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Abstract

Enhancing the mathematical reasoning capabil-
ities of Large Language Models (LLMs) is of
great scientific and practical significance. Re-
searchers typically employ process-supervised
reward models (PRMs) to guide the reason-
ing process, effectively improving the models’
reasoning abilities. However, existing meth-
ods for constructing process supervision train-
ing data, such as manual annotation and per-
step Monte Carlo estimation, are often costly
or suffer from poor quality. To address these
challenges, this paper introduces a framework
called EpicPRM (Efficient, Precise, Cheap),
which annotates each intermediate reasoning
step based on its quantified contribution and
uses an adaptive binary search algorithm to
enhance both annotation precision and effi-
ciency. Using this approach, we efficiently
construct a high-quality process supervision
training dataset named Epic50k, consisting of
50k annotated intermediate steps. Compared
to other publicly available datasets, the PRM
trained on Epic50k demonstrates significantly
superior performance. Getting Epic50k at
https://github.com/xiaolizh1/EpicPRM.

1 Introduction

Improving the mathematical reasoning ability of
Large Language Models (LLMs) can significantly
accelerate advancements in artificial intelligence
across various scientific domains. To enhance
the mathematical reasoning capability of LLMs,
several studies (Yu et al., 2023a; Cobbe et al.,
2021; Shao et al., 2024; Chen et al., 2025a) em-
ploy Outcome-supervised Reward Models (ORMs)
to guide Chain-of-Thought (CoT) generation and
leverage reinforcement learning to optimize gen-
erative performance. Among these approaches,
process supervision, leveraging Process-supervised
Reward Models (PRMs), has emerged as a more
effective approach (Li et al., 2022; Uesato et al.,

†Corresponding author.

2022; Lightman et al., 2023; Chen et al., 2024b),
providing substantial improvements through step-
by-step supervision.

In process supervision, researchers typically con-
struct an annotated dataset of reasoning processes
and then train a PRM to guide the reasoning pro-
cess. The quality of this annotated data is crucial
for PRM effectiveness. Two primary approaches
exist for dataset construction: manual annotation
(Lightman et al., 2023) and automatic annotation
(Wang et al., 2024a,b; Luo et al., 2024). While
manual annotation ensures high data quality, it is
labor-intensive and difficult to scale to diverse do-
mains. Conversely, automatic annotation reduces
labor costs but often results in lower annotation
quality. This necessitates the use of larger datasets
to compensate, which in turn demands significant
computational resources.

To address these challenges, this paper intro-
duces EpicPRM, a fully open-source framework de-
signed for the precise and efficient construction of
high-quality annotated process supervision training
datasets. Our approach leverages multiple LLMs
with varying capabilities and from diverse sources
to generate a more comprehensive set of CoT rea-
soning chains. We annotate intermediate steps by
quantifying their contribution and identifying the
first erroneous step within each chain. This iden-
tification is achieved through an adaptive binary
search process, which adjusts the starting position
and the number of Monte Carlo estimation sam-
ples based on problem difficulty. These optimiza-
tions result in a 64.39% reduction in annotation
costs compared to traditional sequential search al-
gorithms. Using this framework, we constructed
Epic50k, a dataset containing 50k annotated in-
termediate steps. The PRM trained on Epic50k
achieves supervision performance comparable to,
and in some cases surpassing, PRMs trained on
the PRM800k and Math-Shepherd datasets, despite
being less than 10% the size.
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Figure 1: An examples of getting the correct answer based on the wrong steps. On the basis of s6, completer
continues to sample a number of rollouts. We can see that since the completer has a certain error correction
capability, even if there is an obvious error in step 6.

Our main contributions are as follows:
1. We propose a more efficient and precise

framework for constructing process supervision
data by quantifying the contribution of interme-
diate reasoning steps and optimizing the binary
search algorithm.

2. We publicly release Epic50k, a high-quality
process-supervised training dataset containing 50k
intermediate reasoning steps.

3. Our experimental results demonstrate the im-
portance of data quality over quantity for training
PRMs, showing that even a smaller, high-quality
dataset can yield superior results.

2 Background

Existing methods for constructing process-
supervision data first use LLMs to generate
complete CoT chains, and then use Monte Carlo
estimation to label the correctness of each step.

