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Abstract

As Large Language Models (LLMs) scale up
and gain powerful Chain-of-Thoughts (CoTs)
reasoning abilities, practical resource con-
straints drive efforts to distill these capabilities
into more compact Smaller Language Models
(SLMs). We find that CoTs consist mainly of
simple reasoning forms, with a small propor-
tion (≈ 4.7%) of key reasoning steps that truly
impact conclusions. However, previous dis-
tillation methods typically involve supervised
fine-tuning student SLMs only on correct CoTs
data produced by teacher LLMs, resulting in
students struggling to learn the key, instead
imitating the teacher’s reasoning forms and
making errors or omissions in reasoning. To
address these issues, drawing an analogy to
human learning, where analyzing mistakes ac-
cording to correct solutions often reveals the
crucial steps leading to successes or failures,
we propose mistakE-Driven key reasonIng step
distillaTion (EDIT), a novel method that fur-
ther aids SLMs learning key reasoning steps
rather than mere simple fine-tuning. Firstly,
to expose the crucial steps in CoTs, we care-
fully design specific prompts to generate dual
CoTs data with similar reasoning paths but di-
vergent conclusions. Then, we apply the mini-
mum edit distance algorithm on the dual CoTs
data to locate these key steps and optimize the
likelihood on these tokens. Extensive experi-
ments and analysis validate the effectiveness of
EDIT across both in-domain(IND) and out-of-
domain(OOD) benchmark reasoning datasets1.

1 Introduction

With the rapid growth in model size and pre-
training data, LLMs have demonstrated impres-
sive CoT reasoning performance in natural lan-
guage processing (NLP) (Brown et al., 2020; Hoff-
mann et al., 2022; Chowdhery et al., 2023; OpenAI,

∗Kun Li is the corresponding author.
1Code can be found at https://github.com/

C-W-D/EDIT

2023b, 2024). However, due to the giant model
architecture and massive parameters (e.g. GPT-3
(Brown et al., 2020) with 175 billion parameters),
the deployment of LLMs in resource-constrained
environments becomes challenging.

To address this, researchers (Xu et al., 2023;
Jiang et al., 2023b) have explored distilling knowl-
edge from LLMs into smaller language models
(SLMs) via instruction-tuning, as seen in LMs like
Alpaca (Taori et al., 2023) and Vicuna (Chiang
et al., 2023). Despite progress, these distilled mod-
els often struggle with complex causal reasoning.
To enhance this capability, some studies (Magister
et al., 2023; Ho et al., 2023; Fu et al., 2023; Chen
et al., 2024a; Zhou and Ai, 2024) explore distilling
the CoT reasoning ability from LLMs of over 100B
parameters (Wei et al., 2022a,b) by fine-tuning on
CoTs data annotated by teacher LLMs, known as
standard CoTs distillation. Besides, other studies
(Hsieh et al., 2023; Li et al., 2022; Liu et al., 2023;
Chen et al., 2024b) propose distilling CoTs within
a multi-task learning framework by incorporating
additional objectives. However, CoTs usually con-
sist mainly of simple reasoning forms, with a small
proportion (≈ 4.7%2) of key reasoning steps that
are pivotal moments in reasoning that significantly
influence subsequent thought processes and con-
clusions. The essence of the above methods is the
simple Supervised Fine-Tuning (SFT) paradigm,
where the student model is trained solely on the
teacher’s correct reasoning data. This paradigm
may result in students struggling to learn the key
reasoning steps, instead imitating the teacher’s
reasoning forms and making errors or omissions
on these steps, as illustrated in Figure 1.

Drawing an analogy to human learning, where
analyzing mistakes according to correct solutions
often reveals the key reasoning steps leading to suc-

2We calculated the edit distance and its average proportion
in the overall sequence on the dual CoT dataset mentioned in
our subsequent methods §3.
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On the floor, I see two magenta scrunchiephone chargers, one gold fidget spinner, three gold booklets, three
silver scrunchiephone chargers, two silver booklets, and two magenta booklets. If I remove all the magenta
items from the floor, how many scrunchiephone chargers remain on it?
Op�ons: (A) zero         (B) one         (C) two         (D) three          (E) four          (F) five          (G) six

According to this ques�on, there are two magenta scrunchiephone chargers and three silver scrunchiephone
chargers on the floor. If we remove all the magenta items from the floor, we are le- with 2 silver
scrunchiephone chargers. Therefore, the answer is (C).

According to this ques�on, there are two magenta scrunchiephone chargers and three silver scrunchiephone
chargers on the floor. If we remove all the magenta items, we are le- with only the silver scrunchiephone
chargers. Therefore, the number of scrunchiephone chargers that remain on the floor is three. Therefore, the
answer is (D).Teacher

Ques�on

Unthinking
Student

Figure 1: Examples of CoTs generated by teacher LLMs and student SLMs on our test dataset. Simply SFT leads to
an "unthinking" student who imitates the teacher’s reasoning style but makes errors and omissions on key steps,
where the imitated contents are highlighted in red, and the key steps are marked with boxes .

cesses or failures, we propose a mistakE-Driven
key reasonIng step distillaTion (EDIT). This ap-
proach focuses on dual CoTs data, encompassing
both positive and negative examples of teachers’
reasoning. By examining dual CoTs, students can
identify and learn from the crucial reasoning steps,
thereby improving their CoTs. Specifically, we
first retain all CoTs data annotated by the teacher,
irrespective of correctness. Subsequently, based on
the powerful in-context learning ability of LLMs,
we design two comprehensive prompts to instruct
teachers to produce dual CoTs that share similar
intermediate reasoning steps but lead to divergent
conclusions. Finally, we utilize the minimum edit
distance algorithm to locate key reasoning steps in
dual CoTs, as shown in Figure 3, and then utilize a
fine-grained token level loss function to optimize
the likelihood on these tokens.

Extensive experiments show that SLMs distilled
by EDIT exhibit higher performance and general-
ization than the baselines on both IND and OOD
benchmark reasoning datasets. Further analyses in-
dicate that EDIT can generate higher-quality CoTs
with more correct key reasoning steps by auto eval-
uation and case studies. Notably, we also show
EDIT can benefit more from logical mistake pat-
terns than knowledge or mathematical calculation
errors in dual CoTs, potentially paving the way for
future research on the efficient use of mistakes.

Our contributions can be summarized as follows:

• We reveal a shortfall in the popular distillation
methods, where the simple SFT paradigm may
result in students mimicking the teacher’s rea-
soning forms but making errors or omissions
on key reasoning steps, thus diminishing the

versatility of CoTs.

• We propose mistake-driven key reasoning step
distillation, which allows students to learn key
reasoning steps from our specifically designed
dual CoTs data, further improving reasoning.

• Extensive experiments validate the effective-
ness of our method across both IND and OOD
datasets, showing that EDIT can improve the
reasoning generalization of student models.

2 Related Works

CoT Reasoning. The emergent ability appears in
LLMs across a wide range of NLP tasks (Chowdh-
ery et al., 2023; Wei et al., 2022a). One such ability
is CoT reasoning, which involves generating a se-
ries of intermediate reasoning steps. This ability
has been further explored recently with the release
of OpenAI’s o1 model (OpenAI, 2024). While CoT
prompting techniques (Wei et al., 2022b) signifi-
cantly enhance the problem-solving capabilities of
models (Kojima et al., 2022; Wang et al., 2023b;
Huang et al., 2023), it has little effect on smaller
models (Wei et al., 2022a). Chung et al. (2022) sug-
gest that CoT reasoning can be induced in SLMs
via instruction tuning on CoTs data. Our work show
that the CoT reasoning capabilities of SLMs can be
further improved by learning from key reasoning
steps in dual CoTs data.

Knowledge Distillation from LLMs. There has
been a lot of work dedicated to distilling knowledge
(Hinton et al., 2015) from powerful proprietary
LLMs, e.g. ChatGPT (OpenAI, 2023a) in a black-
box setting. However, most of these works primar-
ily focus on the general ability distillation by in-
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struction tuning on large and diverse datasets (Peng
et al., 2023; Jiang et al., 2023b; Li et al., 2024).
In contrast, we aim to distill the CoT reasoning
capabilities from LLMs same as the standard CoTs
distillation (Magister et al., 2023; Ho et al., 2023).
Besides, some studies (Li et al., 2022; Hsieh et al.,
2023; Liu et al., 2023) employ LLM’s rationale or
self-evaluation output to enhance SLM’s reason-
ing in a multi-task learning framework. Fu et al.
(2023) fine-tune SLMs on four types of reasoning
data to ensure out-of-distribution generalization.
Wang et al. (2023c) distill SLMs by learning from
self-reflection and feedback from LLMs in an in-
teractive multi-round paradigm. Chen et al. (2023)
uses the teacher model to generate multiple correct
CoTs for each question and maintains consistency
by minimizing the bidirectional KL divergence be-
tween the answer distributions of different CoTs.
Chen et al. (2024a) maxmize the mutual relation-
ship of the two tasks from the Information Bottle-
neck perspective. Ranaldi and Freitas (2024) use
in-family and out-family teachers to generate more
CoTs for SFT. Different from the above works, we
assist CoTs distillation with teachers’ mistakes to
alleviate the style imitation of teachers’ reasoning.

