±.00
LSEDQwen2.5 .97±.00 .97±.00 .99±.01 .99±.01 .98±.01 .98±.01 .98±.01 .97±.02 .99±.00 .99±.00 .99±.01 .99±.01 .99±.00 .99±.00
LSEDGemma2 .97±.01 .97±.01 .98±.00 .97±.00 .98±.00 .98±.00 .98±.01 .97±.01 1.0±.00 .99±.00 .99±.01 .98±.01 .98±.01 .98±.01

Improvement 8% ↑ 8% ↑ 8% ↑ 8% ↑ 6% ↑ 6% ↑ 15% ↑ 16% ↑ 15% ↑ 15% ↑ 7% ↑ 8% ↑ 11% ↑ 11% ↑
Blocks (#events) M8 (53) M9 (38) M10 (33) M11 (30) M12 (42) M13 (40) M14 (43)

Metrics NMI AMI NMI AMI NMI AMI NMI AMI NMI AMI NMI AMI NMI AMI
TwitterLDA (2011) .37±.01 .24±.01 .34±.00 .24±.00 .44±.01 .36±.01 .33±.01 .25±.01 .22±.01 .16±.01 .27±.00 .19±.00 .21±.00 .15±.01

Word2Vec (2013) .46±.00 .33±.00 .35±.00 .24±.00 .51±.00 .39±.00 .37±.00 .26±.00 .30±.00 .23±.00 .37±.00 .23±.00 .36±.00 .26±.00
BERT (2018) .79±.00 .75±.00 .70±.00 .66±.00 .74±.00 .70±.00 .68±.00 .65±.00 .59±.00 .56±.00 .63±.00 .59±.00 .64±.00 .61±.00

PP-GCN (2019) .55±.02 .49±.02 .51±.02 .46±.02 .55±.02 .51±.02 .50±.01 .46±.02 .45±.01 .42±.01 .47±.01 .43±.01 .44±.01 .41±.01
EventX (2020) .71±.00 .21±.00 .67±.00 .19±.00 .68±.00 .24±.00 .65±.00 .24±.00 .61±.00 .16±.00 .58±.00 .16±.00 .57±.00 .14±.00

KPGNN (2021) .80±.00 .76±.01 .74±.02 .71±.02 .80±.01 .78±.01 .74±.01 .71±.01 .68±.01 .66±.01 .69±.01 .67±.01 .69±.00 .65±.00
QSGNN (2022) .79±.01 .75±.01 .77±.02 .75±.02 .82±.02 .80±.03 .75±.01 .72±.01 .70±.00 .68±.00 .68±.02 .66±.01 .68±.01 .66±.01
FinEvent (2022) .87±.02 .87±.01 .79±.01 .78±.01 .82±.01 .81±.00 .75±.00 .74±.00 .67±.01 .67±.02 .79±.00 .79±.00 .82±.00 .82±.01

GraphHAM (2024) .71±.01 .60±.00 .80±.01 .74±.01 .80±.00 .73±.00 .68±.00 .60±.00 .62±.01 .56±.00 .79±.01 .74±.00 .68±.01 .65±.00
RPLM (2024) .88±.00 .86±.00 .92±.01 .91±.00 .91±.01 .90±.01 .88±.01 .87±.01 .92±.00 .77±.00 .91±.01 .91±.00 .88±.00 .88±.01

LSEDLlama3.1 .98±.01 .96±.01 .99±.01 .99±.01 1.0±.00 1.0±.00 .99±.00 .98±.01 .97±.00 .97±.00 .99±.00 .99±.00 .97±.00 .97±.00
LSEDQwen2.5 .99±.00 .98±.00 1.0±.00 .99±.00 1.0±.00 1.0±.00 .98±.01 .98±.01 .98±.01 .98±.01 .99±.01 .98±.01 .98±.00 .98±.00
LSEDGemma2 .99±.01 .98±.01 .99±.00 .98±.00 .99±.01 .99±.01 .99±.00 .99±.01 .99±.01 .99±.01 .98±.00 .98±.00 .97±.02 .97±.03

