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Abstract

Large Vision-Language Models (LVLMs) have
shown impressive progress by integrating vi-
sual perception with linguistic understanding
to produce contextually grounded outputs. De-
spite these advancements achieved, LVLMs
still suffer from the hallucination problem, e.g.,
they tend to produce content that does not ex-
ist in the input images. Our investigation sug-
gests that such hallucinations often stem from
the deficiencies in fine-grained comprehension
on the visual aspect, particularly when visual
scenes exhibit appearance or semantic similar-
ities (e.g., bicycle vs. motorcycles, baseball
bat vs. baseball). In this work, we show such
hallucination is naturally mitigated via a novel
method called visual evidence prompting, uti-
lizing small visual models to complement the
LVLMs. While traditional visual models are
not adept at interacting with humans, they excel
at perceiving the fine-grained image contents.
By symbolizing the professional outputs of
domain-expert models as prompts, the LVLM
generalists are able to refer to these evidences
as visual knowledge to generate more precise
answers. Detailed analysis shows that visual ev-
idence enables models to adjust and rectify the
attribution and attention on the images, reduc-
ing visual confusion by suppressing false acti-
vation while enhancing correct ones. Extensive
experiments and in-depth analysis demonstrate
the effectiveness of our method. We hope our
straightforward but insightful work enhances
the comprehension of hallucination in LVLMs
and offers valuable perspectives on addressing
such challenges.

1 Introduction

The success of large vision-language models
(LVLM) has resulted in significant advancements in
overall comprehension of visual semantics (Chen
et al., 2023; Li et al., 2023a). Pioneers like GPT4-
V have spearheaded the movement to unprece-
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Question:
Is there a sports ball in the image?

LLaVA-1.5:
Yes, there is a sports ball in the 
image, which is a baseball.

Question:
Is there a sports ball in the image?

LLaVA-1.5 with Visual Evidence:
No, there is no sports ball in the 
image. The focus is on the baseball
player holding a bat and the catcher
with a glove.

Input image Image attribution 
map of token “Yes”

Image attribution 
map of token “sports”

Image attribution 
map of token “ball”

Input image Image attribution 
map of token “No”

Image attribution 
map of token “sports”

Image attribution 
map of token “ball”

Image attribution map 
of token “baseball”

Image attribution 
map of token “bat”

Figure 1: Visualization of the image attribution map for
LLaVA-1.5-7B when hallucination happens and after
the integration of visual evidence. Best viewed zoomed
in. More cases can be found in Appendix E.2 and E.3.

dented levels, demonstrating exceptional capabil-
ities across a wide array of activities (Yang et al.,
2023), including generative tasks like fully describ-
ing the contents of a given image, and discrimina-
tive tasks like answering whether an object appears
in the picture.

Despite the success of LVLMs, they still grapple
with a notable issue called multimodal hallucina-
tion. They tend to produce non-existent objects, re-
lations, or attributes in the image (Li et al., 2023b;
Gunjal et al., 2023; Liu et al., 2023a). This issue
reveals fundamental shortcomings of LVLMs, such
as over-reliance on the co-occurrence bias with
objects and insufficient perception ability of the
image content (Agarwal et al., 2019; Goyal et al.,
2016; Li et al., 2023b).

In this work, we begin by conducting both quan-
titative and qualitative analyses to investigate the
underlying causes of hallucinations in LVLMs (see
Sec. 2 for details). Our findings suggests that hal-
lucinations primarily arise from the deficiencies in
fine-grained comprehension on the visual aspect,
which cause the model to confuse visually or se-
mantically similar elements within the image.

Although various approaches have been pro-
posed to mitigate hallucinations, existing methods
are not explicitly designed to enhance the under-
standing capabilities of the visual aspect. Early
works tried to instruction-tune the models to negate
descriptions in the question that do not match the
image contents by annotating negative instructions
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or unfaithful object descriptions and relations (Gun-
jal et al., 2023; Liu et al., 2023a). The instruct tun-
ing process does not bring new knowledge to the
model, but encourages the model to learn the style
of answering (Zhang et al., 2023). In addition to
the huge cost, there is a risk of overly optimizing
the model to fit a specific problem or dataset, lead-
ing to catastrophic forgetting (Zhai et al., 2023).
Several recent studies address this issue by apply-
ing an additional large language model to amend
responses, training a post-hoc corrector to recon-
struct less hallucinatory outputs (Yin et al., 2023),
or adjusting the output distribution via optimizing
the decoding strategy (Leng et al., 2023; Huang
et al., 2023). Regardless of whether employing
instruction tuning, RLHF, or methods via optimiz-
ing decoding strategies, existing approaches do not
endow the model with more visual knowledge to
utilize in the process of generating answers, mean-
ing they do not enhance the model’s own ability of
fine-grained visual content perception.

Simultaneously inspired by the observation that
humans refer to the key contents of a picture when
conversing (Henderson and Ferreira, 2013) , and
the solutions of retrieving knowledge evidence to
tackle the hallucination problem in language mod-
els (Ren et al., 2023; Mialon et al., 2023), one
promising yet under-explored cure for hallucina-
tions is to refer to additional visual knowledge from
the image. Generally, traditional small visual mod-
els excel at the tasks they are trained for. For in-
stance, in the task of object detection, small visual
models can efficiently identify and locate objects
within an image (Fang et al., 2021; Carion et al.,
2020). In the task of scene graph generation (SGG)
(Zellers et al., 2018; Cong et al., 2023), small visual
models can generate detailed descriptions of ob-
jects and their visual relations within a given scene,
such as “dog near cup, newspaper on table”. Small
visual models are better characterized as narrow ex-
perts who focus on the processing and understand-
ing of visual content, while LVLMs are competent
generalists who have strong semantic understand-
ing and generalization capabilities. Naturally, the
small visual models complement the LVLMs by
effectively extracting contextual information from
images to generate more precise answers.

This work explores how the hallucinations of
LVLMs can be mitigated by referring to visual ev-
idence from small visual models. An example is
shown in Fig. 3. The original LVLM produces
inaccurate answer when queried about the presence

of a chair within the image. However, small vi-
sual models, i.e., object detection and scene graph
generation models, can output accurate objects and
relations, e.g., “dog”, “cup”, “dog near cup”. Af-
ter symbolizing the accurate and faithful output
of small visual models as context, the model are
able to generate correct responses. We refer to this
training-free approach as visual evidence prompt-
ing (VEP).

Through detailed analysis, we find that visual
evidence enables models to adjust and rectify the
attribution and attention on the images, diminish-
ing the degree of visual confusion by suppress-
ing false activation while enhancing correct ones.
Integrating visual evidence also corrects the pre-
diction distribution for hallucination instances and
elevates the confidence for non-hallucination sam-
ples. Extensive experiments on 11 LVLMs on 5
benchmarks show that visual evidence prompting
mitigates the object, attribute, and relation halluci-
nations for both generative task and discriminative
task, and maintains or improves the ability of gen-
eral multimodal understanding of LVLMs.

Our results serve as compelling evidence for the
potential applicability and efficacy of visual evi-
dence prompting. We aim for our work to not only
establish a minimal yet robust baseline for the chal-
lenging benchmarks but also draw attention to the
understanding and interpretation of LVLMs.

2 Preliminary Analysis
Qualitative Analysis. As shown in the upper sec-
tion of Fig. 1, when the model is queried about
the presence of a sports ball in the image, it hal-
lucinates and responds with “yes”. To further in-
vestigate why the model answers incorrectly, we
use a widely used interpretability method (Chefer
et al., 2021) to trace the attribution of each image
patch when the model generates each token in the
responses. The higher the attribution score of a
particular image region, the more significant its
contribution to the model’s prediction. We find
that when the model answers with the first token
“yes”, it clearly attends to the baseball bat. As
the model continues to generate the tokens “sports”
and “ball”, the relevance of the baseball bat area is
further strengthened, indicating that the area caus-
ing the model’s hallucination is the baseball bat.
This is may due to the high semantic similarity of
baseball bats and sports balls, leading the model
to mistakenly assume the presence of a sports ball
upon seeing a baseball bat.

4049



(b) Image attribution score w/ 
and w/o hallucination

(a) Proportion of erroneous activation to 
query object in image attribution map

(c) CLIPScore between image and query
object text w/ and w/o hallucination

(d) Internal object confidence within 
intermediate LVLM image representations

Figure 2: Hallucination analysis on LLaVA-1.5. (a) The proportion of false activation to semantically similar
regions during hallucination and non-hallucination. (b) The attribute scores of image tokens to final answers. (c)
The CLIPScore (i.e., image-text similarity) between the corresponding images and hallucinated/non-hallucinated
objects. (d) Comparison of internal object confidence within intermediate vision tokens. These statistic analyses are
conducted on POPE.

Quantitative Analysis. We observe that such
phenomena are prevalent when hallucination hap-
pens, which motivates further statistical analyses
to investigate their underlying causes.

In Fig. 2(a), we carefully analyze the propor-
tion of erroneous activation in the image attribution
maps corresponding to regions that are semanti-
cally or visually similar to the query object, under
conditions where the model either hallucinates the
object or does not. Our results show that, when hal-
lucinations occur, the model incorrectly activates
regions similar to the query object in terms of se-
mantics or appearance at a rate of 58.5%, as exem-
plified by the case discussed in Fig. 1. In Fig. 2(b),
we present the attribution scores of image tokens
to the final prediction both in the presence and ab-
sence of hallucinations. The detailed definition of
the attribution score is provided in in Appendix B.
The results indicate that when hallucinations occur,
the image attribution is significantly higher, which
aligns with the findings in Fig. 2(a). In Fig. 2(c),
we further compute the feature similarity between
hallucinated and non-hallucinated objects (using
the prompt template “A photo of {query_object}.”)
and their corresponding images using CLIP (ViT-
L-14@336, which also serves as the vision encoder
in LLaVA-1.5). We observe that hallucinated ob-
jects exhibit a notably higher CLIPScore with their
images, suggesting a stronger semantic alignment
between these objects and the images. This ex-
plains why the model tends to incorrectly activate
regions of the image that are semantically or visu-
ally closer to the query object when hallucinations
occur. In Fig. 2(d), we adopt the method proposed
in Jiang et al. (2024) to compute the confidence
scores with which the internal visual representa-
tions of the LVLM (i.e., the vision tokens within

the LLM) encode objects. We analyze the confi-
dence distributions of vision tokens associated with
hallucinated versus non-hallucinated objects. As
shown in the figure, hallucinated objects consis-
tently receive higher confidence scores than their
non-hallucinated counterparts. This suggests that
the model’s internal visual representations tend to
over-encode hallucinated content, highlighting a
limitation in the LVLM’s fine-grained visual per-
ception capability.

These analyses and findings suggest that the
causes for hallucination of LVLM are likely the
deficiency in fine-grained context discrimination
on the visual aspect.

3 Visual Evidence Prompting

The goal of this work is to mitigate hallucina-
tions in LVLMs by complementing them with fine-
grained visual knowledge derived from small visual
models. Generating answer A with input image I
and question Q can be formulated within a proba-
bilistic framework as estimating the conditional dis-
tribution P (A|Q, I). The visual evidence prompt-
ing is formalized as P (A|Q, I, V E), where V E is
the extracted visual evidence from the image.

Considering the internal process of a person
when answering questions based on image con-
tent, it is typical to decompose the problem into
two steps (Barsalou, 2008; Palmer, 1999). For ex-
ample, as in Fig. 3, there is a question about “Is
there a chair in the image?”. Firstly identify the
key elements in the image as evidence (“1 dog,
1 cup, 1 newspaper, dog near cup, dog on table,
newspaper on table”). Then, symbolize and com-
bine the relevant content within the evidence to
answer the question. After this process, an answer
is generated.
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Large Vision-Language Models
e.g., GPT-4V , LLaVA-1.5 , Qwen-VL-Chat

Small Visual 
Models
e.g. Object 

Detection, SGG

Visual Evidence PromptUser Input

You can see {evidence}in 
the image. 
{question}

dog near cup, dog on table, 
newspaper on table, 1 cup, 

1 dog, 1 newspaper

Model Output

Is there a chair in the image? question

evidence

No, there is no chair in this image.

❄

Figure 3: An overview of visual evidence prompting, which mitigates hallucinations in LVLMs via referring to
visual evidence from small visual models. Given the input image, the small visual models generate visual evidence
about different aspects of the image, e.g., object categories, and relations between objects. Then the “visual evidence”
prompts are used to extract the answer from the image and evidence context.

Extraction. The input image of the large vision-
language model is fed into the small visual model,
and the output is formulated as predefined for-
mats. For the object detection models, the out-
put is defined as the semantic label from the la-
bel map given the predicted class index. If the
model detects multiple objects of the same cat-
egory, we will merge these objects and formu-
late them in terms of numbers, such as “3 dogs,
1 cat”. For the scene graph generation mod-
els, the output is composed of the ⟨subject, rela-
tion, object⟩ triplets. Each triplet is firstly formu-
lated as {subject}{relation}{object}. Multi-
ple triplets are joined with the “,”. For example,
⟨man on surfboard⟩ and ⟨man has hair⟩ are formu-
lated as “man on surfboard, man has hair”.

