Revisiting the Test-Time Scaling of o1-like Models: Do they Truly Possess
Test-Time Scaling Capabilities?

Zhiyuan Zeng!, Qingyuan Chen’,

Zhangyue Yin',

*

Yunhua Zhou® Xipeng Qiu'?

'Fudan University, 2Shanghai Innovation Institute, *Shanghai Al Laboratory
cengzy23 @m.fudan.edu.cn; xpqiu@fudan.edu.cn

Abstract

The advent of test-time scaling in large lan-
guage models (LLMs), exemplified by Ope-
nATI’s ol series, has advanced reasoning capa-
bilities by scaling computational resource al-
location during inference. While successors
like QwQ, Deepseek-R1 (R1) and LIMO repli-
cate these advancements, whether these models
truly possess test-time scaling capabilities re-
mains underexplored. This study found that
longer CoTs of these ol-like models do not
consistently enhance accuracy; in fact, correct
solutions are often shorter than incorrect ones
for the same questions. Further investigation
shows this phenomenon is closely related to
models’ self-revision capabilities - longer CoTs
contain more self-revisions, which often lead
to performance degradation. We then com-
pare sequential and parallel scaling strategies
on QwQ, R1 and LIMO, finding that parallel
scaling achieves better coverage and scalability.
Based on these insights, we propose Shortest
Majority Vote, a method that combines parallel
scaling strategies with CoT length characteris-
tics, significantly improving models’ test-time
scalability compared to conventional majority
voting approaches.

1 Introduction

The release of the OpenAl ol series models (Ope-
nAl, 2024a,b) marked a pivotal advancement in
the reasoning capabilities of Large Language Mod-
els (LLMs), introducing a novel scaling paradigm,
test-time scaling, which allocates more compute
resources during test time. The test-time scaling
have two dimensions, sequential and parallel (Zeng
et al., 2024). Sequential scaling increase test-time
compute by scaling the length of Chain-of-Thought
(CoT) (Wei et al., 2022), while parallel scaling par-
allely samples multiple solutions and pick the best
one.

* Corresponding author

B Correct B Incorrect

MATH AIME
7500
P 15000
25000 10000
Q
= 2500 5000
0 0
& TS & F T TS
POV & & & &
7 o-a ¥ o-,a
K ; ;
A & QP
PQA min-MATH
GPQ 15000 Omi
7500
5 10000
©5000
Q
= 5500 5000
0y 2 » =& o 0y » » =& o
$.&'A" & & @9 v““ s > & & @P v““
& & & S & & & F
¥ o@ 0‘" Q\‘J o\" o\a
ST D A ST D A
@ o

Figure 1: The average length of correct solutions versus
incorrect solutions evaluated on the same questions.For
each question, solution lengths were averaged separately
for correct and incorrect responses, then averaged across
all questions.

Following o1’s success, models such as QwQ
(Team, 2024b), Deepseek-R1 (R1) (DeepSeek-Al
et al., 2025) and LIMO (Ye et al., 2025) have
emerged as leading open-source successors, repli-
cating o1’s achievements and demonstrating com-
parable reasoning abilities. Although both QwQ,
R1 and LIMO demonstrate strong reasoning ca-
pabilities and the ability to generate lengthy CoT
at test time, the existence of true test-time scal-
ing where performance consistently improves
with longer CoT's remains to be verified for these
models.

To explore this question, we systematically inves-
tigate the relationship between CoT length and rea-
soning performance in QwQ, R1 and LIMO, chal-
lenging the conventional assumption that extended
reasoning chains inherently lead to improved ac-
curacy. Contrary to expectations, our analysis re-
veals that longer CoTs do not consistently improve
accuracy of these ol-like models. Notably, we

4651

Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 4651-4665

July 27 - August 1, 2025 ©2025 Association for Computational Linguistics

found that the average length of correct solutions is
shorter than that of incorrect ones for the same ques-
tions, which is shown in Figure 1. This counterin-
tuitive finding underscores the need for a deeper
understanding of the test-time scaling of ol-like
models.

To understand why the longer CoTs do not lead
to the better performance, we compared the differ-
ence between long CoTs and short CoTs, finding
that long CoT's contain more self-revisions (“Wait”,
“Alternatively”) than the short CoTs, which is
shown in Appendix F. Inspired by that, we itera-
tively prompted QwQ, R1 and LIMO for more self-
revisions. Our observations revealed that QwQ and
R1-Distill-1.5b exhibited performance degradation
as the length of reflection increased. In contrast,
R1-Distill-14b, R1-Distill-32b, and LIMO demon-
strated initial performance improvements during
early revisions, followed by oscillatory behavior
in subsequent iterations. To further understand
the limitations of sequential scaling, we evaluated
the models’ capacity to revise incorrect answers.
Our findings indicate that QwQ, R1 and LIMO all
demonstrated limited ability to convert incorrect
answers to correct ones during the revision pro-
cess. Most revisions retained the original answers,
and more concerning, both QwQ and R1-Distill-
1.5b showed a higher propensity to change correct
answers to incorrect ones rather than vice versa.
These results reveal that self-revision ability is
a key factor in the effectiveness of sequential
scaling for o1-like models.

Given the limited effectiveness of sequential scal-
ing, we explored an alternative test-time scaling
strategie, parallel scaling. Our comparative analy-
sis of sequential and parallel scaling revealed that
parallel scaling not only achieves the better cover-
age (pass@k score) but also offers superior scala-
bility compared to sequential scaling for QwQ and
R1, which demonstrates that ol-like models have
limited sequential-scaling capability, but strong
parallel-scaling capability.

Building on these findings, we propose a novel
test-time scaling method, Shortest Majority Vote,
which incorporate parallel scaling approaches with
our insight on sequential scaling. In particular, this
method leverages the observation that shorter solu-
tions tend to lead to better performance compared
to longer ones. Shortest Majority Vote improves
majority vote by prioritizing clusters that have both
more solutions and shorter solution lengths. Exper-
imental results demonstrate that Shortest Majority

Vote substantially outperforms conventional Ma-
jority Vote, significantly improving the test-time
scalability of both QwQ and R1 models.

Our contributions are as follows:

1) We systematically investigate the test-time
scaling capabilities of ol-like models QwQ,
R1 and LIMO, and find that their performance
can not be continuously improved through in-
creasing CoT length.

2) We reveal that insufficient self-revision capa-
bility of ol-like models is the primary reason
for their failure in sequential scaling.

3) We find that parallel scaling achieves better
coverage and scalability than sequential revi-
sion for ol-like models.

4) Based on our insights into sequential and
parallel scaling, we propose Shortest Major-
ity Vote, a test-time scaling method that en-
hances majority voting by considering solu-
tion length, significantly outperforming tradi-
tional methods.

2 Related Work

The success of ol has ushered in a new scaling
paradigm, test-time compute scaling, which en-
ables continuous improvements in model perfor-
mance by increasing computational expenditure
during inference (OpenAl, 2024a,b). Currently,
scaling test-time compute can be approached in
two dimensions: parallel scaling and sequential
scaling (Snell et al., 2024; Zeng et al., 2024).

Parallel Scaling Parallel scaling typicallly sam-
ples multiple solutions in parallel and pick one
according to some guidence signal like reward. No-
table examples of parallel scaling include Best-of-
N Search (Cobbe et al., 2021; Sun et al., 2024;
Gui et al., 2024; Amini et al., 2024; Sessa et al.,
2024), which is based on a reward model (Cobbe
et al., 2021; Lightman et al., 2024), and Majority
Vote (Wang et al., 2023), which exploits model un-
certainty. The primary distinction between these
approaches lies in the method used to select the
final solution or answer after sampling multiple
candidates. Both Best-of-N Search and Majority
Vote are parallel scaling techniques at the solution
level, while Tree-Search algorithms can be viewed
as parallel scaling at the token or step level. Beam-
Search (Qiu et al., 2024; Yu et al., 2024; Xie et al.,
2023; Kool et al., 2019) and MCTS (Hao et al.,
2023; Wan et al., 2024; Chen et al., 2024a; Zhang

4652

et al., 2023) are classic examples of Tree-Search
algorithms. All parallel scaling methods rely on
guidance signals to select the optimal token, step,
or solution from a set of candidates.

