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Abstract

Multi-hop question answering (QA) involves
finding multiple relevant passages and perform-
ing step-by-step reasoning to answer complex
questions. Previous works on multi-hop QA
employ specific methods from different model-
ing perspectives based on large language mod-
els (LLMs), regardless of question types. In
this paper, we first conduct an in-depth analysis
of public multi-hop QA benchmarks, catego-
rizing questions into four types and evaluat-
ing five types of cutting-edge methods: Chain-
of-Thought (CoT), Single-step, Iterative-step,
Sub-step, and Adaptive-step. We find that dif-
ferent types of multi-hop questions exhibit vary-
ing degrees of sensitivity to different types of
methods. Thus, we propose a Bi-levEL muLti-
agEnt reasoning (BELLE) framework to ad-
dress multi-hop QA by specifically focusing on
the correspondence between question types and
methods, with each type of method regarded
as an “operator” by prompting LLMs differ-
ently. The first level of BELLE includes mul-
tiple agents that debate to formulate an exe-
cutable plan of combined “operators” to ad-
dress the multi-hop QA task comprehensively.
During the debate, in addition to the basic roles
of affirmative debater, negative debater, and
judge, at the second level, we further lever-
age fast and slow debaters to monitor whether
changes in viewpoints are reasonable. Exten-
sive experiments demonstrate that BELLE sig-
nificantly outperforms strong baselines in vari-
ous datasets. Additionally, the model consump-
tion of BELLE is higher cost-effectiveness than
that of single models in more complex multi-
hop QA scenarios.

1 Introduction

Recently, large language models (LLMs) have be-
come the fundamental infrastructure of modern
NLP (Blevins et al., 2023; Zhang et al., 2024b,a;
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Chu et al., 2024a). Furthermore, chain-of-thought
(CoT) prompting enhances the reasoning capabili-
ties of LLMs (Wei et al., 2022; Shaikh et al., 2023;
Chu et al., 2024b). Yet, the complexity of multi-
hop question answering (QA) often surpasses the
knowledge boundaries of LLMs, which can lead to
factual errors in generated responses, also known
as hallucinations (Khalifa et al., 2023; Huang et al.,
2024; Chu et al., 2024a; Shi et al., 2024).

In the literature, multi-hop QA approaches with
LLMs can be divided into two categories: (1)
Closed-book Reasoning: This approach utilizes
the understanding ability of LLMs for multi-hop
questions, obtaining refined answers through prob-
abilistic sampling in LLMs’ response generation.
CoT (Wei et al., 2022) prompts LLMs step by
step for multi-hop questions to generate the rea-
soning process. Considering complex multi-hop
reasoning paths, several works (Dua et al., 2022;
Zhou et al., 2023) decompose them into sub-step
questions and solve them progressively, while oth-
ers (Yao et al., 2023; Chu et al., 2024a; Menon
et al., 2024) model reasoning procedures as BFS
or DFS search on probabilistic reasoning trees. As
reported in (Borgeaud et al., 2022), the knowledge
learned by LLMs is often insufficient to answer
complex questions, which require external data
support. (2) Retrieval-augmented Reasoning:
Early work utilizes single-step retrieval, but often
struggles to gather all necessary knowledge to an-
swer multi-hop questions, resulting in knowledge
omissions (Lazaridou et al., 2022; Borgeaud et al.,
2022; Izacard et al., 2023). Several approaches
leverage iterative-step retrievals by concatenating
output from previous rounds with sub-step ques-
tions (Press et al., 2023; Shao et al., 2023; Jiang
et al., 2024). As shown in Fig. 1, no matter what
multi-hop question is given, retrieval methods di-
rectly recall external knowledge and answer the
question with integrated inputs. Although the
adaptive-step method leverages classifiers for dif-
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Figure 1: Comparison between our approach and existing methods for multi-hop QA. (1) Closed-book reasoning
does not consider the requirement for external knowledge. (2) Retrieval-augmented reasoning leverages an
end-to-end fixed solution to solve all multi-hop questions. (3) Our agent-based reasoning framework provides
an execution plan to dynamically combine appropriate multi-hop operators with respect to multi-hop question types.

ferent questions (Jeong et al., 2024), they still use a
fixed approach, regardless of question types. This
also incurs an additional computational burden
for relatively simple questions, which limits their
usage in applications that require high inference
speed (Mavi et al., 2024; Zhuang et al., 2024).

To overcome the above problems, our research
focuses on the following question: How can we
dynamically combine various operators based on
question types to improve the performance of multi-
hop QA, while reducing the computational over-
head? Building on this motivation, we present a
novel bi-level multi-agent system named BELLE,
which creates and executes a plan of operators1 for
answering multi-hop questions where the plan is
represented by the output summary of our multi-
agent debate (MAD) system.

Specifically, we first conduct an analysis on
whether different types of multi-hop questions are
better answered by different operators. Follow-
ing (Tang and Yang, 2024), the four question types
are Inference, Comparison, Temporal, and Null.
From Fig. 2, the Temporal and Comparison types
are relatively simple, requiring only breaking down
the question into sub-questions and using a single-
step retrieval method to recall the fact. However,
for the Inference type, due to their complexity,
it is necessary to break down the question and
use iterative-step retrieval to obtain more external

1We view specific solutions (e.g., CoT (Wei et al., 2022))
as “operators” from the perspective of prompting LLMs.

knowledge. For other questions, we can directly
use the LLM’s internal knowledge to answer them.

Based on the analysis, the multi-agent pipeline
consists of three modules. (i) Question Type
Classification: We provide in-context exam-
ples formatted as new QA pairs, and inputs to
LLMs are classified into the four question types.
(ii) Bi-Level Multi-agent Debate: In addi-
tion to the basic roles in multi-agent systems (Li
et al., 2024; Liang et al., 2024), we propose a bi-
level architecture including a slow-debater and a
fast-debater to fully utilize both the historical dis-
cussion and the current state of opposing sides to
determine which multi-hop QA operators to in-
voke (Christakopoulou et al., 2024). Our objective
is to maximize the use of information already dis-
cussed for planning operators while also prevent-
ing bias in the agent’s viewpoint (Taubenfeld et al.,
2024; Borah and Mihalcea, 2024). (iii) Multi-hop
QA Executor: When the system provides a plan
to invoke specific operators, we use LLMs again to
generate responses according to the plan. Finally,
we concatenate the results of each step to obtain
sub-answers and trace back to the root node to
achieve the final answer for the multi-hop question.

We evaluate BELLE on four multi-hop QA
datasets, including MultiHop-RAG (Tang and
Yang, 2024), 2WikiMultiHopQA (Ho et al.,
2020), HotPotQA (Yang et al., 2018), and
MuSiQue (Trivedi et al., 2022). The experiments
are conducted using GPT-3.5-turbo (Brown et al.,
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Figure 2: Comparison of single and combined operators in different multi-hop question types. The red and purple
bars represent the combined operators of sub-step + single-step and sub-step + iterative-step, respectively.

2020) and Qwen2.5-7B (Qwen Team, 2024). The
results show that our method significantly outper-
forms baselines. An analysis on more difficult
multi-hop questions reveals the computational cost
superiority of our dynamic operators combination.

