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Abstract

In this work, we propose ProtoLens, a novel
prototype-based model that provides fine-
grained, sub-sentence level interpretability for
text classification. ProtoLens uses a Prototype-
aware Span Extraction module to identify rel-
evant text spans associated with learned proto-
types and a Prototype Alignment mechanism
to ensure prototypes are semantically meaning-
ful throughout training. By aligning the proto-
type embeddings with human-understandable
examples, ProtoLens provides interpretable pre-
dictions while maintaining competitive accu-
racy. Extensive experiments demonstrate that
ProtoLens outperforms both prototype-based
and non-interpretable baselines on multiple
text classification benchmarks. Code and data
are available at https://github.com/
weibowen555/ProtoLens.

1 Introduction

Deep neural networks (DNNs) have achieved re-
markable success in various natural language pro-
cessing tasks, including text classification (Kowsari
et al., 2019), sentiment analysis (Medhat et al.,
2014), and question answering (Allam and Hag-
gag, 2012). However, their black-box nature
presents significant challenges for interpretabil-
ity, limiting their use in high-stakes applications
where transparency, user trust, and accountability
are paramount (Castelvecchi, 2016; Rudin, 2019).
While post-hoc explanation methods attempt to
address this (Jacovi et al., 2018; Mishra et al.,
2017), they often lack faithfulness and consistency
in explaining predictions (Rudin, 2019). In con-
trast, inherently interpretable models guarantee
transparency, facilitating understanding and trust
in model outputs (Molnar, 2020).

Among various approaches aimed at enhanc-
ing model interpretability, prototype-based meth-
ods have emerged as a prominent line of research.
These methods enable models to generate predic-

Figure 1: Interpretable Classification by ProtoLens. The
model aligns key text spans with learned prototypes, as-
signing scores and weights to each prototype based on
semantic similarity. The contributions of prototypes are
aggregated to make a prediction, providing a transpar-
ent classification process. In this example, the model
predicts a positive sentiment for the input text.

tions by comparing inputs to prototypical examples,
akin to human reasoning that relies on analogies to
familiar cases . While prototype-based approaches
have been extensively explored in computer vi-
sion (Dong and Xing, 2018; Sumbul et al., 2019;
Zhang et al., 2023; Ming et al., 2019a; Gautam
et al., 2022; Arik and Pfister, 2020; Willard et al.,
2024; Nauta et al., 2023; Ma et al., 2024; Nauta
et al., 2021; Xue et al., 2022), their application in
natural language processing (NLP) is a relatively
new area, with only a few works (Hong et al., 2023;
Ming et al., 2019b; Sourati et al., 2023; Arik and
Pfister, 2020) emerging in recent years. These mod-
els provide an intuitive form of interpretability, fa-
cilitating an understanding of predictions through
direct reference to interpretable examples. For in-
stance, in a movie review classification task, a pro-
totype might represent a review like "This movie
was amazing, with stunning visuals and a gripping
storyline," which the model uses to classify new re-
views with similar sentiments. The model explains
its classification of a new review by highlighting
its similarity to this prototypical example.

Despite the potential of prototype-based models
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for enhancing interpretability, existing approaches
encounter significant limitations in text-based ap-
plications (Hong et al., 2023; Ming et al., 2019b).
Typically, these models define prototypes at the
instance/sentence level, which often lacks the
granularity needed for effective interpretability
in complex or lengthy texts. For example, in a
movie review like "The visuals were stunning, but
the plot was too predictable", an instance/sentence-
level prototype might only capture the general sen-
timent of the review, missing the nuance that the
visuals were positive, while the plot had negative as-
pects. This coarse granularity makes it challenging
to provide insightful interpretations when different
sentiments or nuances coexist within a single text.
In contrast, more fine-grained prototype modeling,
such as sub-sentence level, is crucial for delivering
detailed interpretative insights, allowing the model
to explain specific aspects of the text, like "stunning
visuals" or "predictable plot".

To address this challenge, a novel prototype-
based model ProtoLens is designed for finer-
grained interpretability. ProtoLens builds on the
concept of prototypical learning but extends it in
key ways that make it better suited for handling the
complexities inherent in textual data. The general
reasoning process of ProtoLens is illustrated by the
example in Figure 1: ProtoLens leverages three pro-
totypes related to "emotion", "performance", and
"script", and extracts prototype-specific text spans
(sub-sentence level) from the input. Based on ex-
tracted spans, Prototype 1 and 2 are activated and
thus positive prediction is derived.

There are two core modules in ProtoLens. First,
for a specific prototype, the Prototype-aware
Span Extraction module employs a Dirichlet Pro-
cess Gaussian Mixture Model (DPGMM) (Görür
and Edward Rasmussen, 2010; Rasmussen, 1999)
to extract relevant text spans in inputs for model
prediction and interpretation. This module enables
sub-sentence extraction and offers a more accurate
and finer-grained extraction of text spans for cer-
tain prototypes. Second, we devise the Prototype
Alignment mechanism, which adaptively aligns
the learned prototype embeddings with represen-
tative data samples throughout training. By this,
we ensure that learned prototypes are semantically
reasonable and effective for interpretation.

Extensive experiments demonstrate that Pro-
toLens not only outperforms competitive baselines
on multiple text classification benchmarks but also
provides more intuitive and user-friendly explana-

tions for its predictions.

2 Related Work

Post-hoc Explanations. Several post-hoc meth-
ods interpret DNN models by analyzing gradients
or neuron activations, such as Integrated Gradi-
ents (Sayres et al., 2019; Qi et al., 2019), DeepLift
(Li et al., 2021), and NeuroX (Nalls et al., 2015).
Tsang et al. (2018) proposed a hierarchical method
to capture interaction effects, later adapted by Jin
et al. (2019) for text classification. In sentiment
analysis, contextual decomposition (Murdoch et al.,
2018) identifies sentiment words and their contribu-
tions. Attention-based models, such as Bahdanau
(2014); Rocktäschel et al. (2015), analyze attention
weights, though Jain and Wallace (2019) question
their explanatory power.