Sequential Scaling Sequential scaling enhances
test-time computation by generating progressively
longer solutions along the sequence dimension.
The most prevalent method of sequential scaling
is Self-Revision, where Madaan et al. (2023) first
generate an initial response and then iteratively
evaluate and refine it based on self-assessment. In
contrast, Chen et al. (2024b); Gou et al. (2024)
leverage external feedback—such as signals from
a code execution environment—rather than self-
evaluation to enhance solutions.

The effectiveness of sequential scaling with self-
revision remains a contentious issue. Huang et al.
(2024a); Kamoi et al. (2024) argue that models
cannot achieve effective self-refinement without
external feedback. Conversely, some researchers
posit that evaluating a solution’s correctness is in-
herently easier than generating a correct solution
(Leike, 2022), suggesting that LLLMs have the ca-
pacity for self-evaluation. Kumar et al. (2024);
Zhang et al. (2024) show that it is possible to teach
LLM to self-refine through reinforcement learn-
ing or supervised fine-tuning. Chen et al. (2024c)
compared various test-time scaling algorithms and
found that when feedback accuracy exceeds 90%,
Self-Revision outperforms Best-of-N Search.

ol-like Models The release of ol (OpenAl,
2024a,b) has further underscored the significance
of sequential scaling, as 01’s CoT length is substan-
tially greater than that of conventional models. The
research community has made significant efforts to
reproduce the capabilities of ol (Qin et al., 2024;
Huang et al., 2024b; Jiang et al., 2024; Min et al.,
2024; Muennighoff et al., 2025), with QwQ (Team,
2024b) and R1 (DeepSeek-Al et al., 2025) and
LIMO (Ye et al., 2025) emerging as the most suc-
cessful attempts. However, Our findings reveal that
for R1 and QwQ, extending solution length does
not necessarily yield better performance due to the
models’ limited self-revision capabilities. Parallel
findings by Wang et al. (2025) attribute this phe-
nomenon to model underthinking, where models
initially reach correct intermediate solutions but
subsequently deviate toward incorrect conclusions
during extended reasoning.

3 Experiment Setting

Models Our experiments involved models from
the QwQ (Team, 2024b), LIMO(Ye et al., 2025)
and Deepseek-R1 series (DeepSeek-Al et al.,
2025), including Deepseek-R1, Deepseek-R1-
Distill-Qwen-32b, Deepseek-R1-Distill-Qwen-14b,
and Deepseek-R1-Distill-Qwen-1.5b. For simpl-
icy, we call these R1 models as R1-671b, R1-
Distill-32b, R1-Distill-14b and R1-Distill-1.5b re-
spectively. The models were run using SGLang
framework (Zheng et al., 2024), with the sampling
temperature set to 0.7 and the maximum generation
length set to 32k. We show the system prompt and
instructions used for evaluation in Appendix E.

Benchmark We conducted comprehensive evalu-
ations across four benchmarks: MATH-500 (Light-
man et al., 2024), AIME (AIMO, 2018), Omini-
MATH (Gao et al., 2024), and GPQA (Rein et al.,
2023). While MATH-500, AIME, and Omini-
MATH focus on mathematical reasoning, GPQA
encompasses broader scientific domains. For
AIME evaluation, we utilized the AIMO validation
set, comprising 90 questions from AIME 22, 23,
and 24 (AIMO, 2018). Given the computational de-
mands of evaluating the full Omini-MATH dataset
(4.4K questions), we randomly sampled 500 ques-
tions to maintain efficiency. For GPQA, we focused
on the diamond subset containing 198 questions.
To ensure robust evaluation of answer correctness,
we employed both the OpenCompass (Contributors,
2023) and Qwen Math (Yang et al., 2024) evalua-
tors, considering an answer correct if validated by
either evaluator.

4 The Failure of Sequential Scaling

4.1 Invalid Scaling of CoT Length: Longer
CoTs Do not Improve Performance

To investigate whether the accuracy of QwQ, R1
and LIMO genuinely improves with increasing
CoT length, we sampled each model five times
on the same question and sorted the five solutions
by length in ascending order. We grouped the so-
lutions based on their rank in this sorted list, with
the ¢-th ranked solutions forming a distinct group.
For instance, all the longest solutions (rank 5) from
different questions formed one group, while all the
shortest solutions (rank 1) formed another, result-
ing in 5 comprehensive solution groups for analy-
sis.

We present the average lengths of the five groups

4653

—e— R1-671b R1-Distill-32b —e— R1-Distill-14b —e— R1-Distill-1.5b QwQ LIMO
6497 MATH Length 23303 AIME Length 18207 Omini-MATH Length 0624 GPQA Length
5491 19548 15801 / 8108
13394
g4486 15792 / 6592
] 10988
S5 3480 12036 ~ 5075
8582
2475 8281 6176 3559
1469 1 2 3 4 5 4525 1 2 3 4 5 3769 1 2 3 4 5 2042 1 2 3 4 5
Group Group Group Group
(a) Evaluation for Solution length.
0.99 MATH Accuracy AIME Accuracy Omini-MATH Accuracy GPQA Accuracy
. 0.80
0.96 0.72 /\-_ 0.66 0.72
—— e —__ . 0.60
0.93 S— 1\,\. 0.64 0.54 0.68
5’0'90 oo \—-—\— . ’__\' 0.64
£ 0.87 0.48 0.48 '\-/\
& . 0.60
§0.84 0.40 0.42 =S| oo
< .
<0.81 0.32 0.36 3
0.78 0.24 0.30 __\/\.\ 0.52 /\\/
0.75 0.16 0.24 0.48
0.72 0.08 0.44
1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5
Group Group Group Group

(b) Evaluation for accuracy.

Figure 2: Solutions of QwQ and R1 were categorized into different groups according to their length and evaluated
in terms of solution length (a) and accuracy (b). The categorization of solutions is progressed for each question
independently, i.e., all groups of solutions are corresponding to the same questions.

of solutions in Figure 2a. Since the grouping of
solutions is based on their lengths, the differences
in length between the groups are pronounced. The
average length of the longest solutions is approx-
imately twice that of the shortest solutions. This
indicates that long-chain-of-thought (CoT) models
like QwQ, R1 and LIMO exhibit a high diversity
in the lengths of the solutions they sample.

There is no clear correlation between the length
of solutions and the model’s size. For example, R1-
Distill-1.5b produces the longest solutions while
QwQ (32b) generates the shortest. A comparison of
solution lengths across different datasets shows that
solutions for simpler datasets, such as Math, are
significantly shorter than those for more difficult
datasets, like AIME. This suggests that the model
adjusts the solution length based on the difficulty
of the problem.

The accuracy of the five groups of solutions is
presented in Figure 2b. Although there is a sig-
nificant disparity in solution lengths across the
groups, the differences in accuracy are much less
pronounced. Notably, we do not observe a consis-
tent improvement in accuracy for either QwQ or
R1 as solution length increases. This trend holds
true across all model variants as well as across
all evaluated datasets. In some cases, we even

observe an inverse scaling phenomenon, where ac-
curacy decreases with increasing CoT length, es-
pecially on more difficult datasets like AIME and
Omini-MATH. These findings cast doubt on the
presumed test-time scaling capabilities of ol-like
models, challenging the assumption that extended
reasoning chains inherently yield superior problem-
solving performance.

To make the relationship between CoT length
and accuracy more clear, we compared the lengths
of correct and incorrect solutions for the same ques-
tion. First, we identified questions that had both
correct and incorrect answers. For each of these
questions, we calculated the average length of cor-
rect and incorrect solutions. We then averaged
these values across all questions to determine the
overall average length for correct and incorrect so-
lutions. The results are shown in Figure 1. We
found that, for QwQ, R1 and LIMO, across all
model sizes and datasets, the length of correct solu-
tions is consistently shorter than that of incorrect so-
lutions. This observation suggests that longer CoT's
do not necessarily lead to better performance and
may even be associated with lower accuracy. More-
over, we observed that for weaker models, such
as QwQ and R1-Distill-1.5B, the gap in solution
length between correct and incorrect solutions is

4654

0.6

@
=]

©0.4

)
e

0.3

Cf
Number of Wait

»
S
\

* LMO

[owQ
0.2¢7 o RI-Distill-3zh “ o RL10 b
RIDistill 14
0.1 R1-Distill-1.5b. LIMO
4k8k 16k 32k 64k 5 10 15 20
Max Token Limitation Number of Token (k)

N
)
i

(a) Max Token Limitation (b) Frequence of “Wait”

Figure 3: (a): The relationship between model accuracy
and the generation parameter Max Token Limitation.
(b): The relationship between solution length and the
average number of “wait” occur in a solution.

significantly larger than for stronger models, such
as R1-671b. This suggests that the invalid scaling
phenomenon is more pronounced in the weaker
models.