Monte Carlo estimation. Several related stud-
ies, including Math-Shepherd (Wang et al., 2024a),
MiPS (Wang et al., 2024b), and OmegaPRM (Luo
et al., 2024), have introduced a Monte Carlo (MC)
estimation method to approximate the probability
of obtaining a correct solution from a given state.
This method designates a large language model
(LLM) as a "completer," tasked with generating
the subsequent reasoning steps from the current
state st (st = [q; a1; a2; . . . ; at], where q denotes
the question and a1 through at represent the first t
selected intermediate steps) until a final answer is
reached. This generative process is termed a "roll-

out." After performing N independent rollouts, the
number of successful rollouts M that arrive at the
correct final answer is counted, and the probability
of achieving a correct solution from the current
state is estimated as M/N .

Identification of the first erroneous step. In
automated data construction, evaluating the correct-
ness of intermediate steps within a complete erro-
neous CoT reasoning chain using MC estimation
is computationally expensive. Prior work (Light-
man et al., 2023) has shown that effective PRM
training only requires the identification of the first
erroneous step in a complete CoT reasoning chain.
Once the first erroneous step is identified, all pre-
ceding steps are annotated as correct, while subse-
quent steps are annotated as incorrect. To optimize
this identification process, OmegaPRM (Luo et al.,
2024) employs a binary search algorithm, reducing
the number of MC estimations needed and thereby
improving computational efficiency.

3 Method

In this section, we introduce how to make MC
estimation more precise and how to find the first
erroneous step more efficiently.

3.1 Make MC Estimation More Precise

3.1.1 Perplexity Instead of Count
Using MC estimation to represent the probability of
obtaining the correct answer from a given state has
inherent limitations. When N is not large enough,
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counting will be accidental, we argue that using
M/N as a direct representation of the probabil-
ity of sampling correct rollouts is imprecise. Ac-
cording to the Law of Large Numbers, estimating
probabilities using counting methods necessitates
a large number of samples to achieve reliable ac-
curacy. For instance, observing two heads in two
coin tosses does not imply a 100% probability of
obtaining heads. Similarly, if we sample N roll-
outs and find M correct ones, estimating the prob-
ability of correctness as M/N inherently carries
uncertainty due to sampling variability. By using
perplexity, we can directly calculate the probability
of the model generating each rollout, thereby miti-
gating errors introduced by sampling. Furthermore,
if a correct rollout has an exceptionally low gen-
eration probability but is included in the sample,
a counting-based method would overestimate the
likelihood of obtaining correct rollouts. Therefore,
we propose using perplexity (PPL) calculated by
logarithmic probability to represent the sampling
probability of each rollout:

PPL (j; st, θk) = exp

{
− 1

L

L∑

i=1

log pθk (xi | x<i)

}
(1)

where j represents a rollout, st represents the
input prefix, θk represents the k-th completer;
pθk(xi|x<i) is the probability that completer k gen-
erates the token xi given the preceding tokens x<i;
and L is the total number of tokens in rollout j.

Consequently, each of K completers which inde-
pendently samples N rollouts, with M of these roll-
outs yielding the correct answer, our MC estimate
based on perplexity (PPL), denoted as MCPPL:

MCPPL (st, θ1:K) =
1

K

K∑

k=1

∑M
m=1 log PPL (j; st, θk)∑N
n=1 log PPL (j; st, θk)

(2)

Compared with the counting, directly calculating
the probability of obtaining correct answer elimi-
nates the influence of accidental, that‘s why we use
MCPPL instead of M/N .

3.1.2 Quantify Contribution of Steps
Limitations of MC Estimation. The prevailing
automatic annotation methods operate under the
assumption that if at least one of N sampled roll-
outs originating from state st produces the correct
final answer (equivalent to MCPPL value greater
than 0), then all t intermediate steps within state
st are considered correct. However, the inherent
error correction capabilities of LLMs can obscure
underlying inaccuracies in these intermediate steps.
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Figure 2: Relationship between the position of the first
erroneous step and the difficulty of the problem. The
horizontal axis represents the difficulty of the problem,
and the vertical axis represents the ratio of the position
of the first error step to the total number of steps.

As demonstrated in Figure 1, a completer may rec-
tify an error at step at and still arrive at the correct
final answer, despite at itself being flawed. This
phenomenon results in false positives for at, con-
sequently diminishing the quality of the process
supervision data and adversely affecting the super-
visory efficacy of the trained PRM.

