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Abstract

Temporal Knowledge Graphs (TKGs) are vi-
tal for event prediction, yet current methods
face limitations. Graph neural networks mainly
depend on structural information, often over-
looking semantic understanding and requiring
high computational costs. Meanwhile, Large
Language Models (LLMs) support zero-shot
reasoning but lack sufficient capabilities to
grasp the laws of historical event development.
To tackle these challenges, we introduce a
training-free Analogical Replay (AnRe) rea-
soning framework. Our approach retrieves sim-
ilar events for queries through semantic-driven
clustering and builds comprehensive historical
contexts using a dual history extraction module
that integrates long-term and short-term history.
It then uses LLMs to generate analogical rea-
soning examples as contextual inputs, enabling
the model to deeply understand historical pat-
terns of similar events and improve its ability
to predict unknown ones. Our experiments on
four benchmarks show that AnRe significantly
exceeds traditional training and existing LLM-
based methods. Further ablation studies also
confirm the effectiveness of the dual history
extraction and analogical replay mechanisms.

1 Introduction

As a structured tool for representing real-world
facts, Temporal Knowledge Graphs (TKGs) extend
traditional knowledge graphs by incorporating tem-
poral information, thereby capturing the dynamic
evolution of knowledge (Leblay and Chekol, 2018;
Garcia-Duran et al., 2018; Xiang et al., 2022; Chen
et al., 2023). They play a pivotal theoretical role
in various research domains such as recommen-
dation systems (Wang et al., 2019), information
retrieval (Liu et al., 2018) and social crisis early
warning systems (Gastinger et al., 2023).

Early research primarily focuses on training
graph neural networks (GNNs) and recurring neu-
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Figure 1: An example of inference on TKG using AnRe.
Leveraging the in-context learning capabilities of LLMs,
the model is able to effectively predict outcomes for
unseen queries after learning similar historical develop-
ment processes.

ral networks (RNNs) to model the relationships
between entities and relations in TKGs (García-
Durán et al., 2018; Zhu et al., 2021; Han et al.,
2021; Li et al., 2022; Xu et al., 2023b). Although
some methods (Jin et al., 2019; Li et al., 2021) at-
tempts to predict recurring or periodic events by
referencing known events, they often fall short in
effectively modeling semantic information and re-
quire substantial computational resources for train-
ing on specific datasets.

Recent studies explore LLMs for reasoning on
TKGs (Yang et al., 2023; Yuan et al., 2024; Lee
et al., 2023). For instance, Lee et al. (2023) pro-
poses an In-Context Learning (ICL) approach, pro-
viding semantic information of TKGs to LLMs in
textual form. Yu et al. (2024) employs dynamic
rule libraries to present relevant historical context
to LLMs. Xia et al. (2024a) enhances the histori-
cal context by constructing higher-order historical
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inputs for LLMs. Although these methods elim-
inate the need for fine-tuning, they still face the
following issues: First, they rely solely on zero-
shot inference, neglecting the exceptional learn-
ing capabilities of LLMs from reasoning examples.
Second, most methods fail to verbalize events into
natural language sentences, resulting in insufficient
semantic coherence in the historical context, which
hinders the LLM’s ability to comprehend complex
historical backgrounds effectively.

To address these, our research focuses on lever-
aging the semantic understanding and few-shot
learning capabilities of LLMs (Zhao et al., 2023;
Brown et al., 2020) to enhance predictive perfor-
mance and reduce computational resource con-
sumption. We propose a training-free Analogical
Replay (AnRe) framework for TKGF tasks, as il-
lustrated in Figure 1. Given a query (Canada, Sign
agreement, ?, t6), we identify a similar event (Rus-
sia, Sign agreement, Belarus, t5). By learning the
historical development of this similar event, the
model can perform analogical reasoning on the
unknown query, thereby significantly improving
prediction accuracy.

Our framework consists of three core modules:(i)
Semantic-driven Historical Clustering: We trans-
form entities into semantic vectors and cluster them
to identify entities semantically similar to the target
entity and events analogous to the given query. (ii)
Dual History Extraction: We verbalize the histor-
ical events and queries, originally in tuple form,
into sentences of natural language incorporating
appropriate connecting words. Combining an im-
proved long-term and short-term history extraction
approach, we construct similar queries by masking
the object in similar events and extract short-term
history based on temporal proximity. Simultane-
ously, we compute the probability distribution of
the validity of historical events using the semantic
understanding capabilities of LLMs, dynamically
filtering out effective long-term history. (iii) Ana-
logical Replay: We utilize LLMs to construct the
reasoning process for similar queries and their his-
torical contexts, generating analogical reasoning
examples. The model learns the historical devel-
opment process through in-context learning and
ultimately computes the probability distribution of
candidate objects for the target query, selecting the
most likely prediction result.

We conduct extensive experiments on
widely used TKG benchmarks, including
ICEWS14 (Garcia-Duran et al., 2018), ICEWS05-

15 (Garcia-Duran et al., 2018), ICEWS18 (Jin
et al., 2019) and GDELT (Leetaru and Schrodt,
2013). We use InternLM2 (Cai et al., 2024b),
Qwen2.5 (Yang et al., 2024; Team, 2024), Yi (AI
et al., 2024), Mistral (Jiang et al., 2023a), and
Llama-3 (AI@Meta, 2024) in our experiments.
The results demonstrate that our method signif-
icantly outperforms trained baseline methods
on most metrics across four datasets. Among
methods employing LLMs, AnRe achieves the
best performance across various LLMs. Compared
to untrained methods, our method shows average
improvements of 17.8% and 9.4%, respectively,
proving the effectiveness of our approach. Further-
more, ablation studies and hyperparameter analysis
highlight the advantages of our dual history
extraction and analogical replay mechanisms.
Our contributions are summarized as follows:

(1) We propose an Analogical Replay (AnRe)
reasoning framework for TKGF, which leverages
the few-shot learning capabilities of LLMs to en-
hance predictive performance.

(2) We innovatively introduce a process for con-
structing analogical examples and a dual history
extraction method, providing LLMs with efficient
analogical replay contexts.

(3) Our experiments demonstrate the effective-
ness of AnRe in various datasets and metrics, show-
casing significant advantages compared to the base-
line methods.