4.2 Explaining Invalid Scaling: The Key
Factor is the Failure of Self-Revision

In Section 4.1, we observed the phenomenon that
long solutions exhibit lower accuracy compared
to short solutions. In this section, we investigate
the underlying reasons for this phenomenon. We
first analyzed how the maximum token limitation
affects generation performance and confirmed that
the observed invalid scaling phenomenon was not
caused by constraints in the maximum token length.
Next, we examined the differences between long
and short solutions, finding that long solutions ex-
hibit a higher frequency of self-revision. Moreover,
our analysis suggests a strong correlation between
self-revision, solution length, and accuracy.

Max Token Limitation The max token limita-
tion parameter controls the maximum number of
tokens a model can generate for a question, which
plays a critical role in influencing model accuracy,
especially when generating long solutions. To ex-
plore its impact, we tested several max token limita-
tion values and compared the performance of QwQ,
R1 and LIMO on the AIME benchmark. The re-
sults are shown in Figure 3a, which revealed that
16k is a key threshold: when the max token lim-
itation is below this value, it significantly affects
the model performance. However, increasing the
max token limitation beyond 16k leads to dimin-
ishing returns, particularly for QwQ. In our other
experiments, we set the max token limitation to
32k, suggesting that this parameter is not the main
cause of invalid scaling.

Difference between Short and Long CoT To
understand why long solutions of QwQ, R1 and
LIMO is not better than short solutions, we ana-
lyzed their differences. We observed that QwQ,
R1 and LIMO all primarily extend solution length
through self-revision, characterized by markers
such as “Wait” and “Alternatively”. We show some
examples of that in Appendix F. To quantify this
phenomenon, we counted the occurrences of “wait”
in solutions of QwQ, R1 and LIMO in Figure 3b.
The results demonstrates a strong linear correlation
between solution length and the frequency of self-
correction markers for all models. This suggests
that the mechanisms of self-revision may play a
significant role in generating longer solutions.

Scaling Solution Length with Self-Revision We
have tried to investigate the revision behaviors in-
side the sampled solutions, however, it is difficult
to extract the initial solution and the following revi-
sion exactly from QwQ, R1 and LIMO’s solutions.
Alternatively to that, we prompted the models to
continue thinking based on their sampled solutions.

QwQ, R1 and LIMO often conclude their solu-
tions with phrases like “final answer: ...”, and R1
additionally outputs a ‘</think>’ tag followed by a
final response. To facilitate smoother continuation
of the reasoning process, we removed the “final an-
swer” portion from the solutions. We then used the
keyword “Wait” or “Alternatively” as the prompt
to encourage self-revision. We calculated the prob-
abilities of the model predicting the next token as
“Wait” or “Alternatively” and selected the one with
the higher probability as the prompt.

We prompted QwQ, R1 and LIMO to continue
reasoning for 40 additional steps on the AIME
benchmark. We show the results in Figure 4c,
from which we observe that the solution length
increase almost linearly with additional steps. Af-
ter 40 steps, the solution length of QwQ and R1 is
almost third as their original length.

We show the accuracy after sequential revision
in Figure 4a and 4b. Our results reveal that the
accuracy of QwQ and R1-Distill-1.5b decreases
constantly as the number of reasoning steps in-
creases, while the accuracy of R1-Distill-32b, R1-
Distill-14b and LIMO initially improves and then
oscillates with further reasoning steps. Further anal-
ysis in Appendix C reveal that the improvement on
R1-Distill-32b, R1-Distill-14b and LIMO during
revisions mainly comes from the revision on short
solutions. These results corroborate our previous

4655

46170

4
aaaaa

0.4367

W

—e— R1-Distill-32b
—— R1-Distill-14b

—e— LIMO

0.3744

0.3122

Accuracy
=]
o
-}
Accuracy

0.2500

0.1878

0.1256

—— R1-Distill-32b
—e— R1-Distill-14b
—— R1-Distill-1.5b
—e— QwQ
—— LIMO

R1-Distill-1.5b

—— QWQ
38834

31498

Length

24163

16827

9491

N q¥ P A o S N
4 :

teration

O R

(a) Acc of R1-Distill-32b, 14b and LIMO

® o
Iteration

(b) Acc of R1-Distill-1.5b, QwQ

> D

D AR N N R

Iteration

¥ o Y o

(c) Solution lengths during revisions.

Figure 4: (a): Accuracy of R1-Distill-32b, R1-Distill-14b and LIMO during sequential revisions. (b): Accuracy of
R1-Distill-1.5b and QwQ during sequential revisions. (c) Solution length increased with the more revision steps.

—— Wrong to Correct

—— Correct to Wrong

R1-Distill-32b R1-Distill-14b R1-Distill-1.5b QwQ LIMO
0.08 0:20 0.08
0.4
0.06 013 0.06
0.10
0.04 0.2 0.04
0.05
0.02 0.02
e~
0.00 0.0
DEEIRE By DEEIRE By R X IR AR B IR R BT IR

Iteration Iteration

Iteration

Iteration Iteration

Figure 5: The ratio of turning an initial correct answer to incorrect one (correct to wrong) and an initial incorrect
answer to a correct one (wrong to correct) during sequential scaling.

experimental findings, suggesting that longer solu-
tions do not improve performance, especially for
weaker models such as QwQ and R1-Distill-1.5b.
These findings suggest that the reason why longer
solutions do not consistently lead to better perfor-
mance in QwQ, R1 and LIMO may lie in the failure
of self-revision.

Investigating Self-Revision Behavior To further
investigate the effectiveness of self-revision, we
analyzed the proportion of cases where the model
corrected an initial incorrect answer to a correct
one versus changing an initial correct answer to an
incorrect one during scaling solution length, the
results of which are shown in Figure 5. We found
that, the proportions of changing a incorrect answer
to an correct one is extremely low, always below
10%. Notably, for QwQ and R1-Distill-1.5b, the
proportion of changing a correct answer to an in-
correct one was even higher than that of correcting
an incorrect answer to a correct one. This obser-
vation helps explain why prompting QwQ and R1-
Distill-1.5b to continue reasoning led to a decrease
in accuracy. For simplicty, we call the proportions
of changing a incorrect answer to an correct one
as the successful-revision rate, while the reverse as
the failed-revision rate.

Although R1-Distill-32b, R1-Distill-14b and

R1-32b RI1-14b RI1-1.5b QwQ LIMO
72% 70% 58% 32% 54%

Table 1: The proportion of the revisions that models
sitck to the original wrong answers.

LIMO exhibit a higher successful-revision rate
than failed-revision rate, the increase of successful-
revision rate plateaus after approximately 10 steps,
with further revisions providing no additional ben-
efits. This observation explains why their accuracy
during sequential scaling initially increases with
multiple rounds of revision but later stabilizes with
fluctuations.

The successful-revision rate of QwQ, R1 and
LIMO are all below 10%, what is the outcome of
the model’s self-revision in unsuccessful cases?
We hypothesize that, in most instances, the model
simply keeps its original answer unchanged. To val-
idate that, we computed the proportion of instances
where the model persists with its original answer,
even when it is incorrect, and the results were as ex-
pected. As shown in Figure 1, when the original an-
swer is wrong, both R1-Distill-32b and R1-Distill-
14b maintain the original answer in over 70% of
cases. Although retaining the original answer does
not reduce accuracy, it also makes the scaling solu-

4656

0.8
[}
0.6
®
e
3
Q
Co4
Parallel Scaling (R1-Distill-32b)
Sequential Scaling (R1-Distill-32b)
Parallel Scaling (QwQ)
0.2 Sequential Scaling (QwQ)

20 40 60 80
Number of Tokens (k)

100

(a) Evaluation on Coverage.