Prompting. In the second step, we use sym-
bolized visual evidence along with prompted ques-
tions to extract the final answer from the LVLM.
To be concrete, we simply concatenate two ele-
ments as with “You can see {evidence} in the
image. {question}?”. The prompt for this step is
self-augmented since the prompt contains the vi-
sual evidence generated by the visual model. This
is one simple and effective formulation of visual
evidence. More sophisticated formats may bring
further improvement. Finally, LVLM is fed the
prompted text and the original image as input to
generate final answers.

The framework can be formulated as follows:

A = fLV LM (I,Q, V E), V E = T [fSV M (I)]. (1)

Here, SVM denotes small visual models, and
T represents the process that transforms the struc-

Related Training- Model- Visual
works free free knowledge

LRV (Liu et al., 2023a) ✗ ✗ ✗

VCD (Leng et al., 2023) ✓ ✗ ✗

Ours ✓ ✓ ✓

Table 1: Comparison with previous representative meth-
ods.

tured output from small visual models into natural
language.

Discussion. The technical comparison between
our approach and previous methods (LRV (Liu
et al., 2023a), VCD (Leng et al., 2023)) is shown in
Tab. 1. “Training-free” indicates no fine-tuning of
the LVLMs. “Model-free” refers to approaches that
do not rely on the checkpoint parameters or log-
its of a model and also applicable to API services.
“Visual knowledge” means referring to the visual
evidence generated by small domain-specific visual
models. In this paper, visual models refer to the ob-
ject detection and scene graph generation models.
Other models such as segmentation models, OCR
models, and human-object interaction models can
also be considered and may bring potential gains,
but that is not the priority of this work.
4 Experiments
4.1 Experimental Setup

Datasets. POPE (Li et al., 2023b) is dedicated
to evaluating object hallucinations of LVLMs. It
contains the settings of random, popular, and ad-
versarial sampling, which mainly differ in the way
negative samples are constructed. AMBER (Wang
et al., 2023) provides a coverage of evaluations
for both generative task and discriminative task in-
cluding object, attribute and relation hallucination.
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Model
POPE AMBER RPE Latency

token/sec.Acc. ∆ CHAIR↓ ∆ Acc. ∆ Acc. ∆

LLaVA-1.5-7B 80.23 - 8.07 - 71.02 - 61.92 - 28.86
+ Visual Evidence 87.43 +7.20 6.78 -1.29 75.28 +4.26 68.00 +6.08 23.96
LLaVA-1.6-7B 84.93 - 8.59 - 70.09 - 70.20 - 22.71
+ Visual Evidence 89.43 +4.50 7.73 -0.86 76.08 +5.99 70.46 +0.26 20.61
MiniGPT-4-v2 75.33 - 8.67 - 61.16 - 60.75 - 18.06
+ Visual Evidence 83.17 +7.84 8.39 -0.28 70.06 +8.90 68.38 +7.63 14.27
GPT4-V (API) 82.21 - 6.97 - 85.50 - 75.56 - 12.26
+ Visual Evidence 86.41 +4.20 6.76 -0.21 86.73 +1.23 76.05 +0.49 11.07
Gemini 1.5 Pro (API) 82.43 - 8.70 - 72.70 - 69.06 - 14.36
+ Visual Evidence 87.32 +4.89 7.63 -1.07 75.16 +2.54 71.13 +2.07 13.82
Claude 3 (API) 75.40 - 5.34 - 75.91 - 69.57 - 17.36
+ Visual Evidence 87.50 +12.10 5.0 -0.34 78.64 +2.73 70.57 +1.00 14.90

Table 2: The main results on POPE, AMBER and RPE dataset.

The evaluation of relation hallucination in AM-
BER (AMBER use the prompt “Is there direct
contact between the {object 1} and {object
2} in this image?” to probe relation hallucina-
tion) is relatively limited. In order to further verify
the effectiveness of our method in mitigating re-
lation hallucination, we meticulously follow the
same recipe as POPE on Visual Genome (Krishna
et al., 2017) to construct a new relation halluci-
nation evaluation dataset named Relation Probing
Evaluation (RPE).1 More details about the three
benchmarks are shown in the Appendix C.1.

Evaluation metrics. POPE converts the halluci-
nation evaluation into a binary classification prob-
lem to probe the model’s awareness of whether a
specific object exists in the image, with the output
of “Yes” or “No”, e.g., “Is there a chair in
this image?”. If the model’s response includes
neither “Yes” nor “No”, it will be disregarded in
the calculation of metrics. The accuracy reflects the
proportion of correctly answered questions. For the
generative task of AMBER, the Caption Hallucina-
tion Assessment with Image Relevance (CHAIR) is
a specifically developed evaluation metric tailored
to assess the extent of object hallucination in image
captioning tasks. Specifically, CHAIR measures
the level of object hallucination in a provided image
description by calculating the proportion of refer-
enced objects in the description that do not exist in
the actual ground-truth label set. For the discrim-
inative task of AMBER and RPE, the evaluation

1Note that there is no overlap between the datasets used
for training small models and all of the LVLM hallucination
test sets.

metric is the same as POPE.
Baselines. In order to conduct our experimental

analysis, we incoporate a wide array of 7 popu-
lar open-source models and 4 close-source mod-
els as representatives, including MiniGPT-4 (Zhu
et al., 2023), LLaVA (state-of-the-art open-source
model), GPT4-V, Gemini 1.5 Pro and Claude 3.
More details can be refer to Appendix C.2.

Implementation details. Firstly, we use the
corresponding visual small model (i.e., object de-
tection model and scene graph generation model)
to process the images in the evaluation datasets and
obtain the corresponding visual evidence. As our
primary focus is to demonstrate the efficacy of our
proposed framework, unless specified otherwise,
we employ detr-resnet-101 (Carion et al., 2020) as
the default model for extracting object evidence,
while RelTR (Cong et al., 2023) is our default
choice for obtaining relation evidence, though mod-
els with superior performance and open-vocabulary
models are also applicable. We employed the de-
fault parameter settings provided in the official
repository for each model, respectively.

4.2 Results

Baselines performance. We firstly evaluate the
hallucination performance on the datasets of POPE
and AMBER of the 7 open-source models and 4
black-box APIs. The extensive evaluation results
are presented in Tab. 2 and Tab. 15 in Appendix.
Due to limited space, we report the results of POPE
on the most challenging subset COCO-Adversarial.
The results for the other two subsets are included
in the Tab. 17 in Appendix. There are several in-
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teresting observations: 1) The LVLM with more
parameters does not necessarily have fewer halluci-
nations, e.g., 80.23% of LLaVA-1.5-7B on POPE
vs. 78.70% on LLaVA-1.5-13B. 2) Models with up-
dated versions typically have fewer hallucinations.
For example, 71.16% of MiniGPT-4 on POPE vs.
75.33% on MiniGPT-4-v2, and 82.33% on Qwen-
VL-Chat vs. 87.90% on Qwen-VL-Max.

Effect of visual evidence. After incorporating
visual evidence prompting, without bells and whis-
tles, almost all models including black-box APIs
generate more precise discernment of the contents
within the image. For example, the accuracy of
LLaVA-1.5-7B on POPE increases from 80.23% to
87.43% (+7.20%), and the accuracy on AMBER
increases from 71.02% to 75.28% (+4.26%). It’s
worth noting that we also achieve non-trivial im-
provements on the black-box APIs. For example,
on POPE, there is a 4.20% and 2.76% improve-
ment for GPT-4V when combined with visual ev-
idence. This demonstrates the superiority of our
approach, which enhances the performance of both
open-source and proprietary models. The results on
AMBER show that visual evidence helps mitigate
the hallucination of objects, relations, and attributes
on discriminative tasks, e.g., “Is there a cat in the
image?”. The CHAIR (lower is better) of LLaVA-
1.5-7B decreases from 8.07 to 6.78 (−1.29), show-
ing that visual evidence also reduces the hallucina-
tion of generative tasks, e.g., “Describe this image”.
Qualitative results are shown in Appendix E.1.

4.3 Integrated with Existing Methods

To further validate the general applicability of our
method, we choose to integrate it with two represen-
tative methods, LRV-Instruction (Liu et al., 2023a)
and VCD (Leng et al., 2023). LRV-Instruction fine-
tunes the model while VCD optimizes the decoding
process of the model. We use the officially released
checkpoint, codes and reproduce the results. The
experiment results are displayed in Tab. 3. Com-
pared with the baseline, LRV shows a decrease
(−8.09%) and VCD presents a marginal improve-
ment of less than 2%. Compared with LRV or
VCD alone, the combination of VE with LRV or
VCD further enhances the model’s performance,
resulting in fewer hallucinations. Notably, VCD
+ VE achieves the best performance among three
benchmarks, verifying the effectiveness and plug-
and-play attribute of VEP.

Model POPE AMBER

Acc. ∆ CHAIR↓ ∆ Acc. ∆

MiniGPT-4 71.16 - 14.13 - 64.28 -
+ LRV 63.07 -8.09 14.52 +3.90 50.04 -14.24
+ VE 80.47 +9.31 13.63 -0.5 69.68 +5.40
+ LRV + VE 72.59 +1.43 11.13 -3.00 54.79 -9.49
LLaVA-1.5-7B 79.73 - 11.84 - 74.94 -
+ VCD 81.10 +1.37 8.02 -3.82 76.79 +1.85
+ VE 86.23 +6.50 10.25 -1.59 75.53 +0.59
+ VCD + VE 87.27 +7.54 7.39 -4.45 77.31 +2.37

Table 3: Integrating VE with LRV and VCD.

Evaluation Model Acc. (%)

OOD Object

LLaVA-1.5-7B 66.22±0.38
+ VE 73.47±0.52

MiniGPT-4-v2 60.56±0.25
+ VE 66.10±0.24

OOD Relation

LLaVA-1.5-7B 60.82±0.92
+ VE 62.81±0.49

MiniGPT-4-v2 61.84±0.48
+ VE 68.26±0.38

Table 4: Hallucination evaluation on out-of-domain
datasets.

4.4 Ablation of Visual Models

Given that the small visual models used in this work
are contrasted with large vision-language models,
presenting results using various versions of visual
models will ensure a fair and comprehensive com-
parison. We employ 6 object detection models with
different architectures (Fang et al., 2021; Carion
et al., 2020; Zhang et al., 2022), including open-
vocabulary detection model (Minderer et al., 2022).
The experimental results w.r.t. object evidence
prompting are presented in Tab. 6. The experimen-
tal results of relation hallucination are presented in
Tab. 21 in Appendix. Notably, the results demon-
strate a positive correlation between the detection
abilities of small visual models and the reduction of
object hallucinations in LVLMs. This phenomenon
can be ascribed to the fact that a good detection
model provides high-quality object labels, which
provides more accurate evidence. More analysis
and ablation studies of the visual models, model
parameters, prompt templates are presented in the
Appendix G.3, G.4, G.5 and G.6.
5 Analysis
5.1 How Does VEP Work?

5.1.1 Attribution and Confidence Analysis
Firstly, we conduct analysis on the answer attribu-
tion. In Fig. 4(a), we delineate the image attribu-
tion scores before and after the incorporation of vi-
sual evidence, for hallucination samples where the
query object is absent in the image. It is observed
that the image attribution score significantly dimin-
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(a) Image attribution score 
w/ and  w/o VE

(b) Attribution score of image, 
question and visual evidence

(c) Prediction probabilities of the 
first token w/ and w/o hallucination

(d) Prediction probabilities for true label
w/ and w/o VE on hallucination samples 

(e) Prediction probabilities for true label w/ and 
w/o VE on non-hallucination samples 

Figure 4: Attribution and confidence analysis about how VEP works.

ishes with visual evidence, implying a reduction
in the model’s incorrect focus on certain confusion
objects/regions within the image, as analyzed in
the introduction section. As depicted in Fig. 4
(b), the model attributes a lower score to the visual
evidence compared to the image and the question,
which suggests that the model synthesizes informa-
tion from the image, question, and evidence in a
comprehensive manner to arrive at the final answer.
Upon further analysis of the attribution map after
the integration of visual evidence, it is intriguing to
note that the model ceases to erroneously focus on
previously incorrectly attended object region. As
illustrated in the bottom half of Fig. 1, following
the incorporation of visual evidence, the model no
longer misdirects its attention to the baseball bat
during answer generation. Instead, it accurately
attends to the region containing the baseball bat
when predicting the token “bat”. More cases can
be found in Appendix E.3.

