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Abstract

Despite the remarkable capabilities of large
language models (LLMs) in natural language
understanding and reasoning, they often dis-
play undesirable behaviors, such as generat-
ing hallucinations and unfaithful reasoning. A
prevalent strategy to mitigate these issues is
the use of reflection, which refines responses
through an iterative process. However, while
promising, reflection heavily relies on high-
quality external feedback and requires itera-
tive multi-agent inference processes, thus hin-
dering its practical application. In this paper,
we propose Meta-Reflection, a novel feedback-
free reflection mechanism that necessitates
only a single inference pass without external
feedback. Motivated by the human ability to
remember and retrieve reflections from past
experiences when encountering similar prob-
lems, Meta-Reflection integrates reflective in-
sights into a codebook, allowing the histori-
cal insights to be stored, retrieved, and used
to guide LLMs in problem-solving. To thor-
oughly investigate and evaluate the practicality
of Meta-Reflection in real-world scenarios, we
introduce an industrial e-commerce benchmark
named E-commerce Customer Intent Detec-
tion (ECID). Extensive experiments conducted
on both public datasets and the ECID bench-
mark highlight the effectiveness and efficiency
of our proposed approach. Project is avail-
able at https://github.com/DCDmllm/Meta-
Reflection.

1 Introduction

Large Language Models (LLMs) (Achiam et al.,
2023; Yang et al., 2024; Dubey et al., 2024) have
demonstrated exceptional proficiency in diverse
natural language processing tasks, e.g., general lan-
guage understanding (Wei et al., 2022a), genera-
tion (Pu and Demberg, 2023), and reasoning (Wei
et al., 2022b; Yao et al., 2024). However, recent
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(b) Meta-Reflection
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Figure 1: Illustration of different reflection mechanisms.
(a) Vanilla reflection requires multi-agent inference
and external feedback. (b) Meta-Reflection achieves
feedback-free reflection in a single inference pass.

quantitative analyses revealed that contemporary
frontier LLMs frequently exhibit undesirable and
inconsistent behaviors, including unfaithful rea-
soning (Turpin et al., 2024) and the production
of seemingly plausible yet inaccurate hallucina-
tions (Rawte et al., 2023), especially when apply-
ing for intricate tasks. Such flawed outputs sig-
nificantly undermine trust in LLMs and pose sub-
stantial obstacles to their widespread adoption in
real-world applications.

The undesirable phenomenon of LLMs is some-
what similar to human problem-solving, i.e., we
humans do not always generate the best answer on
our first try in complex real-life scenarios. While
dealing with complex problems, individuals has the
capacity to actively refine their answers through a
cycle of trial, inspection and correction (Pan et al.,
2023). This capacity called Reflection, enables
us to perform better than machines in high-level
reasoning and would be the most precious capac-
ity for modern AI. To simulate this ability, LLMs’
Reflection (Madaan et al., 2024; Shinn et al., 2023)
is devised to mitigate the flawed outputs of LLMs,
which utilizes feedback from external sources (e.g.,
the environment or other LLMs) to prompt the
models to adapt their responses. This approach,
as shown in Figure 1(a), enables the models to
iteratively improve their performance by incorpo-
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rating new information and adjusting their outputs
based on external input, thereby enhancing their
accuracy and reliability over time. Upon reflec-
tion, however, contemporary approaches heavily
rely on high-quality external feedback or ground-
truth golden labels (Huang et al., 2024; Dou et al.,
2024), which are often unavailable during inference
scenarios. Besides, reflection typically requires it-
erative multi-agent inference processes (Du et al.,
2023), which are resource-intensive. These afore-
mentioned issues significantly constrain the practi-
cal deployment of LLMs in real-world scenarios.