0.7
0.6
0 0.5
Q
<
0.4
0 3 Majority Vote (R1-Distill-32b)
° Sequential Scaling (R1-Distill-32b)
Majority Vote (QwQ)
0.2 Sequential Scaling (QwQ)

20 40 60 80
Number of Tokens (k)

100

(b) Evaluation on Accuracy

Figure 6: (a): the coverage of sequential scaling and parallel scaling on AIME. (b): the accuracy of squential

revision and majority vote on AIME.

tion length ineffective. This phenomenon suggests
that the model’s ability to early stop may also be a
critical factor influencing whether its performance
improves with an increasing solution length.

The above analysis indicates that the key factor
determining whether o1-like models’ performance
improve with an increase in solution length is their
ability to self-revise. The model’s accuracy in-
creases with the more incorrect answers revised to
correct and vice versa.

5 Sequential Scaling vs. Parallel Scaling

Based on our experimental findings presented in
Section 4.2, sequential scaling demonstrates lim-
ited effectiveness for QwQ, R1 and LIMO. An
alternative approach to scaling test-time compute
is parallel scaling, which generates multiple solu-
tions in parallel and selects the best one as the final
answer.

We compared the performance of sequential scal-
ing and parallel scaling in terms of the coverage
(pass@k score) and accuracy of QwQ and RI,
which are shown in Figure 6a and 6b respectively.
For sequential scaling, we iteratively prompt mod-
els to self-revise for 40 steps. While for parallel
scaling, we parallely sample 10 solutions. The cov-
erage is evaluated by counting the proportion of
whether multiple candidate answers contain a cor-
rect one. In parallel scaling, coverage increases
by one if at least one sampled solution is correct.
Similarly, in sequential scaling, coverage increases
by one if at least one revision iteration succeeds.

Our findings show that, for the same number of
generated tokens, parallel scaling provides a signif-
icantly larger improvement in coverage compared
to sequential scaling, for both R1-Distill-32b and

QwQ. However, a practical parallel scaling method
must select a final answer from a set of candidate
answers. We implement parallel scaling using ma-
jority vote (Wang et al., 2023) and sequential scal-
ing by taking the answer from the last revision as
the final answer. Since majority voting requires
at least three solutions to be effective, it does not
provide any benefit when scaling the number of
solutions from 1 to 2. In contrast, sequential revi-
sion is effective for R1-Distill-32b when scaling
the number of tokens to 10k, but further scaling
does not yield additional benefits. Additionally,
because sequential scaling involves attention over
a longer context, its computational cost is much
higher than that of parallel scaling when generating
the same number of tokens.

6 Application of Our Findings: Shortest
Majority Vote

Given the limitation of sequential scaling of the
current ol-like models, we turn to parallel scal-
ing techniques and incorperate it with our insight
on sequential scaling. Specifically, we propose a
new Parallel Scaling algorithm: Shortest Majority
Vote. Shortest Majority Vote is an extension of
Majority Vote, but it accounts for the length of the
solutions generated by the model. In the original
Majority Vote, solutions with the same answer are
grouped into a single category, and the number of
solutions in each category is counted, with the an-
swer corresponding to the category with the most
solutions selected as the final answer. In contrast,
Shortest Majority Vote not only counts the number
of solutions in each category, but also computes
the average length of the solutions in each category.
Let the number of solutions in the ¢-th category be

4657

R1-Distill-32b

+ Majority Vote

R1-Distill-14b

» Shortest

R1-Distill-1.5b

Shortest Majority Vote

QwQ

0.70

Acc

0.65

AAAAAA

0.60{#¢

0.70

0.65

0.607 //
£~

0.4

0.3 e
'

0.50

0.45

/
0.0

0.70

0.65

x
0.60{ [/

0.55

50 100 150
Number of Tokens (k)

50

100 150

Number of Tokens (k)

100 200

Number of Tokens (k)

A
50

il
100 150

Number of Tokens (k)

100 200
Number of Tokens (k)

Figure 7: Parallel-scaling performance of Majority Vote, Shortest and Shortest Majority Vote on AIME.

Model Solutions AIME GPQA
MV Shortest Shortest MV ~ MV Shortest Shortest MV

R1-Distill-32b 59.77 62.22 62.22 61.41 62.52 62.52
R1-Distill-14b 58.88 60.44 60.44 51.21 52.32 52.32
R1-Distill-1.5b 2 24 27.55 27.55 15.25 15.35 15.35

QwQ 41.77 40.22 40.22 58.05 57.02 57.02

LIMO 56.66 60.88 60.88 50.46 54.56 54.56
R1-Distill-32b 72.88 61.99 73.77 63.33 61.21 63.53
R1-Distill-14b 71.77 62.00 71.55 56.16 56.66 56.46
R1-Distill-1.5b 16 40.00 26.22 42.22 29.59 27.77 30.20

QwQ 51.33 40.88 50.88 62.25 56.82 62.25

LIMO 68.88 62.22 70.00 55.58 50.15 55.89

Table 2: Performance comparison between Majority Vote (MV), Shortest and Shortest Majority Vote (Shortest MV)
on AIME and GPQA, when there are 2 and 16 solutions sampled.

¢; and the average solution length in that category
be I;. The score for category ¢ in Shortest Majority
Vote is computed as:

Ci

(1

%= log ;
and the final answer is chosen from the category
with the highest score. The score s; is designed
with the assumption that the correct answer is more
likely to appear in categories with a larger number
of solutions and shorter solution lengths. Shortest
Majority Vote offers two key advantages: first, it
is particularly effective for some ol-like models,
where performance deteriorates with increasing so-
lution length; second, it enables the use of solution
length as a guidence signal for identifying supe-
rior solutions when candidate solutions are limited,
especially in cases where conventional Majority
Vote becomes ineffective due to having only two
candidate solutions.

We evaluated the performance of Shortest Ma-
jority Vote and Majority Vote through experiments
on the AIME and GPQA benchmarks, sampling 16
solutions from QwQ, R1 and LIMO models. We
implemented a simple baseline approach, denoted
as "Shortest," which selects the answer from the
solution with the minimal length. The experimen-

tal results are presented in Table 2 and Figure 7.
Table 2 demonstrates that Shortest Majority Vote
significantly outperforms both Majority Vote and
Shortest methods, particularly on the AIME bench-
mark. Figure 7 illustrates the parallel-scaling per-
formance of these three methods, showing that as
the number of generated tokens increases, Short-
est Majority Vote maintains superior performance
over both alternatives on AIME. The correspond-
ing parallel-scaling results for GPQA are provided
in Appendix D. Notably, while Shortest performs
better than Majority Vote when only two solutions
are sampled, it exhibits inferior performance in all
other scenarios. Shortest Majority Vote is also ef-
fective for many other reasoning models and chat
models, which is shown in Appendix A. These em-
pirical findings strongly support the effectiveness
of the Shortest Majority Vote approach.

6.1 Variants of Shortest Majority Vote
There are many variations of Shortest Majority

Vote implementation, such as 7, \% We chose to
i i

use log for two main reasons:

1. Scaling laws tell us that model performance is
log - linearly related to the amount of compu-
tation, and computation is quadratically re-

4658

sqrt

linear

square

Model Majority Vote log

QwQ 51.33% (baseline) 50.89% (-0.87%)
R1-32b 72.89% (baseline) 73.78% (+1.22%)
R1-14b 71.78% (baseline) 71.56% (-0.31%)
R1-1.5b 40.00% (baseline) 42.22% (+5.56%)
LIMO 68.89% (baseline) 70.00% (+1.61%)

50.67% (-1.30%)
74.22% (+1.83%)
71.78% (+0.00%)
42.44% (+6.11%)
70.00% (+1.61%)

50.44% (-1.73%)
73.56% (+0.91%)
71.33% (-0.62%)
42.22% (+5.56%)
71.11% (+3.23%)

49.33% (-3.90%)
71.33% (-2.13%)
71.11% (-0.93%)
37.78% (-5.56%)
71.11% (+3.23%)

Table 3: Performance of different Shortest Majority Vote variants on AIME dataset. 16 Solutions are sampled for
each question.

sqrt

linear

square

Model Majority Vote log

QwQ 62.26% (baseline) 62.26% (+0.00%)
R1-32b 63.33% (baseline) 63.54% (+0.32%)
R1-14b 56.16% (baseline) 56.46% (+0.54%)
RI1-1.5b 29.60% (baseline) 30.20% (+2.05%)
LIMO 67.49% (baseline) 67.69% (+0.30%)

61.95% (-0.49%)
63.43% (+0.16%)
56.26% (+0.18%)
30.10% (+1.71%)
67.18% (-0.46%)

61.64% (-0.99%)
63.94% (+0.96%)
56.36% (+0.36%)
29.29% (-1.02%)
66.67% (-1.22%)

60.41% (-2.97%)
63.94% (+0.96%)
56.57% (+0.72%)
28.18% (-4.78%)
65.13% (-3.50%)

Table 4: Performance of different Shortest Majority Vote variants on GPQA dataset. 16 Solutions sampled for each

question

lated to the number of tokens. Therefore,
model performance should be related to the
log of token count: f(logi?) = f(2logl;).