Prototype-based Deep Neural Networks.
Prototype-based deep neural networks enhance
interpretability by using prototypes as intuitive
references for decision-making, a concept rooted
in traditional models (Sørgaard, 1991; Fikes and
Kehler, 1985; Kim et al., 2014). While prototype-
based reasoning has been extensively developed
in CV, with methods like ProtoPNet (Chen et al.,
2019) for image classification and ProtoVAE
(Gautam et al., 2022) introducing diverse and
interpretable prototypes, its application in NLP is a
relatively new area. Early works such as ProSeNet
(Ming et al., 2019b) adapted prototype-based
reasoning for text classification, followed by Pro-
toAttend (Arik and Pfister, 2020), which employed
attention mechanisms for dynamic prototype
selection. Recently, ProtoryNet (Hong et al.,
2023) introduced prototype trajectory modeling to
improve interpretability across domains. Despite
these advances, prototype-based approaches in
NLP remain underexplored, making our work a
significant step forward in this emerging field.

Unlike previous methods, our approach directly
embeds interpretability at the sub-sentence level,
providing more granular insights than word- or
sentence-level methods.

3 Method

To deliver inherently interpretable predictions at
a fine-grained level, we introduce ProtoLens, a
prototype-based interpretable neural network. Pro-
toLens is designed to overcome two primary chal-
lenges: (C1) How to effectively extract text spans
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Figure 2: Model Structure. ProtoLens integrates Prototype-aware Span Extraction (via a GMM) and an interpretable
classifier. The GMM models the similarity distribution between prototypes and text spans, identifying relevant
spans. The classifier aggregates prototype contributions to predict outputs and provide interpretable explanations.

associated with a given prototype to provide in-
terpretable predictions? and (C2) How to ensure
learned prototypes are semantically reasonable
and effective for interpretation? To address C1,
we propose a Prototype-Aware Span Extraction
module, which extracts most relevant text spans for
prototypes by a Dirichlet Process Gaussian Mix-
ture Model. To address C2, we design a Prototype
Alignment mechanism to adaptively align proto-
type embeddings to representative data samples
through training. The overall model architecture is
illustrated in Figure 2.

3.1 Overall Structure

Given a corpus of textual data D = {(xi, yi)},
where i = 1, . . . , N , each instance xi is associated
with a label yi ∈ Y , our model processes the text
through a text encoder, such as BERT (Devlin et al.,
2019), ψ : X → Rd, where X represents the space
of inputs and d is determined by the encoder.

For a text instance x, it is first inputted to an
Prototype-aware Span Extraction module, con-
taining a set of trainable prototypes P = {pk ∈
Rd : k = 1, . . . ,K}, where each prototype is rep-
resented by a learnable embedding, and the hyper-
parameter K is the number of prototypes specified.
The model will deliver classifications by comparing
the input to these prototypes. For each prototype k,
we identify a relevant text span xk ⊆ x, which rep-
resents a sub-sentence capturing the most relevant

portion of x associated with that prototype. We
then use an encoder ψ to compute an embedding
for each extracted span xk:

zk = ψ(xk), (1)

The similarity between zk and prototype pk is
then computed as sk = RMSNorm(cos(zk,pk)).
The final prediction is computed via an inter-
pretable model f applied to the similarity vec-
tor across all prototypes s = [s1, s2, . . . , sK ]:
ŷ = f(s), where s captures the proximity to all
prototypes, serving as features for the final predic-
tion; and f can be any interpretable models, such
as decision tree or logistic regression. In this paper,
we adopt the logistic regression as f .
Model Interpretation. The interpretability of Pro-
toLens is two-fold. First, it employs prototypes
aligned with real-world text sentences to represent
human-understandable concepts, assigning weights
that reveal their presence and importance in pre-
dictions, ensuring intrinsic interpretability. Sec-
ond, it extracts input spans most relevant to the
activated prototypes, allowing users to intuitively
compare these spans with the corresponding proto-
types for fine-grained interpretability. These proto-
types serve as features for an interpretable classifier,
such as logistic regression, which provides an ad-
ditional layer of transparency. Logistic regression
assigns interpretable coefficients to each prototype,
offering clear insights into how each prototype con-
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tributes to the final prediction. As illustrated in
Figure 1, ProtoLens highlights spans from the in-
put text that relevant to prototypes. For example,
spans like "powerful emotions" and "script was
well-crafted" align with Prototype 1 and Prototype
3, respectively, contributing positively to the pre-
diction. In contrast, Prototype 2, "The script is dull
and uninspired", is not activated and thus has no
contribution to the prediction.

3.2 Prototype-aware Span Extraction
To extract the most relevant spans of the input text
x for each prototype, we divide the input x into
n-grams x = (ct)

T
t=1, where ct denotes the t-th

n-gram, T is the total number of n-grams, and n
is a hyperparameter. A text span is composed of
consecutive n-grams. The text encoder processes
each part ct ∈ x to produce an embedding et =
ψ(ct) ∈ Rd. The similarity mt,k between the part
embedding et and the prototype embedding pk

is then measured using cosine similarity: mt,k =
cos(et,pk). The intermediate output of the module
is the similarity vector between each text input and
prototype k, denoted as mk = (mt,k)

T
t=1.

3.2.1 Similarity Distribution Modeling by
DPGMM

Identifying the most relevant text spans that align
with a prototype is a challenging task due to the
inherent complexity and variability of patterns in
natural language. The primary aim of employing
"fine-grained prototypes" is to extract text spans
of flexible lengths, rather than relying on rigid
instance/sentence-level, or fixed-size windows.