Subsequently, we delves into the model’s predic-
tion confidence. We use the prediction probabilities
from the model to measure the confidence of the
model’s predictions, which is a common method
(Geng et al., 2024; Hinton, 2015). As show in Fig.
4(c), we observe that, for hallucination samples,
the model’s confidence is notably lower compared
to non-hallucination ones (0.76 vs 0.90). Upon in-
corporating visual evidence, there is a significant
enhancement in the model’s confidence in predict-
ing right answers for hallucination (Fig. 4(d)). In-
triguingly, even in non-hallucination samples, the
model’s confidence in predicting the right answers
witnesses considerable improvement (Fig. 4(e)).

These intriguing phenomena suggest that the in-
corporation of visual evidence can guide the model
in dynamically adjusting and rectifying the focus
on image regions, diminishing the degree of confu-
sion in visual information (suppressing erroneous
activations while reinforcing correct activations).
This process enables the model to acquire visual

context or knowledge with higher confidence prior
to generating the final answers.

5.1.2 Internal Interpretability Analysis
To analyze how visual evidence influences the
model’s internal behavior, we apply path patching
(Wang et al., 2022) and logit lens (nostalgebraist,
2021) to conduct three rounds of backward tracing
from the output answer. This interpretability analy-
sis reveals the underlying information flow during
object recognition, as detailed in the Appendix D.
Our findings suggest that the model determines the
presence of a queried object by leveraging object-
related reference information encoded at the anchor
token in the question, which is progressively trans-
formed into the semantics of the correct answer
(e.g., from “visible” to “Yes”) by some key atten-
tion heads. In the analysis process, we identify
several special attention heads. For examples, head
14.24 attends to the relevant object region in the
image, while head 13.28 primarily focuses on the
object token in the question.

To analyze the impact of VEP, we analyze how
hallucinated object information is encoded at the
anchor token across different layers. We randomly
sample 100 false positive samples and false neg-
ative samples respectively, and use logit lens to
measure the encoding probabilities of these objects.
As shown in Fig. 5, the introduction of VEP in-
creases the probability of correctly encoding previ-
ously missed objects and decreases the probability
of encoding spurious ones. This suggests that VEP
helps refine the set of reference objects the model
relies on for decision-making.

We further conduct qualitative case studies on
the attention patterns of heads responsible for at-
tending relevant object region. As shown in Fig. 6,
in hallucinated cases, the head attends to visually
similar but incorrect regions (e.g., shoulder bag,
even though the question asks about a backpack).
After incorporating VE, such incorrect attention is
reduced, resulting in correct prediction. These find-
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(a) (b)

Figure 5: (a) Probabilities of hallucinated object infor-
mation (false positives) encoded at the anchor token in
the residual stream w/ and w/o VE. (b) Probabilities of
undetected object information (false negatives) encoded
at the anchor token in the residual stream w/ and w/o
VE. Best viewed zoomed in.

ings indicate that VE mitigates hallucinations by
rectifying internal attention patterns of some key
heads, consistent with the observations discussed
in Sec. 5.1.1.

Q: Is there a backpack in the image? A: Yes Q: Is there a backpack in the image? A: No

(a) w/o VE (b) w/ VE

Figure 6: Attention pattern visualization of key head
14.24 w/ and w/o VE.

5.2 Extra Hints or Complete Replacement for
Visual Information?

To further investigate that whether providing visual
evidence offers extra visual hints to the model, or
dominates the image itself, we randomly replaced
the original input image with a different image
from the COCO2014 validation set. The results are
shown in Tab. 5, reveal a significant decrease in the
model’s performance when the images are substi-
tuted with unrelated random images. This suggests
that upon integration of visual evidence, the model
does not merely rely on textual information but
synthesizes both textual and visual data to arrive
at the final decision. This observation aligns with
the phenomena analyzed in Section 5.1.1. We also
observe differing behaviors between LLaVA-1.5
and LLaVA-1.6. We discuss this phenomenon in
Appendix G.7.

5.3 Mitigating Hallucinations beyond Objects

In LVLM, hallucinations not only include object
hallucinations but also other types such as relation

LVLM Acc.(%)
Original image

Acc.(%)
Random image

LLaVA-1.5-7B 87.43 80.40
LLaVA-1.6-7B 89.43 69.30

Table 5: Results of random images.

hallucinations. The evaluation for relation halluci-
nations in AMBER is somehow coarse-grained. To
further verify whether our method can also address
fine-grained relation hallucinations, we conduct
extensive experiments on a new relation halluci-
nation benchmark RPE using the RelTR model.
The results are shown in the second last column
of Tab. 2 and Tab. 15 in Appendix. Firstly, our
method effectively reduces the relation hallucina-
tion for most of the models. Secondly, compared
with object, it is evident that the performance of all
models including GPT-4V is inadequate in terms
of relation. This may be because understanding
the fine-grained visual relations in an image first
requires the comprehension of objects, which is a
more difficult capability for the model (limitation
of GPT-4V). The fine-grained results across differ-
ent relationship categories and different kinds of
hallucination are shown in Appendix F.2 and Ap-
pendix F.3 respectively. In Appendix E.7, we also
demonstrate that other fine-grained tasks like object
counting and OCR can also be enhanced effectively
by our method. These results strongly validate the
effectiveness and versatility of our framework.

5.4 Results on Open-world Scenario
An important concern is whether VEP is able to
generalize to the open-vocabulary scenario. As a
first step toward investigating this question, we con-
duct evaluations on out-of-domain datasets. Specif-
ically, we collect 2, 540 samples from another two
object detection (Object365 (Shao et al., 2019)) and
scene graph generation (OpenImage (Kuznetsova
et al., 2020)) datasets for quantitative analysis. Tab.
4 presents the comparison with baseline results for
the evaluation on out-of-domain datasets. We also
follow CLIP (Radford et al., 2021) and randomly
select 2 samples (one for object hallucination and
another for relation hallucination) from 10 open-
world out-of-domain datasets for qualitative anal-
ysis. These 20 cases are in Appendix E.6. The
results indicate that using incomplete visual evi-
dence can still mitigate the hallucination of objects
and relations effectively. Compared to the recall of
the objects and relations in the visual evidence, the
precision of small visual models is more important
for the proposed method. Detailed error analysis in

4055

https://platform.openai.com/docs/guides/vision
https://platform.openai.com/docs/guides/vision


LVLM Visual model Acc.
Model name mAP (%)

LLaVA-1.5-7B

- - 80.23
yolos-tiny 28.7 84.13

owlvit-base-patch16 30.3 84.63
yolos-small 36.1 85.50

detr-resnet-50 42.0 87.50
detr-resnet-101 43.5 87.43

DINO-4scale-swin 58.0 88.00

Table 6: Object hallucination results of incorporating
visual evidence from different object detection models.

Model MME MMBench

Scores↑ ∆ Acc. ∆

MiniGPT-4 904.7 - 53.95 -
+ VE 1086.4 +181.7 56.10 +2.15
LLaVA-1.5-7B 1756.9 - 74.48 -
+ VE 1819.6 +62.7 75.34 +0.86
LLaVA-1.6-7B 1660.4 - 75.60 -
+ VE 1729.5 +69.1 76.63 +1.03

Table 7: Results on general multimodal understanding
benchmarks.

the Appendix E.4 further supports this argument.

5.5 Evaluation on General Multimodal
Understanding Tasks

To assess how well our method performs on gen-
eral multimodal understanding tasks, we evaluate
baseline models and models incorporated with vi-
sual evidence on two multimodal benchmarks, i.e.,
MME (Fu et al., 2023) and MMBench (Liu et al.,
2023b), which measure comprehensive VQA capa-
bilities and perceptual and reasoning abilities. The
results are shown in Tab. 7, which demonstrate
that the incorporation of visual evidence into the
model yields a modest enhancement in the model’s
overall general multimodal capabilities. This rel-
atively minor improvement could be attributed to
the fact that generic multimodal evaluation datasets
typically include a wide array of assessing dimen-
sions, and the visual evidence acquired by small
vision models is unlikely to assist in every aspect.
Nonetheless, the results suggest that our method
can mitigate hallucinations without compromising
the model’s abilities across other dimensions.

6 Related Works
6.1 Hallucinations in LLMs

The extraordinary capabilities of large language
models (LLMs) come with a significant drawback:
their potential to generate unsupported text due to
their lack of understanding of what is factual and
what is not (Maynez et al., 2020; Krishna et al.,

2021; Longpre et al., 2021). As a result, there
has been a surge of interest in addressing LLM
hallucination through knowledge-grounded neural
language generation. To address this limitation, var-
ious works augment LLMs with knowledge consist-
ing of personalized recommendations (Ghazvinine-
jad et al., 2017), Wikipedia articles and web search
(Dinan et al., 2018; Shuster et al., 2022), structured
and unstructured knowledge of task-oriented dialog
(Peng et al., 2022). In the LVLMs, it is difficult to
acquire grounded visual knowledge from a general
knowledge base.

6.2 Hallucinations in LVLMs

Similar to LLMs, LVLMs tend to generate non-
existent contents in a target image. In the literature
of computer vision field (Rohrbach et al., 2018;
Biten et al., 2021). object hallucination refers to
the model generating descriptions or captions that
contain objects that are inconsistent with or even
absent from the target image. In general, object
hallucination can be defined at different semantic
levels. In this work, we focus on coarse-grained ob-
ject hallucinations and fine-grained relation halluci-
nations at the same time. In previous works, POPE
(Li et al., 2023b) is proposed to evaluate object hal-
lucinations in LVLMs by polling questions about
object existence. Gunjal et al. (2023) created a hal-
lucination dataset and optimized the LVLM over
the dataset with a variation of Direct Preference
Optimization (Rafailov et al., 2023). These stud-
ies collectively contribute to the understanding and
mitigation of hallucination-related challenges in
LVLMs, by providing evaluation metrics, datasets,
and tuning methods that enhance the reliability and
consistency of the generated answers. Yet, there
is a risk of overly optimizing the model to fit a
specific problem or dataset, leading to catastrophic
forgetting and lack of generalization ability (Zhai
et al., 2023).

7 Conclusion
We have explored visual evidence prompting (VEP)
as a simple and broadly applicable method for miti-
gating hallucinations in large vision-language mod-
els (LVLMs). Through comprehensive experiments
on 11 models and various benchmarks, we demon-
strate that VEP is an effective, robust, and general
cure for LVLMs. We also conduct in-depth analy-
sis to understand how VEP affects model behavior.
We hope this work offers meaningful insights to
advance the research on LVLMs.

4056



8 Limitations

While our work sheds light on hallucination mit-
igation, there are several limitations to our work.
1) Limited Knowledge Integration. Unlike fine-
tuning, prompt-based strategies do not incorporate
new knowledge into the model’s parameters. Prior
work (Zhai et al., 2023) has shown that excessive
fine-tuning may cause models to hallucinate by
overfitting to patterns in the training data while dis-
regarding the input questions. In contrast, prompt-
ing preserves the model’s original weights, offer-
ing greater controllability and maintaining gener-
alization capabilities. However, this also limits its
ability to embed domain-specific knowledge per-
manently. 2) Computational Overhead. Intro-
ducing external visual models inevitably increases
computational cost. Though our approach incurs
significantly less overhead than instruction tuning.
3) Dependence on Visual Evidence Quality. Al-
though our experiments and analysis demonstrate
the robustness of our method against imperfect vi-
sual evidence, its effectiveness still depends on the
overall quality of the visual evidence. 4) Sensitiv-
ity to Prompt Design. It is known that the design
of prompt is a delicate and experience-based pro-
cess. Although we have conducted experiments
to verify the robustness against prompt templates,
different prompts still inevitably perturb the ef-
fectiveness of the proposed method. 5) Limited
Task Coverage. Our primary focus is on halluci-
nations involving objects, attributes, and relations.
Although we present preliminary results on tasks
like OCR and object counting in the Appendix,
these are proof-of-concept. Rather than claiming
a universal solution, we aim to show the potential
of combining the generality of large models with
the precision of small, specialized models. 6) Lack
of Evaluation on Synthetic Domains. We do not
evaluate our method on datasets that do not have
real-world scenes, such as MMMU, MathVision,
and MathVista. Nevertheless, our approach has the
potential to improve LVLM performance on these
benchmarks. For example, small domain-specific
models, such as image captioning models trained
for chart or table understanding, could be devel-
oped using these datasets and directly incorporated
into our framework to enhance LVLM capabili-
ties. This is enabled by the model-agnostic and
flexible nature of our framework, which allows for
straightforward customization and incorporation
of customized visual experts. We also discuss the

complementarity of small and large models in Ap-
pendix A.
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A Complementarity of Small and Large
Models

Our framework leverages the strengths of both spe-
cialized visual models and large vision language
models (LVLMs), we discuss their complementary
roles in supporting accurate and versatile visual
understanding from two aspects.

(1) Open-ended dialogue: While small vi-
sual models excel in specialization and precision,
they lack versatility and openness. In contrast,
LVLM is highly versatile and capable of open-
ended dialogue, but it suffers from lower precision.
Our proposed framework effectively combines the
strengths of both approaches. LVLM serves as the
"brain" of the system, making it indispensable. If
the query is a straightforward discriminative task,
such as determining whether a specific object exists
in an image (e.g., a yes/no question), small visual
models can handle this through keyword search.
Though, keyword search struggles with semanti-
cally equivalent but linguistically different queries.
Moreover, for open-ended, generative questions
like “Describe this image”, small visual models are
insufficient. However, their outputs can provide
critical and precise information to assist LVLM in
generating more accurate answers.