2. As we can observe from Figure 2, the vari-
ance in solution length for the same question
sample is substantial. Longer solutions often
contain more than twice the number of tokens
as shorter solutions, and token counts signif-
icantly outweigh the vote counts in majority
voting. To prevent token counts from com-
pletely dominating cluster selection in Short-
est Majority Vote, we use log to reduce the
influence of token count on voting results. As
shown in Figure 7 and Table 2, directly using
length as a reward (Shortest) performs much
worse compared to Majority Vote.

We empirically compared the impact of different
weight functions on shortest majority voting per-
formance in Table 2, testing four functions: 1) Log:

i 2) Sqrt: \Z? 3) Linear: {* 4) Square: %

We found that Log function can stably irﬁprove
performance over Majority Vote. Sqrt, Linear and
Square functions, however, show more unstable
performance. For example, in GPQA experiments,
Linear and Square may actually cause performance
degradation. We will supplement these experi-
ments in the appendix, thank you for your sug-
gestion.

7 Conclusion

In this study, we challenged the assumption that
ol-like models like QwQ and R1 have test-time

scaling capability. We found that the longer solu-
tions not necessarily yield better performance, and
that sequential scaling through self-revision has
limited effectiveness. Based on these insights, we
developed Shortest Majority Vote, a parallel scaling
method that considers solution length, which sig-
nificantly outperformed traditional majority vote.

Limitations

1. Given the considerable cost of R1-671b, eval-
uation on it was limited to the experiments
in Figures 1 and 2, whereas distilled R1 was
utilized for all subsequent.

2. Our experimental framework was limited to
static model checkpoints. Future research
should investigate test-time scaling behavior
using dynamic checkpoints in reinforcement
learning settings.

3. While the proposed shortest majority method
may have limited applicability for models
with strong sequential-scaling capabilities, so-
lution length remains a valuable guidance sig-
nal for candidate selection in parallel scaling
scenarios. The method can be adapted to a
Longest Majority Vote variant for such cases.

Ethics Statement

This paper honors the ACL Code of Ethics. The
dataset used in the paper does not contain any pri-
vate information. All data and tools used in this
study comply with their respective licenses and
terms of use.

4659

References

AIMO. 2018. Dataset card for aimo valida-
tion aime. https://huggingface.co/datasets/
AI-MO/aimo-validation-aime.

Afra Amini, Tim Vieira, and Ryan Cotterell. 2024. Vari-
ational best-of-n alignment. CoRR, abs/2407.06057.

Guoxin Chen, Minpeng Liao, Chengxi Li, and Kai Fan.
2024a. Alphamath almost zero: process supervision
without process. CoRR, abs/2405.03553.

Xinyun Chen, Maxwell Lin, Nathanael Schirli, and
Denny Zhou. 2024b. Teaching large language mod-
els to self-debug. In The Twelfth International Con-
ference on Learning Representations, ICLR 2024,
Vienna, Austria, May 7-11, 2024. OpenReview.net.

Ziru Chen, Michael White, Raymond J. Mooney, Ali
Payani, Yu Su, and Huan Sun. 2024c. When is
tree search useful for LLM planning? it depends
on the discriminator. In Proceedings of the 62nd
Annual Meeting of the Association for Computa-
tional Linguistics (Volume 1: Long Papers), ACL
2024, Bangkok, Thailand, August 11-16, 2024, pages
13659-13678. Association for Computational Lin-
guistics.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, Christopher Hesse, and John Schulman.
2021. Training verifiers to solve math word prob-
lems. CoRR, abs/2110.14168.

OpenCompass Contributors. 2023. Opencompass:
A universal evaluation platform for foundation
models. https://github.com/open-compass/
opencompass.

DeepSeek-Al, Daya Guo, Dejian Yang, Haowei Zhang,
Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang,
Xingkai Yu, Yu Wu, Z. F. Wu, Zhibin Gou, Zhi-
hong Shao, Zhuoshu Li, Ziyi Gao, and 181 others.
2025. Deepseek-rl: Incentivizing reasoning capa-
bility in llms via reinforcement learning. Preprint,
arXiv:2501.12948.

Bofei Gao, Feifan Song, Zhe Yang, Zefan Cai, Yibo
Miao, Qingxiu Dong, Lei Li, Chenghao Ma, Liang
Chen, Runxin Xu, Zhengyang Tang, Benyou Wang,
Daoguang Zan, Shanghaoran Quan, Ge Zhang, Lei
Sha, Yichang Zhang, Xuancheng Ren, Tianyu Liu,
and Baobao Chang. 2024. Omni-math: A univer-
sal olympiad level mathematic benchmark for large
language models. CoRR, abs/2410.07985.

Zhibin Gou, Zhihong Shao, Yeyun Gong, Yelong Shen,
Yujiu Yang, Nan Duan, and Weizhu Chen. 2024.
CRITIC: large language models can self-correct with
tool-interactive critiquing. In The Twelfth Inter-
national Conference on Learning Representations,
ICLR 2024, Vienna, Austria, May 7-11, 2024. Open-
Review.net.

Lin Gui, Cristina Garbacea, and Victor Veitch. 2024.
Bonbon alignment for large language models and
the sweetness of best-of-n sampling. CoRR,
abs/2406.00832.

Shibo Hao, Yi Gu, Haodi Ma, Joshua Jiahua Hong, Zhen
Wang, Daisy Zhe Wang, and Zhiting Hu. 2023. Rea-
soning with language model is planning with world
model. In Proceedings of the 2023 Conference on
Empirical Methods in Natural Language Process-
ing, EMNLP 2023, Singapore, December 6-10, 2023,
pages 8154-8173. Association for Computational
Linguistics.

Jie Huang, Xinyun Chen, Swaroop Mishra,
Huaixiu Steven Zheng, Adams Wei Yu, Xiny-
ing Song, and Denny Zhou. 2024a. Large language
models cannot self-correct reasoning yet. In The
Twelfth International Conference on Learning
Representations, ICLR 2024, Vienna, Austria, May
7-11, 2024. OpenReview.net.

Zhen Huang, Haoyang Zou, Xuefeng Li, Yixiu Liu,
Yuxiang Zheng, Ethan Chern, Shijie Xia, Yiwei Qin,
Weizhe Yuan, and Pengfei Liu. 2024b. Ol replica-
tion journey — part 2: Surpassing ol-preview through
simple distillation, big progress or bitter lesson?
Preprint, arXiv:2411.16489.

Jinhao Jiang, Zhipeng Chen, Yingqian Min, Jie Chen,
Xiaoxue Cheng, Jiapeng Wang, Yiru Tang, Haox-
iang Sun, Jia Deng, Wayne Xin Zhao, and 1 oth-
ers. 2024. Technical report: Enhancing 1lm reason-
ing with reward-guided tree search. arXiv preprint
arXiv:2411.11694.

Ryo Kamoi, Yusen Zhang, Nan Zhang, Jiawei Han,
and Rui Zhang. 2024. When can llms actually cor-
rect their own mistakes? A critical survey of self-
correction of 1lms. CoRR, abs/2406.01297.