Contribution-Based Annotation Method. To
annotate intermediate reasoning steps more pre-
cisely, we quantify the contribution of each step
at to problem solving as the ratio of MCPPL(at)
to MCPPL(a0). This represents the ratio of the
probability that the completer will continue to an-
swer the question and ultimately arrive at the cor-
rect answer, given the first t steps (with the first
t− 1 steps have been verified correct), to the prob-
ability that the completer will arrive at the correct
answer without any reasoning steps. In Section 4.1,
we specifically analyze the relationship between
the quantified contribution C(at; θ1:K) and the cor-
rectness of the steps annotated by human expert
through experiments and establish a threshold α
to be used as the criterion for annotating the steps:

C(at; θ1:K) =
MCPPL (st, θ1:K)

MCPPL (s0, θ1:K)

Label(at; θ1:K) =

{
0 if C(at; θ1:K) ≤ α

1 if C(at; θ1:K) > α

(3)

3.2 Adaptive Binary Search Algorithm

In this subsection, we detail how to use the adaptive
binary search algorithm to improve the efficiency
of finding the first error step.
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Figure 3: An example of comparing search processes
between our adaptive binary search and traditional bi-
nary search. The blue arrow is traditional binary search,
requiring 3 searches (starting from a5) to find the first er-
roneous step a3. Conversely, our adaptive binary search
(purple arrow) sets the initial search position to a3 based
on question difficulty, requiring only 2 searches.

3.2.1 Dynamic Starting Position
Human problem-solving behavior suggests that er-
rors typically occur early in more complex prob-
lems, while simpler problems often involve calcu-
lation mistakes later in the solution. We hypoth-
esize that LLMs follow similar patterns. To test
this, we sampled 22k erroneous rollouts and iden-
tified the position of the first erroneous step. We
used the MC perplexity value of the initial prob-
lem state, MCPPL(s0), to represent problem diffi-
culty—lower indicates greater difficulty. We classi-
fied problem difficulty d (qi, θ1:K) into 11 levels:

d (qi, θ1:K) = round (10 ∗MCPPL (s0, θ1:K)) (4)

Our results, shown in Figure 2, reveal a strong
correlation between the first erroneous step’s posi-
tion and problem difficulty. Based on these insights,
we propose an enhanced binary search algorithm
with a dynamic starting position, an example is
shown in Figure 3. Instead of starting at T/2, we
adapt the starting point based on the problem’s dif-
ficulty dqi using Eq.(5). This adjustment allows
faster narrowing of the search range, reducing the
number of MC estimations. The complete data
construction process is shown in Algorithm 3.2.2.

mid =





⌊
l+r
2

⌋
−

⌊
Len
4

⌋
if d (qi, θ1:K) < 2⌊

l+r
2

⌋
if 2 ≤ d (qi, θ1:K) < 6⌊

l+r
2

⌋
+

⌊
Len
4

⌋
if d (qi, θ1:K) ≥ 6

(5)

Where d (qi, θ1:K) represents the difficulty of
qi with K completers, r and l represent the upper
and lower bounds of the binary search, and Len
represents the total number of steps.
3.2.2 Dynamic Sampling Count
We observe that the computational overhead in au-
tomatic annotation is primarily attributable to the
completer models’ sampling of N rollouts. Exist-
ing methods employ a fixed value for N irrespec-
tive of problem difficulty, resulting in wasted com-
putation on simpler problems and potentially insuf-
ficient sampling for complex problems, where the

number of valid rollouts M at both s0 and st may
be zero. To address this, we propose dynamically
adjusting N based on problem difficulty. Specif-
ically, we determine N at the initial state s0 (as
defined in Eq.(2)) by initializing with a value of
16 and iteratively incrementing until M exceeds
10, thereby ensuring a minimum of 10 correct roll-
outs from each completer. This adaptive sampling
strategy mitigates computational overhead while
maintaining annotation quality.