In this paper, we propose Meta-Reflection, a
novel reflection mechanism that operates without
external feedback and requires only a single in-
ference pass. Drawing inspiration from human
cognitive processes (Kolodner, 1992), where indi-
viduals leverage past experiences and reflections to
address similar questions without additional trials,
we introduce a learnable meta-reflection codebook
to store and retrieve reflective insights, as shown
in Figure 1(b). During optimization, reflections
are constructed using the vanilla reflection mecha-
nism and integrated into the meta-reflection code-
book. At inference, question-specific insights are
retrieved from the codebook to guide the LLM in
solving problems. This method enables LLMs to
produce high-quality responses in a single pass,
effectively mimicking how humans utilize prior
experiences in analogous situations. Extensive ex-
periments are conducted with open-source LLMs
on diverse benchmarks, including programming,
mathematical reasoning, and customer intent detec-
tion in E-commerce Intelligent Customer Service
(ICS) for industry-specific scenarios. To evaluate
our method in the ICS domain, we introduce E-
commerce Customer Intent Detection (ECID), a
new Chinese dataset designed to identify users’
core intents, critical for enhancing service quality.
Results across domains validate the efficiency and
effectiveness of our approach. Key contributions
of this work include:

• We propose Meta-Reflection, an innovative ap-
proach that achieves reflection in a single pass
without iterative trials and feedback through
well-designed codebook-based storage and re-
trieval mechanisms.

• We present a new dataset for E-commerce
Customer Intent Detection (ECID) in the intel-
ligent customer service domain, comprising
1,170 cases from real-world application.

• Extensive experiments across various domains
and models demonstrate the effectiveness and
robustness of our proposed method.

2 Method

In this section, we first present the process of LLM-
based reflection generation in Section 2.1. Next,
we describe our proposed implicit feedback-free re-
flection approach in Section 2.2. Subsequently, we
introduce the concept of adaptive meta-reflection
alignment in Section 2.3. Finally, the overall op-
timization stage and inference stage are outlined
in Section 2.4. The pipeline of Meta-Reflection is
illustrated in Figure 2.

2.1 LLM-based Reflection Generation
Formally, consider a dataset U = {(x, y)}Ni=1,
where x represents a question and y represents its
corresponding answer. An actor LLM agent M
is used to generate an initial output ŷact = M(x).
However, this process may lead to unfaithful rea-
soning or hallucination (Pan et al., 2023). To ad-
dress these issues, reflection methods (Shinn et al.,
2023; Madaan et al., 2024) propose leveraging
feedback from external environment or golden la-
bels (Huang et al., 2024) to refine the initial out-
put ŷact. This feedback, denoted as e = E(x, ŷact)
where E represents the environment, provides com-
prehensive assessment of the initial output. For
instance, in programming tasks, feedback typi-
cally includes interpreter information or execution
results, while for mathematical problems, it in-
volves comparing outputs against correct answer y.
Based on the feedback e, a reflector LLM agent
R generates reflections r = R(x, e), which guide
the actor model M to produce refined responses
ŷref = M(x, r). As shown in Figure 2(a), this
iterative process of generation, reflection, and re-
finement aims to enhance the quality and accu-
racy of the actor model M’s outputs, mitigat-
ing potential errors and improving overall perfor-
mance (Pan et al., 2023). Throughout the reflec-
tion generation process, we systematically curate
a new dataset Dt = {(x, r, ŷref)}N ′

i=1 containing
reflection-question-answer triplets. Details and cor-
responding prompts are provided in the Appendix.

2.2 Implicit Feedback-free Reflection
As discussed in Section 1, reflection methodologies,
while promising, are limited by their reliance on ex-
ternal feedback (Huang et al., 2024) and computa-
tionally intensive multi-agent inference processes,
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Figure 2: Overview of the Meta-Reflection framework: (a) LLM-based reflection generation through iterative
processes; (b) Implicit feedback-free reflection, storing and retrieving reflective insights in a codebook; (c) Adaptive
Meta-Reflection Alignment, incorporating reflective insights into the codebook.

hindering practical deployment. Inspired by the
adage "One never falls into the same ditch twice,"
which suggests that people learn from past mis-
takes without repeated feedback, we propose im-
plicit feedback-free reflection. As shown in Figure
2(b), this approach uses a learnable meta-reflection
codebook to store and retrieve reflective insights,
enabling efficient, feedback-free inference.

