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Abstract

Understanding the mechanisms underlying
Large Language Model (LLM) behavior in
Retrieval-Augmented Generation (RAG) sys-
tems is critical for enhancing reliability. In
this paper, we leverage Sparse Autoencoders
(SAEs) within the LLaMA Scope to uncover
sparse, interpretable latents that govern RAG
behaviors. Through systematic analysis of SAE
activations, we identify specific latents associ-
ated with two fundamental RAG decisions: (1)
context versus memory prioritization, and (2)
response generation versus query rejection. In-
tervention experiments demonstrate that these
latents enable precise control over model behav-
ior and maintain generalizability across various
experimental settings. Mechanistic analysis re-
veals that manipulating these latents influences
model behavior by reconfiguring attention pat-
terns of retrieval heads. Our findings establish
SAEs as a principled tool for understanding and
controlling RAG behaviors, demonstrating ca-
pabilities in precise behavior steering without
architectural modifications.

1 Introduction

To address the limitations of large language mod-
els (LLMs) in handling knowledge-intensive tasks
(Petroni et al., 2019; Ji et al., 2023; Mallen et al.,
2023), Retrieval-Augmented Generation (RAG)
(Lee et al., 2019; Karpukhin et al., 2020; Lewis
et al., 2020) has emerged as an advanced approach
for integrating external knowledge sources into the
generation process. Despite its effectiveness in ex-
panding knowledge boundaries, RAG system still
faces several challenges that hinder its effective-
ness, as illustrated in Figure 1. First, LLMs often
struggle to resolve conflicts between retrieved con-
text and internal memory, oscillating between over-
relying on outdated knowledge and over-trusting
noisy passages (Longpre et al., 2021; Chen et al.,
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Figure 1: RAG systems often struggle to resolve con-
flicts and properly reject questions based on the infor-
mation available. Intervention on corresponding SAE
latents can effectively alter RAG behavior.

2022; Xie et al., 2024). Second, inconsistent query
rejection mechanisms often lead to unreliable re-
sponses when context is insufficient or result in
rejecting valid queries due to miscalibrated confi-
dence (Wen et al., 2024; Feng et al., 2024; Lee et al.,
2024). These challenges stem from an opaque
decision-making process within RAG: how LLMs
internally manage context usage, resolve knowl-
edge conflicts, or trigger rejections remains unclear.
Therefore, understanding the mechanisms underly-
ing RAG behavior is crucial for improving reliabil-
ity and controllability.

Recently, many studies have attempted to un-
derstand the decision-making process of LLMs in
RAG systems. Some researchers analyze attention
patterns to identify how models attend to context
tokens (Wu et al., 2024; Sun et al., 2025), but re-
veal only surface-level input-output correlations.
Some studies utilize mechanistic interpretability
techniques (Vast et al., 2024; Sun et al., 2025) to
explore how specific components influence RAG
behavior, but face challenges in isolating individ-
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Figure 2: We construct a dataset focused on two categories of RAG behavior: whether outputs derive from internal
memory or external context, and whether the model refuses to answer. Intervention on corresponding SAE latents
can alter the LLM behavior.

ual causal effects due to network complexity. Re-
search focusing on knowledge conflict (Chen et al.,
2022; Jin et al., 2024; Xie et al., 2024) detects
memory-context discrepancies, but typically relies
on black-box methods with limited insight into in-
ternal causal mechanisms. While these methods
partially illuminate RAG behaviors, they fall short
of explaining high-level decision processes or en-
abling direct behavioral adjustments during RAG.

We hypothesize that sparse, interpretable repre-
sentations within LLMs encode the fundamental
RAG decision mechanisms. To explore this hy-
pothesis, we employ Sparse Autoencoders (SAEs)
(Bricken et al., 2023; Huben et al., 2024) within
the LLaMA Scope framework (He et al., 2024b)
to decompose model activations into sparse and
interpretable latents. Our investigation centers on a
foundational research question: Can we uncover
and control the intrinsic mechanisms governing
specific RAG behaviors through sparse latents
within LLMs?

To answer this question, we first investigate
whether SAEs can uncover interpretable latents
that correspond to targeted RAG behaviors. Specif-
ically, we focus on two fundamental RAG deci-
sions: (1) context versus memory prioritization,
and (2) response generation versus query rejection,
as illustrated in Figure 2. By analyzing SAE la-
tent activations across model layers, we identify
meaningful latents that are strongly correlated with
specific RAG behaviors. Intervention experiments
demonstrate that amplifying the activity of these
latents enables precise control over RAG behav-

ior, effectively modulating the context-following
capability of the LLM during the RAG process.