2 Task Formulation

2.1 Temporal Knowledge Graph Forecasting

Temporal Knowledge Graph Forecasting (TKGF)
involves predicting future states of a TKG, which
is a series of time-ordered multi-relational directed
graphs. Formally, a TKG up to time t is denoted
as T KGt = {G1, G2, . . . , Gt}, where each snap-
shot Gt = (V,R, Et) represents the graph at time
t. Here, V is the set of entities, R is the set of
relations, and Et consists of timestamped events e
as quadruples (s, r, o, t) with s, o ∈ V and r ∈ R.

The goal of TKGF is to predict missing entities
in a quadruple for a future time t+ k, either as an
object (s, r, ?, t + k) or a subject (?, r, o, t + k),
leveraging historical data from previous snapshots
T KG<t = {G1, G2, . . . , Gt−1}. Candidate enti-
ties ei ∈ V are assigned scores by TKG prediction
models to determine the unknown entities.
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2.2 In-Context Learning for TKGF

In-Context Learning (ICL) for TKGF leverages
large language models (LLMs) to adapt to forecast-
ing tasks using contextual examples, eliminating
the need for model fine-tuning (Lee et al., 2023). In
this approach, ICL uses historical data from a tem-
poral knowledge graph to predict future events. For
a future query q = (sq, rq, ?, tn), where sq is an
entity and rq is a relation at time tn, the method re-
trieves the historical context Hn(q) from previous
graph snapshots T KG1:n−1 = {G1, . . . , Gn−1}.

A prompt θq is constructed based on this his-
torical context. The prediction yq is then gen-
erated from the LLM’s probability distribution
yq ∼ PLLM(yq | θq) using ICL to make zero-shot
predictions. Entities and relations are numerically
mapped to handle multi-word names, ensuring con-
sistency in the LLM’s outputs. This process in-
volves ranking candidate entities using token prob-
abilities without additional training, allowing effec-
tive zero-shot forecasting.

3 Analogical Replay Reasoning

The AnRe framework relies primarily on the se-
mantic comprehension capabilities of LLMs (Zhao
et al., 2023) and their ability to learn from few-
shot examples for inference (Yu et al., 2020; Cobbe
et al., 2021; Wei et al., 2022; Kojima et al., 2022).
We verbalize the quadruples in the TKG into nat-
ural language form, employ semantic clustering
to identify similar events, and construct analogous
historical development processes. This facilitates
the model’s ability to infer unknown queries by
revisiting past events in unfamiliar ICL tasks. We
implement a dual retrieval strategy that integrates
both short-term and long-term histories to effec-
tively incorporate causal information.

As illustrated in Figure 2, AnRe operates as fol-
lows: Initially, we employ a semantic-driven ap-
proach to cluster entities and histories based on
the given query. Subsequently, using the LLM, we
retrieve a combined long- and short-term history in
reverse chronological order. Finally, we utilize the
same LLM to perform analogical replay for infer-
ence, thus obtaining the predicted entity results.The
Algorithm of the whole procedure can be referred
in Appendix A. We will introduce semantic-driven
historical clustering in § 3.1, dual history extraction
in § 3.2 and analogical replay in § 3.3.

3.1 Semantic-driven Historical Clustering

The progression of history often exhibits similari-
ties. For event prediction tasks concerning a spe-
cific entity, we frequently infer the development of
unknown events by observing how similar events of
analogous entities have unfolded historically. The
purpose of this module is to employ a semantic-
driven clustering approach to identify historically
analogous known events for the masked query. Ad-
ditionally, it aims to retrieve relevant histories and
candidate prediction answers for the query, and rel-
evant histories corresponding to each similar event.

Entity Semantic Clustering For a given query
q = (sq, rq, ?, tn+1), we need to identify the set
of similar entities for the target entity sq. For
the entity set in the TKG (represented as V) , we
first convert them into vector representations us-
ing BERT (Devlin, 2018). We then determine the
optimal number of clusters by employing the el-
bow method and silhouette coefficient (Rousseeuw,
1987). The cluster number k with the highest sil-
houette coefficient is selected for the final k-means
clustering (Lloyd, 1982) of the vector representa-
tions. Subsequently, we retrieve the cluster X to
which sq belongs and consider the set of entities
within X as the semantically similar entities to sq.

Candidate History Filter In the candidate his-
tory filter phase, we first transform all quadru-
ples in T KGt<n+1 by adding prepositions to con-
struct sentences comprehensible to the LLM. Next,
we identify similar events and the relevant corre-
sponding histories for the semantically similar en-
tities in X . For an entity si in X and the given
timestamp tn+1, we define the relevant historical
context as: Hi = {(s, r, o, t) ∈ T KGt<n+1 |
s = si or o = si}. For entities si in X other
than sq, we define the set of similar events as:
Ei = {(si, r, o, t) ∈ T KGt<n+1 | r = rq}.

To identify similar events with sufficient infer-
ence information, we filter Ei by requiring at least
300 relevant historical contexts before the event
timestamp. These events are then ranked according
to the semantic similarity to q, and the query with
the highest similarity is selected as the similar event
ei. Since these similar events are retrieved before
tn+1, their corresponding values o are known.

For the target entity sq, we first identify the rele-
vant history Hq using the same method, and then
determine the candidate answer entity set Oq for
query q. We consider entities that have interacted
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Figure 2: Overview of AnRe. (1) Semantic-driven Historical Clustering: Clustering TKG entities and filtering event
sets by query. (2) Dual History Extraction: Retrieving long-term and short-term histories with dynamic filtering. (3)
Analogical Replay: Constructing ICL prompts for analogical reasoning and entity prediction. It is noteworthy that
the quadruples in the TKG are verbalized into natural language sentences.

with sq in a large number of historical events as
potential candidates, thus defining the candidate an-
swer entity set as: Oq = {o | (s, r, o, t) ∈ Hq, s =
sq} ∪ {s | (s, r, o, t) ∈ Hq, o = sq}.

3.2 Dual History Extraction

Utilizing a combined input of long- and short-term
histories allows for the capture of historical con-
text information across different time scales. The
short-term history provides the immediate context
of the query event, which empirically may have a
direct impact on the query and can capture immedi-
ate variability and abrupt changes. The long-term
history aids in identifying long-term trends and
patterns of event occurrences, offering a broader
temporal macro-context. Unlike ONSEP (Yu et al.,
2024), which predicts separately for long-term and
short-term histories and then weights the results,
we integrate the long-term and short-term histo-
ries into a single historical context, providing the
model with a more coherent and semantically rich
background.