To address this challenge, we use a Dirichlet Pro-
cess Gaussian Mixture Model (DPGMM) (Görür
and Edward Rasmussen, 2010; Rasmussen, 1999),
which represents the relevance between proto-
types and text spans as a probability distribution.
By modeling similarity distributions in mk with
Gaussian components, DPGMM provides an effec-
tive framework for dynamically identifying high-
similarity regions in the input text, thereby facil-
itating the extraction of flexible and relevant text
spans. DPGMM approximates mk using up to G
Gaussian components:

p(mk) =
G∑

g=1

πg · N (mk | µg, σg), (2)

where πg is the mixture weight, and N (mk |
µg, σg) is the Gaussian distribution with mean µg

and standard deviation σg. We deploy a neural
network based method to learn these parameters
following existing works (Viroli and McLachlan,
2019; Bishop, 1994). Specifically, we first learn
a hidden representation h = MLP(mk) and com-
pute these parameters as:

µ = sigmoid(Wµh+ bµ)× T, (3)

σ = exp(Wσh+ bσ), (4)

ν = sigmoid(Wπh+ bπ), (5)

πg = νg

g−1∏

ℓ=1

(1− νℓ), g = 1, . . . , G. (6)

Here, µ and σ are the parameters for the Gaus-
sian components, while π is determined using the
Stick-Breaking Process (Ren et al., 2011), allowing
for an adaptive number of components. Detailed
explanations can be found in the Appendix A.

3.2.2 Span Extraction

To extract a span that focuses on the most relevant
area of the text, we select the Gaussian component
with the highest mixture weight πg = max(π),
characterized by (µg, σg). Then, µg serves as the
center of the span, while σg defines its length. The
span is thus given by: xk = x[µg − σg, µg + σg].

3.3 Prototype Alignment

To ensure interpretable classifications, the learned
prototypes must be semantically meaningful. How-
ever, these prototypes are numerical embeddings
that are not inherently interpretable by human users.
Therefore, we introduce a prototype alignment
mechanism that maps each prototype to real-world
training text sentences throughout the learning pro-
cess.

Representative Candidates. We begin by en-
coding all sentences in the training instances (an
instance can contain multiple sentences) into em-
beddings. In the embedding space, we apply the
k-means to cluster sentences. The top 50 sen-
tences closest to each cluster center obtained from
k-means serve as representative examples of each
cluster, making them suitable candidates for align-
ing prototypes.
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Figure 3: Prototype Alignment. A prototype (pk) is
adaptively updated toward a representative embedding
(ck), which is computed as the centroid of its top-3
nearest candidate embeddings. The updated prototype
(p′

k) lies along the direction from the original prototype
to the representative, controlled by a soft threshold.

Prototype Alignment. In Figure 3, we depict
the prototype alignment process in ProtoLens. At
one epoch during training, for each prototype with
its current learned embedding pk, the top 3 most
similar candidate sentences (green circles) from
the representative candidates are selected. These
candidates are averaged to form a representative
embedding ck (purple cross), which encapsulates
the meaning from actual training data. The pro-
totype is then updated towards ck (orange arrow),
resulting in an updated prototype p′

k (yellow star).
Specifically, pk is updated towards ck controlled

by a weight factor ωk:

ωk = sigmoid(γ · (dk − τ)), (7)

where dk represents the Euclidean distance be-
tween pk and ck, τ is the movement threshold and
γ controls the smoothness of the transition.

The updated prototype p′
k is derived as a

weighted combination of pk and the movement
towards ck:

p′
k = ωk · (pk + τ · uk) + (1− ωk) · ck, (8)

where uk is the unit vector pointing from pk to ck,
defined as:

uk =
ck − pk

dk + ϵ
, (9)

with ϵ being a small value to prevent division by
zero. If pk is far from ck (i.e., dk ≥ τ ), pk will
move a distance of τ toward ck. Conversely, if
dk ≤ τ , pk is directly aligned with ck. This pro-
cess ensures that the prototypes shift toward seman-
tically meaningful regions without abrupt changes.

3.4 Learning Objectives
The learning objectives of the proposed model con-
sist of three key components that contribute to both
prediction accuracy and the interpretability of the
learned representations.

3.4.1 GMM Loss
To approximate complex similarity distributions
between text samples and prototypes, we employ
a Negative Log-Likelihood (NLL) loss for GMM
jointly trained with the model, which is given by:

LNLL = − log(
M∑

m=1

πm · N (s̃ | µm, σm) + ϵ),

(10)
where πm, µm, and σm are the mixture weights,
means, and standard deviations of the m-th Gaus-
sian component, respectively, and ϵ is a small con-
stant added for numerical stability.

The overall loss for the GMM is defined as:

LGMM = E[LNLL] + LL1, (11)

where an L1 regularization term is introduced
to promote sparsity in the mixture weights: LL1 =
λ
∑M

m=1 |πm|, where λ controls the regularization
strength. This sparsity encourages the model to
focus on a few significant Gaussian components. λ
is set to 1e−3 for all experiments.

3.4.2 Diversity Loss
To encourage the model to learn high-quality and
diverse prototypes, we introduce a Diversity Loss
based on cosine distance:

Ldiv =
∑

i ̸=j

(1− cos(pi,pj)). (12)

Maximizing this diversity loss enhances general-
ization and interpretability by maintaining a diverse
set of prototypes.