2 Related Works

Multi-Hop Question Answering. Multi-hop QA
is more complex than simple QA because it in-
volves not just retrieving information, but also ef-
fectively combining related facts. Facts can be
sourced from a knowledge graph (Lin et al., 2018;
Cheng et al., 2023; Zhong et al., 2023), tables (Lu
et al., 2016), free-form text (Yang et al., 2018;
Welbl et al., 2018), or a heterogeneous combina-
tion of these sources (Chen et al., 2020; Mavi et al.,
2022; Lei et al., 2023). With the development of
LLMs, prompt-based methods combined with an
optional retrieval module have become a popular
approach for handling multi-hop QA (Press et al.,
2023; Zhong et al., 2023; Zhuang et al., 2024; Chu
et al., 2024a). Recently, the agent-based methods
for multi-hop QA are also proposed (Shen et al.,
2024; Wu et al., 2025). While all previous works
focus on a specific multi-hop QA method, our ap-
proach targets a dynamic, flexible pipeline from a
more fine-grained question type perspective.
Multi-Agent Debate of LLMs. Current ap-
proaches to multi-agent debate (MAD) can gener-
ally be divided into two main categories: (1) Those
that adjust the model prompts and responses during
the debate (Liang et al., 2024; Khan et al., 2024;
Rasal, 2024; Feng et al., 2024; Yang et al., 2024).
These MAD methods generate specific opinions
in response to particular situations while solving a
task. (2) Those that alter the structure of the debate

process (Li et al., 2023; Liu et al., 2023; Chang,
2024; Hong et al., 2024). Importantly, both cate-
gories use off-the-shelf LLMs (e.g., API) and work
by modifying either the inputs or outputs of these
models. However, previous work did not take into
account the comprehensive utilization of historical
and current information in multi-agent collabora-
tion, resulting in a waste of information.

3 Analysis of Multi-Hop Question Types

In this section, we analyze the sensitivity of differ-
ent types of multi-hop questions involving single
and combined operators as described previously.

We leverage four multi-hop QA datasets, namely
MultiHop-RAG (Tang and Yang, 2024), 2Wiki-
MultiHopQA (Ho et al., 2020), HotPotQA (Yang
et al., 2018), and MuSiQue (Trivedi et al., 2022)
as the data sources.2 The other three datasets,
except for MultiHop-RAG, do not include ques-
tion type labels. Hence, we use GPT-4 (OpenAI,
2023) to annotate half of the datasets and perform
cross-validation. The prompt for label annotation
is shown in Appendix C.1. Considering potential
annotation errors by LLMs, we refine the prompts
and manually check the responses to select suit-
able prompts. During the manual verification of
data labeling, two individuals independently test
100 samples of each type. A prompt is adopted
only if both individuals agree that the labeling is
consistent with the actual question type, achiev-
ing an accuracy of 95%. To maintain consistency
in the label space,3 we set it to be the same as

2The complete results and the analysis of the question type
annotation process are shown in Appendix B.1.

3Due to the extensibility of our BELLE, there will be
more fine-grained question type classification rules that can
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that of MultiHop-RAG, which includes four types:
Inference, Comparison, Temporal, and Null.

As for the combined operators, we have selected
two representative methods: sub-step+single-step
and sub-step+iterative-step. From Fig. 2, we can
draw two conclusions:
1. Combined operators are superior to single op-
erators in multi-hop QA tasks. Across the four
question types, the method of combined operators
consistently outperforms single operators. On aver-
age, the performance of combined operators is 3%
higher than that of single operators across different
question types and datasets.
2. Different combinations of operators have
varying degrees of sensitivity to question types.
For the Inference type, due to the increase in log-
ical reasoning steps, it is necessary to recall more
external knowledge (Mavi et al., 2022, 2024). In
this case, decomposing the complex question and
combining it with a multi-round retrieval scheme
is more suitable for this multi-hop question type.
For Comparison and Temporal types, we typically
only need to identify the important subjects (e.g.,
entity or timestamp) for these question types and re-
trieve relevant content. Hence, the method based on
sub-questions combined with single-step retrieval
can address them effectively.

Therefore, using different combinations of oper-
ators is better for solving different types of multi-
hop questions than using a specific operator alone.

4 Methodology

In this section, we provide a detailed description
of BELLE, with the bi-level MAD system shown
in Fig. 3. Our framework includes the following
three modules: (i) Question Type Classifier:
Multi-hop questions are classified into the corre-
sponding question types as discussed in Sect. 3. (ii)
Bi-Level Multi-agent Debater: In addition
to conventional MAD systems, slow and fast de-
baters are proposed to aid opposing sides in invok-
ing the operators with historical discussion. (iii)
Multi-hop QA Executor: It executes the plan-
ning of operators to answer multi-hop questions.

4.1 Question Type Classifier

Compared to previous works (Cheng et al., 2023;
Chu et al., 2024a; Zhuang et al., 2024) that use a
specific method to coarsely solve multi-hop QA

be directly used by modifying the Meta Prompt in the future.

tasks, we find that the complex multi-hop reason-
ing task requires dynamic combinations of opera-
tors based on question types. Hence, BELLE first
considers fine-grained classification of multi-hop
questions as input for subsequent modules.

Specifically, this module can be directly for-
malized as a text classification task, denoted as
At = Mt(q). Here, q denotes a multi-hop ques-
tion, and Mt is the LLM for question type classifi-
cation. As for At, we use the four question types an-
alyzed in Sect. 3 as the output label space. We con-
catenate several QA examples as demonstrations
to perform the ICL mechanism,4 ensuring output
of the correct question type labels and preventing
the instruction degradation phenomenon (Brown
et al., 2020; He et al., 2024a). The detailed format
of templates is described in Appendix C.1.

4.2 Bi-Level Multi-agent Debate
Recently, many MAD systems have addressed spe-
cific scenarios with a setting consisting of an affir-
mative debater, a negative debater, and a judge (He
et al., 2023; Li et al., 2024). These agents can only
make a decision for task solutions based on the
current state, while the historical discussion con-
tents are not fully utilized. Consequently, the task
viewpoints of both debaters may be uncontrollably
altered due to the influence of one another (Tauben-
feld et al., 2024; Borah and Mihalcea, 2024).

Inspired by Christakopoulou et al. (2024), we
introduce a bi-level MAD system, which employs
two additional memory agents named slow-debater
and fast-debater to integrate the relationship be-
tween historical discussions and current viewpoints.
Next, we provide a detailed description of our sys-
tem, where two representative opposing debaters,
two memory debaters, and a judge are involved in a
debate to resolve a multi-hop question. Our frame-
work is composed of four components divided into
two levels, elaborated as follows.

4.2.1 The First Level of Debate
Meta Prompts and Operators. Considering that
agents initially might not understand the task, we
leverage meta prompts to introduce the question
type At, the number of debaters, the round limit,
and other requirements, as shown in Appendix C.2.
We create an atmosphere for debaters to engage in
a "tit for tat" debate (see indicated contents).

For the operators pool, each element will be in-
voked by the following bi-level MAD system, se-

4Other mechanisms are also analyzed in Appendix B.3.
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Figure 3: Model overview of BELLE. The left part is the existing MAD system containing three basic roles (i.e., an
affirmative side, a negative side and a judge). The right part is the details of our bi-level MAD system including
first-level and second-level debaters.

lecting from two paradigms described in Fig. 1. We
choose CoT (Wei et al., 2022), single-step (Izacard
et al., 2023), iterative-step (Trivedi et al., 2023),
sub-step question (Press et al., 2023), and adaptive-
step (Jeong et al., 2024) as representative operators.
Opposing Debaters. There are two debaters that
play the roles of the affirmative and the negative,
respectively. In each debate round, the debaters
take turns presenting arguments based on their own
previous debate history. For the affirmative debater,
denote the debate history from all t-1 rounds as
Ht−1

ad . The result of the t-th round discussion for
the affirmative debater is defined as follows:

f t
ad = M(Ht−1

ad , f t−1
fast, f

t−1
slow) (1)

where M is the same LLM as Mt. f t−1
fast and f t−1

slow

represent the discussion results of the fast and slow
debaters in the (t-1)-th round, respectively. The
definitions for the debate history and discussion
results of the negative debater, denoted as f t

nd, are
similarly defined.