To evaluate whether these identified latents main-
tain their effectiveness across practical scenarios,
we extend the experiments across model variants,
extended contexts and varied prompts. Experi-
mental results reveal that top latents remain effec-
tive in steering RAG behavior when applied to the
instruction-tuned model and longer contexts. How-
ever, only interventions on latents from early layers
lead to expected outputs when the prompt changes.
This suggests that fundamental RAG decisions are
more likely to be encoded in early layers, whereas
later layers focus more on specific tasks or tokens.

To uncover the internal mechanisms through
which top latents steer LLM behavior during the
RAG process, we further investigate their impact
on context utilization mechanisms by analyzing
retrieval heads, which are attention heads responsi-
ble for copy-paste behavior. Mechanistic analysis
reveals that interventions on these latents modify
attention patterns in retrieval heads, altering their
focus between provided documents and refusal-
related tokens. This attention redistribution pro-
vides direct evidence for the causal role of SAE
latents in steering RAG behavior.

Overall, our main contributions can be summa-
rized as follows:

• We uncover interpretable latents behind two
core RAG decisions: (1) context versus mem-
ory prioritization and (2) response generation
versus query rejection.
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Figure 3: We identify SAE latents that correlate with different RAG behaviors in the residual stream of the final
token of the input. Steering these SAE latents can effectively control the behavior of the model.

• We demonstrate precise control over RAG be-
havior through latent interventions, which can
maintain effectiveness across model variants,
scaled context lengths, and varied prompts.

• We discover that latent interventions influence
LLM behavior by modifying attention pat-
terns of retrieval heads, which either enhance
context utilization or amplify refusal triggers.

2 Technical Background

2.1 Sparse AutoEncoders
SAEs are powerful interpretability tools designed
to uncover sparse, interpretable decompositions of
model representations. This approach is grounded
in the Linear Representation Hypothesis (Mikolov
et al., 2013; Park et al., 2024), which suggests that
certain interpretable features of the input are rep-
resented as linear directions in the representation
space. According to this hypothesis, the model’s
learned representations can be seen as combina-
tions of these linear directions, allowing for a po-
tentially simpler and more interpretable structure.

Specifically, a sparse autoencoder typically con-
sists of two hidden layers, which serve as the
encoder and decoder functions, denoted as f(·)
and g(·), respectively. Given activations x ∈ Rn

from a language model, the encoder maps x to
f(x) ∈ Rm, as shown in Eq. 1, and the decoder
then reconstructs x̂ ∈ Rn, as illustrated in Eq. 2.

f(x) := σ(Wenc · x+ benc) (1)

x̂ := g(f(x)) = Wdec · f(x) + bdec (2)

wherein Wenc ∈ Rm×n, benc ∈ Rm, Wdec ∈
Rn×m, and bdec ∈ Rn are the weight and bias

terms. These two functions are trained to map
x̂ back to x, which makes them an autoencoder.
Thus, f(x) defines how the m ≫ n columns of
Wdec combine to reconstruct x. In other words,
the columns of Wdec represent a dictionary of di-
rections along which the SAE decomposes x. We
refer to these learned linear directions as latents to
distinguish them from the conceptual “features” hy-
pothesized to constitute the representation vectors
of language models.

In this work, we employ the residual SAEs
with an 8x expansion of the hidden size from
the LLaMA Scope framework (He et al., 2024b),
which are trained on the post-MLP residual
streams in each layer of LLaMA-3.1-8B (Touvron
et al., 2023) . Specifically, these SAEs adopt
a Top-K SAE variant that employs a threshold
θ to maintain an average of K active latents
over the training set. Further details about this
variant can be found in Appendix A. Through-
out this paper, we denote the SAE latents as
l[Layer][Position]_[Expansion]x_[Latent
id]. For example, the 1000th column of Wdec

from an SAE trained on the post-MLP residual
stream of layer 1 in LLaMA-3.1-8B, with an
8x expansion of the hidden size, is labeled as
l1r_8x_1000.