Wouter Kool, Herke van Hoof, and Max Welling. 2019.
Stochastic beams and where to find them: The
gumbel-top-k trick for sampling sequences without
replacement. In Proceedings of the 36th Interna-
tional Conference on Machine Learning, ICML 2019,
9-15 June 2019, Long Beach, California, USA, vol-
ume 97 of Proceedings of Machine Learning Re-
search, pages 3499-3508. PMLR.

Aviral Kumar, Vincent Zhuang, Rishabh Agarwal, Yi Su,
John D. Co-Reyes, Avi Singh, Kate Baumli, Shariq
Igbal, Colton Bishop, Rebecca Roelofs, Lei M.
Zhang, Kay McKinney, Disha Shrivastava, Cosmin
Paduraru, George Tucker, Doina Precup, Feryal M. P.
Behbahani, and Aleksandra Faust. 2024. Training
language models to self-correct via reinforcement
learning. CoRR, abs/2409.12917.

Jan Leike. 2022. Why i’m excited about ai-assisted
human feedback.

Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harri-
son Edwards, Bowen Baker, Teddy Lee, Jan Leike,
John Schulman, Ilya Sutskever, and Karl Cobbe.

4660

https://huggingface.co/datasets/AI-MO/aimo-validation-aime
https://huggingface.co/datasets/AI-MO/aimo-validation-aime
https://doi.org/10.48550/ARXIV.2407.06057
https://doi.org/10.48550/ARXIV.2407.06057
https://doi.org/10.48550/ARXIV.2405.03553
https://doi.org/10.48550/ARXIV.2405.03553
https://openreview.net/forum?id=KuPixIqPiq
https://openreview.net/forum?id=KuPixIqPiq
https://doi.org/10.18653/V1/2024.ACL-LONG.738
https://doi.org/10.18653/V1/2024.ACL-LONG.738
https://doi.org/10.18653/V1/2024.ACL-LONG.738
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://github.com/open-compass/opencompass
https://github.com/open-compass/opencompass
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://doi.org/10.48550/ARXIV.2410.07985
https://doi.org/10.48550/ARXIV.2410.07985
https://doi.org/10.48550/ARXIV.2410.07985
https://openreview.net/forum?id=Sx038qxjek
https://openreview.net/forum?id=Sx038qxjek
https://doi.org/10.48550/ARXIV.2406.00832
https://doi.org/10.48550/ARXIV.2406.00832
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.507
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.507
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.507
https://openreview.net/forum?id=IkmD3fKBPQ
https://openreview.net/forum?id=IkmD3fKBPQ
https://arxiv.org/abs/2411.16489
https://arxiv.org/abs/2411.16489
https://arxiv.org/abs/2411.16489
https://doi.org/10.48550/ARXIV.2406.01297
https://doi.org/10.48550/ARXIV.2406.01297
https://doi.org/10.48550/ARXIV.2406.01297
http://proceedings.mlr.press/v97/kool19a.html
http://proceedings.mlr.press/v97/kool19a.html
http://proceedings.mlr.press/v97/kool19a.html
https://doi.org/10.48550/ARXIV.2409.12917
https://doi.org/10.48550/ARXIV.2409.12917
https://doi.org/10.48550/ARXIV.2409.12917
https://substack.com/home/post/p-51216719
https://substack.com/home/post/p-51216719

2024. Let’s verify step by step. In The Twelfth In-
ternational Conference on Learning Representations,
ICLR 2024, Vienna, Austria, May 7-11, 2024. Open-
Review.net.

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang,
Bochao Wu, Chengda Lu, Chenggang Zhao, Chengqi
Deng, Chenyu Zhang, Chong Ruan, and 1 others.
2024. Deepseek-v3 technical report. arXiv preprint
arXiv:2412.19437.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler
Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon,
Nouha Dziri, Shrimai Prabhumoye, Yiming Yang,
Shashank Gupta, Bodhisattwa Prasad Majumder,
Katherine Hermann, Sean Welleck, Amir Yazdan-
bakhsh, and Peter Clark. 2023. Self-refine: Itera-
tive refinement with self-feedback. In Advances in
Neural Information Processing Systems 36: Annual
Conference on Neural Information Processing Sys-
tems 2023, NeurIPS 2023, New Orleans, LA, USA,
December 10 - 16, 2023.

Yingqian Min, Zhipeng Chen, Jinhao Jiang, Jie Chen,
Jia Deng, Yiwen Hu, Yiru Tang, Jiapeng Wang, Xi-
aoxue Cheng, Huatong Song, and 1 others. 2024.
Imitate, explore, and self-improve: A reproduction
report on slow-thinking reasoning systems. arXiv
preprint arXiv:2412.09413.

Niklas Muennighoff, Zitong Yang, Weijia Shi, Xi-
ang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke
Zettlemoyer, Percy Liang, Emmanuel Candes, and
Tatsunori Hashimoto. 2025. sl: Simple test-time
scaling. Preprint, arXiv:2501.19393.

OpenAl. 2024a. Learning to reason with Illms.
OpenAl. 2024b. Openai ol system card.

Yiwei Qin, Xuefeng Li, Haoyang Zou, Yixiu Liu, Shijie
Xia, Zhen Huang, Yixin Ye, Weizhe Yuan, Hector
Liu, Yuanzhi Li, and Pengfei Liu. 2024. O1 repli-
cation journey: A strategic progress report - part 1.
CoRR, abs/2410.18982.

Jiahao Qiu, Yifu Lu, Yifan Zeng, Jiacheng Guo, Ji-
ayi Geng, Huazheng Wang, Kaixuan Huang, Yue
Wu, and Mengdi Wang. 2024. Treebon: Enhancing
inference-time alignment with speculative tree-search
and best-of-n sampling. CoRR, abs/2410.16033.

David Rein, Betty Li Hou, Asa Cooper Stickland,
Jackson Petty, Richard Yuanzhe Pang, Julien Di-
rani, Julian Michael, and Samuel R. Bowman. 2023.
GPQA: A graduate-level google-proof q&a bench-
mark. CoRR, abs/2311.12022.

Pier Giuseppe Sessa, Robert Dadashi, Léonard
Hussenot, Johan Ferret, Nino Vieillard, Alexandre
Ramé, Bobak Shahriari, Sarah Perrin, Abe Friesen,
Geoffrey Cideron, Sertan Girgin, Piotr Stanczyk,
Andrea Michi, Danila Sinopalnikov, Sabela Ramos,
Amélie Héliou, Aliaksei Severyn, Matt Hoffman,
Nikola Momchev, and Olivier Bachem. 2024.
BOND: aligning llms with best-of-n distillation.
CoRR, abs/2407.14622.

Charlie Snell, Jachoon Lee, Kelvin Xu, and Aviral Ku-
mar. 2024. Scaling LLM test-time compute optimally
can be more effective than scaling model parameters.
CoRR, abs/2408.03314.

Hanshi Sun, Momin Haider, Ruiqi Zhang, Huitao
Yang, Jiahao Qiu, Ming Yin, Mengdi Wang, Pe-
ter L. Bartlett, and Andrea Zanette. 2024. Fast
best-of-n decoding via speculative rejection. CoRR,
abs/2410.20290.

Qwen Team. 2024a. Qwen?2.5 technical report. arXiv
preprint arXiv:2412.15115.

Qwen Team. 2024b. Qwq: Reflect deeply on the bound-
aries of the unknown.

Ziyu Wan, Xidong Feng, Muning Wen, Stephen Marcus
McAleer, Ying Wen, Weinan Zhang, and Jun Wang.
2024. Alphazero-like tree-search can guide large
language model decoding and training. In Forty-
first International Conference on Machine Learning,
ICML 2024, Vienna, Austria, July 21-27, 2024. Open-
Review.net.

Jun Wang, Meng Fang, Ziyu Wan, Muning Wen, Jiachen
Zhu, Anjie Liu, Ziqin Gong, Yan Song, Lei Chen,
Lionel M. Ni, Linyi Yang, Ying Wen, and Weinan
Zhang. 2024. Openr: An open source framework
for advanced reasoning with large language models.
CoRR, abs/2410.09671.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V.
Le, Ed H. Chi, Sharan Narang, Aakanksha Chowd-
hery, and Denny Zhou. 2023. Self-consistency
improves chain of thought reasoning in language
models. In The Eleventh International Conference
on Learning Representations, ICLR 2023, Kigali,
Rwanda, May 1-5, 2023. OpenReview.net.