4.2.2 The Second Level of Debate
The first level of discussion focuses on each side’s
positions without evaluating the rationality of oper-
ator selection. Therefore, in our proposed bi-level
debate mechanism, the second level comprehen-
sively evaluates the operator selection in the current
t-th round (fast debater) and summarizes historical
debates (slow debater).

Fast Debater. In the discussion process of the fast
debater, the main goal is to assess whether the op-
erators selected in the current discussion between
both sides are reasonable. This involves the partici-
pation of three roles: the affirmative and negative
sides in the t-th round, as well as the previous dis-
cussion results of the fast debater. We denote the
debate history of the fast debater from all previ-
ous t-1 rounds as Ht−1

fast. Hence, the current t-th
debate result of the fast debater is as follows:

f t
fast = M(f t

ad, f
t
nd, H

t−1
fast) (2)

Note that the fast debater only considers the situa-
tion in the current t-th debate, making it susceptible
to the viewpoints of both sides, as illustrated by the
blue dashed line in Fig. 3.
Slow Debater. Compared to the fast debater, the
slow debater integrates all historical information
to judge the rationality of operator selection. The
more important goal is to prevent debaters from los-
ing confidence in correct viewpoints, which may
lead to oscillation (Zhang et al., 2023). The slow
debater process involves the affirmative, negative,
fast, and historical roles of the slow debater. Simi-
lar to the fast debater, the debate history from all
previous t-1 rounds is Ht−1

slow. The current view-
point of the slow debater is as follows:

f t
slow = M(f t

ad, f
t
nd, f

t
fast, H

t−1
slow) (3)

Judge. Finally, we design a judge J to oversee the
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debate process, providing an execution plan of com-
bined operators. The judge operates in two modes:
(a) Hard Mode, where judge J decides if a correct
combination of operators can be determined after
all debaters present their viewpoints. If possible,
the debate concludes; otherwise, it continues. (b)
Soft Mode, where judge J extracts useful operator
suggestions based on the slow debater’s history,
Ht

slow, since no correct solution is found within the
debate’s round limit. The judge’s template is in
Appendix C.2, which produces a summarized plan
for invoking operators step by step.

4.3 Multi-hop QA Executor

Through the discussion of our bi-level MAD sys-
tem, we have obtained the specific plan for solving
the multi-hop question. Then, we progressively
invoke the corresponding multi-hop operators to
obtain the final answer. To ensure consistency in
the LLM’s understanding, we use the same LLM
M to execute the sub-steps of the operator planning
process. An example is shown in Appendix C.3.

5 Experiments

Due to space limitation, we describe datasets, base-
lines and implementation details in Appendix A.

5.1 Experimental Results

5.1.1 Results of Multi-hop QA Tasks
Main Results. Table 1 shows the general perfor-
mance of BELLE across the four multi-hop QA
datasets. We observe that: (1) Generally, due to
the requirement for external knowledge in complex
multi-hop questions (Mavi et al., 2024; Minaee
et al., 2024), retrieval-augmented reasoning meth-
ods show more significant improvement compared
to closed-book methods. However, a comparable
improvement can still be achieved by reasoning
step by step using CoT (Wei et al., 2022). (2)
Among retrieval-augmented methods, the simple
retrieval method does not significantly improve the
effectiveness of multi-hop QA. Other methods with
additional enhancement operations, such as Prob-
Tree (Cao et al., 2023) and BeamAggR (Chu et al.,
2024a), achieve significant improvements. (3)
Since the agent-based methods are designed with
special modules, the collaborative semantic under-
standing of multi-hop questions by these methods
has not been fully utilized compared to our unified
operators’ framework. Therefore, an agent-based
approach is still insufficient in solving multi-hop

QA tasks. (4) BELLE consistently achieves the
best results. Through careful debate for choos-
ing combined operators, our model achieves the
greatest improvement on the extremely difficult
MuSiQue dataset under 2, 3, and 4 hops settings.
Results of Question Types. We present the results
for the four types in Fig. 4, using two strong base-
lines: CoT (Wei et al., 2022) and BeamAggR (Chu
et al., 2024a). Specifically, we observe that (1)
The retrieval-based method that introduces exter-
nal knowledge performs much better on various
types of multi-hop questions than simply using an
LLM to answer. Meanwhile, our combined opera-
tors method also consistently performs better than
the strongest multi-source knowledge-enhanced
method. (2) Our model shows no significant im-
provement for Comparison and Temporal due to
the simple answer patterns. For Comparison ques-
tions, the model only needs to decompose the ques-
tion into two parts that require comparison, and the
answers are concise (e.g., "Yes" and "True"). For
Temporal questions, it is usually necessary to find
the important timestamp for answering. However,
for the remaining two types, Inference and Null,
which are much more difficult, our BELLE model
achieves significant improvements. Inference
type questions require reasoning across multiple
documents.5 Due to the lack of a unified pattern
for Null questions, it requires invoking different
operators for adaptive combination.

5.1.2 Ablation Study
In Table 2, we select three crucial components for
our ablation study. Specifically, when we remove
the question type classifier, <Question Type> will
not be inserted into the meta prompts for the subse-
quent bi-level MAD system. The first-level debate
is replaced with an LLM without a debating envi-
ronment, and the viewpoints are directly optimized
by the second-level debate. When we remove the
second-level debate, the overall system degrades
to a basic MAD system associated with question
types. The results show that removing the second-
level debaters has the greatest impact regardless of
the LLMs used. It indicates that this level leverages
the history of debating to make reasonable operator
selection opinions, compared to the basic first-level
system alone. We also find that introducing ques-
tion types as prior knowledge into the MAD system
is crucial for the selection of combined operators.

5For example, there are two gold paragraphs and eight
distractors in HotpotQA (Yang et al., 2018) for each question.
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Dataset→ Multi-hop RAG HotpotQA 2WikiQA MuSiQue

Models↓ EM F1 Acc EM F1 Acc EM F1 Acc 2hop 3hop 4hop

Closed-book Reasoning

SP 39.4 47.5 44.3 32.1 38.9 37.4 27.8 33.9 31.6 16.4 16.2 12.6
CoT 43.6 50.5 49.7 40.5 46.5 47.3 36.2 42.3 43.7 30.2 22.5 13.2

Retrieval-augmented Reasoning

Single-step 47.2 52.3 51.3 48.7 55.3 54.6 38.1 42.9 41.3 22.1 10.6 10.4
Self-Ask 49.8 54.6 52.6 44.5 49.4 50.2 40.5 46.9 48.5 24.4 8.8 7.5
IRCoT 55.1 59.2 58.4 51.2 56.2 55.4 50.7 56.8 52.3 31.4 19.2 16.4
FLARE 54.9 58.7 59.2 50.8 56.1 58.3 58.2 60.1 63.7 40.9 27.1 15.0

ProbTree 56.5 62.5 60.1 56.3 60.4 60.6 64.3 67.9 65.4 41.2 30.9 14.4
EffiRAG 49.2 55.3 54.7 52.9 57.9 55.4 47.7 51.6 53.8 32.7 23.6 12.5

BeamAggR 61.9 67.2 66.8 55.6 62.9 59.2 66.1 71.6 69.2 45.9 36.8 21.6

Agent-based Reasoning

LONGA. 53.6 56.8 57.4 52.4 59.3 58.1 60.1 65.6 62.8 40.5 25.8 16.4
GEAR 50.7 52.5 51.9 50.4 54.6 54.8 47.4 52.3 51.6 35.1 20.9 15.3

RopMura 52.6 53.7 58.2 49.2 53.1 55.7 58.8 63.2 64.0 41.1 24.6 16.2

BELLE 64.7 70.4
(↑ 3.2)

68.5 59.2 66.5
(↑ 3.6)

63.7 69.7 75.7
(↑ 4.1)

72.8 50.5
(↑ 4.6)

42.1
(↑ 5.3)

29.2
(↑ 7.6)

Table 1: The general results of BELLE. The best and second results are highlighted by bold and underline. We show
the F1 for 2,3,4-hops of MusiQue. T-tests show the improvements are statistically significant with p < 0.05 (%).
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Figure 4: Results of different question types in terms of F1 (%).