Improvement 11% ↑ 12% ↑ 8% ↑ 8% ↑ 9% ↑ 10% ↑ 11% ↑ 12% ↑ 7% ↑ 22% ↑ 8% ↑ 8% ↑ 10% ↑ 10% ↑
Blocks (#events) M15 (42) M16 (27) M17 (35) M18 (32) M19 (28) M20 (34) M21 (32)

Metrics NMI AMI NMI AMI NMI AMI NMI AMI NMI AMI NMI AMI NMI AMI
TwitterLDA (2011) .21±.00 .13±.00 .35±.01 .27±.01 .19±.00 .13±.00 .18±.00 .12±.00 .29±.01 .22±.00 .35±.00 .23±.00 .19±.00 .13±.00

Word2Vec (2013) .27±.00 .15±.00 .49±.00 .36±.00 .33±.00 .24±.00 .29±.00 .21±.00 .37±.00 .28±.00 .38±.00 .24±.00 .31±.00 .21±.00
BERT (2018) .54±.00 .50±.00 .75±.00 .72±.00 .63±.00 .60±.00 .57±.00 .53±.00 .66±.00 .63±.00 .68±.00 .62±.00 .59±.00 .57±.00

PP-GCN (2019) .39±.01 .35±.01 .55±.01 .52±.01 .48±.00 .45±.00 .47±.01 .45±.01 .51±.02 .48±.02 .51±.01 .45±.02 .41±.02 .38±.02
EventX (2020) .49±.00 .07±.00 .62±.00 .19±.00 .58±.00 .18±.00 .59±.00 .16±.00 .60±.00 .16±.00 .67±.00 .18±.00 .53±.00 .10±.00

KPGNN (2021) .58±.00 .54±.00 .79±.01 .77±.01 .70±.01 .68±.01 .68±.02 .66±.02 .73±.01 .71±.01 .72±.02 .68±.02 .60±.00 .57±.00
QSGNN (2022) .59±.01 .55±.01 .78±.01 .76±.02 .71±.01 .69±.01 .70±.01 .68±.01 .73±.00 .70±.01 .73±.02 .69±.02 .61±.01 .58±.00
FinEvent (2022) .69±.01 .67±.01 .90±.01 .90±.00 .83±.00 .82±.00 .74±.01 .74±.00 .66±.01 .66±.00 .80±.00 .78±.00 .74±.01 .64±.01

GraphHAM (2024) .53±.00 .43±.00 .95±.01 .93±.00 .36±.00 .33±.00 .54±.00 .52±.00 .70±.00 .64±.00 .77±.01 .67±.00 .61±.00 .54±.00
RPLM (2024) .83±.01 .82±.01 .93±.01 .93±.01 .86±.01 .86±.01 .83±.00 .82±.01 .91±.00 .90±.01 .82±.01 .80±.01 .74±.02 .71±.01
LSEDllama3.1 .98±.01 .98±.01 .99±.01 .99±.01 .98±.02 .97±.03 .98±.01 .97±.01 .99±.01 .98±.01 .97±.01 .96±.01 .96±.02 .96±.02
LSEDQwen2.5 .98±.00 .98±.00 1.0±.00 1.0±.01 .98±.00 .98±.00 .99±.00 .99±.01 1.0±.00 1.0±.00 .98±.01 .97±.02 .99±.00 .99±.00
LSEDGemma2 .99±.00 .98±.00 1.0±.01 .99±.01 .98±.01 .98±.01 .96±.00 .95±.00 .99±.00 .99±.00 .98±.01 .97±.01 .98±.01 .98±.01

Improvement 16% ↑ 16% ↑ 7% ↑ 7% ↑ 12% ↑ 12% ↑ 16% ↑ 17% ↑ 9% ↑ 10% ↑ 16% ↑ 17% ↑ 25% ↑ 28% ↑

Table 9: Online scenario evaluation for Events2012 (best results in bold).
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Blocks (#events) M1 (22) M2 (19) M3 (15) M4 (19) M5 (27) M6 (26) M7 (23) M8 (25)
Metrics NMI AMI NMI AMI NMI AMI NMI AMI NMI AMI NMI AMI NMI AMI NMI AMI