(2) High recall of visual content: Small visual
models are primarily designed for high-precision
predictions rather than high-recall ones (though
better models could offer both). On the other hand,
LVLM provides comprehensive image understand-
ing with high recall but lower precision, which can
lead to hallucinations. The small visual model pro-
vides high-confidence supplementary information,
ensuring that at least the presence of specific ob-
jects or relations in the image is reliably identified,
thus assisting LVLM in making more accurate de-
cisions. We have also analyzed this in Sections 5.1
and 5.2, demonstrating that the model synthesizes
both textual and visual information to arrive at the
final decision, rather than relying solely on visual
evidence.

B Definition of Attribution Score

The attribution score is computed following the
interpretability method (Chefer et al., 2021), sim-
ilar to the commonly used Grad-CAM (Selvaraju
et al., 2017) in computer vision. It indicates the im-
portance of each preceding token in predicting the
current token, with a higher score denoting greater
importance. The specific calculation method is as
follows.

Firstly, we initialize the token attribution map
R as an identity matrix, the dimensions of which
correspond to the size of the attention matrix at
each layer of the text encoder. Subsequently, we
compute the gradients of the attention weights by
leveraging the prediction logit of current output
token and average them across all attention heads.
This procedure yields an attribution map Ēi of cur-
rent output token for each layer i.

Ēi =
h∑

j=1

(∇Ai
j ⊙Ai

j)
+, (2)

where ⊙ is the Hadamard product, Ai
j de-

note the attention matrix of the head j in
layer i, ∇Ai

j := ∂logit_current_token
∂Ai

j

for

logit_current_token which is the prediction logit
of current output token such as the first output to-
ken “Yes”.

Finally, we aggregate the explainability maps of
all layers using the propagation rule as presented
in (Chefer et al., 2021) to derive the final text attri-
bution map.

R← R+ Ēi ·R. (3)
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Then we can extract the attribution scores of
every image token, which also formulate a image
attribution map.

C Further Details for Experimental Setup

C.1 Datasets

The experiments are mainly conducted on POPE,
AMBER and RPE. We also conduct experiments
using LLaVA-1.5 and LLaVA-1.6 on the MMHal-
Bench (Sun et al., 2023). Please refer to Appendix
G.2 for details.

POPE. In POPE (Li et al., 2023b), 500 images
were randomly selected from the validation set of
the MSCOCO (Vinyals et al., 2016), each contain-
ing more than three ground-truth objects in the
annotations. For every image, six questions were
formulated based on the annotations, with answers
limited to “Yes” or “No”. For questions with the an-
swer “No”, three strategies, i.e., Random, Popular,
and Adversarial, are used to sample their probing
objects. The difficulty of the questions increased
progressively from Random to Adversarial. For
MSCOCO-Random, objects not present in the im-
age are randomly chosen. For MSCOCO-Popular,
the top-3% most frequent objects in the MSCOCO
are selected. For MSCOCO-Adversarial, objects
are ranked based on their co-occurring frequencies
with the ground-truth objects, and the top-k most
frequent objects not present in the image were cho-
sen.

AMBER. AMBER (Wang et al., 2023) is a com-
prehensive benchmark for assessing hallucination
in LVLMs free from LLMs, which includes a vari-
ety of tasks that gauge the models’ abilities in both
discriminative (e.g., “Is there a dog in the image?”)
and generative questions (e.g., “Describe this im-
age.”), comprising a total of 15, 220 questions. The
images in AMBER are carefully collected by the
authors, which have not been used for training
LVLMs, featuring clear content with well-defined
objects. The authors have thoroughly annotated
these images and have manually constructed some
prompt templates to generate questions for evaluat-
ing different types of hallucinations, including ob-
ject hallucination (e.g., “Is there a {object} in this
image?”), attribute hallucination (e.g., “Does the
{object} {action} in this image?”), and relation hal-
lucination (e.g., “Is there direct contact between the
{object 1} and {object 2} in this image?”). Among
the total questions, 1, 004 are generative questions,
and the remaining are discriminative questions.

RPE. In order to further verify the effective-
ness of our method in mitigating relation hallu-
cination, we meticulously follow the same recipe
as POPE on Visual Genome (Krishna et al., 2017)
to construct a new relation hallucination evalua-
tion dataset named Relation Probing Evaluation
(RPE). Firstly, the 50 relation categories of VG are
categorized into two groups, spatial and action re-
lationships. Then we select 7 representative spatial
relations (above, at, behind, in, in front of, on, and
under) and 9 head action relations (carrying, eat-
ing, holding, lying on, looking at, riding, sitting on,
standing on, and walking on), while the other tail re-
lations are ignored. For each relation, we randomly
select 75 images with questions whose answers are
“Yes” and 75 images questions whose the answer
are “No”. Each “Yes” questions are constructed
from annotations. For questions with the answer
“No”, the probing relations are randomly selected
within the corresponding group of spatial or action
relations with additional added negative relation,
which is shown in the Tab. 8. To ensure not select
synonyms of the ground truth as probing relations,
we carefully devise several pairs of synonymous
relations as the “blacklist” as shown in the Tab.
8. The negative samples were assigned different
relations from the positive samples, randomly cho-
sen from the groups of spatial and action relations.
To ensure accurate annotation of the negative sam-
ples, we devised pairs of synonymous relations and
avoided selecting synonyms of the positive sample
relation when choosing the relation for the negative
sample. In summary, this dataset consists of 2400
triplets of image, question and answer, in which
1200 are “Yes” and 1200 are “No”. In Fig. 7, we
show some cases in our dataset.

C.2 Details of Evaluating SOTA Models

We conduct experiments on GPT-4V (model ver-
sion: gpt-4-1106-vision-preview), Gemini 1.5 Pro
Flash, Claude 3 Haiku, and Qwen-VL-Max via API
access. For open-source models, we use the official
checkpoints for MiniGPT-4, MiniGPT-4-v2, Qwen-
VL-Chat, LLaVA-1.5 and LLaVA-1.6. For LLaVA-
1.5, we use the llava-v1.5-7b and llava-v1.5-13b.
For LLaVA-1.6, we use the llava-v1.6-vicuna-7b
and llava-v1.6-vicuna-13b.

D Internal Interpretability Analysis

To better understand the internal pattern changes
induced by visual evidence, we perform a tracing-
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Relation type Negative relations Synonymous pairs

Spatial relation above, at, behind, in, in front of, on, under
at the left of, at the right of

above: {on}
on: {above}

Action relation

carrying, eating, holding, lying on, looking at, riding, sitting on, standing
on, walking on
walking in, watching, cutting, feeding, leaning on, jumping over, hugging, kissing,
pushing, pulling, washing, kicking, draging

walking on: {walking in, stand-
ing on}
looking at: {watching}

Table 8: The negative relations candidate set used to contruct negative question are shown here. We also present the
synonymous pairs used to ensure not select synonyms of the ground truth as probing relations

Positive question: Is the clock
above the door?
Label: yes

Negative question: Is the clock
behind the door?
Label: no

Positive question: Is the cap on the
head?
Label: yes

Negative question: Is the cap under
the head?
Label: no

Positive question: Is the man
sitting on the bed?
Label: yes

Negative question: Is the man
jumping over the bed?
Label: no

Positive question: Is the man looking at
the laptop?
Label: yes

Negative question: Is the man holding 
the laptop?
Label: no

Figure 7: Several cases in RPE are depicted in this figure, with the two on the left representing spatial relations and
the two on the right illustrating action relations.

based interpretability analysis on object recogni-
tion task. Starting from the model’s final answer
(i.e., “Yes” or “No”), we trace the information flow
involved in object recognition task. This analysis
is conducted on the POPE dataset, where model
responses are limited to binary choices (“Yes” or
“No”).

Our methodology proceeds as follows:
(1) At the token position generating the binary

prediction (specifically, the colon “:” token), we
apply path patching algorithm (Wang et al., 2022)
to identify the key attention heads.

(2) We isolate the heads that encode the cor-
rect answer (e.g., “Yes”) and inspect their attention
patterns to identify the most strongly attended to-
kens—denoted as token A.

(3) For each token A, we use logit lens (nostal-
gebraist, 2021) to compute the probability of the
correct answer token across the residual streams
of all layers, and determine the layer l where this
probability is maximized.

(4) We then perturb each attention head prior
to layer l at the position of token A using path
patching, measuring the resulting change in the
correct answer token’s probability at layer l’s resid-
ual stream. The head whose perturbation causes
the largest probability drop is selected for further
analysis.

(5) Finally, we examine the decoded content and
attention patterns of these influential heads and
recursively trace backward, in order to identify
the specific visual and textual cues that guided the
model’s decision.

D.1 Tracing Back from Answer Token

We initiate our analysis by tracing backward from
the answer token. Aiming to identify the key at-
tention heads for object recognition, we randomly
select 20 samples from the POPE dataset where
the model successfully performs this task (i.e., gen-
erate correct answers “Yes”). Notably, expanding
the sample size of path patching results in a similar
distribution of key heads, a phenomenon consis-
tent with the findings of Wang et al. (2022). We
firstly construct counterfactual question that are
designed to suppress object recognition—aiming
to avoid activating this capability of the model as
much as possible. Examples of both original and
counterfactual question are shown in Tab. 9. We
then employ path patching (Wang et al., 2022) to
localize the attention heads that contribute most to
the generation of the answer token.

Fig. 8(a) illustrates the distribution of the identi-
fied key heads. The key heads appear to be sparsely
distributed. From this set, we select the top five
heads—head 16.0, head 15.31, head 14.20, head
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Data Question

Xr Is there a {object} in the image?

Xc

Is this image from an outdoor setting?
Is this image taken in daylight?
Was this image taken in a park?
Is this image geometrically complex?
Does the image contain a solid color
background?

Table 9: Example of probing data Xr (original question)
and counterfactual data Xc in first round path patching
in Sec. D.1.

13.16, and head 16.15—for further analysis. Us-
ing Logit Lens (nostalgebraist, 2021), we decode
the representations at these heads by projecting
them into the vocabulary space. Notably, head
16.0 yields top-ranked tokens that are semantically
aligned with the correct answer, whereas the other
heads produce less meaningful outputs. Some ex-
amples are show in Tab. 10.

(a) (b)

(c) (d)

Figure 8: (a) Distribution of key heads in first round
path patching that mostly influence final answer genera-
tion. (b) Probability of the correct answer “Yes” being
encoded at the final question token (“?”) on the residual
streams across each layer of the LLM. (c) Probability of
“Yes” being encoded at the object token in the question
across residual streams. (d) Probability of “Yes” being
encoded at the preposition “in” token in the question
across residual streams. The probabilities are obtained
by averaging across 100 random samples. Best viewed
with zoom for clarity.

To further trace the source of the “Yes”-related
signal, we visualize the attention patterns of the
key heads, some examples are shown in Fig. 9.
In nearly all cases, head 16.0 consistently attends
to the final token in the question—the “?” to-
ken—while the other heads primarily attend to the
object token or the preposition token “in”. In con-
trast, randomly selected heads often attend to the
<bos> token, potentially due to the attention sink

effect (Xiao et al., 2023). We further apply Logit
Lens to compute the probability of encoding cor-
rect answer “Yes” token from the residual stream
at these attended token positions. The results in
Fig. 8 show that the final question token “?” car-
ries a high predictive probability (up to 0.7–0.8),
while the object token and “in” tokens contribute
minimally, with probabilities near to zero.

These observations suggest that head 16.0
plays a pivotal role in transfering answer-
relevant information, specifically the answer to-
ken “Yes”, from the last token in question to
generate the model’s final decision.

(a) Top-5 key heads (b) Random heads

Figure 9: (a) Attention pattern of the top heads identified
as having the greatest impact on answer generation in
Sec. D.1. (b) Attention pattern of randomly selected
heads.

Head Top tokens in projection

16.0 yes, Yes, yes, Yes, YES
15.31 there, presence, \u5426, Yes, achi
13.16 ferrer, \ufffd, \u2010, \u00e9n, hell
14.20 Mel, ritz, operator, ner, \uc7ac
16.15 ouv, EXISTS, SHA, abol, igny

Table 10: Decoded content of the identified top key
heads in first round path patching in Sec. D.1, projected
into the vocabulary space using the Logit Lens.

D.2 Tracing Back from Last Token of
Question

In Sec. D.1, we conjecture that head 16.0 is respon-
sible for transferring answer-relevant information
from the final token of the question to generate the
model’s decision. Therefore, we conduct a further
backward analysis starting from the last token of
the question. As shown in Fig. 8(b), we observe
a sharp increase in the probability of encoding the
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(a) (b)

Figure 10: (a) Distribution of key heads in second round
path patching that mostly influence the process that
encoding the correct answer at the final question token.
(b) Probability of “visible” token being encoded at the
object token in the question on the residual streams
across each layer of the LLM. The probabilities are
obtained by averaging across 100 random samples. Best
viewed with zoom for clarity.

correct answer at the final question token at layer
16.