In the ablation experiment involving each de-
bater, we further explore the influence of specific
debaters. For affirmative and negative debaters,
since removing a debater would disrupt the "tit for
tat" atmosphere, we maintain the number of agents
unchanged by using corresponding prompts. When
removing the fast debater, the modeling methods of
the other debaters are also synchronously removed.
To remove the slow debater, we use the last round
result of the fast debater as the summary result. We
observe the following: (1) Compared to designs
that completely remove the first level, using sev-
eral agents of the same type at the first level to
obtain operator plans is beneficial for multi-hop
QA tasks. (2) Removing either the fast or slow
agent adversely affects task performance to some
degree, with the removal of the slow summarizer

having a more significant impact.

5.2 Detailed Analysis

Due to space constraints, we present other detailed
statistical results of our bi-level MAD system in
Appendix B.5.

5.2.1 Changes in Operator Selection
From Fig. 5, we investigate the impact of the de-
bating contents between the first-level and second-
level debaters using HotpotQA questions with the
Inference type. Specifically, for the four impor-
tant debaters in two levels, there are two situations
to be considered: (1) In the same round of debating,
the impact of the first-level (i.e., affirmative and
negative debaters) on the second layer (i.e., slow
and fast debaters) and (2) In different rounds of de-
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Model ↓ Dataset → D1 D2 D3 D4 Avg.

Qwen2.5-7B

BELLE 64.1 59.4 68.5 32.8 56.2
BeamAggR 55.8 51.8 62.4 23.2 48.3

w/o Type Classifier 59.6 54.1 63.5 25.9 50.8
w/o First Level Debate 61.2 55.4 64.6 28.9 52.5

w/o Second Level Debate 58.8 53.5 62.1 25.4 50.0

GPT-3.5-turbo

BELLE 70.4 66.5 75.7 40.6 63.3
BeamAggR 67.2 62.9 71.6 34.8 59.1

w/o Type Classifier 67.9 63.4 73.2 37.6 60.5
w/o First Level Debate 68.2 63.7 73.5 38.1 60.9

w/o Second Level Debate 66.8 62.8 72.3 36.5 59.6

w/o affir.&neg. Debater 68.4 64.1 73.9 38.5 61.2
w/o Fast Debater 67.3 63.2 72.9 37.4 60.2
w/o Slow Debater 67.0 63.1 72.7 36.9 59.9

Table 2: Ablation study of BELLE in terms of F1 (%).
Due to space limitation, we use the abbreviations “D1”,
“D2”, “D3”, and “D4” to represent Multi-hop RAG,
HotpotQA, 2WikiQA, and MuSiQue, respectively.
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Figure 5: Changes in the selection of combined opera-
tors. MADj

i denotes the debate stage at i-level and j-th
debate round. (Best viewed in color.)

bating, the impact of the previous second-level on
the current first-layer debating. Hence, we define
the following formula to quantitatively measure the
attitude change of the bi-level system:

Ff t→st = α(F t
ad+F t

nd)+(1−α)(F t
fast+F t

slow)

and

Fst−1→f t = β(F t
ad+F t

nd)+(1−β)(F t−1
fast+F t−1

slow)

where Ff t→st denotes the score for situation (1)
and Fst−1→f t for situation (2). Each score is a

Model ↓ Dataset → D1 D2 D3 D4 Avg.

Agent-based Methods

BELLE 18,324 19,520 21,402 23,723 20,742
LONGA. 38,943 74,216 44,283 36,529 48,493

GEAR 32,077 58,541 41,976 35,128 41,931
RopMura 32,885 113,183 46,821 34,547 56,859

Debate Levels

L0 21,376 26,801 27,542 26,634 25,588
L1 20,988 24,572 23,894 27,149 24,151
L2 18,324 19,520 21,402 23,723 20,742
L3 23,729 25,863 31,154 27,269 27,004

Num. of Debaters

Nf2 → Ns2 18,324 19,520 21,402 23,723 20,742
Nf3 → Ns3 26,465 32,841 28,072 35,917 30,824
Nf4 → Ns4 32,053 38,716 34,579 41,839 36,797
Nf5 → Ns5 39,236 45,170 42,585 47,736 43,682

Table 3: Consumption of prompt token quantity under
different agent settings. Nfi → Nsj refers to i debaters
in the first layer and j debaters in the second layer. Li

indicates different settings of the meta prompt.

R5×5 matrix, representing the combined score be-
tween 5 operators. F t

ad, F t
nd, F t

fast, and F t
slow rep-

resent the t-th round score of the four debaters, re-
spectively. Considering that the content discussed
by the first-layer debaters in situation (1) provides
information for subsequent discussion, its impor-
tance is higher. Thus, we have assigned a value
of 0.8 to α and 0.8 to β. The specific score for
each debater (e.g., F t

ad) is based on the viewpoint
similarity between the two operators. We use GPT-
4 (OpenAI, 2023) to score the output content of
debaters and the template content composed of two
operators.6 As shown in Fig. 5, we observe that:
(1) The bi-level MAD system becomes increasingly
focused on which combined operators to use. The
scores in the subgraph may fluctuate slightly, but
the scoring trend of the combined operators is sta-
ble. (2) In our bi-level MAD system, the number of
debate rounds is relatively small, reducing the cost
of computational resources. It typically requires
only 2 rounds to determine operators.

5.2.2 Analysis of Computational Overhead
Comparison with Retrieval Methods. Retrieval
methods often involve frequent invocation of
LLMs, resulting in significant computational over-
head. We specifically select more challenging ex-
amples of prediction errors by plain LLMs to eval-
uate the models. In Fig. 6, previous methods exac-
erbate reasoning overhead while improving perfor-
mance. In contrast, our method not only surpasses
the SOTA (e.g., BeamAggR (Chu et al., 2024a)) in

6We define the similarity level with a corresponding score
between them, such as "very similar" → 0.7.
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Figure 6: Analysis of the relation between performance
and number of retrieval tokens (Best viewed in color).

performance but also reduces reasoning overhead
in terms of required tokens. The main advantage of
our model is in fully utilizing the current state and
historical information, making the execution plan-
ning of the combined operators for the multi-hop
question more reasonable. Hence, it reduces the
number of rounds of combined operator retrieval
and lowers the cost of prompt inference length. De-
tailed statistics are in Appendix B.4.
Comparison with Agent-based Settings. We com-
pare the different debater settings, including agent-
based methods, debater levels, and the number of
debaters for each level. The debate levels indicate
the atmosphere of the debate prompts, as shown in
Table 11. As shown in Table 3, (1) due to the estab-
lishment of a second-level reflection and judgment
mechanism (de Winter et al., 2024; Zeng et al.,
2024), our BELLE framework effectively deter-
mines the current state of the task to reduce token
consumption. (2) Setting different debate levels
and adjusting the number of agents for competition
can improve BELLE models. By controlling the
debate level of token consumption, it is unneces-
sary to mandate a confrontational discussion atmo-
sphere. A relatively relaxed discussion mechanism,
coupled with clear MAD system objectives, yields
better results for the BELLE framework while re-
ducing token usage. Meanwhile, excessive focus
on increasing the number of agents may not neces-
sarily enhance performance, and token consump-
tion could increase sharply.