3.4.3 Overall Objective
The final objective function for the proposed model
is a weighted combination of the aforementioned
loss components:

L = CrossEntropy(y, ŷ)+αLGMM−βLdiv, (13)

where y represents the true labels, ŷ denotes the pre-
diction, α and β are hyperparameters that control
the balance between accuracy, Gaussian mixture
modeling, and prototype diversity. α and β is set
to 1e−1 and 1e−3 for all experiments, respectively.
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4 Experiments

In this section, we conduct comprehensive experi-
ments to evaluate the proposed model and answer
the following research questions: RQ1: How does
ProtoLens perform in terms of classification ac-
curacy compared to state-of-the-art (SOTA) base-
lines? RQ2: What is the quality of the model
interpretations? RQ3: What are the effects of the
proposed Prototype Alignment mechanism and Di-
versity loss on ProtoLens? RQ4: What are the im-
pacts of different hyperparameters on ProtoLens?

4.1 Experimental Setup

Datasets. We evaluate ProtoLens on seven di-
verse text classification datasets spanning single-
label, multi-label, and domain-specific classifica-
tion tasks: IMDB, Yelp, Amazon, Hotel, Steam,
DBPedia, and Consumer Complaint. Details are
provided in Appendix B.
Reproducibility. The ProtoLens model was imple-
mented using PyTorch. For training, the prototype
number K is selected from {10, 20, 40, 50, 100}.
The learning rate is selected from {1e − 4, 1e −
5, 5e− 5}, with a decay of 10% every 10 epochs.
We used the AdamW optimizer (Loshchilov, 2017)
with a batch size of 16 for 25 epochs and the n-gram
size is selected from {1, 3, 5, 7, 9}. The experi-
ments were conducted on an NVIDIA A100 80GB
GPU. Code and data are available at https://
github.com/weibowen555/ProtoLens.
Baselines. We compare ProtoLens against a range
of baselines, encompassing both interpretable and
non-interpretable models. The interpretable base-
lines include ProSeNet (Ming et al., 2019b) and
ProtoryNet (Hong et al., 2023), both are SOTA
prototype-based methods that provide insights into
their predictions via learned prototypical repre-
sentations. Additionally, we include a zero-shot
Llama-3-8b (Touvron et al., 2023), MPNet (Song
et al., 2020a) and a Bag-of-Words model (Zhang
et al., 2010) using TF-IDF representations and Lo-
gistic Regression for interpretable classification
(Hosmer Jr et al., 2013). The prompt used for
LLaMA-3 is provided in Appendix I.

4.2 Prediction Accuracy (RQ1)

We evaluate the accuracy of ProtoLens against
several competitive baselines, including both
prototype-based and non-prototype-based methods.
The results are presented in Table 1. ProtoLens
consistently achieves the highest scores, outper-

Figure 4: Sampled aligned interpretation of prototypes
and their top-3 activated prototypes with aligned text
sentences from the training set, with sentiment scores.
Each prototype captures a distinct concept, and the
aligned sentences provide interpretable explanations
linked to sentiment contributions.

forming the baselines in all cases. The consis-
tently higher performance of ProtoLens demon-
strates its effectiveness and robustness across di-
verse domains, highlighting its superiority in lever-
aging fine-grained interpretability without sacrific-
ing predictive accuracy.

4.3 Model Interpretations (RQ2)

ProtoLens offers two-fold interpretability. First,
it uses prototypes aligned with training sentences
to represent concepts with weights, revealing their
presence and importance in predictions for intrin-
sic interpretability. Second, it extracts input spans
most relevant to activated prototypes, allowing
users to intuitively compare spans with prototypes
for fine-grained interpretability.

4.3.1 Prototype Interpretation
In this section, we present an example of ProtoLens
trained on the IMDB dataset with K = 10 proto-
types. Figure 4 showcases five randomly selected
prototypes along with their aligned sentence inter-
pretations. These prototypes span a wide range of
concepts, including acting, horror elements, humor,
storyline, and film execution.

What stands out is that ProtoLens achieves high
accuracy while relying on concise and interpretable
prototypes, often represented by short sentences.
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Table 1: Performance of ProtoLens in comparison with baselines.

Model IMDB Amazon Yelp Hotel Steam DBPedia Consumer
Llama-3-8b 0.813 0.767 0.787 0.787 0.667 0.768 0.807
MPNet 0.846 0.899 0.950 0.961 0.913 0.991 0.933
Bag-of-words 0.877 0.830 0.908 0.905 0.844 0.993 0.930
ProSeNet 0.863 0.875 0.932 0.930 0.834 0.984 0.878
ProtoryNet 0.871 0.890 0.941 0.949 0.876 0.991 0.927
ProtoLens(MPNet) 0.903 0.937 0.962 0.963 0.931 0.995 0.945

Figure 5: Case study of a positive class text instance.ProtoLens identifies relevant prototypes (e.g., "highly
entertaining flick") and aligns them with specific spans in the input text. Extracted spans, similarity scores, and
sentiment weights show how each prototype contributes to the positive prediction.

This allows for rapid and straightforward compre-
hension of the model’s reasoning process. Each
prototype captures key characteristics of the corre-
sponding text, providing insightful interpretations
for various aspects of the movie, such as acting
quality, humor, or poor execution. This feature
enhances both the model’s interpretability and us-
ability, as users can easily relate the prototypes to
human-understandable concepts, making the pre-
dictions more transparent. Further examples and an
in-depth analysis of prototype interpretations can
be found in Appendix C.

4.3.2 Classification Interpretation

When conducting classification on a text sample,
ProtoLens extracts the most relevant span from the
sample for all prototypes. Similarities between
spans and prototypes are then calculated to deter-
mine which concepts are activated for the sample.
Last, interpretable classification is delivered based
on the similarities. We present a positive example
in Figure 5 and a negative example in Figure 6,
both from the IMDB dataset.

As shown in Figure 5, the top three prototypes
with the highest similarity scores significantly in-
fluence the classification. Prototype 0 captures the
concept of a "highly entertaining flick" (similar-
ity score 0.708, sentiment weight 0.985), Proto-
type 2 reflects humor with the span "crime com-

edy that’s often very funny" (score 0.549, weight
0.247), and Prototype 5 highlights good acting with
"some great actors playing these characters" (score
0.730, weight 0.931). These prototypes, focus-
ing on entertainment, comedy, and acting, lead the
model to correctly predict a "Positive" sentiment.