3.2.1 Short-Term History Retriever
The short-term history retriever focuses on acquir-
ing the most recent event chains that are close in
time to the query or similar events. For the rele-

vant history Hi corresponding to a similar event
ei, we sort the events by their timestamps and trun-
cate the most recent l events to form the relevant
short-term history chain HS

i . Similarly, we truncate
the relevant history Hq for the query q to form the
query’s short-term history chain HS

q . The short-
term history chain is directly related to the entities
in the query or similar events and may have direct
causal relationships, making it a crucial reference
for prediction.

3.2.2 Long-Term History Retriever

The long-term history retriever focuses on retriev-
ing event chains across extended time spans. This
stage primarily consists of two modules: Probabil-
ity Distribution Calculation (PDC) and Dynamic
Threshold Filtering (DTF). For a similar event ei,
the long-term history chain is obtained from the set
HL

i = Hi −HS
i . We partition the set HL

i into his-
torical sets for each time step, denoted as: Htj

i =
{(si, r, o, tj) | (si, r, o, tj) ∈ HL

i , tli > tj ≥ t1},
where tli is the timestamp of the last event in HS

i .
For the query q, we employ the same method to ob-
tain the historical sets Htj

q . At each time step, we
employ PDC and DTF to complete the long-term
history retrieval.
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Probability Distribution Calculation leverages
the powerful semantic comprehension capabilities
of the LLM to assess the effectiveness of history
for query inference. We first mask the entity o in
the similar event ei to construct a query qi with
the same structure as q. Next, we specify a struc-
tured prompt θ1 (Table 7) and, at each time step
tj , instruct the model to identify the most helpful
historical events from H

tj
i for inferring qi. We nu-

merically map each historical event in H
tj
i , utilize

the LLM to obtain the corresponding logarithmic
output Lp, and then convert it into a normalized
probability using the softmax function. For Htj

q ,
we calculate the probability distribution using the
same method. The result represents the LLM’s
judgment on the effectiveness of each historical
event as an inference context.

Specifically, for any historical event hl in H
tj
i ,

we first map it to a label idl. We then obtain the
logarithmic scores s = LLM(θ1(H

tj
i , qi)) for each

historical event. The effectiveness probability dis-
tribution for each historical event is calculated as
follows:

p(hl) =
esidl∑

hk∈H
tj
i

esidk
(1)

Dynamic Threshold Filtering primarily filters
out effective histories for each time step by setting
dynamic confidence thresholds. Empirically, the
correlation between historical events and the query
diminishes with increasing temporal distance from
the query. Therefore, we require higher probability
confidence to ensure the model’s grasp of event
effectiveness. We construct a dynamic threshold
calculation method using the time difference be-
tween the history and the query. Specifically, for
the query qi, we define the maximum time differ-
ence T = tqi − t1, and the time difference be-
tween the history at time step tj and the query
as ∆t = tqi − tj . Given the set size F of H

tj
i ,

the confidence threshold should be no lower than
the average probability 1/F and no higher than 1.
Thus, the dynamic threshold c for time step tj is:

cj =
1

F
+

(
1− 1

F

)(
∆t

T

)α

(2)

where the variation factor α controls the growth
rate of the confidence threshold. When the effec-
tiveness probability p(hl) ≥ cj , hl is considered a

Dataset # Entity # Relation Train Valid Test

ICEWS14 12,498 260 323,895 - 341,409
ICEWS05-15 10,094 251 368,868 46,302 46,159
ICEWS18 23,033 256 373,018 45,995 49,545
GDELT 7,691 240 1,734,399 238,765 305,241

Table 1: Statistics of the datasets.

strongly correlated event with qi and is included in
the long-term history set Htj

i for time step tj .
We start retrieving the long-term history sets

from time step tli−1 in reverse chronological order
until the long-term history length is sufficient, and
then sort them in chronological order to obtain the
long-term history chain HL

i for qi. Finally, we
concatenate HS

i and HL
i to obtain the combined

long-term and short-term history chain Hi. For q,
we use the same method to obtain Hq.

3.3 Analogical Replay

The analogical replay phase aims to leverage the
LLM’s few-shot learning capabilities to learn from
the development processes of similar events, pro-
viding insights for inferring unknown queries. We
propose a novel analogical replay method for
TKGF. Specifically, we filter out ei from Hi if
its length is less than the total length L, and se-
lect the a most semantically similar events to q
from the remaining similar events to construct
analogical examples. We formulate a structured
prompt θ2 (Table 8) to obtain the LLM’s analysis
process p for each similar event eai , denoted as
pai = LLM(θ2(Hai , eai)). The analogical exam-
ple exai is constructed as (Hai , eai , pai).

The a analogical examples form the set P ,
which, combined with Hq, q, and Oq, is used to
construct a structured prompt θ3 (Table 9). The
same LLM is utilized to select the tail entity o from
the candidate entity set Oq for prediction. Similar
to the PDC phase, we map each candidate entity
to a numerical token, obtain the corresponding log-
arithmic output La from the LLM, and convert it
into a normalized probability using the softmax
function, resulting in the probability distribution
of each candidate answer. We sort the probability
results and select the highest probability result as
the final prediction.

4 Experimental Setup

4.1 Datasets and Evaluation Metrics

We conduct experiments on two widely-used event
datasets in the TKGF domain: the Integrated
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Crisis Early Warning System (ICEWS) dataset,
specifically using ICEWS14 (García-Durán et al.,
2018), ICEWS05-15 (García-Durán et al., 2018),
and ICEWS18 (Jin et al., 2019) versions, and the
Global Database of Events, Language, and Tone
(GDELT) dataset (Leetaru and Schrodt, 2013). Ta-
ble 1 presents the statistics of the datasets. These
datasets represent political events in the form of
quadruples, such as (Barack Obama, visit, Malay,
2014/02/19), where each event consists of a subject,
relation, object, and timestamp. We construct his-
torical event chains using the training sets of these
datasets and randomly select 200 events from the
test sets for experimental evaluation, averaging the
results of three experiments as the final outcome.
To assess the effectiveness of our method in pre-
dicting rankings, we employ the Hit@k (where k
= 1, 3, 10) evaluation metrics, which measure the
accuracy of our method in the top k predictions.