Meta-Reflection Codebook. The meta-
reflection codebook consists of implicit reflective
units P ∈ RK×C , where K and C denote
codebook length and feature dimension, respec-
tively. The question x serves as the query to
retrieve the relevant reflective units from the
codebook. Previous studies have demonstrated that
intermediate layer features can provide sufficient
preliminary understanding of input samples (Xin
et al., 2020; Zhang et al., 2024b). Leveraging this
insight, we utilize query representations from inter-
mediate LLM layers, which contain rich semantic
information for effective retrieval. Specifically, we
position the meta-reflection codebook at the L-th
layer (0 < L < N ), where N is the total layers
of the LLM, serving as a repository of reflective
insights. To retrieve relevant reflective insights,
the query is processed through the initial L layers,

transforming it into hidden states HL
query. We

subsequently employ mean pooling Pmean to derive
sentence-level representation as follows:

h = Pmean(H
L
query) ∈ R1×C (1)

The representation of the query is utilized to com-
pute relevance score through:

s = σ(
g(h)f(P T )√

K
) ∈ R1×K , (2)

where σ denotes the softmax function, and g(·)
and f(·) represent transformation functions imple-
mented as two-layer MLPs, which serve to stabilize
the training process (Liu et al., 2022). The result-
ing score s quantifies the relevance between the
question and reflective units from codebook, with
higher scores indicating more applicable reflective
units for the given query. Based on the score s,
we select the top-k relevant reflection units from
the codebook to form the sequence P̂ref ∈ Rk×C ,
maintaining their relative positions in the codebook.
The concatenated sequence {HL

query; P̂ref} is fed
into the remaining (N − L) layers, incorporating
question-specific reflective insights that guide the
LLM’s solution approach and enhance its perfor-
mance. Notably, during the training phase, only
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the meta-reflection codebook is tunable while the
backbone model remains frozen.

Sampling Strategy. To address the non-
differentiable top-k function that impedes gradient
back-propagation during training, and to enhance
the sampling diversity, we employ straight-through
Gumbel-Softmax (Jang et al., 2017; Bengio et al.,
2013) to derive the sampling process:

ŝ = σ(log(s) + ϵgumbel) ∈ R1×K ,

I = 1i∈topk(ŝ) − sg[ŝ] + ŝ ∈ R1×K , (3)

where ϵgumbel ∈ R1×K represents the Gumbel
noise, sg[·] denotes the stop gradient operator
and 1i∈topk(ŝ) indicates whether an index belongs
to the top-k indices. The resulting indicator vec-
tor I identifies the selected reflective units. This
strategy ensures both differentiability during train-
ing and diverse sampling of reflective units.

2.3 Adaptive Meta-Reflection Alignment

After acquiring the dataset Dt as outlined in
Section 2.1, our objective is to effectively lever-
age the information encapsulated within reflec-
tion r. As depicted in Figure 2(c), we employ
a same frozen LLM but with different input as the
teacher model Mref, to process the input sequence
{x, r} and extract the hidden states for each layer,
{P l

que,P
l
ref}Nl=1, where P l

que and P l
ref denote the

hidden states of query and reflection sequences, re-
spectively. The reflective units selected from the
codebook are integrated into the final N−L layers,
yielding {P̂ l

ref}Nl=L, with the purpose of aligning
{P l

ref}Nl=L and thereby embedding valuable infor-
mation into the meta-reflection codebook. How-
ever, the dimensional variations and semantic mis-
alignment between the ground-truth reflection P l

ref
and the reflective units P̂ l

ref pose challenges for
precise alignment between these sequences. To
overcome this, we employ the optimal transport
(OT) algorithm (Rubner et al., 2000; Liu et al.,
2020; Zhang et al., 2020), which applies the earth
mover’s distance (EMD) to gauge the semantic dis-
crepancy between these two sequences.

OT for Meta-Reflection Alignment. The EMD
quantifies the distance between two discrete dis-
tributions as the minimum cost of transporting
piles of dirt from "suppliers" to "demanders" (Zhu
et al., 2022), framed as a linear optimization prob-
lem. Specifically, at the l-th (L < l < N)

layer, we measure the distance required to trans-
form P̂ l

ref ∈ Rk′×C to P l
ref ∈ Rk×C . Let each

unit p̂i ∈ P̂ l
ref possesses a total of ri quantities

to transport, and each unit pj ∈ P l
ref requires cj

quantities, forming the transport prototype:

Π(r, c) = {Γ ∈ Rk′×k|Γ1k = r,ΓT1k′ = c},
(4)

where r ∈ Rk′ and c ∈ Rk are marginal weights
for transportation matrix Γ respectively. 1 is all-
one vector with corresponding size, and Π(r, c) is
the set of all possible distributions whose marginal
weights are r and c.