2.2 Sparse AutoEncoders for RAG

2.2.1 Identifying Corresponding SAE Latents
To identify SAE latents that correlate with spe-
cific RAG behaviors, it’s essential to first con-
struct a comparative dataset containing distinct
categories of RAG behaviors: target behavior in-
stances exhibiting desired RAG responses and base-
line behavior instances displaying alternative re-
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Figure 4: Layer-wise latent separation scores of LLaMA-3.1-8B. Latents with high absolute separation scores are
more widely distributed across the middle layers.

sponses. For each layer l, given N target target acti-
vations {xtarget

l,i }N
target

i=1 and Nbaseline baseline activa-

tions {xbaseline
l,i }Nbaseline

i=1 , where N target and Nbaseline

represent the number of instances displaying target
and baseline behavior respectively, each activation
vector x is fed into the SAE to calculate the ac-
tivation frequency of latent j for both target and
baseline behaviors:

rtargetl,j =

∑Ntarget

i 1
[
f (l)(xtarget

l,i )j > 0
]

N target (3)

rbaselinel,j =

∑Nbaseline

i 1
[
f (l)(xbaseline

l,i )j > 0
]

Nbaseline
(4)

Subsequently, the latent separation score stargetl,j

is computed by subtracting the activity frequency
of baseline behavior from that of target behavior,
resulting in stargetl,j = rtargetl,j − rbaselinel,j . A posi-
tive stargetl,j indicates that the corresponding latent
exhibits higher activity during the target behavior,
while a negative value suggests a stronger associa-
tion with the baseline behavior.

2.2.2 Steering with SAE Latents
After identifying SAE latents correlated with spe-
cific RAG behaviors, we can steer LLM behavior
with these latents, as illustrated in Figure 3. De-
rived from Eq. 2, SAEs reconstruct x̂ through a lin-
ear combination of columns from Wdec, expressed
as x̂ :=

∑
j W dec[:, j] ·f(x)j . Thus, increasing or

decreasing the activation value f(x)j is equivalent
to doing activation steering with the decoder latent
(Turner et al., 2023; Ferrando et al., 2025):

x̂new ← x̂+ αdj (5)

where α is a steering coefficient controlling the de-
gree of latent activation, and dj ∈ Rn denotes the
latent corresponding to the j-th column of Wdec.

In our study, the selection of the steering coef-
ficient α follows a two-stage process. Initially, as
detailed in Appendix E, we determine the range
[1, 80] for α, which demonstrates general effective-
ness in steering the LLM toward desired behaviors
across nearly all sampled latents. In the second
stage, we further identify the optimal α values for
each SAE latent within this range, ensuring that
each SAE latent can reach its maximum potential
in steering RAG behaviors.

3 SAEs Uncover Meaningful Directions

3.1 SAE Latents Identification

To find latents corresponding to specific RAG be-
havior, following the methodology described in
Section 2.2.1, we first construct a dataset focused
on two categories of RAG behaviors: (1) whether
outputs derive from internal memory or external
context, and (2) whether the model refuses to an-
swer. Figure 2 illustrates examples for each cate-
gory, with detailed data collection procedures pro-
vided in Appendix B. From this dataset, 500 in-
stances per category are selected to form a detec-
tion set. This set is designed to reliably identify
SAE latents that govern specific RAG behavior
while maintaining computational efficiency (details
are provided in Appendix D). Additionally, 100
instances from each category are sampled to con-
struct a validation set, which is used to determine
the optimal steering coefficient α. The remaining
instances constitute a test set for evaluating the
latent intervention effectiveness.

Specifically, we focus on latent activations
within the residual stream of the final input to-
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Figure 5: Comparison of average and maximum intervention success rates between top latents and random latents
across different layers.

ken. Using Equation 3, we calculate latent acti-
vation frequencies for each scenario as rmemory

l,j ,
rcontextl,j , rrefusall,j and rnon−refusal

l,j . Subsequently,
we compute latent separation scores as scontextl,j =

rcontextl,j − rmemory
l,j and srefusall,j = rrefusall,j −

rnon−refusal
l,j . A positive scontextl,j indicates higher ac-

tivity when LLM generates context-based answers,
whereas a negative score suggests greater activity
during memory-based responses. Similarly, a pos-
itive srefusall,j indicates increased activity when the
model refuses to respond, while a negative score
implies higher activity when the model provides an
answer based on context.

To investigate the distribution of latents that
are highly correlated with specific RAG behaviors
across different layers, we analyze layer-wise sepa-
ration scores in Figure 4. Notably, latents exhibit-
ing high absolute separation scores are more widely
distributed across the middle layers, indicating that
these layers play a crucial role in influencing the
model’s context-following and refusal decisions
during the RAG process.

3.2 Intervention on SAE Latents

Having identified SAE latents with high absolute
values of separation scores, we hypothesize that
these latents can be employed to steer RAG behav-
iors towards desired outcomes. To test this hypoth-
esis, as shown in Figure 2, we define four steering
objectives focused on the context-following capa-
bilities of LLMs within RAG systems:

• Inducing context-following behavior: This
includes (1) changing memory-based re-
sponses to context-based responses and (2)

altering refusal responses into non-refusal
responses. Success requires achieving a
ROUGE-1 score greater than 0.5 between the
response and the provided document.