6 Conclusion and Future Work

In this paper, we introduce BELLE to effectively
address the challenges of multi-hop QA by aligning
specific question types with appropriate reasoning
methods. By incorporating diverse operators and a
bi-level debate mechanism, it achieves significant

improvements over existing baselines. In the future,
we aim to investigate the integration of BELLE
with real-world applications to assess its efficacy
in dynamic and evolving environments.

Limitations

While our proposed BELLE framework demon-
strates significant improvements over existing
methods, several limitations still persist. One ma-
jor issue is its reliance on multiple agents interact-
ing iteratively, especially during the debate process.
Refining the debate rules and strategies could poten-
tially reduce overhead while maintaining or even
enhancing performance. Additionally, although
BELLE exhibits robustness against known ques-
tion types, it may struggle with novel or previously
unseen question formats. To address this, adapta-
tion to accommodate new question types will be
crucial for further improvements in various appli-
cations.
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A Implementation Details of BELLE

A.1 Model Details

Retrieval Setup. To retrieve external knowledge
for retrieval-augmented reasoning operators, we
use the October 2017 Wikipedia dumps7 as the
candidate document pool. Considering the compu-
tational cost of retrievers, we use the sparse model
BM25 (Robertson and Zaragoza, 2009) to replace
the complex models. 8 We set a range of 3 to 10
candidate documents in each dataset for the multi-
hop questions corresponding to these methods.
Metrics. The evaluation metrics are token-level
EM (Exact Match), F1 and Acc (Accuracy). The
difference between EM and Acc is that EM must be
strictly included in the ground-truth string, while
Acc uses the LLM to perform semantic consistency
checks on prediction and ground-truth.
Baselines. (1) SP denotes the standard prompting
for obtaining the response. (2) Chain-of-Thought
(CoT) generates logic reasoning steps before the
final answer (Wei et al., 2022). We use 4-shot
for each question, providing an example for each
type of question respectively. (3) Single-step Re-
trieval involves using the multi-hop question as the
query to retrieve the candidate documents one time
and then concatenating the search results into the
prompt to perform prompt reasoning (Lazaridou
et al., 2022). (4) Self-Ask uses an iterative method
to break down complex questions, progressively
generating and addressing sub-questions until the
final answer is reached (Press et al., 2023). (5)
IRCoT alternates among the retrieval-augmented
reasoning methods until the retrieved information
is adequate to answer the question (Trivedi et al.,
2023). (6) FLARE dynamically adjusts the re-
trieval timing according to the confidence in reason-
ing and performs retrieval based on the subsequent

7https://hotpotqa.github.io/wiki-readme.html
8The retriever can be replaced by other high-precision

neural models (Karpukhin et al., 2020; Izacard et al., 2022) as
long as the candidate documents are prepared in advance.

reasoning sentences (Jiang et al., 2023b). (7) Prob-
Tree breaks down the question into a tree structure,
using logprobs-based aggregation of sub-questions
to derive the final answer (Cao et al., 2023). (8)
BeamAggR also breaks down complex questions
into tree structures, which consist of atomic and
composite questions, and then applies bottom-up
reasoning (Chu et al., 2024a). (9) EfficientRAG it-
eratively generates new questions without requiring
LLM calls in each round and filters out irrelevant
information (Zhuang et al., 2024). (10) GEAR
(Shen et al., 2024) presents a new graph-based
retriever called SyncGE, which uses an LLM to
identify initial nodes for graph exploration. (11)
RopMura (Wu et al., 2025) is a multi-agent system
that integrates both a planner and a router to sup-
port QA across various knowledge domains. (12)
LONGAGENT (Zhao et al., 2024) scales LLMs
(e.g., LLaMA (Touvron et al., 2023)) to a context
of 128K based on MAD system and demonstrates
potential superiority in long-text processing. 9

Experimental Settings. Our main experiments
are conducted using GPT-3.5-turbo(Brown et al.,
2020) as the backbone, provided by the Azure Ope-
nAI 2024-01-25 version. In addition, we perform
experiments using GPT-4 (OpenAI, 2023), with
the Azure OpenAI 2024-06-13 version, to ensure
the accuracy of classification in Sect. 3, despite a
higher response cost.10 To verify the effectiveness
of our LLM-agnostic multi-hop QA framework, we
replace the backbone of all baselines with Qwen2.5-
7B (Qwen Team, 2024) and Mistral-7B (Jiang et al.,
2023a).

For the SFT experiment in Appendix B.3, we
use Qwen2.5-7B-instruct, training on 8 × Nvidia
A100 GPUs for about 15 hours. We use the full
tuning paradigm to perform the SFT process. The
hyperparameters are as follows: batch size is 1,
learning rate is 1e-5, with the AdamW optimizer
(Loshchilov and Hutter, 2019), and the number of
epochs is 1.

A.2 Dataset Details

Datasets. We evaluate BELLE on four open-
domain multi-hop QA datasets: MultiHop-RAG
(Tang and Yang, 2024), 2WikiMultiHopQA (Ho
et al., 2020), HotPotQA (Yang et al., 2018), and

9Due to the space limitation, we abbreviate the model
name “EfficientRAG” to “EffiRAG” and “LONGAGENT” to
“LONGA” in Table 1, respectively.

10https://learn.microsoft.com/en-us/azure/
ai-services/openai/
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Type ↓ Data → D1 D2 D3 D4

Inference 816 2158 4758 938
Comparison 856 2495 3819 856

Temporal 583 1033 2691 414
Null 301 1719 1308 251

Total 2556 7405 12576 2459

Table 4: The number of multi-hop question types in-
cluded in each dataset. “D1”, “D2”, “D3”, and “D4”
represent Multi-hop RAG, HotpotQA, 2WikiQA, and
MuSiQue respectively.

MuSiQue (Trivedi et al., 2022). These datasets
contain questions with 2 to 4 hops. For HotPotQA,
2WikiMultiHopQA, and MuSiQue, we use the
same development and test sets extracted from the
original dataset similar to IRCoT (Trivedi et al.,
2023). In Table 4, we present the data distribu-
tion of different multi-hop question types in four
datasets. Here, we refer to the Multi-hop RAG
(Tang and Yang, 2024), providing the description
of different multi-hop question types as follows:
(1) Inference: This type requires identifying the
internal logical semantics of multi-hop questions
and connecting them through intermediate entities
for answering. The final answer is an entity string.
(2) Comparison: This is usually achieved by com-
paring the similarities and differences related to the
entities or topics in the multi-hop questions. The
answer is typically a definitive word such as “Yes”,
“No” or “Consistently”. (3) Temporal: These ques-
tions are mainly answered based on the sequence
of events occurring at different time points. The
answer is also typically words such as “Yes”, “No”,
or a temporal indicator word like “before”. (4)
Null: These are questions whose answer cannot
be obtained from the retrieved documents or are
other free-form questions. The answer is generally
a noun with an indefinite form. Particularly, we
choose the distractor setting dataset of HotpotQA
(Yang et al., 2018), and all hops (i.e., 2, 3, and
4-hop) in MuSiQue (Trivedi et al., 2022) are used.

SFT QA Dataset: We collect the SFT QA pair data
for the experiment of question classifier analysis in
Appendix B.3. The training prompt is shown in
Fig. 7. We use the training datasets of HotpotQA-
hard, and 2WikiQA-hard to form the SFT data.
The number of training data points is 15,661 and
12,576, respectively.

Reasoning Cost Dataset: To demonstrate the ef-

fectiveness and computational resource cost of our
BELLE model, we design an inference consump-
tion in Sect. 5.2.2. We choose various retrieval-
augmented reasoning methods as our strong base-
lines. The metrics are the retrieved tokens required
and the average F1 results. We particularly select
the difficult multi-hop questions as the dataset for
this experiment, randomly selecting 5,000 samples
with various types from the prediction errors of
LLMs.