In contrast, Figure 6 shows a negative example.
The text activates prototype 4, reflecting dissatis-
faction with special effects, as captured in the span
"problems with this film: 1 cheap special effects,"
with a similarity score of 0.657 and a sentiment
weight of -0.956. Prototype 7 reflects frustration
with the movie, highlighted by the span "ended up
watching it the whole 2 hours," scoring 0.676 with
a weight of -0.809. Prototype 9 captures disap-
pointment with the lack of character development,
aligned with the span "there was no character de-
velopment," with a similarity score of 0.664 and
weight of -0.756. These prototypes highlight nega-
tive aspects of the movie, leading the model to cor-
rectly predict the sentiment as "Negative". Further
examples and an in-depth analysis of classification
interpretations are shown in Appendix C.

4.4 Ablation Study (RQ3)

To demonstrate the effectiveness of the Prototype
Alignment and Diversity Loss, we compare Pro-
toLens trained with and without these components.
Prototype Alignment ensures that prototypes main-
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Figure 6: Case study of a negative class text instance. ProtoLens identifies relevant prototypes (e.g., "there was no
character development") and aligns them with specific spans in the input text. Extracted spans, similarity scores,
and sentiment weights show how each prototype contributes to the negative prediction.

Table 2: Performance of ProtoLens with different abla-
tion settings on various datasets.

Dataset ProtoLens w/o Diversity w/o Alignment
IMDB 0.903 0.882 0.886
Amazon 0.937 0.926 0.927
Yelp 0.962 0.931 0.943
Hotel 0.963 0.947 0.953
Steam 0.931 0.917 0.923

tain their semantic faithfulness. The Diversity Loss
encourages prototypes to be distinct, reducing re-
dundancy in representation. The results, shown in
Table 2, indicate that both the Prototype Alignment
and Diversity Loss are essential for maintaining
ProtoLens’s high performance and interpretabil-
ity, as their removal leads to significant declines
in accuracy across datasets. A detailed analysis is
provided in Appendix E.

4.5 Hyperparameter (RQ4)

Figure 7: Performance of ProtoLens in comparison with
different number of prototypes. Performance improves
with more prototypes, peaking at an optimal K (e.g., 40
for IMDB), before stabilizing or slightly decreasing.

We explored the impact of varying the number
of prototypes K and n-gram sizes on ProtoLens’s
performance, identifying dataset-specific optimal

Figure 8: Accuracy of ProtoLens across IMDB, Ama-
zon, and Hotel datasets as n-gram size varies. Larger
n-grams improve contextual representation, but perfor-
mance plateaus or slightly decreases beyond n=5, indi-
cating a tradeoff between context and generalizability.

values that balance model complexity and classifi-
cation accuracy. In conclusion, the optimal number
of prototypes K varies by dataset, with K = 50
performing best for Amazon and Yelp, K = 40 for
IMDB, and K = 20 for Hotel, while an n-gram
size of 5 consistently yields the best results across
all datasets, balancing complexity and performance.
A detailed analysis is provided in Appendix F.

5 Conclusion

In this paper, we present ProtoLens, a prototype-
based model offering fine-grained, sub-sentence
level interpretability for text classification. we in-
troduce a Prototype-aware Span Extraction module
with a Prototype Alignment mechanism to ensure
prototypes remain semantically meaningful and
aligned with human-understandable examples. Ex-
tensive experiments across multiple benchmarks
show that ProtoLens outperforms both prototype-
based and non-interpretable baselines in accuracy
while providing intuitive and detailed explanations.
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6 Limitations

While ProtoLens offers significant advancements
in interpretability through prototype-based reason-
ing and fine-grained sub-sentence level analysis,
there are several limitations to consider. First, the
quality of the learned prototypes heavily depends
on the training data. If the data contains inherent
biases, these biases may be reflected in the pro-
totypes, potentially leading to biased predictions
or explanations. This limitation underscores the
importance of careful data curation and ongoing
monitoring of the model’s outputs to mitigate bias.

Second, ProtoLens currently focuses on text clas-
sification tasks and has not yet been evaluated on
more complex natural language processing (NLP)
tasks such as machine translation or summarization.
Adapting ProtoLens to these tasks may require
significant architectural changes to maintain inter-
pretability without compromising performance.

Additionally, while we include results using
large language models (LLMs) in a zero-shot set-
ting, we have not yet explored their capabilities
in fine-tuning, or in-context learning scenarios. A
thorough comparison of ProtoLens across these
settings with LLMs could provide deeper insights
into its robustness, scalability, and utility in diverse
tasks.

Future work could address these limitations by
developing methods to automatically detect and
mitigate biases, adapting ProtoLens to more com-
plex tasks, conducting comprehensive comparisons
across LLM learning settings, and improving the
efficiency and usability of the learned interpreta-
tions.

7 Ethics

We have carefully considered the ethical implica-
tions of our work. ProtoLens is designed to en-
hance interpretability in deep neural networks, par-
ticularly for text classification tasks. By providing
more transparent and intuitive explanations, Pro-
toLens aims to improve trust and accountability
in AI systems, which is crucial in high-stakes ap-
plications such as healthcare, legal, and financial
domains.

We are committed to ensuring that the use of Pro-
toLens is aligned with ethical standards, promoting
transparency and fairness in decision-making pro-
cesses. However, as with all AI models, there is
a potential risk of misuse or bias amplification if
the model is trained on biased data. To mitigate

this, we emphasize the importance of careful data
curation and ongoing monitoring of model outputs
to identify and address any unintended biases. We
encourage users of ProtoLens to conduct thorough
bias audits and ensure that the model is applied in
a fair and responsible manner.