• Suppressing context-following behavior:
This involves (1) shifting context-based re-
sponses to memory-based responses 1 and (2)
altering non-refusal responses to refusal re-
sponses. Outputting the correct answer or the
refusal token “unknown” without context re-
liance indicates success.

To evaluate intervention effectiveness, we select
300 questions from the corresponding test set for
each objective. For each question, we amplify the
activity of one latent highly associated with the
target behavior at a time, and assess its impact on
altering RAG behavior.

To identify the optimal layers for steering LLM
behavior in RAG tasks, we evaluate the interven-
tion success rate across different layers. Specifi-
cally, we focus on top latents dj with high absolute
separation scores (|sl,j | > 0.3). If fewer than three
latents in a layer meet this criterion, additional la-
tents with the highest absolute separation scores
from that layer are included. For comparison, we
also compute the intervention success rate using
an equal number of randomly selected SAE latents
at each layer. For each selected latent, we am-
plify its activity following Eq. 5, and assess its
impact on steering RAG behavior by measuring
the corresponding success rates. The average and

1To distinguish internal memory from hallucinations, we
focus solely on scenarios where the model’s direct response
(without context) contains the correct answer but gets misled
by irrelevant documents.
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Figure 6: To investigate if top SAE latents identified in LLaMA-3.1-8B can generalize to model variants, we compare
intervention success rates between the base model and its instruction-tuned variant across steering scenarios.

maximum intervention success rates across the top
and random latents for each layer are illustrated in
Figure 5.

Finding 1: Separation scores effectively iden-
tify SAE latents that enable precise control over
model behavior. Compared with interventions on
random latents, steering with top latents with high
absolute separation scores significantly enhances
precise control over RAG behavior. Across var-
ious steering scenarios, steering with top latents
consistently exhibits higher average and maximum
success rates. Notably, many of these top latents
can be utilized to induce context-following capa-
bilities in LLMs with nearly 100% success rates
(Figure 5 (a) and (c)). This highlights that identi-
fying and manipulating these top latents enables
more accurate control over LLM behavior.

Finding 2: Middle layers play a critical role
in influencing LLM’s context-following and re-
fusal decisions. As illustrated in Figure 5 (a) and
(c), steering the LLM towards providing context-
based responses is most effective when steering
with top latents from early to middle layers. More-
over, Figures 5(b) and (d) show that latents capable
of suppressing context-following behaviors are pri-
marily located in the middle layers. Interestingly,
top latents in the final three layers also demonstrate
remarkable effectiveness in altering non-refusal re-
sponses into refusal responses. The reason behind
this is discussed in Section 4.3. These observations
indicate that middle layers are crucial in determin-
ing whether the model provides context-aware re-
sponses or refuses to answer.

4 Generalizability of SAE Latents

4.1 Extending to Variant Model

In this section, we investigate whether the top SAE
latents identified in LLaMA-3.1-8B can be lever-
aged to steer the behavior of its instruction-tuned
variant, LLaMA-3.1-8B-Instruct. The results are
summarized in Figure 6, where yellow bars indicate
the intervention success rates for the base model
(LLaMA-3.1-8B) using top latents that exhibit the
highest intervention success rate from each layer,
while red bars represent the corresponding success
rates when amplifying the activity of these same
latents to LLaMA-3.1-8B-Instruct.
Finding 1: Top latents identified in LLaMA-3.1-
8B can be directly applied to steer the behav-
ior of LLaMA-3.1-8B-Instruct with comparable
effectiveness. Notably, top latents maintain com-
parable success rates in both models, exhibiting
aligned layer-wise trends across steering scenar-
ios. This suggests that the instruction-tuned variant
reuses fundamental decision-making mechanisms
from the base model, preserving the efficacy of the
identified latents.
Finding 2: Instruction tuning enhances the
instruction-following capability of early layers.
Under the non-refusal-to-refusal steering scenario,
LLaMA-3.1-8B-Instruct exhibits higher interven-
tion success rates at early layers compared to
LLaMA-3.1-8B. This indicates that instruction tun-
ing improves the responsiveness to task instructions
in early layers, reinforcing their role in instruction-
following behaviors.
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4.2 Extending to Scaled Context Lengths

In Section 3.1, we identify meaningful directions
using a single document as context. To validate the
effectiveness on scaled input lengths, we expand
the context to include 2 to 5 documents per ques-
tion. Taking refusal-to-non-refusal and non-refusal-
to-refusal steering scenarios as examples, we col-
lect instances where the model exhibits specific
behaviors under varying numbers of documents,
and select 300 questions for each scenario. By
steering with the corresponding top latents whose
intervention success rates exceed 90%, we eval-
uate the average intervention success rate across
different numbers of documents. The results are
illustrated in Figure 7.
Finding: Top latents remain effective in steering
LLM behavior across scaled context lengths. As
the number of documents increases from 1 to 5,
the average intervention success rates of the top
latents remain consistently high, with the lowest
success rate still around 80%. This consistency
highlights the adaptability of top SAE latents to
more complex contexts, suggesting their reliability
in steering LLM behavior even as the amount of
provided information grows.