B Additional Experimental Discussion

B.1 Annotation Process of Question Types
The Complete Results: Considering that there
are too many combinations between operators, we
limit the experiment to the two most typical com-
binations. In Fig. 8, we present the overall results
for data analysis (see Sect. 3). Due to the rela-
tively small range of MuSiQue results compared to
others, we have considered space limitations and
placed its results in Appedix. The conclusions in
Sect. 3 are consistently effective.
Analysis of Question Type Annotation: For the
question type annotation process, to ensure the ac-
curacy of data labeling, we use the GPT-4 model
rather than GPT-3.5-turbo. It has been widely
adopted in many works for data labeling (Ng and
Markov, 2024; He et al., 2024b; Walshe et al.,
2025). The process of cross validation involves
two NLP experts conducting separate labeling and
discussing results with inconsistent cases until the
error is controlled within 5%. This mechanism of
labeling from coarse-grained to fine-grained man-
ual review is widely used in many works (Rajpurkar
et al., 2016; Jing et al., 2019; Zhang et al., 2021).
Therefore, after selecting reliable models and ex-
perts, the labeling results of data analysis can be
trusted. Due to the flexibility of our framework, we
can directly add type descriptions in Meta prompt
to expand fine-grained multi-hop question types.
For example, we have added two new types of
fine-grained inference “Bridge-comparison” and
“Compositional” (Ho et al., 2020). Specifically, we
add two examples and twp multi-hop QA question
type descriptions in Fig. 9.

• The Meta Prompt is transformed to: “As
an assistant, ...... ‘Inference’, ‘Comparison’,
‘Temporal’ , ‘Bridge-comparison’, ‘Composi-
tional’ and ‘Null’ ”

• The demonstration examples are added: “Ex-
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SFT for Question Classifier

• SFT Prompt
Instruction: You are now an experienced question type annotator who can identify the specific type of input questions. You will receive an input text, please 
determine which data label the text belongs to. The data labels you can choose are as follows:
-------- Data labels --------
[Inference, Comparison, Temporal, Null]
-------Examples-------
There are some examples for you to refer to:
Example 1:
Input: “Which football club, recently discussed in articles by The New York Times, The Guardian, and Sky Sports, experienced a home defeat in the Premier League, 
has a player named Reece James who may undergo a late fitness check, and is expanding its U.S. presence under Todd Boehly's co-ownership?”
Output: Inference
Example 2:
Input: “Does the Yahoo News article praise the Biden administration's effectiveness on climate issues, while the Engadget article suggests that society is being 
positively impacted by the interconnectedness of climate change, the modern internet, and authoritarianism?”
Output: Comparison
Example 3:
Input: “Between the report by The Verge on Apple's defense of its Google Search deal published on September 26, 2023, and the report by TechCrunch on the class 
action antitrust suit against Google published on December 15, 2023, was there a change in the portrayal of Google's business practices with other companies?”
Output: Temporal
Example 4:
Input: “Considering the information from a BBC News article and a Rolling Stone piece on Dua Lipa: At Your Service, which single character would be common 
when referencing the title of the podcast mentioned by both sources?”
Output: Null
-------Starts Working------
Input: “What is the name of this American musician, singer, actor, comedian, and songwriter, who worked with Modern Records and born in December 5, 1932?”
Output: Inference [Example from HotpotQA]

Figure 7: The SFT template for our experiment in Appendix B.3.
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Figure 8: Overall Comparison of single and combined operators in different multi-hop questions.

ample 5: Why did the founder of Versus die?
(Output: Compositional)” and “Example 6:
Are both director of film FAQ: Frequently
Asked Questions and director of film The
Big Money from the same country? (Output:
Bridge-comparison) ”

Then we perform the experiments on two new
types, our BELLE framework further improves the
performances over the four datasets to “65.1 (+0.4)
/ 71.2 (+0.8)”, “59.9 (+0.7) / 67.8 (+1.3)”, “71.4
(+1.7) / 79.3 (+3.6)”, “30.4 (+0.2) / 41.8 (+1.2) ” in
terms of EM and F1 (%) respectively. These results
indicate that by incorporating meaningful question
types for multi-hop QA tasks, our framework con-
tinues to achieve performance improvements under
the bi-layer reflection mechanism guided by ques-
tion types. This experiment roughly verifies the
effectiveness of our BELLE framework for multi-
hop QA tasks with simple extensions.

B.2 Results on Different Backbones

To demonstrate the generalization ability of our
method to various backbones, we also conduct ex-
periments on open-source models and those with
larger parameters. We choose Qwen2.5-7B (Qwen
Team, 2024) and Mistral-7B (Jiang et al., 2023a)
as our open-source backbones and GPT-4 (OpenAI,
2023) as the larger closed-book model. We report
the F1 metric for these datasets and the average
results over 2, 3, and 4 hops in MuSiQue.

As shown in Table 6, we observe that our BELLE
model with respect to 7B open-source backbones
can achieve SOTA results on all four multi-hop
QA datasets compared to previous strong baselines,
demonstrating its model-agnostic nature and effec-
tiveness. On datasets Multi-hop RAG and Hot-
potQA, Mistral-7B performs better than Qwen2.5-
7B due to the specialized training in long context
dialogue ability. When we replace them in BELLE
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Dataset→ Multi-hop RAG HotpotQA 2WikiQA MuSiQue Avg.

Models↓ # token F1 #token F1 #token F1 #token F1 #token F1

Single-step 4109 30.5 3876 29.4 3652 21.5 4356 18.3 3998 24.9
IRCoT 15368 39.2 14677 45.8 13924 31.6 14229 22.7 14550 34.8
FLARE 17212 41.4 19516 44.8 16592 33.4 17285 24.1 17651 35.9

ProbTree 30975 45.7 28360 47.3 37241 37.2 40032 28.1 34152 39.6
BeamAggR 26940 52.3 25463 54.9 31943 43.6 34260 30.1 29651 45.2
Basic MAD 16439 49.3 13530 53.2 21402 42.5 22593 28.3 18491 43.3

BELLE 18324 56.4 19520 62.8 22394 47.2 23723 33.5 20742 50.0

Table 5: Token consumption per multi-hop questions and performance in four datasets.

Model ↓ Dataset → D1 D2 D3 D4 Avg.

Qwen2.5-7B

CoT 24.9 22.5 19.9 11.8 19.8
ProbTree 50.7 47.1 55.6 17.3 42.7

BeamAggR 55.8 51.8 62.4 23.2 48.3
BELLE 64.1 59.4 68.5 32.8 56.2

Mistral-7B

CoT 26.3 25.1 19.2 10.6 20.3
ProbTree 51.4 48.7 53.8 16.9 42.7

BeamAggR 56.6 54.3 59.9 22.7 48.4
BELLE 65.8 61.3 64.4 29.7 55.3

GPT-4

CoT 51.8 47.2 44.9 24.6 42.1
ProbTree 62.8 61.5 68.3 30.5 55.8

BeamAggR 67.6 63.4 72.7 36.2 60.0
BELLE 71.3 66.9 75.3 41.3 63.7

BELLE (GPT-3.5-turbo) 70.4 66.5 75.7 40.6 63.3

Table 6: Results of different LLMs in terms of F1 (%).

with a larger backbone, the performance further
improves on average (+0.4%). Since the GPT-4
needs higher price to obtain response, we use GPT-
3.5-turbo to perform the main experiments.