Yue Wang, Qiuzhi Liu, Jiahao Xu, Tian Liang, Xingyu
Chen, Zhiwei He, Linfeng Song, Dian Yu, Juntao Li,
Zhuosheng Zhang, Rui Wang, Zhaopeng Tu, Haitao
Mi, and Dong Yu. 2025. Thoughts are all over the
place: On the underthinking of ol-like llms. Preprint,
arXiv:2501.18585.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Brian Ichter, Fei Xia, Ed H. Chi, Quoc V. Le,
and Denny Zhou. 2022. Chain-of-thought prompting
elicits reasoning in large language models. In Ad-
vances in Neural Information Processing Systems 35:
Annual Conference on Neural Information Process-
ing Systems 2022, NeurIPS 2022, New Orleans, LA,
USA, November 28 - December 9, 2022.

Yuxi Xie, Kenji Kawaguchi, Yiran Zhao, James Xu
Zhao, Min-Yen Kan, Junxian He, and Michael Qizhe
Xie. 2023. Self-evaluation guided beam search for
reasoning. In Advances in Neural Information Pro-
cessing Systems 36: Annual Conference on Neural
Information Processing Systems 2023, NeurIPS 2023,
New Orleans, LA, USA, December 10 - 16, 2023.

4661

https://openreview.net/forum?id=v8L0pN6EOi
http://papers.nips.cc/paper_files/paper/2023/hash/91edff07232fb1b55a505a9e9f6c0ff3-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/91edff07232fb1b55a505a9e9f6c0ff3-Abstract-Conference.html
https://arxiv.org/abs/2501.19393
https://arxiv.org/abs/2501.19393
https://openai.com/index/learning-to-reason-with-llms/
https://cdn.openai.com/o1-system-card-20241205.pdf
https://doi.org/10.48550/ARXIV.2410.18982
https://doi.org/10.48550/ARXIV.2410.18982
https://doi.org/10.48550/ARXIV.2410.16033
https://doi.org/10.48550/ARXIV.2410.16033
https://doi.org/10.48550/ARXIV.2410.16033
https://doi.org/10.48550/ARXIV.2311.12022
https://doi.org/10.48550/ARXIV.2311.12022
https://doi.org/10.48550/ARXIV.2407.14622
https://doi.org/10.48550/ARXIV.2408.03314
https://doi.org/10.48550/ARXIV.2408.03314
https://doi.org/10.48550/ARXIV.2410.20290
https://doi.org/10.48550/ARXIV.2410.20290
https://qwenlm.github.io/blog/qwq-32b-preview/
https://qwenlm.github.io/blog/qwq-32b-preview/
https://openreview.net/forum?id=C4OpREezgj
https://openreview.net/forum?id=C4OpREezgj
https://doi.org/10.48550/ARXIV.2410.09671
https://doi.org/10.48550/ARXIV.2410.09671
https://openreview.net/forum?id=1PL1NIMMrw
https://openreview.net/forum?id=1PL1NIMMrw
https://openreview.net/forum?id=1PL1NIMMrw
https://arxiv.org/abs/2501.18585
https://arxiv.org/abs/2501.18585
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/81fde95c4dc79188a69ce5b24d63010b-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/81fde95c4dc79188a69ce5b24d63010b-Abstract-Conference.html

An Yang, Beichen Zhang, Binyuan Hui, Bofei Gao,
Bowen Yu, Chengpeng Li, Dayiheng Liu, Jian-
hong Tu, Jingren Zhou, Junyang Lin, Keming Lu,
Mingfeng Xue, Runji Lin, Tianyu Liu, Xingzhang
Ren, and Zhenru Zhang. 2024. Qwen2.5-math tech-
nical report: Toward mathematical expert model via
self-improvement. CoRR, abs/2409.12122.

Yixin Ye, Zhen Huang, Yang Xiao, Ethan Chern, Shijie
Xia, and Pengfei Liu. 2025. Limo: Less is more for
reasoning. Preprint, arXiv:2502.03387.

Fei Yu, Anningzhe Gao, and Benyou Wang. 2024. Ovm,
outcome-supervised value models for planning in
mathematical reasoning. In Findings of the Associ-
ation for Computational Linguistics: NAACL 2024,
Mexico City, Mexico, June 16-21, 2024, pages 858—
875. Association for Computational Linguistics.

Zhiyuan Zeng, Qinyuan Cheng, Zhangyue Yin,
Bo Wang, Shimin Li, Yunhua Zhou, Qipeng Guo,
Xuanjing Huang, and Xipeng Qiu. 2024. Scaling
of search and learning: A roadmap to reproduce
ol from reinforcement learning perspective. CoRR,
abs/2412.14135.

Shun Zhang, Zhenfang Chen, Yikang Shen, Mingyu
Ding, Joshua B. Tenenbaum, and Chuang Gan. 2023.
Planning with large language models for code gen-
eration. In The Eleventh International Conference
on Learning Representations, ICLR 2023, Kigali,
Rwanda, May 1-5, 2023. OpenReview.net.

Yunxiang Zhang, Muhammad Khalifa, Lajanugen Lo-
geswaran, Jaekyeom Kim, Moontae Lee, Honglak
Lee, and Lu Wang. 2024. Small language models
need strong verifiers to self-correct reasoning. In
Findings of the Association for Computational Lin-
guistics, ACL 2024, Bangkok, Thailand and virtual
meeting, August 11-16, 2024, pages 15637-15653.
Association for Computational Linguistics.

Lianmin Zheng, Liangsheng Yin, Zhigiang Xie, Chuyue
Sun, Jeff Huang, Cody Hao Yu, Shiyi Cao, Christos
Kozyrakis, Ton Stoica, Joseph E. Gonzalez, Clark W.
Barrett, and Ying Sheng. 2024. Sglang: Efficient
execution of structured language model programs. In
Advances in Neural Information Processing Systems
38: Annual Conference on Neural Information Pro-
cessing Systems 2024, NeurlPS 2024, Vancouver, BC,
Canada, December 10 - 15, 2024.

4662

https://doi.org/10.48550/ARXIV.2409.12122
https://doi.org/10.48550/ARXIV.2409.12122
https://doi.org/10.48550/ARXIV.2409.12122
https://arxiv.org/abs/2502.03387
https://arxiv.org/abs/2502.03387
https://doi.org/10.18653/V1/2024.FINDINGS-NAACL.55
https://doi.org/10.18653/V1/2024.FINDINGS-NAACL.55
https://doi.org/10.18653/V1/2024.FINDINGS-NAACL.55
https://doi.org/10.48550/ARXIV.2412.14135
https://doi.org/10.48550/ARXIV.2412.14135
https://doi.org/10.48550/ARXIV.2412.14135
https://openreview.net/forum?id=Lr8cOOtYbfL
https://openreview.net/forum?id=Lr8cOOtYbfL
https://doi.org/10.18653/V1/2024.FINDINGS-ACL.924
https://doi.org/10.18653/V1/2024.FINDINGS-ACL.924
http://papers.nips.cc/paper_files/paper/2024/hash/724be4472168f31ba1c9ac630f15dec8-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2024/hash/724be4472168f31ba1c9ac630f15dec8-Abstract-Conference.html

A Performance of Shortest Majority Vote
on More Models.

To demonstrate the applicability of shortest ma-
jority voting across a wider range of models, we
have included additional evaluation results for both
ol-like models (s1 (Muennighoff et al., 2025)
and Open-Reasoner-Zero (Wang et al., 2024)) and
instruction-based models (Deepseek-v3 (Liu et al.,
2024) and Qwen-2.5-72b-instruct (Team, 2024a)),
as shown in Tables 5. We found that Shortest Ma-
jority Vote also performs excellently on these mod-
els, especially with s1 and Open-Reasoner-Zero.
Although Qwen-2.5-72b and Deepseek-v3 do not
generate long chain-of-thought reasoning, Short-
est Majority Vote still significantly improves their
performance on AIME.

B Is Invalid Scaling Phenomenon Conflict
to Findings of R1 technique Report?