Algorithm 1 Adaptive Binary Search for Annotat-
ing Process Supervision Data
Input: Question qi, response AT = (a1, ..., aT ),

completers θ1:K , threshold coefficient α
Output: The subscript of the first error in AT

1: Initialize the lower bound Left = 0, upper
bound Right = T − 1, flag for the first search
f = True;

2: Calculate the average MCPPL value and
the threshold H for error steps, V =
MCPPL(s0, θ1:k), H = α ∗ V ;

3: while Left ≤ Right do
4: if f = True and T ≥ 4 then
5: Compute mid according to Eq.(5);
6: else
7: mid =

⌊
Left+Right

2

⌋
;

8: end if
9: smid = (qi; a1, ...amid);

10: f = False;
11: if MCPPL(smid, θ1:K) ≤ H then
12: Right = mid− 1;
13: else
14: Left = mid+ 1;
15: end if
16: end while
17: return Left

4 Experiments
4.1 Annotation Threshold Selection

In this section, we experimentally determined the
threshold in Section 3.1.2. We sampled 1,000 steps
from the manually annotated PRM800k(Lightman
et al., 2023) and analyzed the ratio of their MCPPL

values at s0 and st to assess at’s contribution. Fig-
ure 4 shows that some manually annotated incor-
rect steps still had a positive ratio, indicating at
least one correct rollout. This suggests that certain
errors have minor negative effects, while some cor-
rect steps may introduce slight disruptions due to
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Figure 4: Relationship between manually annotated
labels and step contribution. The x-axis depicts the
quantified contribution per step, where the step values
have been rounded up. All values greater than 1 are
counted as 1. The vertical axis represents the number
of manually annotated steps. The blue and pink dotted
lines represent the existing method and our method re-
spectively. The left side of dotted lines is annotated as
the incorrect step, and the right side is annotated as the
correct step. Our method yields more precise results in
identifying correct and incorrect steps.

unconventional reasoning. As the ratio increases,
correct steps become more prevalent while incor-
rect ones decrease. So our human experts have
selected 0.5 as the threshold (α) after random sam-
pling validation. As depicted in the bar chart of
Figure 4, indicate that a randomly chosen threshold
within the range of 0 to 1 surpasses the discrimina-
tive capabilities of existing approaches, suggesting
that human expert validation may not be necessary.

4.2 PRM Training Data Construction

4.2.1 CoT Reasoning Chain Generation

We use the MATH dataset (Hendrycks et al., 2021)
to construct Epic50k. We adopted the same train-
ing and test set splits as PRM800k (Lightman et al.,
2023), creating the MATH500 test set by select-
ing 500 representative questions from the origi-
nal 5k-question MATH test set, and expanding
the training set to 12k questions. Initially, we
randomly selected 3,500 questions from the train-
ing set, maintaining a level distribution ratio of
1:1:1:2:2 across levels 1 through 5. We then em-
ployed the LLaMA3-8B-Instruct (Touvron et al.,
2023; AI@Meta, 2024), LLaMA3.1-8B-Instruct,
and Qwen2-7B-Instruct (Yang et al., 2024a) mod-
els to generate multiple complete solutions for
these questions. LLaMA3-8B-Instruct was used for
levels 1 and 2, while LLaMA3.1-8B-Instruct and

Qwen2-7B-Instruct were used for levels 3 through
5. For each question, we selected 2 correct and
6 incorrect solutions exhibiting the lowest cosine
similarity scores, and split each intermediate step
of the solutions for automatic annotation.

4.2.2 Intermediate Steps Annotation
When annotating intermediate steps, the MCPPL

values sampled by different LLMs can exhibit sig-
nificant variability due to differences in their ca-
pabilities and biases. To mitigate this variability
and more precisely reflect the true accuracy of
state st, we employed LLaMA3.1-8B-Instruct and
Qwen2-7B-Instruct from multiple diverse sources
as completers and calculated the average of their
sampled MCPPL values as the final estimate. As
our model was not fine-tuned on mathematical
datasets, we standardized the solution output for-
mat using a two-shot prompting approach (Ap-
pendix A.1 for details). In total, we constructed a
PRM training dataset containing 50,000 intermedi-
ate steps, with an approximate 1:1 ratio of correct
to incorrect steps. To accelerate sampling, we uti-
lized the vLLM inference framework (Kwon et al.,
2023).The specific comparative analysis of step
distribution can be found in the Appendix A.2

4.3 PRM Supervision Performance

4.3.1 PRM Training
Because our approach requires no additional su-
pervised fine-tuning data, we chose Qwen2-math-
1.5B-base (Yang et al., 2024a), a math-specialized
LLM, as our base model. Unlike Math-Shepherd,
which uses the complete solution sequence s1:T as
input and calculates softmax values over the vocab-
ulary at special tokens of each step for loss compu-
tation, we treat PRM training as binary text classi-
fication which is same as PRM800k. We added a
classification head to the base model’s output layer
and employ a standard binary classification loss:

Loss =
1

R

N∑

i=1

ŷi log yi + (1− ŷi) log (1− yi) (6)

Where ŷi represents the correctness label and yi
is the prediction score of the PRMs. R represents
the number of training samples.