4.2 Baselines

For traditional supervised models, we select RE-
NET (Jin et al., 2019), xERTE (Han et al., 2020b),
CyGNet (Zhu et al., 2021), RE-GCN (Li et al.,
2021), TITer (Sun et al., 2021), TiRGN (Li et al.,
2022) and DiffuTKG (Cai et al., 2024a) for per-
formance comparison. Among methods utilizing
LLMs, we primarily compare our approach with
ICL (Lee et al., 2023), ONSEP (Yu et al., 2024),
CoH (Xia et al., 2024a) and LLM-DA (Wang et al.,
2024). Additionally, we evaluate the performance
differences using different LLMs within our frame-
work. The details of LLMs used in experiments
can be found in Appendix B.

4.3 Implementation Details

We convert the structured quadruples within the
TKG into textual sentences by incorporating prepo-
sitions for our experimental purposes. Sample
textual inference examples are furnished in Ap-
pendix F. Recognizing the influence of input length
on the textualized data, all experiments are ex-
ecuted on an NVIDIA A100 Tensor Core GPU
equipped with 80GB of VRAM.

5 Experimental Results

5.1 Main Results

As shown in Table 2, we selected several tradi-
tional embedding-based models, hybrid models
combining graph-based approaches with LLMs,
and purely LLM-based methods for comparison.

Across all four datasets, our method demonstrates
strong competitiveness. Among the purely LLM-
based approaches (with the history length L set
to 100), our framework achieves the best perfor-
mance. By expanding the candidate entity set to
include the second-order historical neighbors of sq,
we observe a slight yet consistent performance im-
provement. Compared to ICL, our method achieves
improvements of 22.59%, 10.76%, and 51.16% in
Hit@1, while showing gains of 11.82%, 1.30%,
and 30.00% over ONSEP. When compared to
graph-based methods, our model outperforms most
baseline approaches and remains competitive with
SOTA methods in certain metrics. Moreover, our
approach provides a better balance between compu-
tational efficiency and predictive performance com-
pared to the training overhead required by graph-
based models.

5.2 Ablation Study
We conduct three sets of ablation experiments on
four benchmarks, with the results summarized in
Table 3.

Effect of Analogical Examples To investigate
the impact of analogical reasoning examples, we
remove these examples when constructing the final
inference prompt, requiring the model to directly
learn from the historical event chain and predict
the outcome. The results show a significant decline
in model performance after removing the analogi-
cal examples. This indicates that after learning the
development process of similar historical events,
the model can better understand the occurrence
patterns of historical events and make predictions.
However, even after removing the analogical ex-
amples, our method still outperforms ONSEP on
multiple metrics, demonstrating the effectiveness
of our dual-history combined reasoning approach.

Effect of Dual History To investigate the impact
of short-term and long-term histories on prediction,
we separately remove the short-term and long-term
histories. The results show that after removing the
short-term history, the model’s prediction perfor-
mance significantly declines, with the accuracy of
Hit@1 dropping by 9.98% on average compared
to the original method. This indicates the critical
role of short-term history in event prediction, as it
provides direct causes or reasoning evidence for
the occurrence of queried events.

After removing the long-term history, the perfor-
mance also declines noticeably, but the impact is
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ICEWS14 ICEWS05-15 ICEWS18 GDELT
Type Model Train

MRR Hit@1 Hit@3 Hit@10 MRR Hit@1 Hit@3 Hit@10 MRR Hit@1 Hit@3 Hit@10 MRR Hit@1 Hit@3 Hit@10

RE-NET
√

0.399 0.301 0.440 0.582 0.437 0.336 0.488 0.627 0.298 0.197 0.326 0.485 0.196 0.124 0.221 0.340
xERTE

√
0.408 0.327 0.457 0.573 0.466 0.378 0.523 0.639 0.293 0.210 0.335 0.465 0.195 0.119 0.220 0.342

CyGNet
√

0.381 0.274 0.426 0.579 0.413 0.294 0.461 0.616 0.278 0.172 0.310 0.469 0.190 0.117 0.219 0.334
RE-GCN

√
0.420 0.316 0.472 0.617 0.480 0.373 0.539 0.685 0.326 0.224 0.368 0.527 0.197 0.125 0.223 0.338

TITer
√

0.418 0.328 0.465 0.584 0.476 0.383 0.528 0.649 0.317 0.221 0.335 0.448 0.195 0.127 0.220 0.331
TiRGN

√
0.429 0.321 0.485 0.636 0.485 0.369 0.552 0.703 0.320 0.210 0.367 0.537 0.217 0.137 0.241 0.376

♣

DiffuTKG
√

0.485 0.364 0.494 0.727 0.527 0.403 0.602 0.759 0.367 0.257 0.388 0.578 0.251 0.163 0.275 0.423

CoH × 0.439 0.331 0.496 0.649 0.497 0.380 0.564 0.713 0.330 0.218 0.378 0.549 - - - -♢
LLM-DA × 0.471 0.369 0.526 0.671 0.521 0.416 0.586 0.728 - - - - - - - -

ICL* × 0.318 0.301 0.432 0.560 0.353 0.353 0.507 0.647 0.215 0.172 0.289 0.434 - - - -
ONSEP × - 0.330 0.464 0.570 - 0.386 0.546 0.662 - 0.200 0.324 0.443 - - - -

AnRe (Oq) × 0.466 0.346 0.470 0.608 0.498 0.389 0.551 0.678 0.321 0.255 0.371 0.554 0.221 0.153 0.244 0.342
AnRe (O2

q ) × 0.474 0.369 0.511 0.657 0.509 0.391 0.580 0.696 0.355 0.260 0.392 0.567 0.243 0.166 0.266 0.375
∆Improve* 49.1% 22.6% 18.3% 17.3% 44.2% 10.8% 14.4% 7.6% 65.1% 51.2% 35.6% 30.7% - - - -

♠

∆Improve - 11.8% 10.1% 15.3% - 1.3% 6.2% 5.1% - 30.0% 21.0% 28.0% - - - -

Table 2: The comparative performance of traditional embedding-based models (represented as ♣), hybrid models
(represented as ♢) and LLM-based prediction models (represented as ♠), evaluated using MRR and Hit@k metrics
across four datasets. All LLM-based methods utilize InternLM2-7B (Cai et al., 2024b) as the foundational model.
The notation O2

q denotes using the set of historical second-order neighbor entities of sq as the candidate set. The best
performance within each model type is highlighted in bold. ∆Improve* and ∆Improve denote the improvements
of our method over ICL and ONSEP, respectively. Results for embedding-based models and hybrid models are
excerpted from (Li et al., 2022; Cai et al., 2024a; Wang et al., 2024), while results for LLM-based models are
excerpted from (Yu et al., 2024).