4.3 Extending to Varied Prompts

Considering LLM’s sensitivity to prompt varia-
tions (Sclar et al., 2024; Voronov et al., 2024; He
et al., 2024a), we examine whether the identified
top latents remain effective in steering LLM be-

havior when the prompt changes. Focusing on the
scenario of altering context-based responses to re-
fusal responses, we modify the instruction guiding
the LLM to refuse answering from “Unknown” to
“NULL”. This modification tests whether top la-
tents, which have been validated to successfully
induce “Unknown” responses, can reliably guide
the model to output “NULL” in response to the
updated instruction.

Specifically, we select 300 questions where
the model consistently provides context-based
responses under both the original and updated
prompts. By activating top latents with inter-
vention success rates exceeding 90%, we assess
their intervention effectiveness towards the updated
prompt. Results in Figure 8 illustrate the inter-
vention success rate under both the original and
updated prompts.
Finding: Early layers are more likely to pro-
vide SAE latents correlated with the underlying
decision-making process. Experimental results
indicate that intervention success rates vary signifi-
cantly across layers when the prompt changes. As
shown in Figure 8, SAE latents from early layers
(layer ≤ 19) exhibit stronger generalization capa-
bilities compared to those from later layers, whose
intervention success rate drops to approximately
0%. Case studies presented in Figure 14 reveal
that latents from later layers are more closely as-
sociated with the “unknown” token rather than the
underlying reject-to-answer behavior. These find-
ings suggest that latents associated with specific
prompts or tokens are probably distributed in later
layers, while latents influencing the model’s funda-
mental decision-making process are more prevalent
in early layers. This observation aligns with previ-
ous research (Liu et al., 2019; Rogers et al., 2020;
Chen et al., 2023), which suggests that early layers
typically exhibit stronger transferability.

5 Mechanistic Analysis

In this section, we utilize retrieval heads, which
are attention heads responsible for contextual infor-
mation extraction (Wu et al., 2024), to investigate
the internal mechanisms through which top SAE la-
tents steer RAG behavior effectively. The detailed
process for identifying retrieval heads is described
in Appendix F.

Firstly, we compare the attention scores that re-
trieval heads allocate to the input document versus
the refusal token “Unknown” within the prompt
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Figure 10: Steering with top latents correlated with inducing context-following behaviors increases attention on
the given document and reduces attention on the refusal token “Unknown” (a, b, c, d). Activating latents strongly
associated with rejection shows the opposite effect (e, f). Using random latents show no significant changes (g, h).

across different scenarios. Experimental results
illustrated in Figure 9 demonstrate a significant dis-
parity in attention patterns when the LLM exhibits
different behaviors. When generating context-
based responses, compared to providing memory-
based responses or refusing to answer, retrieval
heads strongly focus on the document while largely
ignoring “Unknown” in the prompt.

Furthermore, changes in attention patterns of re-
trieval heads during intervention experiments are
illustrated in Figure 10. Notably, as shown in Fig-
ure 10 (a)-(d), steering with top latents, which
achieve over 90% success rates in inducing context-

following behaviors, results in reduced attention
on “Unknown” and increased focus on the docu-
ment. Conversely, activating top latents whose in-
tervention success rates in inducing query rejection
exceed 90%, as depicted in Figure 10 (e) and (f), in-
creases attention on “Unknown” while diminishing
document focus. For comparison, baseline exper-
iments with four random SAE latents (Figure 10
(g) and (h)) show no significant changes. These
findings provide insights into the causal mecha-
nisms through which intervention on top latents
influences context utilization and rejection deci-
sions during the RAG process.
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6 Conclusion

In this study, we uncover interpretable latents that
highly correlate with specific RAG behaviors em-
ploying Sparse Autoencoders. Intervention experi-
ments demonstrate that activating these latents en-
ables precise control over RAG behavior. Further-
more, experiments conducted across model vari-
ants, scaled contexts and varied prompts not only
demonstrate the generalizability of these SAE la-
tents, but also underscore the inherent hierarchical
nature of the model. Mechanistic analysis indicates
that activating these latents alters the attention pat-
terns of retrieval heads, influencing their focus on
input context versus refusal tokens. These findings
highlight the potential of SAEs as powerful tools
for improving the interpretability and controllabil-
ity of RAG systems in diverse applications.