We define the cost per unit transported from sup-
plier token p̂i to demander token pj as:

Dij = 1− p̂T
i pj

||p̂i||||pj ||
, (5)

where tokens with similar representations incur
lower transport costs. Given this, we can define the
linear optimization problem as follows:

ROT(r, c) = min
Γ∈Π(r,c)

k′∑

i

k∑

j

DijΓij (6)

However, The exact minimization over Γ is
solved in polynomial time and can be computa-
tionally intractable (Arjovsky et al., 2017; Genevay
et al., 2018). Therefore, to find the optimal Γ̃, we
utilize Sinkhorn Algorithm (Cuturi, 2013) as an
efficient approximation method. The detailed al-
gorithm and the optimization process are shown in
Appendix B. With optimal transportation matrix Γ̃,
the corresponding alignment loss for layer l is:

Ll
OT = ⟨Γ̃,D⟩F, (7)

and the overall alignment loss is calculated as the
mean across the last N − L layers:

LOT =

∑N
l=L Ll

OT
N − L

(8)

The alignment loss quantifies the semantic
gap (Li et al., 2020) between the reflective units
from the meta-reflection codebook and the tex-
tual ground-truth reflection. In our scenario,
minimizing LOT encapsulates textual reflections
into reusable reflective insights, enhancing the
model M’s capacity to handle complex tasks and
improve overall performance.
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2.4 Optimization and Inference
We delineate the overall optimization and inference
stages as follows:

Progressive Optimization Stage. We employ
a progressive optimization paradigm to enhance
model performance. Initially, we utilize LOT
to align the reflective units from codebook with
ground truth reflections, infusing reflective infor-
mation into the codebook of the model M. Sub-
sequently, we leverage labels from dataset Dt to
fine-tune the codebook using the vanilla supervised
learning loss LSFT. This optimization paradigm
ensures stable training progression and effective
incorporation of reflective information, enhancing
the model’s ability to capture and utilize this knowl-
edge while maintaining overall learning stability.

Inference Stage. During the inference stage, the
input question x serves as query to retrieve perti-
nent reflective units from the meta-reflection code-
book, guiding the LLM in addressing complex
tasks. Leveraging the characteristics of causal lan-
guage models, this inference stage can also utilize
KV caching (Pope et al., 2023) to mitigate compu-
tational overhead. Detailed steps of the inference
process are provided in Appendix G.

3 Experiments

In this section, we first introduce the datasets in
Section 3.1, followed by the experimental setup in
Section 3.2. The main results are presented in Sec-
tion 3.3, while inference efficiency is evaluated in
Section 3.4. Section 3.5 assesses the cross-domain
transferability of our method. Sensitivity analy-
sis, ablation study, and visualization are covered
in Section 3.6, 3.7, and 3.8, respectively. A case
study and training efficiency analysis are provided
in Appendix J and H.

3.1 Datasets
We assess our method on diverse datasets across
different domains: programming (i.e., MBPP, Hu-
manEval), mathematical reasoning (i.e., GSM8K),
and E-commerce customer intent detection (i.e.,
ECID). Details can be found in Appendix C and D.

Programming. We evaluate our approach
on two Python code generation benchmarks
(MBPP (Austin et al., 2021) and HumanEval (Chen
et al., 2021)), using Pass@k metric to measure the
percentage of problems that successfully pass all
unit tests within k attempts (Dou et al., 2024).

Mathematical Reasoning. For mathematical rea-
soning task, We employ the Grade School Math 8K
(GSM8K) dataset (Cobbe et al., 2021) for evaluat-
ing Meta-Reflection. We utilize the Exact Match
(EM) metric between the generated response and
the correct answer (Madaan et al., 2024).