Learning from Mistakes. Recent studies use
mistake data to enhance the performance of LMs.
Shinn et al. (2023) propose Reflexion that allows
the LLM agent to self-reflect from its mistakes.
Wang and Li (2023) introduce a study assistant
that collects and retrieves LLMs’ training mistakes
to guide future inferences. Li et al. (2023) pro-
pose CoK that corrects potential mistakes in the
rationale by retrieving knowledge to avoid error
propagation. However, both of the above meth-
ods require the models to be large enough to have
basic CoT reasoning or instruction-following ca-
pabilities, which is almost impossible to occur in
vanilla SLMs. Wang et al. (2023a) propose fine-
tuning on counterfactual data to ensure the faithful
reasoning of the student model. An et al. (2023)
propose LEMA that fine-tunes language models
on corrected mistake data, where the mistakes are
collected from various LLMs e.g. LLaMA2-70B
(Touvron et al., 2023), WizardLM-70B (Xu et al.,
2023), and corrected by GPT-4 (OpenAI, 2023b).
Additionally, Sun et al. (2024) propose Retrieved
In-Context Principles, which retrieve mistakes to
provide customized guidance and improve model
performance during inference. In contrast, we col-
lect the teachers’ mistakes to create a dual CoTs

dataset for further key reasoning steps learning.

3 Methodology

We present the overview of our proposed method in
Figure 2. Concretely, (1) unlike prior works (Mag-
ister et al., 2023; Hsieh et al., 2023; Chen et al.,
2024b) that only focus on correct CoTs annotated
by teacher LLMs, we first retain all CoTs reason-
ing data, regardless of its correctness. (2) Then
based on the previously retained correct and wrong
CoTs, we construct dual CoTs datasets consisting
of positive-negative CoT pairs that follow simi-
lar intermediate reasoning steps but lead to diver-
gent conclusions. Specifically, we design two com-
prehensive contextual prompts to instruct teacher
LLMs to rectify the originally wrong CoTs and
corrupt originally correct CoTs. (3) Finally, we dis-
till the student SLMs by training on the teacher’s
correct CoTs reasoning data and further Key Rea-
soning Steps Learning on the dual CoTs datasets.

3.1 CoTs Annotated by LLMs

We utilize CoT Prompting (Wei et al., 2022b) to
extract CoTs for a raw dataset D = {(q, a)} from
LLMs, where q is the question and a is the golden
answer. Specifically, we first create a CoTs Ex-
traction Prompt CEP that contains several human-
curated question-CoTs pair examples and the task
description, which can be found in Appendix C.1.
For each q ∈ D, we extract CoTs as:

CoT ∼ LLM (CEP⊕ q) (1)

where ⊕ means concatenation. Then, following
Zelikman et al. (2022), we classify the CoTs anno-
tated dataset into two datasets according to the fi-
nal answer’s correctness. One is the CoTs-original
correct dataset D+ = {(q, CoT+) | ∀ (q, a) ∈
D, â = a & â ∈ CoT+} and the other is
CoTs-original wrong dataset D− = {(q, CoT−) |
∀ (q, a) ∈ D, â ̸= a & â ∈ CoT−}.

3.2 Dual CoTs Generation

We define dual CoTs data as contrasting CoTs that
follow similar reasoning steps but reach divergent
conclusions compared to the original. To provide
a deeper understanding, we also present several
examples of dual CoTs in Appendix B. In the fol-
lowing, we will introduce how to generate dual
CoTs datasets including D+− contrasting to D+,
and D−+ contrasting to D−.
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Q: ...how many ...?
A: There are ...Therefore, the
answer is (C).

: Original Correct CoTsRaw Dataset

Q: I have two toasters...
A: ...Let’s add the numbers: 2
+ 1 + 1 + 2 + 1 = 8. Therefore,
the answer is 8.

: Original Wrong CoTs

Q: On the table, there are
three pink ...how many ...?
Op.ons：：...

Step1 Annotate CoTs Data

Q: ...how many ...?
A: There are ...Therefore, the
answer is(C).

Q: ...how many ...?
A: There are ...Therefore, the
answer is (D).

: Corrupted CoTs

Answer Hint Prompt

Step2 Dual CoTs Data Genera.on

Teacher LLMs

CoTs Dataset

Q: I have two toasters...
A: ...Let’s add the numbers: 2
+ 1 + 1 + 2 + 1 = 3. Therefore,
the answer is 3.

: Rec.fied CoTs

Q : ..........
A : ..........

Supervised Fine Tuning
Key Reasoning Step Learning

Student SLMs

Step3 Training Student

Q : ..........
A : ..........

Q : ..........
A : ..........

Though8ul
Students

Contras.ve CoTs Prompt

CoTs Extrac.on
Prompt

Figure 2: Overview of our method EDIT. (1) We first extract all CoTs data annotated by teacher LLMs (2) and ask
teacher LLMs to generate dual CoTs data using our designed two comprehensive prompts. (3) Then we fine-tune
student SLMs on both original correct and rectified-after CoTs data. Finally, we apply key reasoning step learning
on the pre-tuned student SLMs by identifying the minor difference between the dual CoTs.

Rectify Wrong CoTs. To generate correct
CoTs contrasting with the originally wrong CoTs,
inspired by Rationalization (Zelikman et al., 2022),
we design an Answer Hint Prompt AHP that
shares the same examples with CEP but with
different organizational structures. The template
of AHP can be found in Appendix C.2. Each exam-
ple in the context and the final provided question
will be inserted with a hint that tells LLMs the
answer first before CoTs. Thus, due to the same in-
context examples and hint answers, teacher LLM
can rectify its original wrong CoTs data with simi-
lar reasoning steps but correct answers. For each
q ∈ D−, we rectify CoTs as follows and then have
the Rectified CoTs dataset D−+ = {(q, CoT−+)}:

CoT−+ ∼ LLM (AHP⊕ q ⊕ a) (2)

Corrupt Correct CoTs. To generate incor-
rect CoTs contrasting with the originally correct
CoTs, a straightforward approach is to use AHP
with incorrect hint answers to prompt LLMs to pro-
duce wrong CoTs. However, in practice, we find

that LLMs rarely follow the incorrect hints and
still generate correct CoTs. This may be due to
the simplicity of the questions, which fall within
the LLMs’ knowledge range. Additionally, LLMs,
having undergone Reinforcement Learning from
Human Feedback (RLHF) (Ouyang et al., 2022),
may resist providing unhelpful answers. There-
fore, we design a Contrastive CoTs Prompt CCP
to entice LLMs to generate incorrect CoTs, lever-
aging their strong in-context learning capabilities.
The prompt template can be found in Appendix
C.3. Specifically, to ensure that the synthesis of
incorrect CoTs with special data properties, we
randomly sample negative examples from D− and
positive examples from D−+, pair them, and place
them into the CCP as curated joint in-context ex-
amples. For each q ∈ D+, we corrupt CoTs as
follows and then have the corrupted CoTs dataset
D+− = {(q, CoT+−)}:

CoT+− ∼ LLM
(
CCP⊕ q ⊕ CoT+

)
(3)
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On the floor, I see two magenta scrunchiephone chargers, one gold fidget spinner...

According to this ques�on, there are two magenta scrunchiephone chargers and three silver scrunchiephone
chargers on the floor. If we remove all the magenta items from the floor, we are le� with 2 silver
scrunchiephone chargers. Therefore, the answer is (C).

According to this ques�on, there are a total of 5 scrunchiephone chargers on the floor: 2
magentascrunchiephone chargers and 3 silver scrunchiephone chargers. If we remove all the magenta items
from the floor, we remove the 2 magenta scrunchiephone chargers.Therefore, the number of
scrunchiephone chargers remaining on the floor is 3. Therefore, the answer is (D).

Key Steps in
Correct CoTs Data

Key Steps in
Wrong CoTs Data 

Figure 3: Examples of locating key reasoning steps in dual CoTs, where the correct CoT and the wrong CoT are
dual to each other. The identified key steps in correct reasoning and wrong reasoning are respectively marked in
green and red.

3.3 Training Student with CoTs
Surpervised Fine-tuning on Correct CoTs.
After preparing the dual CoTs3, we first fine-tune
student models on the teachers’ original correct
CoTs dataset D+ and rectified CoTs dataset D−+.
The training objective is as follows:

πsft = argmax
π

Eq,CoT∼D+
merge

log π(CoT | q)
(4)

where the merged correct CoTs dataset D+
merge =

D+ ∪ D−+, and πsft denotes the student with the
base inference ability after the initial fine-tuning.

Key Reasoning Steps Learning. Inspired by
(Guo et al., 2024) who leverage fine-grained quality
signals to align human preference, we propose a
key reasoning steps learning (KRSL) method to fur-
ther encourage students to comprehend the reasons
behind both correct and wrong CoTs.

Step1. We pair the teacher’s original correct
CoTs dataset D+ with its corrupted CoTs dataset
D+−, creating an originally correct dual CoTs
dataset D+

dual = {(q, CoT+, CoT+−)}, where
CoT+ and CoT+− are dual to each other; sim-
ilarly, the teacher’s inherently wrong dual CoTs
dataset D−

dual = {(q, CoT−+, CoT−)}. By merg-
ing them, we obtain the ultimate dual CoTs datasets
Ddual = D+

dual ∪ D−
dual, which is prepared for the

subsequent learning of key reasoning steps.

Step2. Then we employ the minimum edit dis-
tance to identify the key steps in both correct rea-

3To validate the quality of our dual CoTs, We randomly
sample 100 pairs to manually check the logical consistency
between the rationale and the final answer and find that 93
dual CoTs exhibit reasoning processes that supported the con-
clusion. The strong in-context learning capability and autore-
gressive nature enable teacher LLMs to generate CoTs with
special properties and remain logically consistent.

soning and wrong reasoning, as shown in Figure 3.
In this way, students can identify less frequent text
segments that are inserted or replaced in wrong
CoTs compared to correct CoTs, and vice versa.
These text segments are considered key reasoning
steps. After that, we assign token-level weights
to facilitate fine-grained learning for correct CoTs
and wrong CoTs in Ddual respectively4:

ω+
t =

{
α, if CoT+

t is inserted or replaced
0, otherwise

,

ω−
t =

{
β, if CoT−

t is deleted or replaced
0, otherwise

(5)
where α ≥ 0, β ≥ 0 and ω+

t represents the weight
of t-th token in the correct CoTs (semantically
same with ω−

t ). We set the weights to zero to ignore
the impact of identical tokens in the dual CoTs.