Following this observation, we perform path
patching by perturbing all attention heads preced-
ing layer 16. We then track changes in the prob-
ability of encoding the correct answer at the final
question token within the residual stream of layer
16. This allows us to identify the key heads that
most influence this encoding. In this second round
path patching experiment, the counterfactual ques-
tion Xc is “Is this image from an outdoor setting?”.

Fig. 10 presents the distribution of key heads
identified through path patching at the final token
position of the question. As shown, only a small
number of heads have a substantial impact. Fol-
lowing the approach illustrated in Sec. D.1, we
apply the Logit Lens to decode the top key heads
and analysis their attention patterns. Among these,
three heads stand out. Head 13.4, attends to both
the image region corresponding to the object and
the object token in the question. Its decoded output
prominently features semantically related tokens
such as “detected”, “presence” and “visible”. Head
13.28, primarily attends to the object token in the
question. Decoding its output reveals the presence
of the token “Yes”. Another head 14.24 focuses
mainly on the image region corresponding to the
object queried in the question. Examples of decod-
ing results and attention patterns are provided in
Tab. 11 and Fig. 11.

We further utilize the Logit Lens to decode the
information encoded at the object token position
in the residual stream. The decoded output is se-
mantically concentrated on tokens like “visible”
and “present”, with “visible” emerging as the most
probable token. The distribution of “visible” token
probabilities across layers in the residual stream is

shown in Fig. 10(b).
The above analysis and findings suggest that

the encoded information about the correct an-
swer “Yes” at the final token of the question
is derived from higher-level concepts, such as
“visible” and “present”, which are encoded in
the object token. These concepts are formed by
several key attention heads, including head 13.4,
head 14.24, and head 13.28, which examine and
combine information from the object region in
the image and the object token in the question.

Head Top tokens in projection

13.4 available, visible, available,
disponible, observable, Bedeut, u0150,
onymes, ailable, existsdetection,
detected, \u8a71, \u25c4, subset,
\u4ef6, gres, Unterscheidung, alert,
captured, visible

13.28 dispon, sj0̆0f6, disponible, available,
available, loyd, assa, rvm,
j0̆0fa, rizzak, Shaw, yes, Yes,
\u043d\u0432\u0430, aland, Yes, azon,
pilot, yes, \u0161\u010d

14.24 alom, tera, bers, (, Terr, Visible, heim,
dup, ld, ershell, \u00fcn

Table 11: Decoded content of the identified top key
heads in second round path patching in Sec. D.2, pro-
jected into the vocabulary space using the Logit Lens.

D.3 Tracing Back from Object Token in the
Question

To further investigate how the object token in the
question comes to encode semantic information re-
lated to “visible”, we perform a third round of path
patching at the object token position. Specifically,
we trace this process by measuring the probability
of encoding the token “visible” at the object token
in the residual stream at layer 22. This layer is cho-
sen based on the observation in Fig. 10(b), where
the probability begins to level off and then shows
signs of decline.

Following the methodology described in Sec.
D.2, we construct counterfactual question Xc and
perturb all attention heads preceding layer 22 to
identify the contributing key heads. The resulting
distribution is shown in Fig. 12. Among the top ten
heads identified, five are found to predominantly
attend to the tokens “a” and “there”. Decoded out-
puts of these heads exhibit semantic content closely
aligned with concepts like “visible” and “available”.
Examples are provided in Tab. 12 and Fig. 13.

We further decode the residual stream at the “a”
and “there” token positions. In mid-to-late lay-
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Figure 11: Attention pattern visualization of key heads identified in second round path patching in Sec. D.2.
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ers, these tokens are found to encode information
related to the presence of objects in the image. No-
tably, starting from layer 17, the “a” token consis-
tently yields object-related content in its decoded
output. The “there” token also contributes to object-
level semantics, though to a lesser extent. Addi-
tional decoding examples are shown in Tab. 13.

These findings suggest that the object token
acquires object-related information from the “a”
and “there” tokens, which act as anchors. We
therefore denote them as anchor tokens. This
information is subsequently transformed into
higher-level semantics, such as “visible”, by sev-
eral key attention heads. Since each head op-
erates on inputs drawn from the residual stream
and the residual stream at anchor token already
encodes object-level features. We conjecture that
these heads likely serve as the function for semantic
abstraction and propagation.

Figure 12: Distribution of key heads in third round path
patching that mostly influence the process that encoding
the “visible” related semantic at the object token in
question.

Figure 13: Attention pattern visualization of key heads
identified in third round path patching in Sec. D.3.

Head Top tokens in projection

17.24 available, visible, available,
disponible, observable, Bedeut, \u0150,
onymes, ailable, exists

14.22 dispon, sj\u00f6, disponible,
available, available, loyd, assa,
rvm, j\u00fa, riz

Table 12: Decoded content of the identified top key
heads identified in third round path patching in Sec.
D.3, projected into the vocabulary space using the Logit
Lens.

D.4 Conclusion about the Tracing Process
Starting from the answer token, we conduct three
rounds of backward tracing and uncover several
interesting patterns. We summarize the internal
information flow within the model during object
recognition as follows:

(1) The anchor tokens “a” and “there” encode
information related to objects in the image. The
object token receives this object-related informa-
tion from anchor token “a” and “there”, which is
subsequently transformed by some attention heads
into higher-level semantics such as “visible”.

(2) The final token of the question (i.e., “?” to-
ken) extracts this “visible”-related semantic infor-
mation from the object token. Combined with vi-
sual features from the corresponding object region
in the image, this contributes to the generation of
the “Yes” signal.

(3) The final input token to the model (typically
“:” token) retrieves the “Yes” signal from the final
token of the question (i.e., token “?”) and produces
the output answer token “Yes”.

This overall information flow is illustrated in Fig.
14.

Q: \n Is there a bowl in the image? A: Yes

Figure 14: Overall information flow when model per-
form object recognition task.

Since our tracing leads back to the anchor token,
which encodes substantial object-level information,
we are further able to compare how this token’s
representation changes under two settings: with
and without visual evidence. This comparison en-
ables us to understand how the incorporation of VE
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Image Layer Top tokens in projection
24 fork, plate, sand, table, plate,

tables, \u6c99, sal, variety,
glass, bow, place, serving, Sand,
cole, tom, usammen, plates, Hamb,
difference

25 fork, plate, sand, tom, tom,
table, bow, \u6c99, plate,
tables, usammen, variety, Tom,
glass, Sand, cole, Bowl, Hamb,
Tom, nap

Table 13: Decoded content of the residual stream at anchor token, projected into the vocabulary space using the
Logit Lens.

affects the internal object information the model
refer to during decision-making.

Although this interpretability analysis is not
the main contribution of our work and is limited
in scope, as it focuses on simple yes-or-no ob-
ject recognition tasks, it nevertheless highlights a
promising direction for future research. The inter-
nal mechanisms of LVLMs remain largely opaque,
and we hope our findings can provide some mean-
ingful insights for the broader research commu-
nity.

E Qualitative Results

E.1 Effect of Visual Evidence

Fig. 15 shows a comparison of responses from the
LLaVA-1.5-7B before and after the integration of
visual evidence. It is apparent that, prior to incorpo-
rating visual evidence, the model may hallucinate
non-existent objects or relations in the images, or
fail to recognize objects that are present. However,
after combining the visual evidence provided by
small visual model, the model is able to correctly
answer the questions. Additionally, for open-ended
generative tasks, hallucinated objects present in the
model’s initial responses have disappeared after
incorporating the visual evidence.

E.2 Comparison of Image Attribution Map
between Hallucination and
Non-hallucination Samples

In Fig. 16, we present more comparative of im-
age attribution maps across both hallucination and
non-hallucination samples. Observations suggest
that the hallucination behaviors of model are not
arbitrary but are triggered by regions within the im-
ages that possess a certain degree of resemblance
in appearance or semantic meaning, leading to er-
roneous activations, such as the confusion between

lampposts and traffic lights, backpacks and hand-
bags, as well as cars and trucks.

E.3 Comparison of Image Attribution Map
before and after the Incorporation of VE

In Fig. 17, we present a comparison of the image at-
tribution maps before and after the incorporation of
visual evidence. It is evident from the comparison
that, following the integration of visual evidence,
the model no longer attends to the previously in-
correctly focused regions, and then arriving at the
correct answer.

E.4 Error Analysis

We conduct a detailed error analysis on POPE uti-
lizing LLaVA-1.5 with visual evidence. We meticu-
lously annotate each incorrect prediction produced
by our method in the test set and systematically
categorize these errors into 5 types (please refer to
Appendix E.5 for error examples of each type):

(1) Annotation noise (29.2%): Objects being
annotated as present in the image when they are
not, or vice versa.

(2) Inconspicuous object undetected (7.7%):
The object is present in the image but is not promi-
nent enough to be detected by the visual model,
and might be difficult to spot at first glance even by
humans.

(3) Context ignored by LVLM (58.0%): The
LVLM does not fully take into account the visual
evidence provided to it.

(4) Spurious detection of non-existent object
(3.3%): Visual model incorrectly detects some-
thing that does not actually exist.

(5) Semantically similar word confusion (1.8%):
The visual model correctly identifies an object but
outputs object names that are the synonyms to the
objects appear in the questions (e.g., confusing
“oven” with “toaster”, “skis” with “snowboard”,
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Question:
Is there a couch in the image?

LLaVA-1.5:
Yes, there is a couch in the image, and it is covered with a blanket.

Visual Evidence from small visual model:
3 cats, 1 bed, 1 book
LLaVA-1.5 with Visual Evidence:
No, there is no couch in the image. The image features a bed with three 
cats lying on it.

Question:
Is there a backpack in the image?

LLaVA-1.5:
Yes, there is a backpack in the image, and the baby is sitting on top of it.

Visual Evidence from small visual model:
1 suitcase, 1 person
LLaVA-1.5 with Visual Evidence:
No, there is no backpack in the image. The image features a young child 
sitting on a suitcase.

Question:
Is there a chair in the image?

LLaVA-1.5:
No, there is no chair in the image. The image features a young man riding 
a skateboard on a street.

Visual Evidence from small visual model:
1 chair, 1 bottle, 1 skateboard, 7 people

LLaVA-1.5 with Visual Evidence:
Yes, there is a chair in the image.

Question:
Is the cat pushing the desk?

LLaVA-1.5:
Yes, the cat is laying on the desk and appears to be pushing it, causing the 
laptop to be pushed off the desk.

Visual Evidence from small visual model:
laptop on desk, paper on desk, screen on laptop, cat laying on desk, laptop 
on drawer, paper near laptop

LLaVA-1.5 with Visual Evidence:
No, the cat is not pushing the desk. The cat is simply laying on the desk, 
next to the laptop and the paper.

Question:
Is the man carrying the laptop?

LLaVA-1.5:
Yes, the man is carrying the laptop in his hand while holding the banana.

Visual Evidence from small visual model:
banana in hand, hand holding banana, man wearing shirt, man using 
laptop, man wearing pant, man eating banana, laptop on table, man 
holding banana
LLaVA-1.5 with Visual Evidence:
No, the man is not carrying the laptop. He is sitting at a table with the
laptop in front of him, and he is holding a banana in his hand.

Question:
Is the woman in front of the horse?

LLaVA-1.5:
Yes, the woman is in front of the horse, leading it along the beach.

Visual Evidence from small visual model:
horse on beach, woman on horse, woman riding horse, horse walking on 
beach, woman on beach, woman wearing jean, woman wearing shirt, 
woman sitting on horse

LLaVA-1.5 with Visual Evidence:
No, the woman is sitting on the horse, not in front of it.

Question:
Describe this image.

LLaVA-1.5:
The image captures a young boy in a purple shirt and a hat, standing in a 
grassy field and throwing a frisbee. He appears to be enjoying his time 
outdoors, possibly playing with friends or family. The frisbee can be seen 
flying through the air, close to the boy's hand.\n\nThe scene is set in a park 
or a similar outdoor area, with a few other people visible in the background, 
possibly watching the boy play or engaging in their own activities. The 
overall atmosphere is lively and fun, as the boy and others enjoy their time 
outdoors.

Visual Evidence from small visual model:
1 person, 1 frisbee

LLaVA-1.5 with Visual Evidence:
The image features a young boy in a purple shirt and a hat, playing with a 
frisbee in a grassy field. He is in the process of throwing the frisbee, which 
is positioned in the air close to him. The boy appears to be enjoying his 
time outdoors, engaging in a fun and active activity.

Question:
Describe this image.