7 Limitations

Our analysis focuses on the LLaMA-3.1-8B model,
and the identified mechanisms may not generalize
to models with distinct architectures. Future work
is expected to validate whether these mechanisms
persist across different model families and training
paradigms. Additionally, like all sparse autoen-
coder methods, our findings depend on both the
assumptions made by the SAE architecture and the
quality of the trained SAEs.

We also note that our study of key RAG behav-
iors is based on short-form question answering.
The effectiveness of our approach on more complex
tasks, such as multi-hop reasoning or long-form
content creation, has yet to be explored. Further
investigation is needed to understand how SAE la-
tents interact with decision-making processes in
more complex tasks.
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A SAE Variants

Sparse autoencoders are designed to uncover
sparse, interpretable decompositions of model rep-
resentations. Recently, SAEs have been utilized
to capture specific concepts (Gurnee et al., 2023;
Gao et al., 2024; Härle et al., 2024) and factual
knowledge (Chaudhary and Geiger, 2024), and to
“unlearn” knowledge (Farrell et al., 2024), demon-
strating an ability to identify causally relevant and
interpretable directions and steer LLM behaviors.

Formally, sparse autoencoder decomposes and
reconstructs the activations using a pair of encoder
and decoder functions defined by:

f(x) := σ(Wenc · x+ benc) (6)

x̂ := g(f(x)) = Wdec · f(x) + bdec (7)

To ensure that the extracted latents are non-
negative and sparse, a sparsity constraint is applied
to the hidden layer. Early work (Bricken et al.,
2023; Huben et al., 2024) enforces non-negativity
by employing a ReLU activation function. An L1
penalty is applied to the decomposition f(x) to
promote sparsity. The goal of this approach is to
minimize the reconstruction error while activating
as few features as possible:

L = LMSE + LSparsity

= ∥x− x̂∥2 + λ

F∑

i=1

∥fi(x)∥1 (8)

Building on this, TopK SAEs (Gao et al., 2024)
retain only the top-K entries of f(x) and set the re-
maining entries to zero. In contrast, the JumpReLU
SAEs (Rajamanoharan et al., 2024) apply a posi-
tive threshold θ to zero out all entries of f(x) that
fall below this threshold. In this work, we employ
SAEs from the LLaMA Scope framework (He et al.,
2024b), which are trained on each layer of LLaMA-
3.1-8B (Touvron et al., 2023). These SAEs adopt
a Top-K SAE variant that uses a threshold θ to
maintain an average of K active latents over the
training set, rather than activating exactly K latents
for each input (Templeton et al., 2024). This ap-
proach combines the benefits of both Top-K and
JumpReLU activations, preventing scenarios where
latents become inactive due to stronger activation
in other latents.

B Identification Dataset Construction

To identify meaningful latents that correlate with
reject-to-answer and the invocation of internal ver-

sus external knowledge, we construct a dataset
from the SQuAD training set (Rajpurkar et al.,
2016). This dataset simulates real-world scenarios
where LLMs might receive either relevant or irrele-
vant documents as context. For each question in the
dataset, we pair it with either a relevant document
(SQuAD’s golden doc) or an irrelevant document
retrieved from Wikipedia using BAAI/bge-large-en-
v1.5, ensuring that the irrelevant document does not
contain the correct answer. The complete prompt
format is designed as follows:

[Document]
Given the provided passage, answer the fol-
lowing question. Output the answer directly
without any explanation. If there is no rele-
vant information in the given passage, out-
put “Unknown”.
Question: [Question]
Answer:

The keyword “Unknown” serves as the LLM’s
response when it decides to refuse to answer due
to insufficient relevant information.

As shown in Figure 2, we collect data by com-
paring the LLM’s outputs with and without context
to categorize its behavior into two primary dimen-
sions: whether the output is based on memory or
context, and whether the model chooses to reject
the question. Specifically, we identify memory-
based responses as those where the LLM’s output
remains consistent regardless of whether a docu-
ment is provided, and the output does not appear
in the given context. Conversely, for context-based
responses, the LLM’s output changes when pro-
vided with context, and the answer fully appears
within the provided document. Additionally, we
note instances where the LLM outputs “Unknown”
in response to the provided context as cases of re-
fusing to answer, while non-refusal responses are
those where the LLM provides a specific answer
from the context instead of “Unknown”.