Step3. Finally, to ensure that the student makes
correct decisions on key steps in correct reason-
ing, we optimize the student model on these to-
kens with weighted negative log-likelihood. Con-
versely, to prevent the student from making key
steps present in wrong reasoning, we optimize the
student model on these steps with weighted posi-
tive log-likelihood. The sum of both is taken as the
final loss. The optimization objective is as follows:

max
πsft

Eq,CoT+,CoT−∼Ddual

L(πsft, q, CoT+, ω+)− L(πsft, q, CoT−, ω−)
(6)

4Applied to token-level weight allocation on key reasoning
steps.
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where L (π, q, CoT, ω) =

−
∑

CoTt∈CoT

ωt log π(CoTt | q, CoT<t)

(7)

4 Experiments

4.1 Experimental Setup

In-domain (IND) Dataset: BIG-Bench Hard
(BBH) (Suzgun et al., 2023) consists of 27 chal-
lenging tasks that span arithmetic, symbolic rea-
soning, etc. This collection is mainly composed of
multiple-choice questions, along with a minority
of open-ended questions. To underscore the supe-
riority of our method, we divide the BBH dataset
for each subtask into a training set (BBH-train) for
distillation and a test set (BBH-test) for in-domain
evaluation, following a 4:1 ratio.

Out-of-domain (OOD) Dataset: (1) BIG-Bench
Sub (BB-sub) is derived from the BIG-Bench
(BB) (Guo et al., 2023), which includes 203 tasks
covering linguistics, mathematics, common-sense
reasoning, etc. To simplify our evaluation, we re-
fine the selection of tasks from BB by identifying
those associated with keywords such as "multiple-
choice" and "reasoning." Additionally, we exclude
any tasks that are part of the BBH dataset, nar-
rowing our pool to 61 distinct subtasks. For each
of these subtasks, we randomly sample up to 100
instances, culminating in the BB-sub dataset. (2)
AGIEval (Zhong et al., 2023) is a benchmark that
assesses LMs on reasoning capabilities using hu-
man exams across various fields, including English,
Math, Law, and Logic. We focused on the En-
glish multiple-choice questions within this bench-
mark for evaluation. (3) AI2 Reasoning Challenge
(ARC) (Clark et al., 2018) comprises ARC-Easy
and ARC-Challenge from middle and high school
science exams. ARC-E features simpler questions,
while ARC-C includes more challenging ones. We
use their test sets for evaluation. Detailed statis-
tics for all mentioned benchmarks are provided in
Appendix A.9.1. BigBench, AGIEval, and ARC
are standard benchmarks for evaluating LLMs rea-
soning performance. Specifically, BigBench and
AGIEval have been employed in related works
(Fu et al., 2023; Jiang et al., 2023b), and ARC
is frequently used in technical reports for LLaMA3
(AI@Meta, 2024) and GPT-4 (OpenAI, 2023b).

Models & Implementation Details. We em-
ploy the widely-used open-source language model,

LLaMA2-7B (Touvron et al., 2023), as our student
SLM. For the teacher model, given its performance
and cost-effectiveness, we employ OpenAI’s ad-
vanced black-box LLM, ChatGPT, specifically us-
ing the "gpt-3.5-turbo-0613" variant for ex-
tracting CoTs with the same manual prompt that is
used in (Suzgun et al., 2023). We employ LoRA
(Hu et al., 2022) for parameter-efficient fine-tuning
of the student SLMs. We empirically set α in KRSL
as 1.0 and β as 0.025. We also conducted exper-
iments on the impact of hyperparameters in the
Appendix A.2. Our experiments leverage a mixed-
precision training strategy, carried out on 4 × A100
GPUs. We employ vLLM (Kwon et al., 2023) to
enhance inference speed, using a greedy decoding
method for text generation on a single A100 GPU.
More training details and hyperparameter settings
can be found in Appendix A.9.2.

Baselines. We compare EDIT with the following
baselines: (1) Teacher & Vanilla Student under
various settings, e.g., Zero-shot (+ CoT) or Few-
shot (+ CoT). (2) Std-CoT (Magister et al., 2023),
which is a standard CoTs distillation method that
directly fine-tunes student SLMs on CoTs data. (3)
MT-CoT (Li et al., 2022) is a multi-task CoTs
distillation strategy that aims to optimize both the
prediction of answers and the learning of CoTs con-
currently. (4) SCOTT (Wang et al., 2023a) aims
to bolster the reasoning consistency in the student
SLMs by integrating counterfactual data into its
training regimen. (5) SBS (Hsieh et al., 2023) pro-
pose to distill rationales and answers separately. (6)
On this basis, SBS-MI (Chen et al., 2024b) add the
mutual information learning objectives into distil-
lation. We also compare different variants of EDIT
by removing training stages and data components.
(7) w/o RWC + KRSL on D+

dual excludes RWC5

in the first step and only uses D+
dual in the second

step. (8) w/o RWC + KRSL on Ddual excludes
RWC in the first step and uses all dual datasets in
the second step. (9) w/ RWC + w/o KRSL uses
RWC in the first step and skips the second step.

4.2 Main Results

We compare EDIT with the baselines across both
IND and OOD datasets in Table 1 and the results
of more commonly used reasoning subtasks can be
found in Appendix A.1. We illustrate the results by

5w/o RWC represents that the Rectified teacher’s Wrong
CoTs are not used in the first step of EDIT and w/o KRSL
denotes that the second step KRSL in EDIT is removed.
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Method Distill? BBH-test BB-sub AGIEval ARC-E ARC-C AVG
In-domain? ✓ ✕ ✕ ✕ ✕

Teacher: ChatGPT (gpt-3.5-turbo)

Zero-shot-CoT ✕ 42.7 44.1 49.5 91.9 81.1 61.9
Few-shot-CoT ✕ 73.1 - - - - -

Student: LLaMA2-7B

Zero-shot ✕ 14.8 15.5 6.9 18.2 13.9 13.9
Few-shot ✕ 15.1 28.5 25.5 25.5 25.4 24.0
Zero-shot-CoT ✕ 10.6 7.7 7.1 18.4 14.8 11.7
Few-shot-CoT ✕ 16.3 25.3 9.9 17.2 17.2 17.2

MT-CoT (Li et al., 2022) ✓ 56.8 30.3 22.0 49.4 38.2 39.3
SCOTT (Wang et al., 2023a) ✓ 42.4 18.8 13.0 45.7 34.1 30.8
Std-CoT (Magister et al., 2023) ✓ 54.2 28.7 21.6 59.6 45.1 41.8
SBS (Hsieh et al., 2023) ✓ 42.4 27.7 28.8 68.5 48.6 43.2
SBS-MI (Chen et al., 2024b) ✓ 42.9 24.3 29.2 68.4 49.3 42.8

w/o RWC + w/ KRSL on D+
dual ✓ 55.1 30.1 24.1 60.3 44.1 42.7

w/o RWC + w/ KRSL on Ddual ✓ 55.4 30.1 24.2 63.6 48.3 44.3
w/ RWC + w/o KRSL ✓ 59.7 30.0 24.5 61.9 45.5 44.3
EDIT (ours, w/ RWC + w/ KRSL on Ddual) ✓ 60.9 31.1 25.9 64.1 50.5 46.5

Table 1: Results (Accuracy, %) of the main experiment.
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Figure 4: Ablation results on model size for four OOD datasets. The dotted line indicates the performance of the
teacher LLM under the Zero-shot-CoT setting. We also present the results on the IND dataset in Appendix A.3.

answering the following research questions.

Can CoT distillation improve the performance
of students? From the table, it is evident that the
student SLMs with distillation outperform those
that are not distilled. This demonstrates that the
reasoning ability of LLMs can be effectively trans-
ferred to SLMs by distilling CoTs.

Can EDIT further enhance the performance of
students compared to other distillation meth-
ods? It can be observed that our proposed method
EDIT outperforms the popular and common dis-
tillation baseline Std-CoT on both IND and OOD
datasets, achieving an average improvement of 4.7
%, which demonstrates the effectiveness and gen-
eralizability of EDIT. However, EDIT performs
worse on AGIEval and ARC-E compared to SBS,

likely due to a strong correlation between ques-
tions and answers in these datasets. SBS allows
the model to directly predict answers, benefiting
from the special properties of these datasets. In
addition, SBS has obvious disadvantages because
the rationale it generates is inconsistent with the
answer logic (Dai et al., 2024).

How significant are the improvements in EDIT
attributed to the rectified wrong CoTs and the
key steps learning, respectively? Ablation re-
sults in the table show that removing the rectified
wrong CoTs (w/o RWC) and removing key rea-
soning steps learning (w/o KRSL) result in perfor-
mance degradation on almost all IND and OOD,
emphasizing the importance of both components.
On the one hand, the rectified teachers’ mistakes
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aid the students in learning diverse ways of think-
ing. On the other hand, KRSL directs the student’s
attention to crucial steps in the dual CoTs, thereby
improving the reasoning ability of the students. Ad-
ditionally, we note that although KRSL and DPO
(Rafailov et al., 2023) share very similar learning
principles, DPO performed unexpectedly poorly in
this scenario. Detailed experiments and analyses
are provided in Appendix A.8.