When evaluating an intermediate step at, we
input only the preceding steps st. This is preferable
because inference-time iterative search algorithms
(e.g., beam search) do not yet have subsequent
content. We changed the format of the MATH-
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Figure 5: Results of PRM weighted Best-of-N search for models of different scales at commonly used sampling
temperatures.
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Figure 6: Comparison of the supervision performance
of PRMs trained with varying datasets: subsets of
PRM800k and MATH-Shepherd with at least 50k scales
versus ours Epic50k.

Shepherd dataset to a format suitable for binary
text classification tasks.

4.3.2 Experiment Setup

We evaluated the effectiveness of the PRM on
Gemma2-2B-it, Gemma2-9B-it(Team et al., 2024),
Phi-3-mini-4k-Instruct (3.8B) (Abdin et al., 2024),
which are from different origins than the data gen-
eration models, using the PRM weighted Best-
of-N search on MATH500. Specifically, a basic
model was used as a generator, which sampled
N complete solutions on the MATH500 test prob-
lem. We then used PRM to score these N so-
lutions and selected one solution as the final an-

swer. There are two selection strategies: one takes
the minimum PRM score as the solution’s score
(V alue = mint−→T PRM(qi|st)); the other takes
the PRM score of the last step as the solution’s
score (V alue = PRM(qi|sT )). Baseline process
supervision datasets included PRM800k(Lightman
et al., 2023), Math-Shepherd(Wang et al., 2024a),
and Self-Consistency(Wang et al., 2022). To align
with our training methodology, we modified the
Math-Shepherd data format accordingly.

4.3.3 PRM Weighted BON Search Result
Figure 5 presents a comparison of PRM perfor-
mance across various process-supervision datasets.
Despite containing only 50k annotated intermedi-
ate steps, Epic50k demonstrates superior perfor-
mance compared to Math-Shepherd across three
distinct model sizes and sampling temperatures.
Notably, Epic50k even surpasses PRM800k, which
is trained on 800k manually annotated steps, in two
of the evaluated models. Given the inherent preci-
sion of manually annotated data, it is unexpected
that Epic50k, with a dataset size representing only
6.25% of PRM800k, would consistently outper-
form it across all models. Table 1 shows a com-
parative analysis of the Best-of-128 search results
for different generators under varying PRMs super-
visions. Epic50k‘s consistent outperformance of
existing automatic annotation methods sufficiently
demonstrates the efficacy of our approach.
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Generator Models Size Verifiers Temperature MATH500

Gemma2-2B-it 2B

2-shot CoT (Greedy) 0 0.202
+Self-Consistency mj@128

0.8

0.176
+Math-Shepherd Best-of-128 0.346
+PRM800k Best-of-128 0.358
+Epic50k (Ours) Best-of-128 0.380

Phi-3-mini-4k-Instruct 3.8B

2-shot CoT (Greedy) 0 0.378
+Self-Consistency mj@128

0.8

0.516
+Math-Shepherd Best-of-128 0.488
+PRM800k Best-of-128 0.562
+Epic50k (Ours) Best-of-128 0.572

Gemma2-9B-it 9B

2-shot CoT (Greedy) 0 0.456
+Self-Consistency mj@128

0.8

0.516
+Math-Shepherd Best-of-128 0.558
+PRM800k Best-of-128 0.622
+Epic50k (Ours) Best-of-128 0.618

Table 1: Comparison of the supervision effectiveness of PRMs trained on varying training datasets, evaluated using
a Best-of-128 search with a temperature parameter set to 0.8.

Algorithm Verified steps Sampled number Generated tokens
Sequential Search 4204 209.81K 76.67M

Binary Search 2620(-37.68%) 133.78K(-36.24%) 42.52M(-44.54%)
Adaptive Binary Search(Ours) 2539(-39.56%) 70.40K(-66.45%) 27.30M(-64.39%)

Table 2: Cost of three search algorithms when annotating the same 800 erroneous steps.