Method ICEWS14 ICEWS05-15 ICEWS18 GDELT

MRR Hit@1 Hit@3 Hit@10 MRR Hit@1 Hit@3 Hit@10 MRR Hit@1 Hit@3 Hit@10 MRR Hit@1 Hit@3 Hit@10

AnRe 0.466 0.346 0.470 0.608 0.498 0.389 0.551 0.678 0.321 0.255 0.371 0.554 0.221 0.153 0.244 0.342
w/o example 0.401 0.300 0.431 0.587 0.422 0.347 0.520 0.661 0.288 0.220 0.364 0.513 0.195 0.117 0.215 0.329

w/o short-term 0.353 0.214 0.378 0.533 0.349 0.298 0.476 0.575 0.200 0.121 0.235 0.481 0.175 0.111 0.208 0.307
w/o long-term 0.388 0.241 0.382 0.543 0.401 0.332 0.497 0.603 0.256 0.146 0.255 0.477 0.190 0.114 0.208 0.310

Table 3: Ablation study of AnRe. W/o example: exclude analogical reasoning examples. W/o short-term: exclude
short-term history. W/o long-term: exclude long-term history.

less pronounced compared to the absence of short-
term history. Compared to ONSEP, the lack of long-
term history leads to performance lags in Hit@1
and Hit@3, but the difference in Hit@10 is negli-
gible, with a lead of 0.034 on ICEWS18. This not
only demonstrates the effectiveness of our method
in coarse-grained prediction but also highlights the
significant influence of long-term history on predic-
tion accuracy. In other words, providing a complete
historical context over a long time span is crucial.

5.3 Performance Comparison of Different
LLMs

We present the complete results of different LLMs
in Table 5. As shown in Figure 7, our method
achieves the best performance across various large
models, demonstrating a significant improvement
over ONSEP. Notably, Qwen2.5 performs the best,
achieving a Hit@1 result of 0.261 on the ICEWS18
dataset. Compared to InternLM2, Yi and Llama3
shows slight improvements across all three meth-

ods. Mistral demonstrates progress in the ICL
method but exhibits some shortcomings in the other
methods. On the other two datasets, Qwen2.5 and
Yi particularly stand out when using our method,
with Qwen2.5 achieving the best performance
across multiple metrics. These results indicate that
AnResignificantly enhances the prediction accu-
racy of models and exhibits positive effects across
multiple LLMs.

6 Analysis and Discussion

6.1 Hyperparameter Analysis
To identify the optimal hyperparameter settings
and investigate whether the impact of hyperparam-
eters is consistent across different datasets, we con-
ducted comparative experiments on all hyperparam-
eters used in AnRe.

Historical Length We fix other hyperparameters
and conduct experiments under different histori-
cal lengths, with the evaluation results shown in
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Figure 3: Performance of different historical lengths L
on ICEWS14 and ICEWS18.
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Figure 4: Performance of different short-term history
lengths l on ICEWS14 and ICEWS18.

Figure 3. The experimental results indicate that
the impact of historical length L on performance
follows a similar trend across different datasets.
Specifically, when the historical length increases
from 50 to 100, the performance of our method con-
tinues to improve, peaking at L = 100. However,
as L grows from 100 to 150, performance declines,
with a slight recovery at 200. This suggests that
our method still requires a sufficient amount of his-
torical information for reasoning, but excessively
long contexts can lead to a decline in the model’s
prediction capability. Given that our structured
prompts require both analogical reasoning history
and formal reasoning context, the input length pro-
vided to the LLM is longer compared to the ONSEP
framework. Consequently, as the historical length
increases, the model becomes more susceptible to
noise in the historical data, leading to increased
volatility in the prediction results.

Short-Term History Length We investigate the
impact of different short-term historical lengths l
on prediction performance, with the results shown
in Figure 4. Specifically, as l increases from 0 to 20,
performance generally improves, reaching its peak
at l = 20 on both datasets. When l increases from
20 to 30, performance gradually declines. This
indicates that the impact of short-term historical
changes is similar across different datasets, and
maintaining an appropriate short-term historical
length is crucial for prediction. When l is too short,
the model cannot fully utilize key information from
recent data, leading to insufficient description of
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Figure 5: Performance of different threshold variation
factors α on ICEWS14 and ICEWS18.

the current state, and the model may struggle to cap-
ture short-term fluctuations and trend changes in
the data. Conversely, when l is too long, although
the model can leverage more historical data, it also
introduces excessive redundant information and
noise. Therefore, the optimal selection of short-
term historical length requires finding a balance
between the amount of information and noise.

Threshold Variation Factor We investigate the
impact of the threshold variation factor α on per-
formance, as illustrated in Figure 5. It is observed
that as α increases from 2 to 2.75, the predictive
performance of the model across various datasets
generally exhibits an upward trend, with the opti-
mal performance achieved at α = 2.75. Beyond this
value, performance declines. This demonstrates
that the influence of α is consistent across different
datasets, and selecting an appropriate value allows
for the effective retrieval of historical events that
are beneficial for prediction. Specifically, when α
is too small, the confidence threshold increases too
rapidly with time steps, leading to overly stringent
filtering of historical events and resulting in insuffi-
cient information. Conversely, when α is too large,
the confidence threshold remains low, introducing
excessive redundant information that hinders the
model’s capacity to accurately capture key events.

6.2 Analysis of Candidate Set

Our analysis of candidate selection reveals a critical
trade-off between recall and efficiency in construct-
ing the candidate set Oq. While the 1-hop neighbor
restriction in Oq ensures token efficiency, it also
introduces a recall limitation, as evidenced by the
lower probability (65–72% across datasets) of the
correct entity appearing in Oq. Expanding to 2-
hop neighbors (O2

q ) significantly improves recall
to 87–91%, as shown in Figure 6, but at the cost of
increased computational overhead due to pairwise
time checks and context window constraints. This
trade-off underscores the practical challenges of
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balancing recall with the operational demands of
LLM-based inference. In light of these findings,
we adopt O2

q in our implementation to mitigate re-
call limitations while acknowledging the inherent
efficiency compromises.

6.3 Analysis of Model Scales

To investigate the performance of models with dif-
ferent scales on our method, we conduct compar-
ative experiments using InternLM2 with 7B and
20B parameters. A detailed analysis can be found
in Appendix C.