TwitterLDA (2011).20±.00.19±.00.09±.00.06±.00.13±.00.11±.00.10±.00.08±.00.24±.00.20±.00.22±.00.19±.00.12±.00.10±.00.24±.00.20±.00
Word2Vec (2013).22±.00.21±.00.22±.00.21±.00.25±.00.23±.00.28±.00.27±.00.48±.00.46±.00.33±.00.31±.00.35±.00.33±.00.37±.00.34±.00

BERT (2018).32±.00.28±.00.32±.00.31±.00.31±.00.32±.00.33±.00.30±.00.47±.00.44±.00.36±.00.33±.00.41±.00.36±.00.44±.00.38±.00
PP-GCN (2019).49±.01.48±.00.45±.00.44±.02.56±.03.55±.03.54±.03.54±.04.54±.02.53±.02.52±.02.50±.03.56±.04.55±.04.56±.03.55±.02

EventX (2020).34±.00.11±.00.37±.00.12±.00.37±.00.11±.00.39±.00.14±.00.53±.00.24±.00.44±.00.15±.00.41±.00.12±.00.54±.00.21±.00
KPGNN (2021).54±.01.54±.01.56±.02.55±.01.52±.03.55±.02.55±.01.55±.01.58±.02 57±.01 .59±.03.57±.02.63±.02.61±.02.58±.02.57±.02
QSGNN (2022).57±.01.56±.01.58±.01.57±.01.57±.01.56±.02.58±.03.57±.03.61±.02.59±.01.60±.01.59±.01.64±.01.63±.01.57±.02.55±.02
FinEvent (2022).70±.01.70±.00.74±.01.74±.00.64±.00.64±.00.72±.01.67±.00.64±.00.64±.00.67±.00.57±.00.78±.01.67±.00.66±.02.62±.00

GraphHAM (2024).77±.01.76±.00.75±.00.75±.00.73±.00.72±.00.74±.01.72±.01.79±.02.77±.00.76±.00.73±.00.72±.00.71±.00.75±.00.71±.00
RPLM (2024).89±.01.89±.01.84±.01.84±.00.76±.01.77±.01.75±.00.75±.02.67±.01.67±.01.73±.02.72±.01.88±.00.87±.01.77±.01.76±.02

LSEDLlama3.1 .96±.02.96±.02.98±.00.98±.00.95±.01.94±.01.95±.00.94±.00.97±.02.97±.02.97±.00.97±.00.94±.00.93±.00.97±.01.97±.01
LSEDQwen2.5 .97±.01.97±.01.96±.02.96±.02.99±.01.99±.01.94±.00.94±.00.98±.00.98±.00.99±.01.99±.01.97±.02.96±.02.98±.02.98±.02
LSEDGemma2 .95±.00.95±.00.94±.00.93±.00.96±.00.96±.00.97±.01.97±.01.97±.01.97±.01.98±.00.98±.00.95±.00.95±.00.99±.01.99±.01

Improvement 8% ↑ 8% ↑ 14% ↑ 14% ↑ 23% ↑ 22% ↑ 22% ↑ 22% ↑ 19% ↑ 21% ↑ 23% ↑ 26% ↑ 9% ↑ 9% ↑ 22% ↑ 23% ↑
Blocks (#events) M9 (31) M10 (32) M11 (31) M12 (29) M13 (28) M14 (26) M15 (25) M16 (14)

Metrics NMI AMI NMI AMI NMI AMI NMI AMI NMI AMI NMI AMI NMI AMI NMI AMI
TwitterLDA (2011).16±.00.12±.00.17±.00.11±.00.22±.00.18±.00.28±.00.25±.00.19±.00.17±.00.24±.00.21±.00.33±.00.30±.00.07±.00.02±.00