4.4 Comparison of Different Data Scales

We compared Epic50k with randomly selected
subsets of PRM800k and MATH-Shepherd using
Gemma2-9b-it as the generator with a sampling
temperature of 0.8, consistent with Figure 5c. The
results, shown in Figure 6, The horizontal axis rep-
resents the size of the randomly selected training
data, while the vertical axis depicts the MATH500
Best-of-128 accuracy. Epic50k consistently outper-
forms MATH-Shepherd across all data sizes and
is only surpassed by PRM800k when the data ex-
ceeds 500k. This highlights Epic50k‘s superior
data efficiency. We posit that constructing a larger-
scale training data using the EpicPRM framework
would likely result in PRM supervision exceeding
that of PRM800k. However, due to computational
constraints, we limited our dataset to 50k.

4.5 Data Annotation Cost
4.5.1 Compared Search Algorithms

We also compared our method with the binary
search algorithm and the sequential search algo-
rithm with fixed sampling times to verify the advan-
tage of our method in annotation efficiency. We an-
notated 800 randomly selected solutions. Both the

binary search algorithm and the sequential search
algorithm fixed the sampling times to 48, while our
method sampled between 16 and 72 times until at
least 10 correct solutions were sampled. Finally,
we compared the number of sampling times and
the number of tokens generated by the three search
methods to annotate 800 incorrect solutions.

4.5.2 Annotated Cost Comparison Results
Table 2 presents the overhead compared with dif-
ferent search algorithms during annotating interme-
diate steps. Our adaptive binary search algorithm
dynamically adjusts the number of samples and
the initial search position based on the problem’s
difficulty. Compared to other search algorithms,
it achieves significant reductions in 3 key metrics:
the number of verified steps, total sampled number,
and total generated tokens. In particular, the re-
duction in total generated tokens (a metric directly
related to cost) demonstrates the strong effective-
ness of our approach. We construct Epic50k using
4 NVIDIA A100 80G GPUs for approximately 260
hours, which is quite cost-effective and cheap.

In terms of validation steps, our method shows
only a modest improvement over conventional bi-
nary search algorithms. This is because the average
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Model GSM8K MATH Olympiad-
Bench

Omni-
MATH Average

Math-Shepherd-PRM-7B 47.9 29.5 24.8 23.8 31.5
RLHFlow-PRM-Mistral-8B (Dong et al., 2024) 50.4 33.4 13.8 15.8 28.4
RLHFlow-PRM-Deepseek-8B 38.8 33.8 16.9 16.9 26.6
Skywork-PRM-1.5B (Liu et al., 2024) 59.0 48.0 19.3 19.2 36.4
Skywork-PRM-7B 70.8 53.6 22.9 21.0 42.1
Qwen2-1.5B-PRM800k 34.0 55.3 34.2 41.0 41.1
Qwen2-1.5B-MATH-Shepherd 48.9 34.1 9.8 13.7 26.6
Qwen2-1.5B-Epic50k (Ours) 55.6 36.1 20.2 30.0 35.5
Qwen2.5-1.5B-Instruct-PRM800k 49.1 59.3 32.5 35.9 44.2
Qwen2.5-1.5B-Instruct-Shepherd 44.1 29.8 12.1 17.6 25.9
Qwen2.5-1.5B-Instruct-Epic50k 58.1 53.2 32.2 40.6 46.0

Table 3: Evaluation results of open-source process reward models (PRMs) on PROCESSBENCH. We report the F1
score of the respective accuracies on erroneous and correct samples.

solution length in our dataset is just 10 steps, and
most solutions can be completed with a standard
binary search in fewer than 4 steps. Adjusting the
initial search position provides noticeable advan-
tages only for solutions with longer step lengths.

4.6 Out of Domain Generalization

To evaluate our PRM on stronger generators and
out of domain benchmarks, we conducted experi-
ments on PROCESSBENCH (Zheng et al., 2024),
a PRM assessment benchmark covering GSM8K,
MATH, OlympiadBench, and Omni-MATH. So-
lutions were generated by LLaMA and Qwen
models, including Qwen2.5-Math-7B/72B-Instruct,
and labeled step-wise by human experts. Re-
sults are shown in Table 3. Epic50k demon-
strates strong generalization across benchmarks
of varying difficulty. While it lags behind human-
labeled PRM800k, it performs competitively with
open-source PRMs, excelling at Olympiad-level
problems where it matches Skywork-PRM-7B.
Though Qwen2-1.5B-Epic50k scores slightly be-
low Skywork-PRM-1.5B (by <1%). Skywork lever-
ages Qwen2.5-MATH-1.5B-Instruct, whereas our
Qwen2-1.5B-Epic50k is based on the previous-
generation Qwen2-MATH-1.5B-Base. Given the
disparity in base models, this advantage is ex-
pected. Notably, despite being trained only on
MATH, Qwen2-1.5B-Epic50k surpasses Skywork-
PRM-1.5B on OlympiadBench and Omni-MATH,
highlighting strong generalization from easier to
harder problems. In order to be consistent with the
base model of Skywork-PRM-1.5B, we conducted
comparative experiments based on the Qwen2.5-
1.5B-Instruct model. Our Epic50k performs signif-
icantly better than other methods.