E-commerce Customer Intent Detection (ECID).
Intelligent Customer Service (ICS) in e-commerce
is a key application of large language models (Ko-
lasani, 2023). However, no public dataset exists to
evaluate their performance in this area. To address
this, we introduce the E-commerce Customer Intent
Detection (ECID) dataset, featuring 1,170 metic-
ulously cleaned and labeled Chinese-language en-
tries from Taobao customer service interactions.
Details of the ECID can be found in Appendix C.

3.2 Experimental Setup

Models. We evaluate Meta-Reflection across var-
ious open-source LLMs. For the actor mod-
els, we utilize Qwen-2-7B-Instruct (Yang et al.,
2024), Llama-3.1-8B-Instruct (Dubey et al.,
2024), and CodeLlama-7B-Instruct (Roziere
et al., 2023). Qwen-2-72B-Instruct serves as the
reflector model.

Baselines. To evaluate the effectiveness of our
proposed method, we compare it with three types
of baselines: Common reasoning: including Zero-
Shot and Few-Shot approaches. PEFT meth-
ods: Adapter-based approaches such as LoRA (Hu
et al., 2021) and Llama-Adapter (Zhang et al.,
2023), as well as Prompt-based methods like P-
Tuning (Liu et al., 2022). Reflection-based meth-
ods: Re-ReST (Dou et al., 2024) for reflection-
enhanced training. Additionally, we implement
Reflection-RAG, which generates reflections on
training data and employs Retrieval-Augmented
Generation (RAG) (Gao et al., 2023) during infer-
ence to select the most relevant question-specific
reflections. The details are in the Appendix E.

3.3 Main Results

Tables 1, 2, and 3 present the experimental results
across three distinct domains: programming, math-
ematical reasoning, and ECID.

Our empirical investigation reveals fundamental
limitations in base LLMs’ domain-specific capa-
bilities, as demonstrated by CodeLlama’s modest
40.4% performance on MBPP under the Pass@1
metric. This deficiency primarily stems from these
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MBPP HumanEval

LLaMA-3.1 CodeLlama LLaMA-3.1 CodeLlama

Methods ref Pass @ 1 Pass @ 3 Pass @ 1 Pass @ 3 Pass @ 1 Pass @ 3 Pass @ 1 Pass @ 3

Zero-Shot ✗ 58.8 68.0 40.4 49.2 62.7 68.3 41.0 47.8
Few-Shot ✗ 59.6 68.6 41.4 50.6 63.4 70.8 42.2 48.5

LoRA ✗ 60.4 69.0 41.6 54.2 62.1 72.1 43.5 52.8
P-Tuning ✗ 59.4 68.8 42.8 55.6 62.1 73.3 42.9 52.2
Llama-Adapter ✗ 59.6 68.2 45.4 56.0 62.7 73.3 42.9 53.4

Re-ReST ✓ 60.2 69.6 42.4 55.2 63.4 73.9 42.2 53.4
Reflection(RAG) ✓ 58.6 67.2 41.2 51.2 62.7 67.1 35.4 46.6

Ours ✓ 63.4 70.4 46.8 57.6 64.6 75.2 45.3 55.9

Table 1: The experimental results on two programming benchmarks: MBPP (Austin et al., 2021) and Hu-
manEval (Chen et al., 2021) datasets. We report the performance using Pass@1 and Pass@3 metrics. Here,
ref indicates the utilization of reflection mechanism. The boldface and underline fonts denote the best and second-
best performance, respectively.

Methods ref LLaMA-3.1 Qwen-2

Zero-Shot ✗ 78.4 78.1
Few-Shot ✗ 80.4 79.5

LoRA ✗ 80.7 80.0
P-Tuning ✗ 79.4 79.6

Re-ReST ✓ 82.4 84.8
Reflection(RAG) ✓ 77.7 76.7

Ours ✓ 85.3 86.7

Table 2: The experimental results on a mathematical
reasoning benchmark: GSM8K (Cobbe et al., 2021).