Word2Vec (2013).33±.00.30±.00.46±.00.42±.00.41±.00.38±.00.40±.00.37±.00.22±.00.20±.00.36±.00.34±.00.41±.00.38±.00.28±.00.25±.00
BERT (2018).38±.00.28±.00.42±.00.35±.00.45±.00.34±.00.48±.00.44±.00.31±.00.26±.00.43±.00.40±.00.39±.00.39±.00.34±.00.27±.00

PP-GCN (2019).54±.02.48±.03.56±.06.55±.04.59±.03.57±.02.60±.02.58±.02.61±.01.59±.02.60±.02.59±.01.57±.03.55±.03.53±.02.52±.02
EventX (2020).45±.00.16±.00.52±.00.19±.00.48±.00.18±.00.51±.00.20±.00.44±.00.15±.00.52±.00.22±.00.49±.00.22±.00.39±.00.10±.00

KPGNN (2021).48±.02.46±.02.57±.01.56±.02.54±.01.53±.01.55±.04.56±.02.60±.02.60±.02.66±.01.65±.00.60±.01.58±.02.52±.02.50±.01
QSGNN (2022).52±.02.46±.02.60±.01.58±.01.60±.01.59±.02.61±.02.59±.02.59±.04.58±.03.68±.02.67±.02.63±.02.61±.00.51±.03.50±.03
FinEvent (2022).57±.01.52±.00.65±.01.60±.00.63±.00.54±.00.70±.01.59±.00.67±.00.64±.00.65±.00.65±.00.70±.01.65±.00.75±.01.68±.00

GraphHAM (2024).71±.00.68±.00.54±.00.49±.00.76±.01.74±.01.80±.00.78±.00.59±.00.57±.00.75±.00.72±.00.85±.01.84±.01.81±.00.78±.00
RPLM (2024).58±.02.57±.02.77±.01.75±.01.68±.01.68±.01.77±.01.77±.01.68±.00.67±.00.70±.00.70±.01.73±.01.71±.01.95±.02.94±.02

LSEDLlama3.1 .95±.00.95±.00.97±.01.97±.02.98±.00.98±.00.98±.00.97±.00.94±.01.94±.01.95±.00.94±.00.98±.01.98±.011.0±.001.0±.00
LSEDQwen2.5 .96±.01.96±.01.98±.00.98±.00.98±.01.98±.01.99±.00.99±.00.96±.01.96±.01.98±.00.98±.00.99±.00.99±.00.96±.00.96±.00
LSEDGemma2 .95±.02.95±.02.97±.01.96±.01.99±.01.99±.01.99±.01.99±.01.93±.01.93±.01.96±.01.95±.01.99±.00.99±.001.0±.001.0±.00

Improvement 25% ↑ 28% ↑ 21% ↑ 23% ↑ 23% ↑ 25% ↑ 19% ↑ 21% ↑ 28% ↑ 29% ↑ 23% ↑ 26% ↑ 14% ↑ 15% ↑ 5% ↑ 6% ↑

Table 10: Online scenario evaluation for Events2018 (best results in bold).

Algorithm 1: LSED
Input: Social message blocks S = {M0, ...,Mi}; Large Language Model: LLM(·); Pre-trained

language model: PLM(·); Time encoder TIME(·); Hyperbolic encoder H(·); Cluster
C(·); Softmax: S(·); Window size: w; Ground-truth label set L = {l0, l1, ..., ln}.

Output: Predicted social event label set L′ = {l′0, l′1, ..., l′m}.
1 for mj ∈Mi do
2 A summary of social message ms

j ← LLM(mj)

3 Vector of summarised message vms
j
← PLM(ms

j)

4 Vector of timestamp vtj ← TIME(tj), where tj is the timestamp of the social message block
mj .

5 Final vector vj = ADD(vms
j
, vtj).

6 if i%w! = 0 then
7 Social message representations ej ← H(vj);
8 L′ ← Predict label l′j ← C(ej);
9 else

10 for e ∈ Epoch do
11 Social message representations ej ← H(vj);
12 L′ ← Predict label l′j = S(logco(ej));
13 Cross-entropy loss LLSED = −∑n

i=0 lilogl
′
i;

14 Update parameters
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