5 Related Work

Improving the mathematical reasoning ability of
Large Language Models (LLMs) can significantly
accelerate advancements in artificial intelligence
across various scientific domains, such as Trans-
lation (He et al., 2025), Scientific agent reason-
ing (Ren et al., 2025), Long-text reasoning (Wan
et al., 2025; Chen et al., 2025b,a,c), Multilin-
gual (Ghosh et al., 2025; Yang et al., 2023), Multi-
modal (Huang et al., 2025; Jian et al., 2024).
Prompt-based approaches. Particularly Chain-of-
Thought (CoT) (Wei et al., 2022), have significantly
advanced mathematical reasoning (Perez et al.,
2021). Subsequent work has explored CoT fine-
tuning (Ouyang et al., 2022; Li et al., 2024; Mitra
et al., 2024; Yu et al., 2023b) and extended prompt
engineering to problem decomposition (Zhou et al.,
2022; Hao et al., 2023) and programming (Chen
et al., 2022; Li et al., 2023; Zhou et al., 2023;
Chen et al., 2024a; Yang et al., 2024b). Select-
ing optimal solutions from multiple sampled paths
has proven more effective than prompt engineering
alone. Self-Consistency (Wang et al., 2022) uses
majority voting across generated CoT trajectories,
while RAP (Hao et al., 2023) uses self-evaluation
and feedback for sequential subproblem solving.
However, existing research (Huang et al., 2023) in-
dicates that models encounter significant difficulty
in self-assessing without external information.

Application of PRMs. Prior work (Huang et al.,
2022; Wang et al., 2024a; Cobbe et al., 2021) has
shown that using verifiers for problem-solving path
assessment and selection is significantly more effec-
tive than self-consistency alone. PRMs have also
been demonstrated to provide stronger supervision
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than ORMs (Lightman et al., 2023). While Math-
Shepherd (Wang et al., 2024a) uses a specialized
PRM, OVM (Yu et al., 2023a) employs iterative
step sampling with a step-level verifier to identify
optimal steps. Thus, high-quality process super-
vision data is crucial for training PRMs, which
can further enhance generator models’ mathemat-
ical abilities via methods like SFT (Zhang et al.,
2024), GROP (Shao et al., 2024), and SVPO (Chen
et al., 2024b). Existing data construction methods
include costly manual annotation (e.g., PRM800k
(Lightman et al., 2023)) and automatic annotation
via Monte Carlo estimation (e.g., Math-Shepherd
(Wang et al., 2024a), MiPS (Wang et al., 2024b)),
with OmegaPRM (Luo et al., 2024) optimizing the
latter using binary search within MCTS.

6 Conclusion

This study introduces EpicPRM, an open-source
framework designed for the automatic annotation
of intermediate reasoning steps in mathematical
problem-solving. EpicPRM offers significant im-
provements in both precision and efficiency com-
pared to existing automatic annotation methods.
Notably, it achieves superior training results with
less than 10% of the data volume required by cur-
rent state-of-the-art training datasets.

DeepSeek-R1 (DeepSeek-AI et al., 2025) at-
tempted to apply process supervision but failed due
to the high cost of PRM training data and its lim-
ited supervisory effectiveness. However, this does
not disprove the feasibility of process supervision.
In contrast, Microsoft‘s rStar-MATH (Guan et al.,
2025) demonstrated that models with 7B param-
eters or fewer can achieve reasoning capabilities
comparable to OpenAI-o1 using process supervi-
sion. Our method further reduces PRM training
costs while improving its supervisory effectiveness.
This advancement provides more practical and ef-
ficient solutions for improving the reasoning capa-
bilities of language models.

Limitations

EpicPRM has made significant progress compared
to existing automatic annotation methods, but it
still has some limitations. Although we have sig-
nificantly improved annotation precision, it has not
yet reached the level of human expert annotation.
Consequently, our automatically annotated data
still contains some inherent noise. Furthermore,
our current method relies on human-provided gold

standard answers, meaning that complete indepen-
dence from human supervision has not yet been
achieved.