The training objective of R1 aims to improve model
accuracy, yet we observe that correct solutions tend
to be shorter than incorrect ones. This raises an
intriguing question: Why does R1’s reinforcement
learning (RL) training consistently produce longer
solutions?

To investigate this phenomenon, we analyzed
five solutions per question, organizing them into
groups by length in ascending order. Figure 8 il-
lustrates the distribution of correct solutions across
these groups.

Our analysis revealed that correct solutions pre-
dominantly appear in shorter-length groups, par-
ticularly in the AIME dataset. However, when
examining the token distribution, we found that
correct solution tokens are concentrated in longer-
solution groups. This apparent contradiction arises
because the total token count is determined by both
the number of solutions and the average tokens per
solution. As shown in Figure 2a, solutions in the
longest group contain nearly twice as many tokens
as those in the shortest group. This explains why,
despite having fewer individual solutions, longer
solutions account for a greater share of the total
tokens.

We hypothesize that this discrepancy explains
why RL training tends to produce longer solutions:
the training process may favor generating longer
solutions, even if they are less accurate, because
they contribute more tokens to the gradient.

—+— R1-671b —e— R1-Distill-32b —+— R1-Distill-14b QwQ LIMO

AIME Solution Distribution AIME Token Distribution

0.28
0.26
0.24

0.22 §:<,‘.__\\ Fo.27 7
0.20 ~N— £0.24 A4
0.18 =—.| So021 ———
0.16 Lons| o =rtf —
0.14 0.151 ¢
0.12 0.12

1 2 3 1 5 1 2 3 1 5

Group Group

GPQA Solution Distribution GPQA Token Distribution

0.28 0.33

0.26 0-30 /

0.24 g 027 -
g0.24

0.22 £0.21

0.20] =" _“S< £0.18
Eo.

0.18 &0.15 %

0.16 0.12

0.14 0.09

1 2 3 1 5 1 2 3 1 5
Group Group

Figure 8: The number of correct solutions and tokens
distributed across groups of different lengths.

C Further analysis on Sequential Scaling
on R1-Distill-14b, R1-Distill-32b and
LIMO

In Section 4.2, we observed that R1-Distill-14b, R1-
Distill-32b and LIMO demonstrated some perfor-
mance improvements after multiple rounds of self-
revision, followed by stabilization. Furthermore, in
Section 4.1, we found that the correct solutions gen-
erated by R1-Distill-14b, R1-Distill-32b and LIMO
were generally shorter than incorrect solutions. To
reconcile these seemingly contradictory findings
and further analyze how R1-Distill-14b, R1-Distill-
32b and LIMO benefit from self-revision, we con-
ducted a detailed analysis of self-revision outcomes
on both long and short solutions. Our methodol-
ogy for collecting long and short solutions involved
sampling five solutions for each question, ordering
them by length, and then segregating the longest
and shortest solutions into separate groups. The
results of self-revision on both short and long so-
lutions are presented in Figure 9. Our analysis
reveals that short solutions exhibited significant
performance improvements following self-revision,
while this trend was less pronounced for long so-
lutions. Therefore, the performance improvements
we observed through self-revision in R1-Distill-
14b, R1-Distill-32b and LIMO primarily stem from
the self-revision on short solutions. This suggests
that the relationship between accuracy and solution
length for these models is complex, demonstrating
neither a strictly positive nor negative correlation
with length.

4663

Model AIME Dataset GPQA Dataset
Majority Vote Shortest Majority Vote Majority Vote Shortest Majority Vote

QwQ 51.33% (baseline) 50.89% (-0.87%) 62.26% (baseline) 62.26% (+0.00%)
R1-32b 72.89% (baseline) 73.78% (+1.22%) 63.33% (baseline) 63.54% (+0.32%)
R1-14b 71.78% (baseline) 71.56% (-0.31%) 56.16% (baseline) 56.46% (+0.54%)
R1-1.5b 40.00% (baseline) 42.22% (+5.56%) 29.60% (baseline) 30.20% (+2.05%)
LIMO 68.89% (baseline) 70.00% (+1.61%) 67.49% (baseline) 67.69% (+0.30%)
sl 40.89% (baseline) 42.22% (+3.26%) 55.59% (baseline) 55.90% (+0.55%)
Open-Reasoner-Zero 41.78% (baseline) 43.33% (+3.72%) 50.81% (baseline) 50.51% (-0.60%)
Qwen-2.5-72b 20.22% (baseline) 21.11% (+4.40%) 46.26% (baseline) 47.18% (+2.00%)

Deepseek-v3

64.67% (baseline)

65.56% (+1.37%)

66.46% (baseline)

66.16% (-0.46%)

Table 5: Performance improvement of Shortest Majority Vote compared to Majority Vote on QwQ, distilled R1,
LIMO, s1, Open-Reasoner-Zero, Qwen-2.5-72b and Deepseek-v3.

0.722 0.732
0.7278
—— Overall —— Overall
0.600] —— Short 0.700 —— Short
Long Long 0.6567
>,0.658 >’0.668
1 H &0.5856
& & 5 0-
= 0.626 M 5 0.636 5
3 S 8
S 0.5144
< 0.504 < 0.604 W g
0.4433 —— Overall
0.562 0.572 Short
Long
0.530 0.540 0.3722
) g ,\@ ,19 qy' ,757 (,;1» ,,"o Q » ,\'71 ("0 ,,,'Dr ,1? ,.,'71 (56 Q N g \6 (19 "bb' (1? ,,;1» (,’6
Iteration Iteration Iteration

(a) R1-Distill-32b

(b) R1-Distill-14b

(c) R1-Distill-14b

Figure 9: Accuracy of short solutions and long solutions of R1-Distill-14b (a) and R1-Distill-32b (b) during

sequential revision.

D Parallel Scaling of Shortest Majority
Vote on GPQA

In Section 6, we demonstrated that our proposed
Shortest Majority Vote achieves superior test-time
scaling performance compared to the other two
methods on the AIME benchmark. In this section,
we present the parallel-scaling results on GPQA in
Figure 10. While Shortest Majority Vote consis-
tently outperforms the Shortest method on GPQA,
it does not exhibit significantly better parallel scal-
ing performance compared to Majority Vote on this
benchmark. This phenomenon might be attributed
to the smaller performance gap between short and
long solutions on GPQA compared to AIME, sug-
gesting that solution length plays a less critical
role in determining solution quality on the GPQA
benchmark, which can be observed from Figure 2b

E Prompt

System prompt:

You are a helpful and harmless assistant.
You should think step-by-step.

Instruction for MATH-500, AIME and Omini-
MATH:

Answer the question and enclose the final
answer in boxed{ }

Instruction for GPQA:
Select the best answer from the following op-

tions. Output only the letter corresponding
to the correct answer, enclosed in boxed{ }.

4664

Acc

0.64

Majority Vote

R1-Distill-32b R1-Distill-14b

Shortest
R1-Distill-1.5b

Shortest Majority Vote

AR Attty 0.3
\ -

PTNAA | 055 A2

A | R o

I/l N\ | 050 0.2
l,‘ A A

f * N 0.45
H . 0.1

/

pert Tl
=
o

P s

-
.

127
-
A

-
et 0.62
0.60

0.581 7

. A
—t

Aaaas

A A
'

0.56

0.54

0.521 |/

25 50 75
Number of Tokens (k)

25 50 75
Number of Tokens (k)

25 50

Number of Tokens (k)

75 20

40

Number of Tokens (k)

20 4
Number of Tokens (k)

Figure 10: Performance Comparison between Majority Vote and Shortest Majority Vote on GPQA.

F Examples of self-revision

Wait, let me verify that again ...

Wait, but that seems straightforward,
but let me check if I got the constants right

Wait, but let me verify this to ensure
I didn’t make a mistake ...

Wait, so is the answer 7567 But let
me check if this is consistent ...

Wait, but in 3D space, the -centers
might not be coplanar? ...

Alternatively, try to find a general formula ...

Alternatively, consider that m is such
that m divides k where k is from 1 to 999 ...

Alternatively, maybe we can use mod-
ulo 8 to get constraints ...

Alternatively, perhaps there’s a smarter
approach ...

Alternatively, another way to think
about this problem is to recognize that w
and z are roots of unity ...

4665