C Distribution of Separation Scores

Figure 11 illustrates the distribution of these sepa-
ration scores. We define the set Ac−m as the collec-
tion of SAE latents with non-zero separation scores
scontextl,j , i.e., scontextl,j ̸= 0. Similarly, set Ar−nr

indicates those latents with srefusall,j ̸= 0. In the left
panel, only 11.9% of SAE latents belong to Ac−m.
Among these, 99% exhibit low absolute separation
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Figure 11: Distribution of latent separation scores for
LLaMA-3.1-8B.

scores (|scontextl,j | ≤ 0.2). Only 0.5% of latents
within Ac−m exhibit significantly higher activation
rates during context-based responses compared to
memory-based ones, highlighting their role in facil-
itating context-aware generation. In contrast, 0.2%
of the latents in Ac−m are notably more active dur-
ing memory-based responses, which emphasizes
their importance in leveraging the internal knowl-
edge of the model. In the right panel, only 10.9% of
SAE latents belong to Ar−nr. Among these, 0.5%
show markedly increased activity when the model
decides to refuse a question, while another 0.4%
are notably more active when the model tends to
provide context-based answers.

D Identification Dataset Size Selection

To determine the optimal dataset size for SAE la-
tents that govern RAG behaviors, we designed an
experiment to quantify the stability of latent selec-
tion across different sample sizes. For each candi-
date size (100, 500, and 1000 instances), we per-
formed three independent random samplings and
computed the average Jaccard similarity coefficient
between latent sets identified in repeated trials. The
Jaccard similarity J(A,B) between two latent sets
A and B is defined as:

J(A,B) =
|A ∩B|
|A ∪B| (9)

where |A ∩ B| denotes the number of overlap-
ping latents between sets, and |A ∪B| represents
the total number of unique latents across both sets.
To extend this concept to three sets A, B and C, we
calculate the pairwise Jaccard similarities between
all combinations of these sets and then compute
their average. Specifically, the average Jaccard sim-
ilarity for three sets can be calculated as follows:

J(A,B,C) =
J(A,B) + J(A,C) + J(B,C)

3
(10)

In our experiment, we report the mean Jaccard
similarity across all pairwise combinations of the
three trials for each sample size. This metric re-
flects the consistency of latent selection: higher
values indicate greater robustness to sampling vari-
ability.

Our results shown in Tables 1-4 demonstrate
that the 500-instance samples achieve mean Jac-
card similarities exceeding 0.6 across most thresh-
olds, indicating high consistency in latent selection.
While 1000-instance samples show marginally
higher similarities, the gains diminish relative to
the doubled computational cost. This demon-
strates that 500 instances provide sufficient statis-
tical power to reliably identify SAE latents that
govern RAG behaviors, while remaining computa-
tionally efficient.

E Steering Coefficient

To determine the effective range of steering co-
efficients α for steering LLM behavior in RAG
tasks, we conduct an empirical analysis across all
steering scenarios described in Section 3.2. For
each scenario, we randomly select 30 SAE latents
from those with high absolute separation scores
(|sl,j | > 0.3). We then measure the minimal α
required to successfully steer the LLM toward the
desired behavior for each case in the validation
set. The results, showing the minimum steering
coefficient values for successful intervention , are
illustrated in Figure 12.

Experimental results indicate that across vari-
ous steering scenarios, the majority of successful
interventions occur when α lies within the range
[1, 60], suggesting that moderate amplification
of latent activations is sufficient to induce the de-
sired behavioral changes in most cases. Moreover,
while the effective coefficient range varies slightly
across different scenarios, the interval [1, 80] con-
sistently covers approximately 95% of successful
cases across all scenarios. It is important to note
that overly large coefficients (α > 80) may desta-
bilize model outputs and introduce unintended arti-
facts.

Based on these findings, we select α ∈ [1, 80] for
all steering experiments. This selection balances
intervention efficacy and output stability, allowing

4559



[1, 10]
(10, 20]

(20, 30]
(30, 40]

(40, 50]
(50, 60]

(60, 70]
(70, 80]

(80, 90]
(90,100]

0

5

10

15

20

25
Pe

rc
en

ta
ge

s (
%

)
Memory-based to Context-based

[1, 10]
(10, 20]

(20, 30]
(30, 40]

(40, 50]
(50, 60]

(60, 70]
(70, 80]

(80, 90]
(90,100]

0

5

10

15

20

25

30

Pe
rc

en
ta

ge
s (

%
)