Furthermore, the datasets used in our experi-
ments, including IMDB, Yelp, Amazon, Hotel, and
Steam reviews, are publicly available and widely
used in the research community. We have ensured
that no personally identifiable information (PII)
is present in the data, and that our use of these
datasets complies with relevant ethical guidelines.

In conclusion, we believe that ProtoLens con-
tributes positively to the field of interpretable AI
by improving transparency and user understanding.
We acknowledge the importance of continuously
evaluating and mitigating potential risks to ensure
that AI systems remain fair, accountable, and ethi-
cal in their applications.
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A DPGMM

To model each similarity distribution as a mixture
of Gaussian components, we use a neural network
that takes a hidden representation h as input, which
is derived from mk via a two-layer MLP: h =
MLP(mk). This hidden representation h is then
used to generate the parameters of the Gaussian
mixture, including the mixture weights π, means µ,
and standard deviations σ, allowing the model to
approximate the similarity distribution effectively.
Means (µ) and Standard Deviations (σ). The pa-
rameters of the Gaussian components are computed
as follows:

µ = sigmoid(Wµh+ bµ)× T, (14)

σ = exp(Wσh+ bσ), (15)

where µ and σ are the mean and standard deviation
for each of the M Gaussian components.
Mixture Weights (π). To dynamically determine
the mixture weights, we employ the Stick-Breaking
Process (Ren et al., 2011), with the Dirichlet Pro-
cess (DP) (Teh et al., 2010) implicitly implemented
through the stick-breaking formulation. The DP
provides a nonparametric Bayesian approach that
allows the model to determine the appropriate num-
ber of components adaptively, which is crucial for
handling data with unknown complexity.

We define a maximum number of Gaussian com-
ponents, G, which represents the potential number
of components for approximating the similarity
distribution. The mixture weights πg for each com-
ponent g are generated as follows:

νg = sigmoid(Wπh+ bπ), (16)

πg = νg

g−1∏

ℓ=1

(1− νℓ), g = 1, . . . , G, (17)

Here, νg is computed by applying a sigmoid func-
tion to a linear transformation of the hidden repre-
sentation h. The Stick-Breaking Process ensures
that the mixture weights πm sum to one and adap-
tively determine the number of active components,
enabling the model to capture complex and poten-
tially multi-modal distributions.
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B Datasets

The IMDB dataset contains 25,000 balanced train-
ing and test samples and follows a binary senti-
ment classification format. The dataset was split
into training (90%) and validation (10%) partitions.
The Yelp Reviews dataset consists of 580,000 sam-
ples, with training and test sets comprising 550,000
and 30,000 samples, respectively. Sentiments were
binarized by treating 1–2 stars as negative and
3–4 stars as positive. The Amazon dataset was
created by selecting 30,000 random reviews, with
24,000 samples allocated for training and valida-
tion and 6,000 for testing. The Hotel dataset in-
cludes 20,000 reviews evaluating 1,000 hotels, re-
duced to a balanced subset of 4,508 reviews (2,254
positive and 2,254 negative). The Steam Reviews
dataset consists of 130,000 pre-processed reviews,
balanced between positive and negative sentiments.
Reviews with fewer than 10 characters or contain-
ing less than two sentences were excluded.

The DBPedia dataset is a multiclass dataset ex-
tracted from Wikipedia. For the experiments in
this paper, we use only 4 labels: “Person,” “Ani-
mal,” “Building,” and “Natural Place.” Similarly,
the Consumer Complaints dataset is a multiclass
dataset. For the experiments, we use only 4 classes:
“Checking or Savings Account,” “Credit Card or
Prepaid Card,” “Debt Collection,” and “Mortgage.”

In all experiments, pre-trained embeddings from
the BERT-based language model (Song et al.,
2020b) were employed to convert raw text into
sentence embeddings, enabling downstream analy-
sis.

C Prototype Interpretation

To assess the interpretability of the ProtoLens
model, we provide prototype-aligned interpreta-
tions across multiple datasets. Each figure show-
cases the top-3 original text sentences from the
training set that are most aligned with each pro-
totype. These examples illustrate how ProtoLens
associates prototypes with representative samples,
making its decision-making process more inter-
pretable and transparent.

For the IMDB dataset, as shown in Figure 9,
ProtoLens aligns prototypes with representative
training samples that reflect key aspects of movie
reviews. Positive prototypes are associated with re-
views praising elements such as acting and overall
quality, as seen in samples like “He does an excel-
lent job in this movie” and “I deeply enjoyed his

performance.” Negative prototypes, on the other
hand, align with reviews critiquing aspects like
plot and execution, exemplified by samples such
as “This movie was poorly acted, poorly filmed,
poorly written” and “It’s talky, illogical, slow, and
ultimately boring.” These representative samples
demonstrate ProtoLens’ ability to capture diverse
perspectives in sentiment analysis.

In the Yelp dataset, as shown in Figure 10, Pro-
toLens aligns prototypes with representative sam-
ples that capture customer opinions on food, ser-
vice, and ambiance. Positive prototypes are linked
to text such as “The service is impeccable” and
“The food is great, good portions and quality,” re-
flecting positive customer experiences. Conversely,
negative prototypes correspond to samples high-
lighting dissatisfaction, such as “The food was
horrible” and “The place looked dirty and disor-
ganized.” These aligned samples illustrate how Pro-
toLens effectively represents common patterns in
customer feedback.

For the Hotel dataset, as shown in Figure 11,
ProtoLens aligns prototypes with representative
training samples reflecting both positive and neg-
ative experiences. Positive prototypes align with
samples such as “Room was clean and good” and
“The staff were friendly and helpful,” highlighting
aspects of comfort and service. Negative proto-
types correspond to samples like “The room had
no soundproofing” and “The carpet is disgusting
and filthy,” emphasizing common complaints in
hospitality feedback. These representative samples
demonstrate ProtoLens’ ability to capture recurring
themes in hotel reviews.