7 Related Work

7.1 TKGF with Traditional Supervised
Models

Traditional TKGF methods typically combine
graph-based and sequential models to predict fu-
ture events. Know-Evolve (Trivedi et al., 2017)
and GHNN (Han et al., 2020b) model event evo-
lution through temporal point processes, while
CyGNet (Zhu et al., 2021) uses a replication mech-
anism based on historical event structures. Other
models such as RE-Net (Jin et al., 2019) and
RE-GCN (Li et al., 2021) integrate GNN to cap-
ture both temporal and structural dependencies.
TANGO (Han et al., 2021) models continuous-
time information using neural ODEs. These
methods excel in periodic or repetitive patterns
but face limitations in interpretability and zero-
shot scenarios. Some recent approaches, such as
xERTE (Han et al., 2020a) and MetaTKG++ (Xia
et al., 2024b), improve interpretability, but are
application-specific. Reinforcement learning and
contrastive learning methods (Sun et al., 2021; Xu
et al., 2023b) also improve performance, though
they struggle with large search spaces and rely on
static rules.

7.2 TKGF with LLMs

In contrast, LLMs, with their robust semantic un-
derstanding and reasoning capabilities, present a
promising avenue for TKG prediction. Initial re-
search (Peters et al., 2019; Han et al., 2023; Yang
et al., 2023; Xu et al., 2023a) utilize pre-trained lan-
guage models (PLMs) to process temporal knowl-
edge by translating historical events into textual
contexts for embedding extraction. Subsequent
studies (Jiang et al., 2023b; Yuan et al., 2024; Tan
et al., 2023) have further explored the integration of
temporal and structural information within LLMs.
Notably, zrLLM (Ding et al., 2024) and LLM-
DA (Ding et al., 2024) have advanced zero-shot
inference and adaptability, albeit at significant com-
putational expense.

Recent advancements (Shi et al., 2024; Zhang
et al., 2023) improve model explainability and
computational efficiency. In-context learning ap-
proaches (Lee et al., 2023; Ding et al., 2024) re-
formulate prediction tasks as sequence genera-
tion, optimizing historical data utilization. Gen-
TKG (Liao et al., 2024) leverages the the few-
shot tuning to expedite LLM reasoning, facilitating
cross-domain generalization. The ONSEP frame-
work (Yu et al., 2024) synergizes LLMs with TKGs
for adaptive event prediction in dynamic settings,
while CoH (Xia et al., 2024a) incorporates higher-
order historical information as a modular enhance-
ment, boosting graph model efficacy.

8 Conclusion

This paper introduces a training-free Analogical
Replay (AnRe) reasoning framework for TKGF
tasks. Through semantic-driven clustering and
a dual history extraction module that combines
long-term and short-term history, AnRe constructs
comprehensive historical contexts for query events.
It leverages LLMs to generate analogical reason-
ing examples as contextual input, enabling the
model to deeply understand the historical evolution
patterns of similar events. Experimental results
demonstrate that AnRe significantly outperforms
traditional trained models and existing LLM-based
methods on four TKG benchmark datasets, vali-
dating its effectiveness in event prediction tasks.
Furthermore, ablation studies confirm the critical
role of the dual history extraction and analogical
replay mechanisms. Future work will extend AnRe
to other temporal reasoning tasks and optimize effi-
ciency for larger knowledge graphs.
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Limitations

Our method, due to its step-by-step nature, involves
multiple calls to the LLM, leading to increased
computational overhead and reasoning complex-
ity. To fully utilize semantic information, we con-
vert graph-structured information into textual form,
which significantly expands the context input. As a
result, the effectiveness of our method may be in-
fluenced by the length of the context. Additionally,
the predictive accuracy of our framework relies on
the model’s precise analysis of analogical exam-
ples, which could pose significant challenges to
the interpretability of the method. Currently, we
employ only basic k-means clustering and BERT
embeddings in the semantic-driven module, leav-
ing substantial room for improvement in the depth
of semantic information extraction. Moreover, we
depend solely on the LLM’s semantic understand-
ing capabilities for extracting historical contexts,
which still impose limitations on the comprehen-
siveness and accuracy of historical information. In
future work, our approach could integrate graph-
structured models with lower training costs to pro-
vide more accurate contextual backgrounds.
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Algorithm 1 Analogical Replay for TKGF
Require: Entity Set, V
Require: History Events Set at time tn,Hn

Require: Large Language Model, LLM
Require: Query, q/(sq, rq, ?, tn+1)
Require: Number of Analogical Examples, a
Ensure: Object Entity Prediction, oq

1: V ′ ← Clustering(V)
2: X ← ClusterRetriever(V ′

, sq)
3: A,P ← ∅, ∅
4: for si ∈ X do
5: if si ̸= sq then
6: Hi, ei ← CandiFilter(Hn, rq, si)
7: HS

i ← S-Term(Hi)
8: HL

i ← L-Term(LLM(Hi,

Masked(ei)))
9: Hi ← HS

i ∪HL
i

10: A ← PickTop(A, a, (Hi, ei))
11: else
12: Hq, Oq ← CandiFilter(Hn, rq, sq)
13: HS

q ← S-Term(Hq)

14: HL
q ← L-Term(LLM(Hq, q))

15: Hq ← HS
q ∪HL

q

16: end if
17: end for
18: for (Hai , eai) ∈ A do
19: exai ← Replay(LLM(Hai , eai))
20: P ← P ∪ exai
21: end for
22: oq ← Infer(LLM(P,Hq, q, Oq))
23: return oq

A Algorithm of AnRe

We provide the algorithm of our framework in Al-
gorithm 1.

B Details of Models

InternLM2 (Cai et al., 2024b) is a model fine-
tuned on the internlm2-base architecture using spe-
cialized domain corpora, capable of handling 32K
context inputs. We employ both the 7B and 20B
versions of InternLM2 in our experiments.

Qwen2.5 (Yang et al., 2024; Team, 2024) is the
latest series of Qwen large language models, featur-
ing Long-context Support up to 128K tokens.We
employ the Qwen2.5-7B-Instruct version for our
experiments.

InternLM2 Qwen2.5 Yi Mistral Llama-3
Models
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Figure 7: The performance comparison of ICL, ON-
SEP, and AnRe using different LLMs, with the results
selected based on the Hit@1 metric on the ICEWS18
dataset.