Theoretically, EpicPRM can be applied to any
task that utilizes Chain-of-Thought (CoT) prompt-
ing and PRM-based process supervision. However,
our experiment evaluation has been limited to the
domain of mathematical reasoning. Therefore, the
effectiveness and generalizability of EpicPRM in
other reasoning domains, such as commonsense
reasoning or logical inference, remain open ques-
tions. Future research will investigate the perfor-
mance of EpicPRM across a wider range of tasks
and domains to establish its broader applicability.
This includes exploring potential adaptations or
modifications that may be necessary to optimize
performance in different contexts.

Given the high costs involved, we have not been
able to perform a comprehensive analysis to assess
the impact of adjusting the threshold in Section
3.1.2 on data quality, nor have we explored the
possibility of task-specific thresholds for optimal
annotation. These inquiries will be the focus of our
future work.
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A Appendix

A.1 Prompt for 2-shot

System prompt

<System> You are a powerful agent with
broad math knowledge and good at accu-
rate calculation on math equations.Below
is an instruction that describes a task. Con-
tinue to finish the response that appropri-
ately completes the request within a max-
imum of 40 steps. When outputting each
step, mark the sequence number of each
step at the beginning, and explicitly state
the final answer after the final step follow-
ing the format ’The final answer is:’. After
outputting the final answer only once, be
sure to stop outputting.

Example 1

<User> Instruction: If the lengths of two
sides of a right triangle are 5 and 12 units,
what is the least possible length, in units,
of the third side? Express your answer in
simplest radical form.
<Assistant> Response: Let’s think step by
step.
Step 1:I know that the Pythagorean theorem
relates the lengths of the sides of a right
triangle by the equation a2+b2 = c2, where
c is the hypotenuse and a and b are the legs.
Step 2:Since I don’t know which side is the
hypotenuse, I’ll try both possibilities and
see which one gives me a smaller value for
the third side.
Step 3:If I assume that the hypotenuse is 12,
then the other leg must satisfy 52+b2 = 122,
or b2 = 144− 25 = 119.
Step 4:Taking the square root of both sides,
I get b =

√
119, which is already in sim-

plest radical form.
Step 5:If I assume that the hypotenuse is
the unknown side, then it must satisfy 52 +
122 = c2, or c2 = 25 + 144 = 169.
Step 6:Taking the square root of both sides,
I get c =

√
169 = 13.

Step 7:Comparing the two values, I see
that

√
119 is smaller than 13, since 119 is

smaller than 169.The final answer is 119.
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Example 2

<User> Instruction: A square has sides of
length 10, and a circle centered at one of
its vertices has radius 10. What is the area
of the union of the regions enclosed by the
square and the circle? Express your answer
in terms of π.
Response: Let’s think step by step.
Step 1:I want to find the area of the shaded
region in this picture, where the blue is the
square and the red is the circle.
Step 2:I notice that the circle and the square
share a quarter of the circle’s area, which is
1
4πr

2, where r = 10.
<Assistant> Step 3:So I can subtract that
from the sum of the areas of the circle and
the square to get the area of the union.
Step 4:The area of the circle is πr2 = 100π,
and the area of the square is s2 = 100,
where s = 10.
Step 5:So the area of the union is 100π +
100− 1

4100π = 100 + 3
4100π.

Step 6:The final answer is: 100 + 3
4100π.

A.2 Step Distribution
We analyzed the step distribution of three datasets-
PRM800k, MATH-Shepherd, and our Epic50k-by
examining both the number of steps per solution
and the length of each step. Regarding the number
of steps per solution (as illustrated in Figure 7), our
Epic50k dataset exhibits a concentration around
10 steps, whereas PRM800k and MATH-Shepherd
are primarily clustered around 5 steps. This dis-
crepancy is primarily attributed to the higher pro-
portion of level 4-5 difficulty problems in Epic50k,
which inherently necessitates more steps per solu-
tion. Subsequently, concerning the length of each
step (shown in Figure 8), we observe that Epic50k
and MATH-Shepherd exhibit step lengths predom-
inantly ranging from 25 to 50 tokens. In contrast,
PRM800k demonstrates a comparatively shorter
step length, concentrated around approximately 25
tokens.
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Figure 7: Distribution of steps per solution.

Figure 8: Length distribution of each step.
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