LLaVA-1.5:
The image features a brown teddy bear sitting on a chair, which is 
positioned next to a wall. The chair has a wicker design, and the teddy 
bear appears to be the focal point of the scene. The chair is placed in a 
corner, and there is a couch in the background.\n\nIn addition to the chair 
and couch, there is a backpack located on the floor, slightly to the right of 
the chair. The overall setting seems to be a cozy and comfortable space, 
with the teddy bear adding a touch of warmth and playfulness to the 
environment.

Visual Evidence from small visual model:
1 teddy bear, 1 chair

LLaVA-1.5 with Visual Evidence:
The image features a brown teddy bear sitting on a chair, which is placed 
in front of a brown wall. The chair is made of wicker and has a black seat, 
providing a contrasting color to the brown teddy bear. The scene appears 
to be a cozy and inviting setting, possibly in a living room or a child's 
bedroom.

Question:
Describe this image.

LLaVA-1.5:
The image features a woman lying on a wooden bench, reading a book. 
She is positioned in the center of the bench, with her head resting on her 
hand. The bench is located near a brick wall, which provides a backdrop 
for the scene. In the background, there are two other people present, one 
standing on the left side of the bench and the other on the right side. 
Additionally, there is a chair situated near the left side of the bench.

Visual Evidence from small visual model:
1 book, 1 person, 1 bench

LLaVA-1.5 with Visual Evidence:
The image features a woman lying on a park bench, reading a book. She is 
positioned on her stomach, with the book placed near her head. The bench 
is located in a park setting, and there is a brick wall visible in the 
background. The scene appears to be a peaceful and relaxing moment for 
the woman as she enjoys her book.

Figure 15: Some cases demonstrating that visual evidence prompting effectively reduce hallucination of LLaVA-
1.5-7B.
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Question:
Is there a tv in the image?

LLaVA-1.5:
No, there is no TV in the image. The 
image feature a woman looking at 
her cell phone.

Input image Image attribution 
map of token “No”

Image attribution 
map of token “TV”

Image attribution map 
of token “phone”

Question:
Is there a bed in the image?

LLaVA-1.5:
No, there is no bed in the image. The 
image feature a woman, a teddy bear 
and a poster.

Input image Image attribution 
map of token “No”

Image attribution 
map of token “bed”

Image attribution map 
of token “ted”

Question:
Is there a car in the image?

LLaVA-1.5:
No, there is no car in the image. The 
image feature a living room with a 
couch, a television and various 
decorations.

Input image Image attribution 
map of token “No”

Image attribution 
map of token “car”

Image attribution map 
of token “television”

Question:
Is there a traffic light in the image?

LLaVA-1.5:
Yes, there is a traffic light in the 
image, and the group of people is 
standing in front of it.

Input image Image attribution 
map of token “Yes”

Image attribution 
map of token “traffic”

Image attribution map 
of token “light”

Question:
Is there a handbag in the image?

LLaVA-1.5:
Yes, there is a handbag in the image, 
and the person is carrying it while 
skiing.

Input image Image attribution 
map of token “Yes”

Image attribution 
map of token “hand”

Image attribution map 
of token “bag”

Question:
Is there a handbag in the image?

LLaVA-1.5:
Yes, there is a handbag in the image, 
and it is being held by a person who 
is standing in the snow.

Input image Image attribution 
map of token “Yes”

Image attribution 
map of token “hand”

Image attribution map 
of token “bag”

Question:
Is there a couch in the image?

LLaVA-1.5:
Yes, there is a couch in the image, 
and it is located near a group of 
people who are watching elephants.

Input image Image attribution 
map of token “Yes”

Image attribution 
map of token “c”

Image attribution map 
of token “ouch”

Question:
Is there a truck in the image?

LLaVA-1.5:
Yes, there is a truck in the image, 
parked near the motorcycles.

Input image Image attribution 
map of token “Yes”

Image attribution 
map of token “t”

Image attribution map 
of token “ruck”

(a) Hallucination cases

(b) Non-hallucination cases

Figure 16: More qualitative comparison of image attribution maps between hallucination samples and non-
hallucination ones.
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Question:
Is there a couch in the image?

LLaVA-1.5:
Yes, there is a couch in the image, 
and it is located near a group of 
people who are watching elephants.

Input image Image attribution 
map of token “Yes”

Image attribution 
map of token “c”

Image attribution map 
of token “ouch”

Question:
Is there a couch in the image?

LLaVA-1.5 with Visual Evidence:
No, there is no couch in the image. 
The image features a dining table, a 
elephant and  a group of people.

Input image Image attribution 
map of token “No”

Image attribution 
map of token “c”

Image attribution map 
of token “ouch”

Question:
Is there a motorcycle in the image?

LLaVA-1.5:
Yes, there is a motorcycle in the 
image, and it is parked next to a bus.

Input image Image attribution 
map of token “Yes”

Image attribution map 
of token “motor”

Image attribution map 
of token “cycle”

Question:
Is there a motorcycle in the image?

LLaVA-1.5 with Visual Evidence:
No, there is no motorcycle in the 
image. The vehicles present include 
a bus, a truck, a car and a bicycle.

Input image Image attribution 
map of token “Yes”

Image attribution map 
of token “motor”

Image attribution map 
of token “cycle”

Question:
Is there a handbag in the image?

LLaVA-1.5:
Yes, there is a handbag in the image, 
and it is placed on the ground near 
the group of people.

Input image Image attribution 
map of token “Yes”

Image attribution map 
of token “hand”

Image attribution map 
of token “bag”

Question:
Is there a handbag in the image?

LLaVA-1.5 with Visual Evidence:
No, there is no handbag in the image.

Input image Image attribution 
map of token “No”

Image attribution map 
of token “hand”

Image attribution map 
of token “bag”

Figure 17: More qualitative comparison of image attribution maps before and after the integration of visual evidence.
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“car” with “truck”).
Among five types of errors, context ignored by

LVLM (58.0%) represents the majority. A further
analysis of the prediction confidence for these sam-
ples reveals that the initial error confidence of in-
accurate responses is higher than that of samples
whose errors are successfully corrected (0.83 vs.
0.66). Moreover, despite the incorporation of ev-
idence failing to rectify the wrong answer, a no-
table decrease in error confidence level is observed
(from 0.83 to 0.73). This indicates that the model
displays certain deficiencies in integrating image
information with external visual knowledge, par-
ticularly when handling hard samples. Inconspic-
uous object undetected (7.7%) reveal limitations
of detecting inconspicuous objects from small vi-
sual models. Semantically similar word confusion
(1.8%) and spurious detection of nonexistent ob-
jects (3.3%) are less, indicating that the inaccurate
information introduced by small visual models are
not common and the inaccurate information in the
visual evidence is negligible.

We further conduct a quantitative analysis of
the effect of incorporating incorrect evidence on
LLaVA-1.5. Tab. 14 present the ratios of sam-
ples which are integrated with erroneous visual
evidence. It is split as four parts based on the orig-
inal behavior and the behavior after introducing
erroneous visual evidence. Firstly, the total ratio
of erroneous evidence is 6.27%, while the one of
correct evidence is 93.73%. Secondly, after inte-
grating with the incorrect evidence, most of the
samples with wrong original answer remain wrong
(the first and third columns). Thirdly, for a substan-
tial fraction of the samples with original correct
answers, the model continues to provide correct
answers. These results indicates a certain level of
robustness in the model.

E.5 Error Examples
In Fig. 18, we show some error examples of each er-
ror type. For example, in the case of the error type
“annotation noise”, an image with no car present is
incorrectly labeled as “yes” (the correct answer is
“no”, as the question asked, “Is there a car in the
image?”). In the case of the error type “inconspic-
uous object undetected”, the small visual model
fail to detect a cellphone held by a passenger on a
bus, leading to an incorrect answer from the model.
In the case of the error type “context ignored by
LVLM”, the small visual model’s output is correct,
but the model ignore the context and persisted with

its original incorrect answer. In the case of the
error type “spurious detection”, the small visual
model incorrectly detect a car that is not actually
present in the image. This may have been caused
by a blurry object in the background that slightly
resembled the shape of a car. In the case of the er-
ror type “semantically similar word confusion”, the
small visual model correctly identify an oven, but
the question is about a toaster, causing confusion
to the model.

Question:
Is there a car in the image?

Label: yes

LLaVA-1.5:
Yes, there is a car in the image, and it is
passing by the train.

LLaVA-1.5 with Visual Evidence:
No, there is no car in the image. The image
features a bed in a small room, possibly a
train cabin, with a window providing a view
of the countryside.

Question:
Is there a toaster in the image?

Label: yes

LLaVA-1.5:
Yes, there is a toaster in the image, and it is 
filled with food.

LLaVA-1.5 with Visual Evidence:
No, there is no toaster in the image. The 
image shows an oven with food cooking on 
a tray.

Visual Evidence from small visual model:
1 bed

Visual Evidence from small visual model:
1 oven

Question:
Is there a cell phone in the image?

Label: yes

LLaVA-1.5:
Yes, there is a cell phone in the image, and 
it is located on the bus.

LLaVA-1.5 with Visual Evidence:
No, there is no cell phone in the image.

Visual Evidence from small visual model:
1 person, 1 bus

Question:
Is there a sports ball in the image?

Label: no

LLaVA-1.5:
Yes, there is a sports ball in the image, and
it is in the air near the batter.

LLaVA-1.5 with Visual Evidence:
Yes, there is a sports ball in the image.

Visual Evidence from small visual model:
3 people, 1 baseball glove, 1 baseball bat

Question:
Is there a car in the image?

Label: no

LLaVA-1.5:
Yes, there is a car in the image, which is
located in front of the red fire hydrant.

LLaVA-1.5 with Visual Evidence:
Yes, there is a car in the image.

Visual Evidence from small visual model:
2 cars, 1 person, 1 bus, 1 fire hydrant

Annotation noise Inconspicuous object undetected Context ignored by LVLM 

Spurious detection Semantically similar word confusion 

Figure 18: Examples of each error type.

E.6 More Cases on Out-of-domain Images

Following the idea of CLIP (Radford et al.,
2021), we selected 10 out-of-domain datasets
from the 27 datasets used to test the zero-shot
generalization performance of CLIP. These 10
datasets are Caltech-101 (Fei-Fei et al., 2004),
OxfordPets (Parkhi et al., 2012), Birdsnap (Berg
et al., 2014), Flowers102 (Nilsback and Zisserman,
2008), CLEVRCounts (Johnson et al., 2017), Coun-
try211 (Radford et al., 2021), Food101 (Bossard
et al., 2014), SUN397 (Xiao et al., 2010), Hate-
fulMemes (Kiela et al., 2020), and STL10 (Coates
et al., 2011). Then, we randomly selected two im-
ages from each dataset, one for evaluating object
hallucination and the other for evaluating relation
hallucination. As shown in Fig. 19 and Fig. 20, we
can see that even when providing incorrect visual
evidence to the model, it still maintains its original
correct answer, which further verifies the model’s
robustness and adaptivity to incorrect evidence in
open-world scenarios.
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Is there a wrench in the image?

Yes, there is a wrench in the 
image.

Qwen-VL-Chat

You can see scissors in the image.
Is there a wrench in the image?

No, there are no scissors in the 
image. The image only shows a 
wrench.

Qwen-VL-Chat

w/o visual evidence w/ false visual evidence

Is the shoes under the umbrella?

Yes, the shoes are under the 
umbrella, and they are hanging on 
the hook.

Qwen-VL-Chat

You can see umbrella has handle, 
shoe above umbrella in the image.
Is the shoes under the umbrella?

Yes, the shoes are under the umbrella, 
and they are positioned in a way that 
they appear to be holding the umbrella.

Qwen-VL-Chat

w/o visual evidence w/ false visual evidence

Images are randomly sampled from Caltech-101.

Is there a cat in the image?

No, there is no cat in the 
image. The image features a 
dog sitting in the grass.

Qwen-VL-Chat

You can see dog, cat in the image.
Is there a cat in the image?

No, there is no cat in the image. 
The image only features a dog 
sitting in the grass.

Qwen-VL-Chat

w/o visual evidence w/ false visual evidence

Is the dog sitting on the chair?

Yes, the dog is sitting on the chair.

Qwen-VL-Chat

You can see dog lying under chair, 
person at table in the image.
Is the dog sitting on the chair?

Yes, the dog is sitting on the chair.

Qwen-VL-Chat

w/o visual evidence w/ false visual evidence

Images are randomly sampled from OxfordPets.

Is there a bird in the image?

Yes, there is a bird in the 
image. It is a grey and white 
bird standing in the water.

Qwen-VL-Chat

You can see flower, water in the 
image.
Is there a bird in the image?

Yes, there is a bird in the image.

Qwen-VL-Chat

w/o visual evidence w/ false visual evidence

Is the bird standing in the water?

Yes, the bird is standing in the water.

Qwen-VL-Chat

You can see bird flying in water in 
the image.
Is the bird standing in the water?

Yes, the bird is standing in the water.

Qwen-VL-Chat

w/o visual evidence w/ false visual evidence

Images are randomly sampled from Birdsnap.

Is there an insect in the image?