In the Steam dataset, as shown in Figure 12, Pro-
toLens identifies prototypes aligned with gaming
reviews that reflect both satisfaction and dissatis-
faction. Positive prototypes are linked to reviews
like “This game is amazing” and “Runs smooth
even on low settings,” which highlight positive
gameplay experiences. Negative prototypes, on
the other hand, align with samples such as “The
servers are abandoned” and “This game sucks, do
not buy it,” reflecting technical issues and user frus-
tration. These representative samples demonstrate
ProtoLens’ ability to adapt to highly specific and
technical feedback in gaming.

For the Amazon dataset, as shown in Figure 13,
ProtoLens aligns prototypes with representative
training samples focusing on product quality, us-
ability, and service. Positive prototypes correspond
to samples such as “The decor is beautiful and
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the ambiance is great” and “I enjoyed this place
and will go back,” reflecting favorable customer
feedback. Negative prototypes align with samples
like “The food was uninspired and lacked flavor”
and “Horrible management and worse customer
service,” highlighting dissatisfaction. These exam-
ples demonstrate ProtoLens’ versatility in captur-
ing meaningful patterns in e-commerce reviews.

Overall, these results underscore ProtoLens’ abil-
ity to align prototypes with semantically mean-
ingful training samples, providing interpretable
insights into the patterns learned during training.
This interpretability is key to understanding the
model’s reasoning across diverse datasets.

D Classification Interpretation

ProtoLens explains its classification predictions by
aligning input text with prototypes from the train-
ing set and computing similarity scores to highlight
the most relevant prototypes. Each prototype con-
tributes to the final prediction based on its similarity
to the input text and its associated sentiment weight.
Below, we discuss how ProtoLens interprets both
positive and negative classifications through repre-
sentative examples.

D.1 Positive Sentiment Interpretation
Figure 14 demonstrates a positive sentiment clas-
sification. ProtoLens activates three prototypes
that correspond to semantically aligned samples
from the training set. For instance, Prototype 10
highlights positive movie reviews with phrases like
“In all it is a good movie to see,” capturing strong
alignment with the input’s positive tone. Similarly,
Prototype 14 emphasizes “acting was terrific,” con-
tributing further evidence of a positive sentiment.
The similarity scores and sentiment weights of
these prototypes are combined to determine the
final classification as positive. This process un-
derscores how ProtoLens grounds its decisions in
interpretable and meaningful text examples.

D.2 Negative Sentiment Interpretation
Figure 15 illustrates a negative sentiment classifica-
tion. ProtoLens activates prototypes that align with
critical text samples from the training set. For ex-
ample, Prototype 3 reflects dissatisfaction through
statements such as “It’s talky, illogical, slow, and
ultimately very boring,” aligning with the input’s
description of the movie as “pretty bad.” Prototype
4 further reinforces the negative sentiment by as-
sociating with phrases like “poorly acted, poorly

filmed, poorly written.” These prototypes provide
interpretability by grounding the model’s negative
classification in representative samples that closely
match the input text.

D.3 Interpretability

The examples in Figures 14 and 15 demonstrate
ProtoLens’ ability to explain its predictions us-
ing interpretable prototypes. By aligning input
text with training set samples that serve as proto-
types, ProtoLens offers a transparent view of how
classification decisions are made. The similarity
scores and sentiment weights ensure that each ac-
tivated prototype meaningfully contributes to the
overall prediction, enhancing both interpretability
and faithfulness of the model.

Overall, these results highlight ProtoLens’ ca-
pacity to provide human-understandable explana-
tions for sentiment classification tasks, bridging the
gap between model interpretability and practical
applications.

E Ablation Study

To demonstrate the effectiveness of the Prototype
Alignment and Diversity Constraint, we compare
ProtoLens trained with and without these compo-
nents. Prototype Alignment ensures that prototypes
maintain their semantic faithfulness. The Diversity
Constraint encourages prototypes to capture dis-
tinct, non-redundant features, enhancing general-
ization and reducing redundancy in representation.
The results are shown in Table 2.
Impact of Diversity Constraints. The removal of
diversity constraints (w/o Diversity) leads to a no-
ticeable accuracy decline across all tested datasets,
notably on IMDB (from 0.903 to 0.882), Amazon
(from 0.937 to 0.926), Yelp (from 0.962 to 0.931)
and Hotel (from 0.963 to 0.947). This indicates
that the diversity loss plays a crucial role in encour-
aging distinct and varied prototype representations,
which helps the model generalize better across dif-
ferent data points. The drop in accuracy suggests
that when prototypes become more redundant, they
lose their ability to represent the diversity in the
dataset, limiting the model’s interpretability and
performance.
Impact of Prototype Alignment. The ablation re-
sults for removing prototype alignment (w/o Align-
ment) show a decline in performance, particularly
on the Yelp dataset (from 0.963 to 0.943), highlight-
ing the importance of prototype alignment. Align-
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ing prototypes with representative embeddings en-
sures they remain semantically meaningful, leading
to more accurate and interpretable predictions. The
slight performance drop across other datasets, such
as IMDB and Amazon, further emphasizes that the
adaptive update process enabled by prototype align-
ment promotes more stable and reliable learning,
improving the model’s interpretability and accu-
racy.

F Hyperparameter

Effect of K. The number of prototypes, denoted by
K, plays a crucial role in determining the balance
between model interpretability and classification
performance. As shown in Figure 7, increasing K
generally leads to improved accuracy across most
datasets, with the exception of some slight fluctua-
tions. For instance, in the IMDB dataset, increas-
ing K from 10 to 40 boosts the performance from
0.884 to 0.903, while for the Yelp dataset, a similar
increase elevates the accuracy from 0.931 to 0.950.
The improvements plateau or slightly decrease for
higher values of K, suggesting diminishing returns
beyond a certain point.