Yi (AI et al., 2024) We access the Yi-6B-200K
version, supporting up to 200K context inputs.

Mistral (Jiang et al., 2023a) We utilize the
Mistral-7B-Instruct-v0.3 model, supporting a con-
text length of 32K tokens.

Llama-3 (AI@Meta, 2024) We access the
Llama-3-8B-Instruct-262k version for our exper-
iments, which is capable of handling 262K context
inputs.

C Analysis of Model Scales

As shown in Table 4, the performance of the 20B
model demonstrated slight improvements across
all metrics compared to the 7B model. Notably,
under the ICEWS14 and ICEWS18 datasets, the
Hit@1 metric increases by 1.45% and 1.96%, re-
spectively. This indicates that models with larger
parameter sizes can better comprehend longer con-
textual inputs and capture historical development
patterns within analogical event chains. However,
compared to the effects of ablation experiments and
hyperparameter adjustments, the impact of model
scale on predictive performance is relatively minor.
This observation underscores the efficiency of our
method when applied to smaller-scale models.

D Analysis of Context Length Limitations

As demonstrated in Table 6, the inclusion of a
single analogical example yields optimal results
across all metrics, achieving a 15.9% relative im-
provement in Hit@1 compared to zero-shot prompt-
ing. However, doubling the examples to two
not only fails to produce significant performance
gains but also incurs substantial computational
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ICEWS14 ICEWS05-15 ICEWS18
Model Hit@1 Hit@3 Hit@10 Hit@1 Hit@3 Hit@10 Hit@1 Hit@3 Hit@10

InternLM2-7B 0.346 0.470 0.608 0.389 0.551 0.678 0.255 0.371 0.554
InternLM2-20B 0.351 0.472 0.610 0.391 0.554 0.681 0.260 0.372 0.555

∆ Improve 1.45% 0.43% 0.33% 0.51% 0.54% 0.44% 1.96% 0.27% 0.18%

Table 4: The performance with different LLM parameters scales.

costs—input tokens increase by 183% and process-
ing time by 285%. We attribute this phenomenon
to two factors: (1) the introduction of noisy or
redundant contextual information with additional
examples, which may interfere with the model’s
reasoning focus, (2) the inherent constraints of the
LLM’s token capacity, where longer contexts dis-
proportionately increase memory and time over-
head without commensurate accuracy benefits.

E Prompt Templates

The prompt templates in our framework will be
presented from Table 7 to 9.

F Reasoning Demonstrations

In Figure 8 to 10, we provide demonstrations of
the reasoning process using LLMs across different
modules.

G Formal Definition of Notations

We describe the formal definition of the notation
used in the pseudocode algorithm and the formulas
in this paper, as shown in Table 10.
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LLM Methods ICEWS14 ICEWS05-15 ICEWS18

Hit@1 Hit@3 Hit@10 Hit@1 Hit@3 Hit@10 Hit@1 Hit@3 Hit@10

InternLM2
ICL 0.301 0.432 0.560 0.353 0.507 0.647 0.172 0.289 0.434

ONSEP 0.330 0.464 0.570 0.386 0.546 0.662 0.200 0.324 0.443
AnRe 0.346 0.470 0.608 0.389 0.551 0.678 0.255 0.371 0.554

Qwen2.5
ICL 0.308 0.437 0.565 0.360 0.510 0.649 0.194 0.294 0.437

ONSEP 0.345 0.467 0.578 0.388 0.547 0.666 0.215 0.336 0.484
AnRe 0.351 0.468 0.608 0.390 0.553 0.677 0.261 0.372 0.556

Yi
ICL 0.305 0.433 0.568 0.355 0.509 0.648 0.193 0.291 0.436

ONSEP 0.341 0.464 0.591 0.387 0.544 0.670 0.210 0.327 0.478
AnRe 0.347 0.471 0.607 0.387 0.550 0.679 0.256 0.369 0.547

Mistral
ICL 0.306 0.433 0.566 0.352 0.504 0.644 0.184 0.288 0.434

ONSEP 0.342 0.465 0.571 0.385 0.545 0.654 0.198 0.328 0.445
AnRe 0.343 0.467 0.598 0.386 0.542 0.660 0.249 0.367 0.544

Llama-3
ICL 0.305 0.434 0.563 0.353 0.506 0.648 0.189 0.288 0.436

ONSEP 0.345 0.469 0.581 0.387 0.546 0.663 0.203 0.329 0.454
AnRe 0.348 0.469 0.604 0.390 0.547 0.671 0.255 0.368 0.547

Table 5: The performance comparison of ICL, ONSEP, and AnRe using different LLMs. The best results within the
same metric are highlighted in bold, while the best results within the same LLM are underlined.

Demonstration of Historical Event Selection

There is a question and some historical events.Please select the historical event that is most helpful in
answering this question from these historical events and return the number before the event.
Question:On 16 October 2018, Manohar Parrikar expressed intent to meet or negotiate with whom?
Historical events:
1.On 14 June 2018, Manohar Parrikar expressed intent to meet or negotiate with India.
2.On 14 June 2018, the Director General (India) hosted a visit for Manohar Parrikar.
3.On 14 June 2018, the Director General (India) praised or endorsed Manohar Parrikar.
4.On 14 June 2018, Manohar Parrikar made a visit to the Director General (India).
5.On 14 June 2018, Manohar Parrikar made a visit to the Health Ministry of India.
6.On 14 June 2018, the Health Ministry (India) hosted a visit by Manohar Parrikar.
7.On 14 June 2018, the Health Ministry (India) praised or endorsed Manohar Parrikar.
8.On 14 June 2018, Bharatiya Janata made a statement about Manohar Parrikar.
9.On 14 June 2018, India hosted a visit by Manohar Parrikar.
10.On 14 June 2018, Manohar Parrikar made a visit to India.
...
Your choice is:

Figure 8: A demonstration of historical event selection in PDC.
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Demonstration of Analysis Process Construction

Here are some time-ordered historical event chains and a question-answer pair. Please analyze how the
answer to the question is derived based on the historical development process in the event chain.
Historical Events:
On 24 March 2018, Leo Varadkar praised or endorsed the United Kingdom.
On 26 March 2018, Leo Varadkar made a statement about Sean Treacy.
...
On 12 June 2018, Leo Varadkar made a statement about the Government of the United Kingdom.
On 16 June 2018, Micheál Martin made a statement about Leo Varadkar.
...
On 25 July 2018, Leo Varadkar demanded a meeting for negotiation with Romania.
On 26 July 2018, Leo Varadkar appealed for a change in leadership involving Micheál Martin.
...
Question:On 13 October 2018, Leo Varadkar expressed intent to meet or negotiate with whom?
Answer:Micheál Martin
Your Analysis:

Analysis:
The timeline shows a series of interactions between Leo Varadkar and Micheál Martin, starting with
statements and escalating to appeals and rejections.
On 21 July 2018, Leo Varadkar directly appealed to Micheál Martin, indicating a desire to engage in
dialogue or negotiation.
The rejection by Micheál Martin on 5 September 2018 suggests that the relationship was strained,
but it also underscores the importance of Micheál Martin as a key figure in Leo Varadkar’s political
landscape.
By 13 October 2018, the context of these interactions suggests that Leo Varadkar’s intent to meet or
negotiate would logically be directed towards Micheál Martin, given their history of engagement and
the unresolved issues between them.
...

Figure 9: A demonstration of analysis process construction in Analogical Replay.The shaded portion represents the
analysis process provided by the LLM.
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Demonstration of Object Entity Prediction

You will be provided with some historical events in chronological order, a question, and several
candidate answers. Based on the development of these historical events, please deduce the most likely
correct answer entity for the question and output its corresponding number. Below is one reasoning
example.
Analogical Example 1:
Historical Events:
On 24 March 2018, Leo Varadkar praised or endorsed the United Kingdom.
...
On 25 July 2018, Leo Varadkar demanded a meeting for negotiation with Romania.
On 26 July 2018, Leo Varadkar appealed for a change in leadership involving Micheál Martin.
...
Question:On 13 October 2018, Leo Varadkar expressed intent to meet or negotiate with whom?
Answer:Micheál Martin.The timeline shows a series of interactions between Leo Varadkar and Micheál
Martin, starting with statements and escalating to appeals and rejections. ...

Please learn from this example and then provide the most likely correct answer number for the question.
Historical Events:
On 14 June 2018, the Director General (India) praised or endorsed Manohar Parrikar.
...
On 15 October 2018, the Head of Government (India) made a statement about Manohar Parrikar.
On 15 October 2018, Manohar Parrikar expressed intent to meet or negotiate with India.
Question:On 16 October 2018, Manohar Parrikar expressed intent to meet or negotiate with whom?
Candidate Answers:
1.Amit Shah
2.Intelligence (India)
3.Businessperson (India)
4.Non-Governmental Organizations
...
Your choice is:

Figure 10: A demonstration of object entity prediction in Analogical Replay.(1 example)

# Example Hit@1 Hit@3 Hit@10 Token Time

0 0.220 0.364 0.513 2687.43 39.28s/it
1 0.255 0.371 0.554 5102.67 63.82s/it
2 0.238 0.365 0.518 7617.34 112.15s/it

Table 6: Performance comparison with varying numbers
of analogical examples.

Prompt Template in PDC

There is a question and some historical events.
Please select the historical event that is most help-
ful in answering this question from these historical
events and return the number before the event.
Question:{query}
Historical events:{label:event}
Your choice is:

Table 7: Prompt template for historical event selection
in PDC.
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Prompt Template for APC

Here are some time-ordered historical event chains
and a question-answer pair. Please analyze how
the answer to the question is derived based on the
historical development process in the event chain.
Historical Events: {Hai}
Question: {Masked(eai)}
Answer: {oai}
Your Analysis:

Table 8: Prompt template for analysis process construc-
tion in Analogical Replay.

Prompt Template for OEP

You will be provided with some historical events
in chronological order, a question, and several can-
didate answers. Based on the development of these
historical events, please deduce the most likely cor-
rect answer entity for the question and output its
corresponding number. Below are a reasoning ex-
amples.
...
Analogical Example exai :
Historical Events:{Hai}
Question: {Masked(eai)}
Answer: {oai , pai}
...
Please learn from these examples and then provide
the most likely correct answer number for the ques-
tion.
Historical Events:{Hq}
Question: {q}
Candidate Answers: {Oq}
Your choice is:

Table 9: Prompt template for object entity prediction in
Analogical Replay.
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Symbol Description

(i) Semantic-driven Historical Clustering
q/(sq, rq, ?, tn+1) Target query, where sq is the subject in the query, rq is the relation, and tn+1

is the timestamp indicating when the event occurs.
X The set of entities obtained after clustering based on semantic similarity,

where all entities in the set are semantically similar to sq.
V,V ′ The set of all entities and the set of sets of similar entities, respectively.
k The size of V ′, which represents the number of clusters formed by grouping

all entities based on semantic similarity.
Hn The set of all historical events that occurred before tn+1.
si Any similar entity in X other than sq.

Hi/Hq The set of events in which si/sq appears, also referred to as the set of related
events of si/sq.

ei The event involving si that is most similar to the target query.
Oq The set of candidate answer entities for the target query.

CandiFilter(...) The Candidate History Filter module, which filters out the corresponding
Hi and ei for si, as well as the corresponding Hq and Oq for sq.

(ii) Dual History Extraction
S-Term(...),L-Term(...) The short-term history retriever and the long-term history retriever, respec-

tively.
HS

i /HS
q The set of short-term histories corresponding to si/sq.

l Hyperparameter: the length of short-term history.
qi/Masked(ei) A similar query qi for q,constructed by masking the tail entity in ei.
LLM(...) The large language model receives structured prompts and outputs example

analyses or probability distributions of numerical mappings.
H

tj
i /H

tj
q The set of relevant histories for si/sq at timestamp tj .

HL
i /HL

q The set of long-term histories corresponding to si/sq.
α Hyperparameter: controls the rate at which the dynamic threshold changes

over time differences.
Hi/Hq The set of combined long-term and short-term historical events correspond-

ing to si/sq.

(iii) Analogical Replay
A The set of tuples consisting of analogical events and their corresponding

histories.
PickTop(...) Based on the semantic similarity between similar events and the target query,

the top a events are selected as analogical events for constructing analogical
reasoning examples.

a The number of analogical reasoning examples.
exai The analogical reasoning example, consisting of three parts: the analogical

event, its corresponding history, and the model’s analysis.
P The set of analogical reasoning examples.
oq The predicted tail entity for the target query.

Table 10: The formal definition of notations used in the algorithms and formulas within this paper.
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