4.3 Ablation Study

EDIT is universally applicable to SLMs of var-
ious sizes. To better adapt to the community’s
varying computational resource requirements, we
conduct experiments on models of different sizes,
including TinyLLaMA-1.1B (Zhang et al., 2024),
LLaMA2-7B and 13B. The results in Figure 4 show
that EDIT outperforms the baselines across differ-
ent model sizes. While smaller models like the
1.1B variant show more modest gains on simpler
benchmarks (e.g., ARC-E and ARC-C), we ob-
serve significant improvements on more challeng-
ing benchmarks like BB-sub and AGIEval across
all model sizes. We attribute this phenomenon to
two key factors: (1) smaller models’ limited ca-
pacity constrains complex reasoning acquisition,
and (2) simpler benchmarks inherently offer less
improvement potential. This suggests that the more
challenging a task is, the more it requires genuine
reasoning rather than mere imitation, highlighting
the benefits that EDIT brings to students.

EDIT is universally applicable to SLMs with
various architectures. To cater to the commu-
nity’s diverse model preferences, we conduct ex-
periments on models of different architectures, in-
cluding CodeLLaMA-7B (Touvron et al., 2023),
LLaMA3-8B (AI@Meta, 2024), and Mistral-7B-
v0.2 (Jiang et al., 2023a). As shown in Figure
5, EDIT consistently outperforms its variant w/o
KRSL and the baseline Std-CoT across all model
architectures. Notably, the performance gap is sig-
nificantly larger for the stronger model, Mistral,
indicating that our method provides greater bene-
fits with more powerful base models.

Correct key reasoning steps have a greater im-
pact than incorrect ones. We conduct an abla-
tion study on the key reasoning steps in KRSL
where students learn exclusively from either the
correct or wrong reasoning steps (referred to §3.3,
we set α = 0 or β = 0, respectively). The results
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shown in Figure 6 indicate that learning key reason-
ing steps solely from either correct or wrong CoTs
leads to a decline in performance. This demon-
strates that joint learning from both correct and
wrong key reasoning steps is more beneficial for
enhancing reasoning. Furthermore, we observe
a greater performance drop in the absence of key
steps in correct CoTs (w/o Correct) compared to the
absence of key steps in wrong CoTs (w/o Wrong),
suggesting that key steps from correct CoTs have a
more significant impact on students’ learning.

Challenging dual CoTs data is important. We
explore which component of the dual CoTs dataset
in KRSL plays a more significant role: the orig-
inally correct dual CoTs D+

dual or the inherently
wrong dual CoTs D−

dual. From the Table 2, com-
pared to using D+

dual, employing D−
dual resulted in

superior performance, even with less data, which
demonstrates that the dual CoTs constructed from
the inherent wrong CoTs of teachers are more chal-
lenging compared to D+

dual and more effectively
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highlight the key steps in reasoning.

Dataset D+
dual

( # = 3805 )
D−

dual
( # = 1402 )

Ddual

( # = 5207 )

BBH-test 61.3 60.9 60.9
BB-sub 31.2 30.8 31.1
AGIEval 24.4 26.0 25.9
ARC-E 64.6 63.8 64.1
ARC-C 48.9 50.5 50.5

AVG 46.1 46.4 46.5

Table 2: Results across dual CoTs datasets in KRSL.

5 Analysis

5.1 Quality of Generated CoTs

Beyond reasoning accuracy, the quality of CoTs is
crucial for interpretable AI. Thus, we use the sota
LLM, GPT-4, to score the quality of CoTs gener-
ated by Std-CoT, EDIT, and teacher LLMs. The
evaluation focuses on which CoT best reflects the
key reasoning steps in the problem-solving process,
with the prompt template detailed in Appendix C.4.
The distribution of evaluation scores is shown in
Figure 7, where we observe that the score distribu-
tion for CoTs generated by EDIT is closer to that
of the teacher compared to Std-CoT. This demon-
strates that EDIT is more effective in learning key
reasoning steps, producing higher-quality CoTs.

5.2 Other Analysis

Considering the differences in training data sizes
due to dual CoTs, we conduct a Cost Analysis in
Appendix A.4 to enable a fairer comparison. To
better illustrate the quality of key reasoning steps
in the generated CoTs, we conduct a Case Study
in Appendix A.5. Additionally, since our method
is mistake-driven, we also explore the impact of
different Mistake Patterns on the method’s perfor-
mance in Appendix C.5.

6 Conclusion

In this paper, we propose a mistake-driven key rea-
soning step distillation method to alleviate student
imitation of teachers’ reasoning forms. First, we
preserve all CoTs data annotated by teacher LLMs,
irrespective of correctness. Using these data, we de-
sign two comprehensive prompts to guide teachers
in generating dual CoTs data. Finally, we utilize
the minimum edit distance algorithm to identify
the key reasoning steps and employ a fine-grained
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Figure 7: Score distribution evaluated by GPT-4 on
BBH-test. Kernel density estimation is used to visualize
the distribution of CoTs quality scores.

loss function for guided learning. Extensive ex-
periments demonstrate EDIT’s effectiveness in en-
hancing student SLMs’ reasoning capabilities. We
hope our work can make the community attach the
importance of learning key reasoning steps in dual
CoTs, collectively advancing the efficiency of CoT
reasoning distillation.

Limitations

Currently, most assessments of CoT distillation fo-
cus primarily on accuracy (Magister et al., 2023;
Ho et al., 2023; Shridhar et al., 2023; Wang et al.,
2023c), which is insufficient because safe LLMs
rely heavily on trustworthy CoTs. We hope the
community to develop standards for evaluating the
quality of CoTs, rather than relying solely on auto-
matic assessments by GPT-4.
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A Additional Experiment

A.1 Detailed Performance on Reasoning
Subtasks

The main table summarizes the experimental re-
sults on the complete benchmark. In this subsec-
tion, we present results on additional reasoning
tasks from BigBench and AGIEval to highlight the
broader applicability of our method. As shown in
Table 3, our approach consistently surpasses the
baseline models on nearly all subtasks, including
key mathematical reasoning benchmarks such as
AQuA, SAT-MATH, GSM8K (Cobbe et al., 2021),
and MATH (Hendrycks et al., 2021). Notably,
this performance is achieved despite our training
dataset containing only 200 simple math reason-
ing examples out of 5207 total samples. These
results confirm the robustness of our method across
various reasoning domains.

A.2 Impact of Hyperparameters

In this section, we explore the impact of hyperpa-
rameters on EDIT performance through grid search,
with the results shown in the Table 4. Increasing
α from 0 to 1 (comparing Group A to C or B to
D) leads to significant performance improvements
across most benchmarks. However, increasing β
beyond 0.025 results in a noticeable performance
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Subtasks / Method Source In-domain MT-CoT SCOTT Std-CoT Std-CoT w/ Repeat Sampling Std-CoT w/ Dual CoTs EDIT (Ours)

Date Understanding BBH ✓ 74.0 54.0 82.0 76.0 74.0 80.0
Temporal Sequences BBH ✓ 94.0 66.0 94.0 98.0 86.0 98.0
Multi-Step Arithmetic BBH ✓ 6.0 0.0 8.0 14.0 18.0 18.0
Sports Understanding BBH ✓ 90.0 74.0 90.0 86.0 86.0 90.0
Elementary Math QA BigBench × 10.0 13.0 11.0 14.0 17.0 20.0
Identify Math Theorems BigBench × 9.4 9.4 20.8 18.9 24.5 26.4
StrategyQA BigBench × 50.0 31.0 57.0 50.0 49.0 59.0
AQuA-RAT AGIEval × 15.4 14.6 17.3 23.2 22.8 24.4
SAT-Math AGIEval × 15.5 21.4 20.9 23.6 20.0 24.5
GSM8K GSM8K × 15.3 17.1 15.4 10.9 14.7 17.5
MATH MATH × 4.3 4.1 5.1 5.0 5.0 5.6

AVG 34.9 27.7 38.3 38.1 38.8 42.1

Table 3: Results on commonly used reasoning subtasks.

drop, indicating that the two loss terms in Eq.6 need
to be balanced for optimal performance. Excessive
dominance of either term negatively impacts model
training, showing a collaborative yet adversarial
relationship between the two terms.

A.3 Ablation Study on Model Size for
In-domain Dataset

The results of the model size ablation study on
IND datasets are presented in Figure 8. We observe
that EDIT outperforms the baseline methods on
both the 7B and 13B model sizes and significantly
surpasses the teacher LLMs in the Zero-shot CoT
setting.
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Figure 8: Ablation study on model size for the IND
dataset (BBH-test). The dotted line indicates the per-
formance of the teacher LLM under the Zero-shot-CoT
setting.

A.4 Cost Analysis

Considering that our method utilizes dual CoTs
data, which results in twice the amount of training
data compared to the baselines, we implement two
additional baseline settings to ensure a fair compar-
ison and ablate the impact of the increased data size

due to dual CoTs: (1) Std-CoT w/ Repeat Sam-
pling. We perform random repeat sampling on the
baseline’s original training data until the volume
matches that of EDIT; (2) Std-CoT w/ Dual CoTs.
We train the Std-CoT using all data included in
EDIT, adding the marker "[Counterfactual
Reasoning]" before the negative sample’s ques-
tion to differentiate it from positive reasoning. Re-
sults in Table 5 show that while Std-CoT benefits
from additional data, it underperforms compared to
EDIT across most tasks. EDIT’s superiority stems
from its method of learning key reasoning steps
beyond mere imitation, allowing students to learn
from mistakes. Additionally, Std-CoT with Dual
CoTs outperforms that with Repeat Sampling in
OOD tasks by incorporating counterfactual reason-
ing, reducing overfitting and better generalizing
the reasoning. This supports our view that simple
fine-tuning with correct teacher data is insufficient
for true reasoning learning.