B.3 Impact of Type Classifier

From the results of the ablation study in Table 2, we
can find that incorporating question types is crucial
for guiding our MAD system to provide reason-
able planning of combined operators. Hence, we
further analyze the methods used to obtain ques-
tion types: in-context learning (ICL), SFT, and
zero-shot prompting. For the ICL mechanism, we
provide a sample for each type of multi-hop ques-
tion combined with instructions to form the input
prompt of the LLMs. In addition, we use the ex-
isting question types and QA pairs to test the SFT
mechanism and the training datasets are described
in Appendix A.2. In zero-shot prompting, we only
use the instruction and label space to prompt the
LLMs. From the results in Table 7, although ICL

Type Strategy D1 D2 D3 D4 Avg.

Qwen2.5-7B

ICL 64.1 59.4 68.5 32.8 56.2

SFT 64.5 58.9 69.1 31.2 55.9
Zero-shot 61.5 57.2 66.3 29.7 53.7

GPT-3.5-turbo

ICL 70.4 66.5 75.7 40.6 63.3

SFT 70.6 65.8 75.9 38.2 62.6
Zero-shot 68.1 63.5 71.3 36.7 59.9

Table 7: Performance of multi-hop QA tasks with dif-
ferent question type strategies in terms of F1 (%).

may fluctuate on some datasets compared to SFT,
it can achieve the best average performance regard-
less of the parameter size of the LLMs. However,
zero-shot prompting results in a rapid decrease in
effectiveness due to the complex reasoning required
for multi-hop questions.

B.4 Detailed Reasoning Cost Results

In Table 5, we provide the comprehensive token
consumption per instance, where performance is av-
eraged across four datasets. We assess the compu-
tational cost by measuring the average token usage
per question. Specifically, it includes calculating
the cost of prompt tokens, such as demonstrations,
questions, and retrieved documents. For iterative-
step methods such as IRCoT (Trivedi et al., 2023),
we have summed the number of document tokens
recalled by all steps. In our BELLE model, we
count the number of recalled document tokens for
the combined operators.

The main advantage of our model lies in fully uti-
lizing the current state and historical information,
making the execution planning of the combined
operators for the multi-hop question more reason-
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# of Debaters D1 D2 D3 D4 Avg.

Qwen2.5-7B

2 (Default) 64.1 59.4 68.5 32.8 56.2

Nf3 → Ns3 63.9 58.7 68.1 32.3 55.8
Nf4 → Ns4 64.5 59.2 68.6 32.7 56.3
Nf5 → Ns5 63.2 58.4 67.7 31.8 55.3

GPT-3.5-turbo

2 (Default) 70.4 66.5 75.7 40.6 63.3

Nf3 → Ns3 69.8 66.9 75.2 39.9 63.0
Nf4 → Ns4 71.2 67.4 75.5 41.3 63.9
Nf5 → Ns5 69.4 65.8 74.9 39.7 62.5

Table 8: Results of multi-hop QA tasks with more de-
baters in terms of F1 (%). Nfi → Nsj means i debaters
in the first layer and j debaters in the second layer.

Debate Level D1 D2 D3 D4 Avg.

Qwen2.5-7B

L2 (Default) 64.1 59.4 68.5 32.8 56.2

L0 63.8 59.1 68.6 31.5 55.8
L1 62.6 57.3 67.8 29.2 54.2
L3 61.5 55.8 67.4 27.4 53.0

GPT-3.5-turbo

L2 (Default) 70.4 66.5 75.7 40.6 63.3

L0 69.6 65.7 73.8 39.4 62.1
L1 68.2 63.5 72.4 38.8 60.7
L3 67.3 63.1 71.5 37.5 59.9

Table 9: Performance of multi-hop QA tasks with dif-
ferent debate levels in terms of F1 (%).

able. Hence, it can reduce the number of rounds of
combined operator retrieval and lowering the cost
of prompt inference length.

B.5 Analysis of Debaters

Impact of Debater Number. In this experiment,
we increase the number of debaters in each layer
for a more comprehensive discussion. Specifically,
we increase the number of debaters to three, four,
and five for each layer, and then analyze the results
of the bi-layer debate. For the three debaters, we al-
locate two to the affirmative side and one to the neg-
ative side in the first level. The same settings apply
to the second level. We evenly allocate the number
of roles within four debaters. For the five debaters,
the allocation mechanism is similar to that of three
debaters. In Table 8, we can observe that (1) As
the number of debaters increases, the performance
of the model decreases (63.3 → 63.8 using GPT-
3.5-turbo). Considering the performance and cost
of debating (see Sect. 5.2.2), we choose 2 debaters

to report the main results. (2) The debate effect
steadily improves when the number of debaters is
balanced (e.g., 2 debaters and 4 debaters).

Impact of Debate Level. We then study whether
the atmosphere of the debate prompt has an impact
on the results. Hence, we design different instruc-
tions (see Appendix C.4) to initialize the debaters’
meta prompt. In Table 9, asking debaters to “tit
for tat” is necessary for our bi-level MAD system
to achieve good performance. However, we find
that “must disagree with each other on every point”
does not lead to the best performance and may
even result in a certain decrease (e.g., ↓ 3.4 in L3).
We speculate that both levels can basically reach a
mutually agreed viewpoint in the early rounds of
debate round friendly (see Fig. 5).

B.6 Discussion of Framework Dependence

As for the dependence of predefined heuristics
and manual annotations of our BELLE frame-
work, the previous MAD system (Feng et al., 2024;
Xiong et al., 2024; Liang et al., 2024) for solving
NLP tasks utilizes task characteristics for prompt
settings and the multi-agent collaboration design.
For the edge cases or evolving domains, the fast-
debater of the second-layer judges the current dis-
cussion of the first-layer based on specific tasks
without large-scale heuristic prompt debugging us-
ing Meta Prompt, while the slow debater compre-
hensively outputs a response based on historical in-
formation. For some special task examples of edge
cases or evolving domains, our second-layer MAD
mechanism can perform reflective collaboration to
further alleviate the possible operator viewpoint
bias in high-difficulty examples at parameter scales
such as GPT-3.5-turbo (e.g. 1st round to 2nd round
in. Fig. 10).

C The Templates of BELLE

C.1 Question Type Annotation

Our question type annotation prompt is shown in
Fig. 9. We choose an example from the HotpotQA
dataset (Yang et al., 2018) and use GPT-4 (OpenAI,
2023) to annotate the type of answer as “{“type”:
“Inference”}”. This template is also used for the
question type classifier (see Sect. 4.1), replaced
with GPT-3.5-turbo (Brown et al., 2020) due to the
high cost of responses.
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Question Type Annotation

• Question Type Annotation Prompt
As an assistant, your task is to answer the question type after. Your answer should be after in JSON format with key ”type” and 
its value should be string. There are four types you can choose from: ‘Inference’, ‘Comparison’, ‘Temporal’ and ‘Null’.
-------Examples-------
There are some examples for you to refer to:
Example 1:
Input: “Which football club, recently discussed in articles by The New York Times, The Guardian, and Sky Sports, experienced a home defeat in the Premier League, 
has a player named Reece James who may undergo a late fitness check, and is expanding its U.S. presence under Todd Boehly's co-ownership?”
Output: {‘type’: ‘inference’}
Example 2:
Input: “Does the Yahoo News article praise the Biden administration's effectiveness on climate issues, while the Engadget article suggests that society is being 
positively impacted by the interconnectedness of climate change, the modern internet, and authoritarianism?”
Output: {‘type’: ‘comparison’}
Example 3:
Input: “Between the report by The Verge on Apple's defense of its Google Search deal published on September 26, 2023, and the report by TechCrunch on the class 
action antitrust suit against Google published on December 15, 2023, was there a change in the portrayal of Google's business practices with other companies?”
Output: {‘type’: ‘Temporal’}
Example 4:
Input: “Considering the information from a BBC News article and a Rolling Stone piece on Dua Lipa: At Your Service, which single character would be common 
when referencing the title of the podcast mentioned by both sources?”
Output: {‘type’: ‘Null’}
-------Starts Working------
Input:  “What is the name of this American musician, singer, actor, comedian, and songwriter, who worked with Modern Records and born in December 5, 1932?”
Output: {‘type’: ‘Inference’}[Example from HotpotQA]

Figure 9: Prompt examples of question type annotation.