Yes, there is a fly in the image.

Qwen-VL-Chat

You can only see flower in the image.
Is there an insect in the image?

Yes, there is a fly sitting on the 
yellow flower in the image.

Qwen-VL-Chat

w/o visual evidence w/ false visual evidence

Is the flower under the leaves?

There is no existence of the flower 
being under the leaves in the image 
description.

Qwen-VL-Chat

You can see flower under leaves in 
the image.
Is the flower under the leaves?

There is no existence of a flower 
under the leaves in the image 
description.

Qwen-VL-Chat

w/o visual evidence w/ false visual evidence

Images are randomly sampled from Flowers102.

Is there a ball in the image?

Yes, there is a ball in the 
image, floating next to the 
gold cube.

Qwen-VL-Chat

You can see cube in the image.
Is there a ball in the image?

Yes, there is a ball in the image 
as well.

Qwen-VL-Chat

w/o visual evidence w/ false visual evidence

Is the cylinder at the left of 
the ball?

No, the cylinder is at the right of 
the ball.

Qwen-VL-Chat

You can see cylinder at the left of ball, 
ball at right of cube in the image.
Is the cylinder at the left of the ball?

No, the cylinder is at the right of 
the ball, not left.

Qwen-VL-Chat

w/o visual evidence w/ false visual evidence

Images are randomly sampled from CLEVRCounts.

Figure 19: Some open-scenario cases from different out-of-domain datasets when LVLM are provided with false
visual evidence.
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Is there a person in the image?

Yes, there is a person in the 
image. They are climbing up a 
rocky mountain.

Qwen-VL-Chat

You can only see mountain in the image.
Is there a person in the image?

Yes, there is a person in the image.

Qwen-VL-Chat

w/o visual evidence w/ false visual evidence

Is the building under the sky?

Yes, the building is under the 
sky, which indicates that it is an 
outdoor structure.

Qwen-VL-Chat

You can see building above the sky, 
tree besides building in the image.
Is the building under the sky?

Yes, the building is under the sky.

Qwen-VL-Chat

w/o visual evidence w/ false visual evidence

Images are randomly sampled from Country111.

Is there a fork in the image?

There is no existence of a fork in 
the image description.

Qwen-VL-Chat

You can see fork, plate, bread in 
the image.
Is there a fork in the image?

No, there is no fork in the image.

Qwen-VL-Chat

w/o visual evidence w/ false visual evidence

Is the donut in the plate?

Yes, the donut is in the plate.

Qwen-VL-Chat

You can see donut under plate, 
plate on table in the image.
Is the donut in the plate?

Yes, the donut is in the plate.

Qwen-VL-Chat

w/o visual evidence w/ false visual evidence

Images are randomly sampled from Food101.

Is there a dog in the image?

There is no existence of a dog in 
the image.

Qwen-VL-Chat

You can see person, dog, train 
in the image.
Is there a dog in the image?

There is no existence of a dog in 
the image.

Qwen-VL-Chat

w/o visual evidence w/ false visual evidence

Is the building at the right 
of the tower?

Yes, the building is at the right 
of the tower.

Qwen-VL-Chat

You can see person under tower, building 
at the left of tower in the image.
Is the building at the right of the tower?

Yes, the building is at the 
right of the tower.

Qwen-VL-Chat

w/o visual evidence w/ false visual evidence

Images are randomly sampled from SUN397.

Is there a fork in the image?

Yes, there is a fork in the image, 
placed on the plate with the piece 
of cake.

Qwen-VL-Chat

You can only see cake, plate in the 
image.
Is there a fork in the image?

Yes, there is a fork in the image.

Qwen-VL-Chat

w/o visual evidence w/ false visual evidence

Is the hat on the head?

Yes, the hat is on the man's head.

Qwen-VL-Chat

You can see man has head, hat under 
head, man has nose in the image.
Is the hat on the head?

Yes, the hat is on the head.

Qwen-VL-Chat

w/o visual evidence w/ false visual evidence

Images are randomly sampled from HatefulMemes.

Is there a bird in the image?

There is no existence of any birds 
in the image information.

Qwen-VL-Chat

You can see bird, airplane in the 
image.
Is there a bird in the image?

No, there are no birds in the image.

Qwen-VL-Chat

w/o visual evidence w/ false visual evidence

Is the airplane above the person?

Yes, the airplane is above the person.

Qwen-VL-Chat

You can see airplane has engine, 
airplane has wing, airplane under 
person in the image.
Is the airplane above the person?

Yes, the airplane is above 
the person.

Qwen-VL-Chat

w/o visual evidence w/ false visual evidence

Images are randomly sampled from STL10.

Figure 20: Some open-scenario cases from different out-of-domain datasets when LVLM are provided with false
visual evidence.
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LVLM wrong answer +
wrong evidence → Wrong
answer

LVLM wrong answer +
wrong evidence → Cor-
rect answer

LVLM right answer +
wrong evidence → Cor-
rect answer

LVLM right answer +
wrong evidence → Wrong
answer

2.77% 0.2% 1.83% 1.47%

Table 14: Effect of incorporating incorrect visual evidence with LVLM predictions under different answer correctness
scenarios.

E.7 Some Cases on Object Counting and
OCR

In Fig. 21 and Fig. 22, we also demonstrate some
cases of GPT-4V that other tasks like object count-
ing and OCR can also be enhanced effectively by
our method. For instance, consider the rightmost
image in the second row of Fig. 21, which unam-
biguously depicts five dogs and four people. When
queried regarding the number of people and dogs
present in the image, GPT-4V erroneously stated,
“There are five people and six dogs”. However, the
object detection small visual model can provided
accurate visual evidence of “5 dogs, 4 people”.
With this visual evidence, GPT-4V amended its
statement to “There are four people and five dogs in
the image”. Similarly, in the leftmost image of the
first row in Fig. 22, a vehicle’s license plate reads
“OZL7H33”. GPT-4V’s initial response about the
license plate number inaccurately reported the se-
quence as “OZL733”, neglecting the “H”. Yet,
upon utilizing the OCR small visual model, the vi-
sual evidence “OZL7H33” was yielded accurately.
After incorporating the visual evidence, GPT-4V
was able to answer correctly (“The license plate
number of this car is OZL7H33”).

F Detailed Results and Analysis

F.1 Main Results of Other Five Models

In Tab. 15, we present the experiment results of
five additional models beyond the main text on the
POPE, AMBER, and RPE benchmarks. The results
clearly illustrate that, across both discriminative
and generative tasks, the integration of our method
significantly enhances performance for models of
varying sizes and architectures. This highlights
the plug-and-play attribute and effectiveness of our
approach.

F.2 Fine-grained Results on RPE

In this section, we comprehensively demonstrate
and analyze the model’s performance across di-
verse relationship categories. In Fig. 23, the perfor-
mance of LLaVA-1.5 with and without correspond-

ing visual evidence is presented for each relation-
ship category in RPE, where spatial relationships
are depicted on the left and action relationships
on the right. Based on the depicted results, it is
evident that LLaVA-1.5 exhibits varying degrees
of improvement across different relationship cate-
gories with the integration of visual evidence. No-
tably, a significant enhancement is observed in the
action relationship category. Overall, the model
outperforms the spatial relationship in the context
of action relationships. This discrepancy could be
attributed to the finer-grained nature of spatial re-
lationships within images, which demand a higher
level of comprehension capability.

F.3 Performance in Mitigating Different
Kinds of Hallucination

We present the performance improvements of
LLaVA-1.5 and LLaVA-1.6 combined with our
method across different hallucination subcategories
in AMBER in the Tab. 16. From the results above,
we can draw some interesting analytical conclu-
sions:

(1) VEP significantly benefits categories with
severe hallucinations: Initially, the relation cate-
gory had the worst performance, but after incorpo-
rating VE, it showed the most significant improve-
ment. This indicates that categories with more
severe hallucinations benefit more from the use of
VE.

(2) VEP offers comprehensive improvements
across various hallucination types: The VE pro-
vided by small object detection models not only
mitigates hallucinations related to existence but
also addresses issues with attributes, states. This
demonstrates that the impact of VE is comprehen-
sive, likely because visual evidence influences the
model’s ability to recall visual features during the
answering process.

(3) VEP helps bridge performance gaps
across LVLMs: By analyzing the performance of
LLaVA-1.5 and LLaVA-1.6 across different types
of hallucinations, we observe that after adding VE,
most categories saturate to a comparable perfor-
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Question:
Is there a couch in the image?

GPT-4V:
There are nine bottles in the image.

Visual Evidence from small visual model:
8 bottles

GPT-4V with Visual Evidence:
There are 8 bottles in the image.

Question:
How many people are there in the image?

GPT-4V:
There are nine people in the image.

GPT-4V with Visual Evidence:
There are 10 people in the image.

Visual Evidence from small visual model:
10 people, 2 benches, 1 chair

Question:
How many apples are there in the image?

GPT-4V:
There are six apples in the image.

GPT-4V with Visual Evidence:
There are 8 apples in the image.

Visual Evidence from small visual model:
8 apples, 1 bowl

Question:
How many cats and dogs are there in the image?

GPT-4V:
In the image, there are three cats and four dogs.

Visual Evidence from small visual model:
2 cats, 4 dogs

GPT-4V with Visual Evidence:
In the image, there are 4 dogs and 2 cats.

Question:
How many oranges and apples are there in the image?

GPT-4V:
There are three oranges and two apples in the image.

Visual Evidence from small visual model:
3 apples, 2 oranges
GPT-4V with Visual Evidence:
There are a total of 5 fruits in the image, with 3 apples 
and 2 oranges.

Question:
How many people and dogs are there in the image?

GPT-4V:
In the image, there are five people and six dogs.

Visual Evidence from small visual model:
5 dogs, 4 people

GPT-4V with Visual Evidence:
There are four people and five dogs in the image.

Figure 21: Some cases in object counting task when applying VEP to GPT-4V.

Question:
What is the license plate number of this car?

GPT-4V:
OZL733

Visual Evidence from small visual model:
OZL7H33

GPT-4V with Visual Evidence:
The license plate number of this car is OZL7H33.

Question:
What is the license plate number of this car?

GPT-4V:
01A26FG

Visual Evidence from small visual model:
018266FG

GPT-4V with Visual Evidence:
The license plate number of this car is 018266FG.

Question:
What is the license plate number of this car?

GPT-4V:
431 U 10857

Visual Evidence from small visual model:
431K11856

GPT-4V with Visual Evidence:
431K11856

Question:
What is the license plate number of this car?

GPT-4V:
4URT725

Visual Evidence from small visual model:
8UBK725

GPT-4V with Visual Evidence:
The license plate number of this car is "8UBK725."

Question:
What is the license plate number of this car?

GPT-4V:
MK62 ACZ

Visual Evidence from small visual model:
WK62ACZ

GPT-4V with Visual Evidence:
The license plate number of the car is "WK62 ACZ."

Question:
What is the license plate number of this car?

GPT-4V:
SH461A

Visual Evidence from small visual model:
SH4161A

GPT-4V with Visual Evidence:
The license plate number of this car is SH4161A.

Figure 22: Some cases in OCR task when applying VEP to GPT-4V.
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Model
POPE AMBER RPE Latency

token/sec.Acc. ∆ CHAIR↓ ∆ Acc. ∆ Acc. ∆

MiniGPT-4 71.16 - 14.13 - 64.28 - 65.11 - 24.33
+ Visual Evidence 80.47 +9.31 13.63 -0.50 69.68 +5.40 72.03 +6.92 22.64
Qwen-VL-Chat 82.33 - 7.30 - 80.80 - 64.08 - 20.47
+ Visual Evidence 88.17 +5.84 6.03 -1.27 80.26 -0.54 75.99 +11.91 17.74
LLaVA-1.5-13B 78.70 - 7.02 - 70.72 - 61.33 - 17.50
+ Visual Evidence 86.80 +8.10 6.18 -0.84 72.82 +2.10 71.25 +9.92 15.62
LLaVA-1.6-13B 85.60 - 8.49 - 74.17 - 73.61 - 13.68
+ Visual Evidence 90.43 +4.83 7.45 -1.04 79.55 +5.38 73.25 -0.36 12.60
Qwen-VL-Max (API) 87.90 - 6.11 - 83.79 - 63.39 - 11.13
+ Visual Evidence 90.66 +2.76 6.79 +0.68 83.97 +0.18 75.81 +12.42 9.88

Table 15: The main results of other five models on POPE, AMBER and RPE dataset.

LVLM Existence Attribute State Number Relation
LLaVA-1.5 70.17 71.97 68.87 74.71 69.17
+ Visual Evidence 79.35 (+9.18) 75.85 (+3.88) 70.09 (+1.22) 86.68 (+11.97) 73.62 (+4.45)
LLaVA-1.6 79.85 70.10 62.45 83.54 41.17
+ Visual Evidence 80.95 (+1.10) 74.83 (+4.73) 68.53 (+6.08) 87.26 (+3.72) 67.43 (+26.26)

Table 16: Performance of five kinds of hallucination on AMBER, with and without visual evidence. Parentheses
indicate absolute improvement after incorporating VE.
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Figure 23: The effect of incorporating visual evidence
on the performance of LLaVA-1.5-7B across different
relation categories in RPE has been presented in this
figure.

mance level. This suggests that VE can partially
bridge the gaps between LVLMs of varying ver-
sions and capabilities. The remaining performance
gap will likely need to be addressed with stronger
VE and more advanced LVLMs.