A.5 Case Study
We present 5 cases sampled from BBH, AGIEval,
and ARC in Table 20, 21, 22, 23 and 24 to clearly
compare the CoT generated by EDIT with the
teacher LLM and the standard CoTs distillation
(Std-CoT). We utilize ✓ and ✗ to denote whether
the CoT is correct or incorrect, respectively. From
Tables 20 and 21, we observe that both the teacher
and Std-CoT models make mistakes at the same
positions in their reasoning processes, even though
the nature of their mistakes differs. These positions
can be considered key reasoning steps. In contrast,
the EDIT CoT exhibits a changed way of thinking
and demonstrates correct reasoning at these corre-
sponding positions (highlighted in green), leading
to the correct answers. Especially for the case in
Table 24, while the Std-CoT and teacher models
both adopt a logic of enumerating and analyzing
each option, EDIT raises issues or questions for
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Group α β BBH-test BB-sub AGIEval ARC-E ARC-C AVG

A 0 0 59.7 30.0 24.5 61.9 45.5 44.32
B 0 0.025 59.0 30.2 24.1 62.1 45.9 44.26
C 1 0 60.2 30.5 23.4 62.7 48.0 44.96
D 1 0.025 60.9 31.1 25.9 64.1 50.5 46.50
E 1 0.05 59.7 30.0 24.7 61.9 45.5 44.36

Table 4: Results of ranging hyperparameters.

Method Training Data Size BBH-test BB-sub AGIEval ARC-E ARC-C AVG

Std-CoT w/ Repeat Sampling 10414 59.4 30.3 24.0 58.0 42.1 42.8
Std-CoT w/ Dual CoTs 10414 54.8 32.9 25.1 62.2 44.1 43.8
EDIT (ours) 10414 60.9 31.1 25.9 64.1 50.5 46.5

Table 5: Results (Accuracy, %) of the cost analysis.

each option and then answers them. This suggests
that EDIT, through learning key reasoning steps,
avoids overfitting to the teacher CoT’s reasoning
steps and instead adapts its reasoning logic to solve
the problem effectively. Table 22 reveals nearly
identical reasoning among the three CoTs, yet in
the critical reasoning steps 7 and 8, Std-CoT fails
to make the correct decisions, whereas EDIT cor-
rectly executes stack operations. Cases from OOD
benchmarks, shown in Tables 23 and 24, indicate
that EDIT can accurately analyze problems and
provide more logical reasoning.

A.6 Mistake Pattern Mining
In this subsection, we delve into the influence
of various mistake patterns on the EDIT. Based
on the observation of mistake data, we utilize
gpt-3.5-turbo-0613 to categorize all the
teacher’s wrong CoTs into four types, including
Logical Errors (LEs), Knowledge Errors (KEs),
Mathematical Calculation Errors (MCEs) and
Other Errors (OEs). The statistic result for mis-
take pattern data can be found in Table 6. To fairly
assess the influence of different single mistake pat-
terns (LEs, KEs and MCEs), we ensure consis-
tency in data size and the proportion of challeng-
ing problem data (D−

dual) for each pattern. Since
the available data for MCEs is the smallest, we
randomly select 356 instances from D+

dual and
56 instances from D−

dual, creating three dual CoT
datasets—DLEs, DKEs, and DMCEs—each with
412 samples. Then we conduct experiments using
these datasets in KRSL and the results of EDIT
trained on these mistake patterns are shown in Ta-
ble 7.

From the table, we can see that KRSL on DLEs

consistently outperforms other mistake patterns,

with KEs and MCEs having a relatively smaller
impact. This suggests that LEs provide a broader
range of reasoning patterns that are relevant for
mathematical, commonsense, and symbolic reason-
ing. As for KEs and MCEs, since these types of
mistakes are more specific compared to LEs, it is
not easy for the model to learn a general reasoning
solution from these mistakes. Therefore, learning
the key reasoning steps from logical reasoning er-
rors is the most effective way among them.

A.7 Integration with Self-Consistency

In this subsection, we explore the integration of
our method with the widely-used CoT reasoning
technique, Self-Consistency (SC). SC improves
reasoning performance by generating multiple rea-
soning paths and selecting the most consistent an-
swer through majority voting. For SC, we apply
majority voting with 8 sampled reasoning paths,
using temperature=0.7 and topp=0.95 for
decoding. As shown in Table 8, nearly all CoT
distillation methods, including our method EDIT,
show significant performance improvements when
combined with SC. This demonstrates that EDIT
can be effectively integrated with CoT reasoning
techniques, providing both flexibility and scalabil-
ity.

A.8 KRSL v.s. DPO

We note that the learning objectives of KRSL, utiliz-
ing both positive and negative examples, closely re-
semble preference alignment algorithms like RLHF
and DPO (Rafailov et al., 2023). Specifically, both
KRSL and DPO are directly supervised learning
paradigms. However, there are key differences:

1. KRSL requires the model to learn from highly
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Mistake Patterns
& Dataset LEs KEs MCEs OEs LEs + KEs LEs +

MCEs KEs + MCEs LEs + KEs + MCEs Total

D+
dual

2618 452 356 51 255 45 26 2 3805
D−

dual
1077 77 56 62 105 22 3 0 1402

Ddual 3695 529 412 113 360 67 29 2 5207

Table 6: Classification statistics of mistake data patterns.

Dataset BBH-test BB-sub AGIEval ARC-E ARC-C AVG

DLEs 60.1 31.0 24.6 63.0 45.8 44.9
DKEs 60.0 30.6 24.2 62.0 46.1 44.6
DMCEs 59.4 30.4 24.4 62.3 45.8 44.5

Table 7: Performance (Accuracy, %) comparison across mistake pattern datasets used in KRSL. w/ DLEs, w/ DKEs

and w/ DMCEs indicate the KRSL trained on the three different mistake pattern datasets, respectively.

Method + Self-consistency BBH-test BB-sub AGIEval ARC-E ARC-C AVG

MT-CoT 56.4 32.2 22.3 68.5 52.8 46.4
SCOTT 41.1 22.0 16.7 56.1 40.6 35.5
Std-CoT 56.3 31.2 25.2 66.2 50.0 45.8
Std-CoT w/ Repeat Sampling 60.4 33.3 24.1 64.4 47.1 45.9
Std-CoT w/ Dual CoTs 58.4 33.6 26.8 64.4 48.2 46.3
EDIT(ours) 62.0 32.0 27.2 70.4 54.1 49.1

Table 8: Results of Integration with Self-consistency (Accuracy, major vote@8).

Method BBH-test BB-sub AGIEval ARC-E ARC-C AVG

w/ DPO 10.2 15.4 4.8 5.1 4.9 8.1
w/ KRSL 60.9 31.1 25.9 64.1 50.5 46.5

Table 9: Performance (Accuracy, %) comparison between DPO and KRSL implementation in EDIT.

similar positive and negative samples (dual
CoTs) for identifying key reasoning steps
while DPO usually uses completely different
positive and negative samples from human
preference data.

2. In DPO, the loss function involves summing
the negative log-likelihoods across all token
positions in the target text. This approach can
struggle to differentiate rewards for texts with
high similarity since identical tokens domi-
nate the sequence, and only a small portion of
tokens differ. In long sequences, the influence
of these differing tokens on the overall loss
is minimal, potentially causing convergence
issues.

In contrast, KRSL utilizes a minimum edit distance
algorithm to pinpoint key texts in dual CoTs and
precisely optimize the logits for these tokens, ig-
noring identical ones. This makes KRSL more
suitable for learning from dual CoTs compared to
DPO. To empirically study this, we provide com-
parative experiments and analyses with DPO as
follows.

We compare KRSL with DPO by implement-
ing DPO in the EDIT and training LLaMA2-
7B on complete dual CoTs data using the
dpo_trainer implemented in the TRL 6, with
the following settings: learning rate of 1e-
5, a cosine learning rate scheduler,
a warmup ratio of 0.3, DPO beta of 0.1, a
maximum prompt length of 512, maximum
length of 1024, 10 training epochs, and a
batch size of 16. The results (Table 9) show
significant performance degradation with DPO.
Thus, we check the model’s generation results in
Table 10 and find that the output pattern almost
completely collapses, outputting only the answer
without the intermediate reasoning process. The
output after the answer is nonsensical and highly
repetitive, and the model cannot stop predicting the
next word.

6https://github.com/huggingface/trl
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Question

## Input
Task Description: Select the humorous edit that ’ruins’ the input movie or musical artist name.
Q: Which of the following is a humorous edit of this artist or movie name: ’little shop of horrors’?
Options:
(A) little shoy of horrors
(B) little hop of horrors
(C) little wshop of horrors
(D) ulittle shop of horrors
A:

EDIT w/ DPO

little shop of horrors

Q:Which of the following is a humorous edit of this artist or movie name: ’little shop of horrors’?
Options:
(A) little shoy of horrors
(B) little hop of horrors
(C) little wshop of horrors
(D) ulittle shop of horrors

A:little shop of horrors

Q: Which of the following is a humorous edit of this artist or movie name: ’little shop of horrors’?
Options:...

Table 10: A failure case in EDIT w/ DPO from BIG-Bench Hard.

A.9 Details of Experimental Settings
A.9.1 Dataset Statistics
Table 11, 12, 14 and 15 show the data statistics
of AGIEval, ARC, BIG-Bench Hard (BBH) and
BIG-Bench Sub (BB-sub), respectively.