Meta Prompt: You are a debater. Hello and welcome to the debate competition. ……The introduction of each multi-hop method is described as follows: 
<operators pool>. The question type is stated as follows: Inference. Both sides have one debater each and each round can be discussed up to two times. We set 
the maximum number of debate round is three times.

Multi-hop Question: What was the former band of the member of Mother Love Bone who died just before the release of Apple?
Question Type: Inference

1st round 2nd round

Fi
rs
t-l
ev
el Input: You are on the affirmative debater. All the historical … are Null. The previous 

round … summarized as Null and Null respectively. Please express your viewpoints.

Output: This inference question requires knowledge of (1) the member of Mother Love 
Bone and (2) the former band. I think it is necessary to use an iterative-step method to answer.
Input: You are on the negative debater. … yourself are Null. The  previous … affirmative, 
fast and slow debaters are summarized as 𝒇𝒂𝒅𝟏 , Null and Null respectively. Please express ….
Output: I don‘t agree with your opinion. It needs to decompose the question into two parts: 
(1) Who were the members of Mother Love Bone who died just before the release of Apple? 
(2) What was the former band of this member? I think using the sub-step method is better.

Input: You are the summarizer of the current 1st round discussion of multi-hop operators. 
The viewpoint of affirmative debater is 𝒇𝒂𝒅

𝟏 , while the negative debater is 𝒇𝒔𝒅
𝟏 . Please express 

your viewpoints.
Output: Based on the opinions given by both sides, neither iterative-step nor sub-step can 
obtain the final answer for the former band of the member directly.
Input: You are the recorder of all previous multi-hop operator viewpoints. The current 1st 
round discussion of affirmative debater is 𝒇𝒂𝒅𝟏 , while the negative debater and fast debater are 
𝒇𝒏𝒅
𝟏 , and 𝒇𝒇𝒂𝒔𝒕

𝟏 , respectively. All your historical conclusions are Null. Please update the entire 
discussion in a timely manner.
Output: Both the affirmative and negative sides have a certain degree of rationality in 
using the iterative-step and sub-step methods respectively.

Second-level

Input: You are a moderator to … planning viewpoints 𝒇𝒂𝒅𝟏 , 𝒇𝒔𝒅𝟏 , 𝒇𝒇𝒂𝒔𝒕𝟏 and 𝒇𝒔𝒍𝒐𝒘𝟏 based on 
the Inference type respectively. …slow debater history information 𝐇𝐬𝐥𝐨𝐰.
Output: Neither side can get a final answer, please continue the discussion.

Fi
rs
t-l
ev
el Input: You are on the affirmative debater. …

Output: The opposing viewpoint also has some rationality. I think combining iterative-step 
and sub-step to answer this question is better.
Input: You are on the negative debater. … Please express ….

Output: I also agree with the other party's viewpoint. I suggest decomposing the question 
first, and then iterative-step for the knowledge required for it.

Input: You are the summarizer of the current 2nd…

Output: Both sides tend to use the combination of sub-step and iterative-step, while the 
negative side provides the order of execution.

Input: You are the recorder of all previous multi-hop operator viewpoints. …

Output: Both sides have basically reached a consensus on their viewpoints. You can 
consider using sub-step first, and then using iterative-step.

Second-levelInput: You are a moderator to …planning summary to solve the multi-hop question. 

Output: Terminate the discussion, an execution plan has been obtained. First, perform 
sub-step to decompose question, and then use iterative-step to recall knowledge to answer.

Operators Execution Plan
1. For this multi-hop question … to solve it step by step.
2. Invoke the sub-question method to decompose the question into two sub-questions.
3. Invoke the iterative-step method to retrieve relevant information for each sub-question as a supplement.
4. Concatenate the two sub-questions … values of the sub-answers as the response to the multi-hop question.

Figure 10: An example of our bi-level MAD process. Due to the excessive output content of the debater, we have
replaced it with the corresponding mathematical symbols described in Sect. 4. In first round, we represent it using
“Null” as some placeholder information has not been obtained yet.

C.2 Meta Prompts

Table 10 illustrates our meta prompt used to initial-
ize the debaters. The speaking order of the debaters
is as follows: affirmative debater and negative de-
bater in the first level, followed by fast debater and
slow debater in the second level, and finally the
judge in each round.

C.3 An Example of Operator Planning

To facilitate the readers’ understanding of the op-
eration process of our bi-level debate system, we
provide an example from the HotpotQA dataset
(Yang et al., 2018) in Fig. 10, detailing how to ob-
tain the combined operators through a step-by-step
planning process.
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Meta Prompt

You are a debater. Hello and welcome to the debate competition. It’s not necessary to fully agree with each other’s perspectives,
as our objective is to find the correct execution plan of operators to answer the multi-hop question based on its type. You can
freely combine the methods from the operator pool to solve the task. The introduction of each multi-hop method is described as
follows: <operators pool>. The question type is stated as follows: <question type>. Both sides have one debater each and
each round can be discussed up to two times. We set the maximum number of debate round is three times.

Affirmative Debater You are on the affirmative debater. All the historical round discussion results of yourself are <Ht−1
ad >. The previous round state

of fast and slow debaters are summarized as <ft−1
fast> and <ft−1

slow> respectively. Please express your viewpoints.

Negative Debater
You are on the negative debater. You disagree with the affirmative debater’s points. All the historical round discussion results of
yourself are <Ht−1

nd >. The previous round state of affirmative, fast and slow debaters are summarized as <ft
ad>, <ft−1

fast> and
<ft−1

slow> respectively. Please express your viewpoints.

Fast Debater You are the summarizer of the current t-th round discussion of multi-hop operators. The viewpoint of affirmative debater is <ft
ad>,

while the negative debater is <ft
nd>. Please express your viewpoints.

Slow Debater
You are the recorder of all previous multi-hop operator viewpoints. The current t-th round discussion of affirmative debater is
<ft

ad>, while the negative debater and fast debater are <ft
nd> and <ft

fast> respectively. All your historical conclusions are
<Ht−1

slow>. Please update the entire discussion in a timely manner.

Judge

You are a moderator to give a operator planning summary to solve the multi-hop question. There is a bi-level opposing debaters
involved in a debate competition at the of last round. They have already presented their operator planning viewpoints <fad>,
<fnd>, <ffast> and <fslow> based on the <question type> respectively. If you can get a clear summary, you can end the
discussion process of the multi-hop question after outputting. If you determine that you cannot output a summary, you can extract
the solution from the slow debater history information <Hslow>.

Table 10: The debating prompts for all debaters in our bi-level MAD system of BELLE. Each debater needs to fill
content into the symbol “<>” before performing the discussion process.

Level Prompt

0 Both sides must reach a full consensus on every point of the debate. Each multi-hop operator selection must be agreed upon by both sides.

1 Most of the debate should be characterized by disagreements, but there may still be a small amount of consensus on less important operators
selection based on question types.

2 (Default) It’s not necessary to fully agree with each other’s perspectives, as our objective is to find the correct execution plan of operators to answer the
multi-hop question based on its type.

3 Both sides must disagree with each other on every point of the multi-hop QA operators debate. There should be no consensus whatsoever.

Table 11: The different debate levels for bi-level MAD process.

C.4 Different Debate Levels
In Table 11, we set four debate-level prompts to
evaluate the influence of our bi-level MAD process.
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