The optimal value of K appears to be dataset-
dependent. For example, K = 50 yields the best
performance on the Amazon and Yelp datasets with
0.937 and 0.962, respectively, while K = 40 pro-
vides the best performance on the IMDB dataset
(0.903). Meanwhile, for the Hotel dataset, K = 20
achieves the highest accuracy at 0.963. This varia-
tion indicates that the ideal number of prototypes
may depend on the complexity and size of the
dataset.

Overall, increasing K allows the model to cap-
ture more fine-grained patterns by using a larger set
of prototypes, but settingK too high may introduce
unnecessary complexity without substantial accu-
racy gains. Thus, choosing K involves a trade-off
between maintaining a manageable number of inter-
pretable prototypes and achieving high predictive
performance.
Effect of n-gram. An n-gram is a hyperparameter
that determines the granularity of text division. As
shown in Figure 8, an n-gram size of 5 achieves the
best performance across all datasets, with notable
improvements on IMDB (0.903), Amazon (0.937),
and Hotel (0.963), indicating that n = 5 is the
optimal n-gram size, providing the best trade-off
between incorporating sufficient context and avoid-
ing unnecessary complexity. For smaller n-gram

sizes (e.g., n = 1, 3), performance is slightly lower,
likely due to the model’s limited ability to capture
broader contextual information. On the other hand,
a larger n-gram size (n = 7, 9) does not yield im-
proved performance and even leads to a decrease
in accuracy on all datasets, as seen with IMDB and
Amazon. This suggests that including too large of
a n-gram introduces noise, which results in slight
performance degradation.

G Impact of Encoder

To further assess generalizability, we evaluate Pro-
toLens using alternative pre-trained encoders, in-
cluding T5 and bge-m3, while keeping all other
settings fixed. Results in Table 3 confirm that Pro-
toLens remains effective across architectures. No-
tably, the bge-m3 encoder yields the highest ac-
curacy on all three datasets, surpassing MPNet.
ProtoLens with T5 performs comparably, with only
minor degradation, likely due to differences in em-
bedding granularity. These results show that Pro-
toLens is not tied to a specific encoder and can flex-
ibly adapt to various pretrained language models,
reinforcing its scalability and broad applicability.

Dataset MPNet T5 bge-m3
Hotel 0.963 0.955 0.968
Amazon 0.937 0.909 0.942
IMDB 0.903 0.897 0.924

Table 3: Performance of ProtoLens with different foun-
dation models on three benchmark datasets.

H Cross-Dataset Prototype
Generalization

To assess the generalizability of ProtoLens proto-
types across datasets, we conducted a cross-dataset
evaluation. Specifically, we tested the performance
of ProtoLens on the Hotel dataset using prototypes
derived from the Yelp and Amazon datasets, which
also represent customer review domains. Table 4
summarizes the results.

Table 4: Cross-dataset evaluation results. ProtoLens per-
formance on the Hotel dataset with prototypes derived
from different datasets.

Prototype Source Accuracy on Hotel Dataset
Hotel (Original) 0.963
Yelp 0.954
Amazon 0.943
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The results demonstrate that ProtoLens main-
tains strong performance even when using proto-
types derived from external datasets. While the
accuracy slightly decreases compared to using pro-
totypes generated directly from the target dataset
(Hotel), the drop in performance is modest: a 0.9%
and 2.0% reduction in accuracy when using Yelp
and Amazon prototypes, respectively. This sug-
gests that ProtoLens prototypes capture generaliz-
able patterns that can extend across datasets with
similar domains.

These findings underscore the robustness of
ProtoLens in leveraging prototypes across related
datasets, a desirable property for practical applica-
tions where annotated data for prototype derivation
may be limited. Furthermore, the ability to gener-
alize across datasets indicates that ProtoLens can
identify domain-invariant concepts, making it a
promising approach for transfer learning and cross-
domain interpretability in prototype-based models.

I LLaMA-3 Prompt

We use the following zero-shot prompt for LLaMA-
3-8B in all experiments:

Given a movie review, your
job is to classify its
sentiment into binary
class: positive or
negative.
Review: {input_text}
Do not provide reasoning
or explanation. Output
should be one word only:
"Negative" or "Positive".
sentiment:
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Figure 9: Aligned interpretation of prototypes with corresponding text sentences on the IMDB dataset. Each
prototype is associated with specific spans of text and sentiment weights, providing insights into the reasoning
behind the model’s predictions.
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Figure 10: Aligned interpretation of prototypes with corresponding text sentences on the Yelp dataset. The figure
highlights the diverse prototypes and their representative candidates, emphasizing interpretability in the sentiment
analysis task.
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Figure 11: Aligned interpretation of prototypes with corresponding text sentences on the Hotel dataset. The
interpretations include both positive and negative sentiment examples, showcasing the model’s ability to capture
nuanced feedback.
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Figure 12: Aligned interpretation of prototypes with corresponding text sentences on the Steam dataset. The figure
demonstrates how ProtoLens handles diverse feedback in gaming reviews, including issues like performance and
user experience.
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Figure 13: Aligned interpretation of prototypes with corresponding text sentences on the Amazon dataset. This
figure illustrates ProtoLens’ interpretability across product reviews, focusing on features such as quality, service,
and usability.
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Figure 14: The figure showcases how ProtoLens aligns input text with prototypes to explain a positive sentiment
prediction. The extracted spans and similarities for the top-3 activated prototypes are presented, along with sentiment
weights contributing to the final prediction.

Figure 15: The figure shows how ProtoLens aligns input text with prototypes to explain a negative sentiment
prediction, supported by similarity scores and sentiment weights.
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