No. Task Size # Choices

1 AQuA-RAT 254 5
2 LogiQA-EN 651 4
3 LSAT-AR 230 5
4 LSAT-LR 510 5
5 LSAT-RC 269 5
6 SAT-Math 220 4
7 SAT-EN 206 4
8 SAT-EN (w/o Psg.) 206 4

Table 11: Statistics of AGIEval dataset.

Task Size # Choices

ARC-E 2376 4-5
ARC-C 1172 4-5

Table 12: Statistics of ARC test dataset.

Arguments Student Teacher

do sample False True
temperature - 0.2
top-p 1.0 1.0
top-k - -
max new tokens 1024 2048
# return sequences 1 1

Table 13: Generation configs of students and teachers.

No. Task Size # Choices

1 Boolean Expressions 250 2
2 Causal Judgement 187 2
3 Date Understanding 250 6
4 Disambiguation QA 250 4
5 Dyck Languages 250 -
6 Formal Fallacies Syllogisms Negation 250 2
7 Geometric Shapes 250 11
8 Hyperbaton (Adjective Ordering) 250 2
9 Logical Deduction (3 objects) 250 3
10 Logical Deduction (5 objects) 250 5
11 Logical Deduction (7 objects) 250 7
12 Movie Recommendation 250 5
13 Multi-Step Arithmetic 250 -
14 Navigate 250 2
15 Object Counting 250 -
16 Penguins in a Table 146 5

No. Task Size # Choices

17 Reasoning about Colored Objects 250 18
18 Ruin Names 250 11
19 Salient Translation Error Detection 250 6
20 Snarks 178 2
21 Sports Understanding 250 2
22 Temporal Sequences 250 4
23 Tracking Shuffled Objects (3 objects) 250 3
24 Tracking Shuffled Objects (5 objects) 250 5
25 Tracking Shuffled Objects (7 objects) 250 7
26 Web of Lies 250 2
27 Word Sorting 250 -

Sum 6511 -

Table 14: Statistics of BIG-Bench Hard dataset.
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No. Task Size # Choices

1 abstract_narrative_understanding 100 5
2 anachronisms 100 2
3 analogical_similarity 100 7
4 analytic_entailment 70 2
5 cause_and_effect 100 2
6 checkmate_in_one 100 26
7 cifar10_classification 100 10
8 code_line_description 60 4
9 conceptual_combinations 100 4
10 crass_ai 44 4
11 elementary_math_qa 100 5
12 emoji_movie 100 5
13 empirical_judgments 99 3
14 english_russian_proverbs 80 4
15 entailed_polarity 100 2
16 entailed_polarity_hindi 100 2
17 epistemic_reasoning 100 2
18 evaluating_information_essentiality 68 5
19 fantasy_reasoning 100 2
20 figure_of_speech_detection 59 10
21 goal_step_wikihow 100 4
22 gre_reading_comprehension 31 5
23 human_organs_senses 42 4
24 identify_math_theorems 53 4
25 identify_odd_metaphor 47 5
26 implicatures 100 2
27 implicit_relations 82 25
28 indic_cause_and_effect 100 2
29 intersect_geometry 100 26
30 kanji_ascii 100 5
31 kannada 100 4

No. Task Size # Choices

32 key_value_maps 100 2
33 logic_grid_puzzle 100 3
34 logical_args 32 5
35 logical_fallacy_detection 100 2
36 metaphor_boolean 100 2
37 metaphor_understanding 100 4
38 minute_mysteries_qa 100 4
39 mnist_ascii 100 10
40 moral_permissibility 100 2
41 movie_dialog_same_or_different 100 2
42 nonsense_words_grammar 50 4
43 odd_one_out 86 5
44 parsinlu_qa 100 4
45 physical_intuition 81 4
46 play_dialog_same_or_different 100 2
47 presuppositions_as_nli 100 3
48 riddle_sense 49 5
49 similarities_abstraction 76 4
50 simple_ethical_questions 100 4
51 social_iqa 100 3
52 strange_stories 100 2
53 strategyqa 100 2
54 swahili_english_proverbs 100 4
55 swedish_to_german_proverbs 72 4
56 symbol_interpretation 100 5
57 timedial 100 3
58 undo_permutation 100 5
59 unit_interpretation 100 5
60 vitaminc_fact_verification 100 3
61 winowhy 100 2

Sum 5384 -

Table 15: Statistics of BIG-Bench sub dataset. We filter
the original dataset by retrieving tasks with keywords
"multiple choice" and randomly sample up to 100 exam-
ples per task. Note, the task in BBH will not be involved
in BB-sub.

A.9.2 Hyperparameters Settings
In our study, we ensure consistency in the hyper-
parameter settings across all baselines, including
our proposed EDIT approach, to maintain the fair-
ness of our comparative analysis. Here, we detail
the hyperparameter configurations employed in our
experiments.

Training Steps and Batch Size. The number of
training steps is determined based on the size of
the training dataset, the batch size, and the number
of gradient accumulation steps required. We main-
tain a consistent batch size across all baselines to
eliminate any performance discrepancies that could
arise from varying batch sizes.

Learning Rate. Our initial exploratory experi-
ments focused on the standard CoTs distillation
method using the LLaMA-2 model. We found that
while the batch size had minimal impact on per-
formance, the learning rate was a critical factor.
We tested learning rates of 1e-4, 2e-4, and 3e-4,
observing optimal performance at 2e-4 across the
standard CoT and other distillation baselines, as
well as our EDIT approach. Consequently, we set
the learning rate to 2e-4 for all methods involved
in our study.

Epochs and Evaluation Strategy. Throughout
our training process, we monitored the training
loss curve and noted that it generally plateaued
by the 15th epoch, indicating that the models had
achieved convergence. Therefore, we set the num-
ber of epochs to 15 for 7B models. The process of
determining the number of epochs for other model
sizes followed a similar pattern. To mitigate the
potential risk of overfitting and to ensure our evalua-
tion reflects the most effective model configuration,
we systematically selected checkpoints from the
epoch that demonstrated the best performance on
the IND task. These checkpoints were then used to
evaluate performance on OOD tasks.

The hyperparameters in training and inference
can be found in Table 16 and Table 13 respectively.
In the KRSL, the second phase training in EDIT,
the learning rate is empirically set as 5e-6.

A.9.3 Computation Budget
Our experimental code is based on modifications
of Meta’s open-source llama-recipes7, utiliz-
ing the FSDP framework and training the model in

7https://github.com/Meta-Llama/
llama-recipes
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Hyperparameter TinyLLaMA-1.1B LLaMA2-13B LLaMA2-7B / CodeLLaMA-7B / LLaMA3-8B / Mistral-7B-v0.2

gradient accumulation steps 4 8 4
per device batch size 16 8 16
learning rate 2e-4 2e-4 2e-4
epoches 20 15 10
max length 1024 1024 1024
β of AdamW (0.9,0.999) (0.9,0.999) (0.9,0.999)
ϵ of AdamW 1e-8 1e-8 1e-8
γ of Scheduler 0.95 0.95 0.95
weight decay 0 0 0
warmup ratio 0 0 0
rank of LoRA 64 64 64
α of LoRA 32 32 32
target modules q_proj, v_proj q_proj, v_proj q_proj, v_proj
drop out of LoRA 0.05 0.05 0.05

Table 16: Training hyperparameters.

parallel on four 80GB A100 GPUs. In our experi-
mental setup, training a 7B model during the SFT
stage takes approximately 40 minutes per epoch.
For KRSL, each epoch takes around 90 minutes.
With the same settings, training the Mistral model
will see about a 10% increase in training time. We
will release our code in the future.

B Example of Dual CoTs

We provide dual CoTs examples with three differ-
ent mistake patterns including logical errors, knowl-
edge errors and mathematical calculation errors in
Table 17, 18, 19 and mark the correct/wrong key
reasoning steps in different colors. We observe
that our carefully crafted prompts for generating
correct CoT and wrong CoT effectively ensure the
desired dual CoT characteristics: similar reasoning
steps leading to different conclusions. For instance,
subordinating conjunctions in Table 17 like "how-
ever," "despite," and "even though," as well as cer-
tain verb and noun phrases, significantly influence
the reasoning process and the conclusion. These
elements represent the key reasoning steps that we
aim for the model to learn.

C Prompt Templates

C.1 CoTs Extraction Prompt

We use the prompt template shown in Table 25 to
call the ChatGPT API to generate the CoTs for the
BBH-train datasets.

C.2 Answer Hint Prompt

We list the Answer Hint Prompt templates in Table
26, which imply the teacher LLMs to generate the
CoTs based on the given answers following the
in-context examples.

C.3 Contrastive CoTs Prompt
We list the Contrastive CoTs Prompt templates in
Table 27, which query the teacher LLMs to gener-
ate the CoTs with similar rationales to the original
ones but divergent answers by following the few
examples provided with contrastive CoT pairs.

C.4 Evaluation Prompt of CoTs Quality
We list the evaluation prompt templates of CoTs
quality in Table 28.

C.5 Mistake Pattern Mining Prompt
For mistake pattern mining, we employ the prompt
template delineated in Table 29, which includes the
definitions of the four distinct mistake patterns.
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Question

## Input
Task Description: Answer questions about causal attribution.
Q: How would a typical person answer each of the following questions about causation?
George and his sister Lena reunite at their parentsh́ouse for Thanksgiving. Whereas George just got into medical
school, Lena is unhappy in her marriage and recently lost her job. Over the course of the day, George and Lena
get into a number of heated arguments. Later in the afternoon they play a game of darts. They split the first two
games, and the third game is close until the end. Who will win comes down to George’s last shot. If he hits a high
point region, he wins; if he hits a low point region, Lena wins. George doesn’t care that Lena is having a difficult
time; he really wants to beat her. George has little control over his shots. He tries to aim at the high point region
of the dart board. As he sets up his shot, however, he loses his balance. The dart slips out of his hand and wobbles
toward the board. The dart lands in the high point region. George triumphs in his victory while Lena is sad. Did
George hit the high point region intentionally?
Options:
- Yes
- No
A:

Correct CoT

Here in this question, we are told that "George tries to aim at the high point region of the dart board." However,
due to losing his balance, the dart slips out of his hand and wobbles toward the board. A typical person would
assume that George did not intentionally hit the high point region, as his intention was to aim at the high point
region but his actions resulted in an unintended outcome. Therefore, the answer is No.