G More Experiment Results

G.1 More Results on POPE

More quantitative results on POPE COCO-Popular
and COCO-Random are shown in Tab. 17. The
results also indicate that the incorporation of visual
evidence leads to significant enhancements in all
models across both two datasets, providing further
validation of the efficacy of our method.

Model
POPE

COCO-Popular
POPE

COCO-Random

Acc. ∆ Acc. ∆

MiniGPT-4 74.10 - 81.27 -
+ Visual Evidence 81.00 +6.90 89.93 +8.66

Qwen-VL-Chat 86.80 - 89.52 -
+ Visual Evidence 90.13 +3.33 91.20 +1.68

LLaVA-1.5-7B 85.83 - 90.41 -
+ Visual Evidence 90.80 +4.97 93.02 +2.61

LLaVA-1.5-13B 84.53 - 88.28 -
+ Visual Evidence 90.40 +5.87 93.33 +5.05

LLaVA-1.6-7B 88.96 - 91.58 -
+ Visual Evidence 92.03 +3.07 93.57 +1.99

LLaVA-1.6-13B 89.23 - 91.99 -
+ Visual Evidence 91.67 +2.44 93.09 +1.10

MiniGPT-4-v2 81.27 - 89.24 -
+ Visual Evidence 87.53 +6.26 92.89 +3.65

Table 17: More results on POPE COCO-Popular and
COCO-Random.
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G.2 Additional Results on MMHal-Bench and
GPT-4o Assisted Hallucination
Evaluation

We conduct additional experiment on MMHal-
Bench (Sun et al., 2023) and GPT4-o assisted eval-
uation. The results are shown in the Tab. 18. For
GPT4-o assisted evaluation, we randomly sample
50 images from the COCO validation dataset for
evaluation following Leng et al. (2023). We for-
mulate prompts and input images into GPT-4o, ac-
companied by two responses of models with and
without visual evidence. The evaluation of GPT-
4o encompasses two dimensions: correctness and
detailedness. Through the overall metrics, we can
observe that there is a certain degree of improve-
ment compared to the baseline after incorporating
visual evidence.

G.3 Ablation of Visual Models

G.3.1 Performance Correlation of LVLM and
Small Models

In Fig. 24, we demonstrate the performance
changes of LLaVA-1.5 after incorporating visual
evidence from small visual models with varying ca-
pabilities. Overall, as the performance of the small
visual model increases, so does the performance of
LLaVA-1.5, showing a positive correlation. How-
ever, when the performance of the small visual
model exceeds 40.0, the gains in LLaVA-1.5’s per-
formance become marginal and a saturation trend
begins to appear. This implies that there is a limit
to the effectiveness of a certain type of evidence.
At this point, it may be more valuable to explore
new types of visual models to gather new kinds of
evidence, e.g., the ones with relations, attributes
or other detailed descriptions. These findings sug-
gest that a highly proficient capable visual model
is not a prerequisite for our method and small vi-
sual model with decent performance can greatly
mitigate hallucinations of LVLM. As the visual ev-
idence produced by small visual model serves as
complementary information for LVLM, the preci-
sion of the compact visual model takes precedence
over its recall due to the robustness and its capacity
of large models to synergistically and adaptively
integrate parametric knowledge with contextual ex-
ternal knowledge (Neeman et al., 2023).
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Figure 24: The performance correlation between LVLM
and small visual models. Specifically, the metric used
to evaluate the smaller visual models’ performance is
the mAP on the COCO 2017 validation set. The perfor-
mance of LVLM is the accuracy on POPE.

G.4 Discussion about the Effect of the
Number of Model Parameters

Our discussion considers two aspects: the number
of parameters of the LVLMs and the small visual
models.

The number of the model parameters of
LVLM: In Tab. 19, we present the performance of
LVLMs from the same LLaVA series with different
parameter sizes on POPE. From these results, it
can be observed that a larger model size does not
necessarily lead to better performance. For exam-
ple, LLaVA-1.5-13B performs worse than LLaVA-
1.5-7B. However, models from newer iterations
in the series generally achieve significantly better
performance due to the use of more extensive and
higher-quality data, such as the LLaVA-1.6 series
compared to the LLaVA-1.5 series. Additionally,
we observe that our method delivers greater im-
provements for models with larger parameter sizes
(e.g., the gain on LLaVA-1.5-13B is larger than
that on LLaVA-1.5-7B). This phenomenon can be
attributed to the stronger understanding capabilities
of the larger language model component, which al-
lows it to make better use of the provided visual
evidence for predictions.

The number of the model parameters of small
visual model: Tab. 20 illustrates the performance
variation of LLaVA-1.5 combined with our method
when using small visual models of different param-
eter sizes, showing a positive correlation. How-
ever, when the parameter size of the small visual
model exceeds 40M, the performance gains be-
come marginal, indicating a saturation trend. This
suggests a limit to the effectiveness of a certain
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Model MMHal-Bench GPT-4o Assisted Hallucination Evaluation

Score ↑ Hallucination Rate ↓ Correctness ↑ Detailedness ↑
LLaVA-1.5-7B 2.00 0.60 5.20 5.82
+ Visual Evidence 2.10 0.56 5.78 5.72
LLaVA-1.6-7B 2.73 0.49 6.02 6.88
+ Visual Evidence 2.78 0.46 6.48 6.62

Table 18: Evaluation results on MMHal-Bench and GPT-4o-assisted annotation.

LVLM LLM Size Performance LVLM LLM Size Performance
LLaVA-1.5-7B 7B 80.23 LLaVA-1.6-7B 7B 84.93
+ Visual Evidence 7B 87.43 (+7.20) + Visual Evidence 7B 89.43 (+4.50)
LLaVA-1.5-13B 13B 78.70 LLaVA-1.6-13B 13B 85.60
+ Visual Evidence 13B 86.80 (+8.10) + Visual Evidence 13B 90.43 (+4.83)

Table 19: Comparison of LLaVA-1.5 and LLaVA-1.6 models with different LLM sizes, with and without visual
evidence. Performance improvements after incorporating VE are shown in parentheses.

type of evidence. And in practical applications,
users can flexibly choose a suitable small model
based on their available computational resources.

G.4.1 Comparison between Open-set and
Close-set Visual Model

In Tab. 6 of the main text, we employ an open-
vocabulary detection model for ablation studies.
Compared to the closed-set detection model, the
visual evidence provided by the open-vocabulary
model result in a smaller gain (+4.4% vs. +7.77%).
However, the advantage of the open-vocabulary vi-
sual model lies in its open-ended object categories,
which allows it to handle and recognize a wider
and more comprehensive range of objects, such as
rare or uncommon objects, making it more suitable
for open-world scenarios. How to leverage higher-
quality open-vocabulary visual models to further
reduce hallucinations of LVLMs in open-world set-
tings is a direction in our future work.

G.4.2 Ablation of SGG Visual Models
In Tab. 21 we present the results on RPE of
Qwen-VL-Chat incorporated with different scene
graph generation models. This results demon-
strate that different scene graph generation models
(RelTR, MOTIFS and OpenPSG) have comparable
improvements on Qwen-VL-Chat. For example,
RelTR achieves 11.77% and OpenPSG achieves
12.92% improvement on Qwen-VL-Chat. The
gains brought by different scene graph generation
models to LVLM are within a stable range.

G.5 Ablation of Prompt Templates on POPE

To validate the robustness of visual evidence
prompting against input prompts, we evaluate

LLaVA-1.5-7B with various templates on object
evaluations in Tab. 22. The difference in accu-
racy is significant depending on the sentence. In
this experiment, the one with more reasoning style
achieves the best results. For example, the 5th
template adds a new prompt that tells the LVLMs
that the evidence may be irrelevant to the query.
In contrast, when we use misleading or irrelevant
templates, the performance does not improve. The
results indicate that the performance is improved
if the text is written in a way that encourages refer-
ring to the evidence. We also explore the enhance-
ment of the model through chain-of-thought (CoT)
prompt. It is observed that incorporating the CoT
prompt led to a measurable improvement in perfor-
mance. Moreover, the combination of our method
with the CoT prompt yielded a performance that
is superior by 2% compared to that reported in the
main experiment. Given that the purpose of this
paper is to verify the effectiveness of the method,
we select the simplest template.

G.6 Ablation of Prompt Templates on RPE
Tab. 23 shows the results of robustness study
against prompt template on relation hallucinations.
Similar to the ablation results on object halluci-
nation, the results on RPE also indicate that the
performance is improved if the prompt is written in
a way that encourages referring to the evidence. If
we use misleading or irrelevant prompt templates,
the performance fluctuates around the baseline.

G.7 More Discussion about the Ablation in
Section 5.2.

There are two main reasons for using random im-
ages: (1) Ensuring that the distribution of visual
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LVLM Visual Model Parameters Param Ratio (Small / Large) Accuracy (%)

LLaVA-1.5-7B

– – – 80.23
yolos-tiny 5.7M 0.08% 84.13
yolos-small 22.1M 0.32% 85.50
detr-resnet-50 41M 0.59% 87.50
detr-resnet-101 60M 0.86% 87.43
DINO-4scale-swin 218M 3.11% 88.00

Table 20: Impact of different small visual models on the performance of LLaVA-1.5-7B. The parameter ratio is
computed as the size of the small visual model divided by that of the LLM in LVLM.

LVLM Visual model Acc.
Model name mAP (%)

Qwen-VL-Chat

- - 64.08
RelTR 18.9 75.85

MOTIFS 20.0 76.89
OpenPSG 28.4 77.00

Table 21: Relation hallucination results of Qwen-VL-
Chat incorporating visual evidence from different scene
graph generation models, i.e. RelTR (Cong et al., 2023),
MOTIFS (Zellers et al., 2018) and OpenPSG (Yang
et al., 2022). The Recall@20 on PSG benchmark of
different visual models is also reported.

inputs does not change significantly: The use
of random images serves as a controlled variable
approach. As blank images contain little to no in-
formation and are rarely encountered during the
model’s training process. By using random images,
we can study the problem under conditions where
the distribution of image inputs remains relatively
unchanged. Furthermore, we observed that when
blank images are used, the model’s attention to the
image is nearly zero, leading it to focus primarily
on the text. Consequently, results obtained with
random images are likely to be more reasonable.
(2) Avoiding zero-input bias: Blank images may
be interpreted by the model as lacking visual in-
formation, potentially triggering default processing
pathways or special mechanisms within the model.
This can introduce confounding variables that af-
fect the results. In contrast, random images can
mitigate this bias.

We also observe differing behaviors between
LLaVA-1.5 and LLaVA-1.6 in Section 5.2. We
speculate that this is because LLaVA-1.6 encodes
more image tokens. Specifically, it adopts a dy-
namic high resolution image encoding approach,
simultaneously encoding both the low-resolution
version of the resized original image and multi-
ple sub-images splitted from the original image to
better perceive intricate details and reduce halluci-

nations. As a result, the image tokens encoded by
LLaVA-1.6 are significantly more numerous than
those of LLaVA-1.5, leading to a stronger focus on
image details in LLaVA-1.6.
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Visual Evidence Prompt Templates Acc. (%)
{question} 80.23
You can see {evidence} in the image.\n{question} 87.43
There are {evidence} in the image.\n{question} 86.33
{evidence} are existing in the image.\n{question} 86.03
The following object are existing in the image: {evidence}.\n{question} 88.67
There are {evidence} in the image.\n Question: {question}\n Please answer
the question use the image information and context information. If there is no
relevant information in the provided context, try to ignore the context and answer
yourself.

89.97

{question} Let’s think step by step. 83.05
You can see evidence in the image.\n{question} Let’s think step by step. 89.57
It’s a beautiful day.\n{question} 78.20
This is a full black image.\n{question} 79.93

Table 22: Robustness study of LLaVA-1.5-7B against prompt template measured on POPE.

Visual Evidence Prompt Templates Acc. (%)
{question} 61.92
Evidence: There are {evidence} in the image.\n Let’s refer to the evidence and
then answer the following question.\n{question} 66.42

Evidence: You can see {evidence} in the image.\n Let’s considering the evidence
and then answer the following question.\n{question} 68.00

Evidence: You can see {evidence} in the image.\n{question} According to the
image and evidence, the answer is 66.62

You can see {evidence} in the image.\n Then answer the question based on what
you see: {question} 71.00

It’s a beautiful day.\n{question} 62.08
This is a full black image.\n{question} 62.42

Table 23: Robustness study of LLaVA-1.5-7B against template measured on RPE.
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