Context-based to Memory-based

(a) (b)

[1, 10]
(10, 20]

(20, 30]
(30, 40]

(40, 50]
(50, 60]

(60, 70]
(70, 80]

(80, 90]
(90,100]

0

5

10

15

20

Pe
rc

en
ta

ge
s (

%
)

Non-refusal to Refusal

[1, 10]
(10, 20]

(20, 30]
(30, 40]

(40, 50]
(50, 60]

(60, 70]
(70, 80]

(80, 90]
(90,100]

0

5

10

15

20

25

Pe
rc

en
ta

ge
s (

%
)

Refusal to Non-refusal

(c) (d)

Figure 12: The minimum steering coefficient values for success intervention across four steering scenarios.
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Figure 13: Average retrieval score for each attention
head in LLaMA-3.1-8B.

diverse SAE latents to exert their steering effects
while minimizing the risk of adverse effects on
model performance.

F Identifying Retrieval Heads

Following Wu et al. (2024), we employ retrieval
scores to measure the frequency of a head’s copy-
paste behavior when the LLM generates the first
token of a context-based response. Specifically,
during auto-regressive decoding, an attention head

h is deemed to copy and paste a token from the con-
text to the output sentence if the currently generated
token also receives the highest attention score from
this head.

Consistent with our earlier experimental setup
for identifying SAE latents, we focus on attention
patterns at the final token position of the prompt,
the position where the first answer token is about
to be generated. Our experiments are conducted
on 1k questions, each with 5 documents as context.
Based on the retrieval score analysis presented in
Figure 13, we selected four attention heads (16-
1, 20-14, 24-27, 26-15) that exhibit significantly
higher retrieval scores. These heads serve as re-
trieval heads for investigating changes in attention
patterns when steering with SAE latents.
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scontextl,j <- 0.1 scontextl,j <-0.2 scontextl,j <-0.3 scontextl,j <-0.4

100 instances 0.3621 0.3759 0.3471 0.1957
500 instances 0.6267 0.6276 0.6202 0.5643
1000 instances 0.6749 0.6839 0.6536 0.8015

Table 1: Average Jaccard similarity for SAE latents with context-memory separation scores below various negative
thresholds (scontextl,j < −θ).

scontextl,j > 0.1 scontextl,j >0.2 scontextl,j >0.3 scontextl,j >0.4

100 instances 0.4343 0.4258 0.4421 0.4200
500 instances 0.7093 0.7378 0.6987 0.8488
1000 instances 0.7501 0.7465 0.7973 0.8191

Table 2: Average Jaccard similarity for SAE latents with context-memory separation scores above various positive
thresholds (scontextl,j > θ).

srefusall,j <- 0.1 srefusall,j <-0.2 srefusall,j <-0.3 srefusall,j <-0.4

100 instances 0.3407 0.3022 0.2565 0.1585
500 instances 0.6971 0.6944 0.7058 0.7747

1000 instances 0.7540 0.7630 0.7485 0.8280

Table 3: Average Jaccard similarity for SAE latents with refusal separation scores below various negative thresholds
(srefusall,j < −θ).

srefusall,j >0.1 srefusall,j >0.2 srefusall,j >0.3 srefusall,j >0.4

100 instances 0.3228 0.2677 0.2388 0.1263
500 instances 0.6681 0.6791 0.6197 0.6444

1000 instances 0.7291 0.7687 0.7371 0.7600

Table 4: Average Jaccard similarity for SAE latents with refusal separation scores above various positive thresholds
(srefusall,j > θ).
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(Title: Infrared) … Infrared is the most common way for remote

controls to command appliances. Infrared remote control protocols

like RC-5, SIRC, are used to communicate with infrared. …

Given the provided passage, answer the following question. Output

the answer directly without any explanation. If there is no relevant

information in the given passage, output 'NULL’.

Question: What does IRC stand for?

[Original Generation]

Infrared Remote Control

[Generation after Intervention l15r_8x_21618]

NULL

[Generation after Intervention l22r_8x_7728]

Infrared often overlooked often overlooked often overlooked …

[Generation after Intervention l29r_8x_22002]

Unknown

[Generation after Intervention l30r_8x_19152]

(Output Nothing)

[Generation after Intervention l30r_8x_24083]

Unknown yet

[Generation after Intervention l31r_8x_22443]

Unknown unknown unknown unknown …

[Generation after Intervention l31r_8x_23303]

None of above

Figure 14: Case study of model output after steering with different SAE latents. Latents associated with specific
tokens or tasks tend to be distributed in the final layers, while latents influencing the decision-making process are
more prevalent in the early layers.
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