Wrong CoT

Here in this question, we are told that George tries to aim at the high point region of the dart board. Despite losing
his balance, the dart lands in the high point region. A typical person would assume that George intentionally hit
the high point region, as his aim was to score points and win the game, even though his balance caused the dart to
wobble. Therefore, the answer is Yes.

Table 17: A casual judgment dual CoTs example from BIG-Bench Hard where the wrong CoT shows a logical error.

Question

## Input
Task Description: Recommend movies similar to the given list of movies.
Q: Find a movie similar to Pulp Fiction, Schindler’s List, Apollo 13, Dances with Wolves:
Options:
(A) Iron Eagle IV
(B) The Shawshank Redemption
(C) Knockin’ on Heaven’s Door
(D) Aguirre The Wrath of God
A:

Correct CoT

- Pulp Fiction (crime, drama; 1994)
- Schindler’s List (biography, drama, history; 1993)
- Apollo 13 (adventure, drama, history; 1995)
- Dances with Wolves (adventure, drama, western; 1990)
These are all famous movies produced in the 1990s. Amongst all the options, the only movie similar to these ones
seems to be The Shawshank Redemption (drama; 1994), as it is also a critically acclaimed film with a compelling
storyline. Therefore, the answer is (B).

Wrong CoT

- Pulp Fiction (crime, drama; 1994)
- Schindler’s List (biography, drama, history; 1993)
- Apollo 13 (adventure, drama, history; 1995)
- Dances with Wolves (adventure, drama, western; 1990)
These are all famous movies produced in the 1990s. Amongst all the options, the only movie similar to these ones
seems to be Aguirre The Wrath of God (adventure, biography, drama; 1972), as it is also a historical drama film.
Therefore, the answer is (D).

Table 18: A movie recommendation example from BIG-Bench Hard where the wrong CoT shows a knowledge-based
error.

Question

## Input
Task Description: Solve multi-step arithmetic problems.
Q: ((-1 + -6 - -4 + -6) - (-2 * -5 - -1 * 1)) =
A:

Correct CoT

Let’s recall that the order of operations in mathematics is as follows: (1) Parentheses, (2) exponents, (3)
multiplication and division (from left to right), (4) addition and multiplication (from left to right). So, remember
to always compute the expressions inside parentheses or brackets first.
This equation can be written as Ä - B,̈ where A = (-1 + -6 - -4 + -6) and B = (-2 * -5 - -1 * 1).
Let’s calculate A = (-1 + -6 - -4 + -6) = (-1 + (-6) - (-4) + (-6)) = (-1 - 6 + 4 - 6) = (-7 + 4 - 6) = (-3 - 6) = -9.
Let’s calculate B = (-2 * -5 - -1 * 1) = (10 - (-1)) = (10 + 1) = 11.
Then, the final equation is A - B = -9 - 11 = -20. Therefore, the answer is -20.

Wrong CoT

Let’s recall that the order of operations in mathematics is as follows: (1) Parentheses, (2) exponents, (3)
multiplication and division (from left to right), (4) addition and multiplication (from left to right). So, remember
to always compute the expressions inside parentheses or brackets first.
This equation can be written as Ä - B,̈ where A = (-1 + -6 - -4 + -6) and B = (-2 * -5 - -1 * 1).
Let’s calculate A = (-1 + -6 - -4 + -6) = (-1 + -6 - -4 + -6) = (-1 -6 -4 -6) = (-7 -6 -4 -6) = (-13 - 4 -6) = -23.
Let’s calculate B = (-2 * -5 - -1 * 1) = (10 - (-1)) = (10 + 1) = 11.
Then, the final equation is A - B = -23 - 11 = -34. Therefore, the answer is -34.

Table 19: A multistep arithmetic dual CoTs example from BIG-Bench Hard where the wrong CoT shows a
mathematical calculation error.
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Question:

On the table, there are three pink scrunchiephone chargers, two orange crayons, and two black scrunchiephone
chargers. If I remove all the black items from the table, how many scrunchiephone chargers remain on it?
Options:(A) zero(B) one (C) two (D) three (E) four (F) five (G) six (H) seven (I) eight (J) nine (K) ten (L) eleven
(M) twelve (N) thirteen (O) fourteen (P) fifteen (Q) sixteen

Teacher

According to this question, there are three pink scrunchiephone chargers, two orange crayons, and two black
scrunchiephone chargers on the table. If we remove all the black items from the table, we are left with three pink
scrunchiephone chargers and two orange crayons.

Therefore, the number of scrunchiephone chargers that remain on the table is five.

Therefore, the answer is (F). ✗

Std-CoT

According to this question, there are three pink scrunchiephone chargers, two orange crayons, and two black
scrunchiephone chargers on the table.

If we remove all the black items from the table, we are left with three pink scrunchiephone chargers,
two orange crayons, and two black scrunchiephone chargers.

The number of scrunchiephone chargers remaining on the table is seven.

Therefore, the answer is (H). ✗

EDIT

According to this question, there are a total of 5 scrunchiephone chargers on the table: 3 pink scrunchiephone
chargers and 2 black scrunchiephone chargers. If we remove all the black items, we are left with 3 pink
scrunchiephone chargers.

Therefore, the answer is (D). ✓

Table 20: A reasoning about colored objects case from BIG-Bench Hard.

Question: Find a movie similar to Jurassic Park, Independence Day, Forrest Gump, Batman.
Options: (A) The Firm (B) Roger Dodger (C) Innocent Man (D) An (E) The Silence of the Lambs

Teacher

- Jurassic Park (action, adventure, science-fiction; 1993)

- Independence Day (action, science-fiction, drama; 1996)

- Forrest Gump (comedy, drama, romance; 1994)

- Batman (action, adventure; 1989)

These are all famous Hollywood movies produced in the 1980s and 1990s. Amongst all the options,
the only movie similar to these ones seems to be The Firm (drama, mystery, thriller; 1993), as it is also a popular
movie from the same era.

Therefore, the answer is (A). ✗

Std-CoT

Jurassic Park is an action and adventure movie. Independence Day is an action, science-fiction, and adventure
movie. Forrest Gump is a comedy, drama, and romance movie. Batman is an action, adventure, and crime movie.
The Firm is a crime, drama, and thriller movie. Roger Dodger is a comedy and drama movie. Innocent Man is a
crime, drama, and thriller movie. The Silence of the Lambs is a crime, drama, and thriller movie. Amongst all the
options, the movie similar to Jurassic Park seems to be The Firm.

Therefore, the answer is (A). ✗

EDIT

Issue 1: Is this movie similar to Jurassic Park? Above all the options, the only movie similar to Jurassic Park
seems to be The Silence of the Lambs due to its suspenseful and thrilling nature.

Issue 2: Is this movie similar to Independence Day? Above all the options, the only movie similar to
Independence Day seems to be Roger Dodger due to its sci-fi and action-packed nature.

Issue 3: Is this movie similar to Forrest Gump? Above all the options, the only movie similar to For-
rest Gump seems to be The Firm due to its drama and emotional depth.

Issue 4: Is this movie similar to Batman? Above all the options, the only movie similar to Batman
seems to be An due to its superhero and action-packed nature.

Based on the similarities outlined in Issues 1, 2, 3, and 4, the movie similar to these given movies
seems to be The Silence of the Lambs.

Therefore, the answer is (E). ✓

Table 21: A movie recommendation case from BIG-Bench Hard.
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Question:
Correctly close a Dyck-n word. Complete the rest of the sequence, making sure that the parentheses are closed
properly.
Input: < ( ( < > )

Teacher

We should process each input one by one and keep track of the stack configuration.

0: empty stack

1: < ; stack: <

2: ( ; stack: < (

3: ( ; stack: < ( (

4: { ; stack: < ( ( {

5: < ; stack: < ( ( { <

6: > ; stack: < ( ( {

7: } ; stack: < ( ( {

8: ) ; stack: < ( (

Now, we have reached the end. The final stack is "< ( (".

We will need to pop out "(", "(" one by one in that order.

So, we need ")", ")". Therefore, the answer is ) ). ✗

Std-CoT

We should process each input one by one and keep track of the stack configuration.

0: empty stack
7
1: < ; stack: <

2: ( ; stack: < (

3: ( ; stack: < ( (

4: { ; stack: < ( ( {

5: < ; stack: < ( ( { <

6: > ; stack: < ( ( {

7: } ; stack: < ( ( {

8: ) ; stack: < ( ( {

Now, we have reached the end. The final stack is "< ( ( {".

We will need to pop out "{", "(", "<" one by one in that order.

So, we need "}", ")", ">". Therefore, the answer is } ) >. ✗

EDIT

We should process each input one by one and keep track of the stack configuration.

0: empty stack

1: < ; stack: <

2: ( ; stack: < (

3: ( ; stack: < ( (

4: { ; stack: < ( ( {

5: < ; stack: < ( ( { <

6: > ; stack: < ( ( {

7: } ; stack: < ( (

8: ) ; stack: < (

Now, we have reached the end. The final stack is "< (".

We will need to pop out "(", "<" one by one in that order.

So, we need ")", ">". Therefore, the answer is ) >. ✓

Table 22: A dyck languages case from BIG-Bench Hard.
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Question:
Anna has 4 books. If she decide to arrange the 4 books in every possible combination and moved just one book
every minute, how long would it taken by her ?
Options: (A)22 minutes (B)30 minutes (C)15 minutes (D)24 minutes (E)35 minutes

Teacher

First, Anna has 4 books and she wants to arrange them in every possible combination.

To find the number of possible combinations, we can use the formula for permutations, which is n! (n
factorial), where n is the number of items. In this case, n = 4, so the number of possible combinations is 4! = 4 x 3
x 2 x 1 = 24.

Next, we know that Anna can move just one book every minute. Since there are 24 possible combina-
tions, it will take her 24 minutes to go through all of them.

Therefore, the answer is (D) 24 minutes. ✓

Std-CoT

This question focuses on the time it takes Anna to arrange the 4 books in every possible combination. We know
that Anna moved just one book every minute.

Plugging in the minutes per move: 1 minute
There are 4 books: A, B, C, D
There are (4!) = 4 different combinations: A, B, C, D; B, A, C, D; B, C, A, D; C, A, B, D; D, A, B, C

The total number of minutes it would take Anna to arrange the books in every possible combination is
the sum of the minutes needed for each combination:
(4 minutes) + (4 minutes) + (4 minutes) + (4 minutes) + (4 minutes) = 15 minutes.

Therefore, the answer is (C) 15 minutes. ✗

EDIT

This question asks for the total amount of time it would take Anna to arrange the books in every possible
combination and moved just one book every minute. We first need to calculate the number of possible
combinations: 4! = 24. Then, we need to multiply the number of possible combinations by the number of minutes
per combination: 24 * 1 minute = 24 minutes.

Therefore, the answer is (D) 24 minutes. ✓

Table 23: A AQuA-RAT case from AGIEval.

Question:
Which method is the safest way to watch an eclipse of the Sun?
Options: (A) Turn away after two or three minutes. (B) Look at the Sun through a long telescope. (C) Cast an
image through a pinhole onto a screen. (D) Blink often until your eyes get used to the light.

Teacher

First, it is important to note that directly looking at the Sun during an eclipse can be extremely dangerous and can
cause permanent damage to the eyes.

Option (A) suggests turning away after two or three minutes. However, even a brief exposure to the
Sun during an eclipse can be harmful, so this method is not safe.

Option (B) suggests looking at the Sun through a long telescope. This method is also unsafe because
the intense light from the Sun can damage the telescope and cause harm to the eyes.

Option (C) suggests casting an image through a pinhole onto a screen. This method is a safe and rec-
ommended way to watch an eclipse. By creating a pinhole camera, the image of the Sun is projected onto a
screen, allowing for safe viewing without directly looking at the Sun.

Option (D) suggests blinking often until your eyes get used to the light. This method is not safe as it
does not provide any protection from the harmful rays of the Sun during an eclipse.

Therefore, the answer is (C) Cast an image through a pinhole onto a screen. ✓

Std-CoT
We know that looking directly at the Sun can cause permanent damage to the eyes. Therefore, the sanswer is (C)

casting an image through a pinhole onto a screen. ✓

EDIT

We are told that this question is about the safest way to watch an eclipse of the Sun. Looking at the Sun through a
long telescope is not recommended as it can cause permanent damage to the eyes. Blinking often until your eyes
get used to the light is also not recommended as it can cause eye strain and discomfort.

The only remaining option is to cast an image through a pinhole onto a screen. This method involves
creating a small hole in a card or paper and projecting the Sun’s image onto a surface, such as a wall or a piece of
paper. This method is safe as it does not require direct eye contact with the Sun.

Therefore, the answer is (C). ✓

Table 24: A case from AI2 Reasoning Challenge.
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{Task Description}. Your response should conclude with the format "Therefore, the
answer is".

Q: {Task Example Question No.1}
A: Let’s think step by step. {Human-Curated-CoTs No.1}.

Q: {Task Example Question No.2}
A: Let’s think step by step. {Human-Curated-CoTs No.2}.

Q: {Task Example Question No.2}
A: Let’s think step by step. {Human-Curated-CoTs No.3}.

Q: {QUESTION}
A: Let’s think step by step.

Table 25: CoTs extraction prompt template of gpt-3.5-turbo for generating the CoTs data.

{Task Description}. Your response should conclude with the format "Therefore, the
answer is".

Q: {Task Example Question No.1}
H: {The correct answer is [HINT ANSWER No.1]}
A: Let’s think step by step. {Human-Curated-CoTs No.1}.

Q: {Task Example Question No.2}
H: {The correct answer is [HINT ANSWER No.2]}
A: Let’s think step by step. {Human-Curated-CoTs No.2}.

Q: {Task Example Question No.3}
H: {The correct answer is [HINT ANSWER No.3]}
A: Let’s think step by step. {Human-Curated-CoTs No.3}.

Q: {QUESTION}
H: {The correct answer is [HINT ANSWER]}
A: Let’s think step by step.

Table 26: Answer Hint Prompt templates for rectifying the wrong CoTs data based on the hint answers.

{Task Description}. You need to complete the [Wrong Response] which requires you
to give the
most likely incorrect answer to the [Question] and the rationale for the incorrect
answer.
The incorrect answer and rationale in the [Wrong Response] must be different from
the correct
answer and rationale in the [Right Response].

[Question]: {Task Example Question No.1}
[Right Response]: {Corrected CoT No.1}
[Wrong Response]: {Wrong CoT No.1}

[Question]: {Task Example Question No.2}
[Right Response]: {Corrected CoT No.2}
[Wrong Response]: {Wrong CoT No.2}

[Question]: {Task Example Question No.3}
[Right Response]: {Corrected CoT No.3}
[Wrong Response]: {Wrong CoT No.3}

[Question]: {USER_QUESTION}
[Right Response]: {Corrected CoT}
[Wrong Response]:

Table 27: Contrastive CoTs Prompt templates for mistaken the correct CoTs data. The examples are sampled from
the teachers’ original wrong CoTs data and its corrected CoTs. In this way, teacher LLMs can expose the reasoning
flaws in problems that were originally solved correctly.
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[System] You are a helpful and precise assistant for assessing the quality of the
response.

[Question]: {QUESTION}
[Reference Answer]: {ANSWER}

[AI Assistant 1’s Answer Start]
{ASSISTANT1}
[AI Assistant 1’s Answer End]

[AI Assistant 2’s Answer Start]
{ASSISTANT2}
[AI Assistant 2’s Answer End]

[AI Assistant 3’s Answer Start]
{ASSISTANT3}
[AI Assistant 3’s Answer End]

[System] We would like to request your feedback, in the form of scoring, on which
of the
responses from AI Assistant 1, 2 and 3 effectively demonstrates the key reasoning
steps in
solving this question. Key Reasoning Steps refer to certain crucial steps in the
process of
logical reasoning or problem-solving. These steps play a significant role in the
thinking
process and have a notable impact on subsequent reasoning. Each student will
receive an
overall score on a scale of 1 to 10, where a higher score signifies that the
assistant’s
response is more effectively demonstrates the key reasoning steps for the
question.
Please provide a comprehensive explanation, avoiding any potential bias and
ensuring that
the order in which the responses were presented does not affect your judgment.
And then
output three lines indicating the scores for AI Assistant 1, 2 and 3,
respectively.

Output with the following format:
Evaluation evidence: <your evaluation explanation here>
Score of AI Assistant 1: <score>
Score of AI Assistant 2: <score>
Score of AI Assistant 3: <score>

Table 28: Prompt template of GPT-4 for assessing CoTs quality. In the analysis, we use this template to eval the
quality of CoTs generated by Std-CoT, EDIT and the teacher LLM respectively.
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[System] You are a helpful assistant who is good at identifying types of reasoning
mistakes.
There are now three types of inference errors, as follows:

(a). Logical reasoning errors. This type of error involves the logical structure
of reasoning,
including assumptions, reasoning rules, argument chains, etc. Among logical
errors, students
may make errors such as invalid reasoning, insufficient or incorrect assumptions,
and jumps in
reasoning. Students may make errors in selecting reasoning strategies or methods.
The chosen
method may not be suitable for a specific problem, or may lead to misleading
reasoning.

(b). Knowledge errors in reasoning. This type of error involves misunderstanding
or incomplete
understanding of facts, concepts or knowledge, conceptual confusion, and cognitive
biases.

(c). Numerical calculation errors. This type of error involves mathematical
calculation errors,
which may include incorrect calculations, conversions or errors in the processing
of numerical
values.

(d). Other errors. All other errors that do not belong to the above three
categories.

I will give you a dictionary with the following fields and meanings:
{
"input": reasoning question.
"right_output": the correct answer.
"wrong_output": the wrong answer.

}

You need to first form your own opinion about the problem based on the reasoning
questions and the
correct answers, and then analyze the reasons for the mistakes in the wrong
answers in "Rationale:".
Then give your classification results in "Category:", e.g., (a), (b) or (c), etc.
If an answer
involves errors in multiple categories, you should point them out and connect them
with ’+’ sign
in the category. For example, if an answer involves logical errors and
mathematical calculation
errors, then the category should be a+c.

You must output with the following format:
Rationale: <your analysis process and explanation of the final classification
results>
Category: <only fill in with a or b or c or a+b or a+c or b+c or a+b+c or d.>

Table 29: Prompt templates of GPT-3.5 for classifying the mistakes. In the analysis, we use this template to classify
the mistake data used in EDIT.
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