Methods ref LLaMA-3.1 Qwen-2

Zero-Shot ✗ 83.5 89.8
Few-Shot ✗ 85.5 90.8

LoRA ✗ 86.9 91.1
P-Tuning ✗ 85.5 90.9

Re-ReST ✓ 85.5 90.9
Reflection(RAG) ✓ 81.8 86.6

Ours ✓ 89.7 92.9

Table 3: The experimental results on ECID dataset in
E-commerce domain.

models’ insufficient domain knowledge and ca-
pabilities. While tuning with PEFT methods like
LoRA demonstrate potential for improvement, the
gains remain incremental—yielding mere 1.2% and
0.2% improvements in Zero-Shot and Few-Shot set-
tings respectively. This suggests that current super-
vised learning paradigms, while domain knowledge
internalization during finetuning, fail to address
the critical need for guidance during inference.

Recent advances in reflection-based methodolo-
gies, particularly Re-ReST, have shown promise
by implicitly incorporating reflective guidance
through refined self-training data, evidenced by
LLaMA-3.1’s 1.7% performance improvement
over LoRA on GSM8K. However, these ap-
proaches still neglect the crucial aspect of ex-
plicit, granular guidance during the inference
phase. Although leveraging RAG-retrieved reflec-
tions as explicit guidance appears promising, em-
pirical results on benchmarks like GSM8K and
ECID demonstrate suboptimal performance even
compared to common reasoning approaches. This
degradation occurs because retrieved reflections,

though relevant to source problems, often lack pre-
cise applicability to similar cases and may in-
troduce noise, particularly in mathematical tasks
requiring fine-grained guidance. Comprehensive
case studies supporting these findings are presented
in Appendix J. Our proposed methodology ad-
dresses these limitations by providing explicit, fine-
grained reflective guidance during inference, signif-
icantly outperforming existing approaches across
all baseline metrics.

3.4 Inference Efficiency Analysis

Methods First Token Latency (↓) Overall (↓)
Retrieve LLM Total

Zero-shot − 149 ms 149 ms 5380 ms
Few-Shot − 545 ms 545 ms 5841 ms
Reflection(RAG) 642 ms 309 ms 951 ms 6114 ms

Ours 93 ms 153 ms 246 ms 5593 ms

Table 4: We analyze inference efficiency on the ECID
dataset by measuring first token latency and total gen-
eration time (Overall), with the first token latency split
into retrieval and LLM layer processing times.
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We evaluate the inference efficiency of Meta-
Reflection, with results presented in Table 4. Com-
pared to existing reflection-based methods like
Reflection-RAG that require separate encoders and
knowledge base retrieval, our approach leverages
LLM’s intermediate layer representations for re-
trieval. Furthermore, RAG-based methods store
knowledge in a discrete format, necessitating a
large-scale knowledge base. In contrast, Meta-
Reflection captures knowledge and reflective in-
sights in a dense format, enabling the construc-
tion of a smaller, more compact knowledge base,
thereby reducing computational overhead. Our
method achieves comparable efficiency to common
reasoning approaches while maintaining the ben-
efits of reflection-based reasoning, demonstrating
its practicality for real-world applications.

3.5 Cross-domain Transferability Analysis

Domains Zero-Shot LoRA Ours
Source Target

Math Programming 58.8 59.8 60.6
Programming ECID 83.5 84.1 84.7
Programming Math 78.4 80.4 81.2

Table 5: Experimental results of transferability analysis.

We further conduct transferability analysis. The
results, as presented in Table 5, demonstrate the
robust transferability of Meta-Reflection across di-
verse scenarios.This is primarily attributed to dif-
ferent domains often share common knowledge,
enabling the transfer of reflective insights. Our
method effectively captures, stores, and leverages
these shared insights, significantly enhancing per-
formance during adaptation to new domains.

3.6 Sensitive Analysis

We perform sensitivity analysis on three critical
hyper-parameters of Meta-Reflection: position and

number of inserted layers, codebook size, and num-
ber of reflective units. The experimental results are
presented in Figure 3 and Table 6.

Position and Number of Inserted Layers. The
positioning of the meta-reflection codebook layer
critically influences the balance between retrieval
quality and reflective information integration. Anal-
ysis from Figure 3 (Left) reveals that early-layer
insertion results in insufficient semantic query en-
coding, while late-layer placement constrains the
processing of retrieved reflective components. Our
empirical results demonstrate that an intermediate-
posterior position (e.g., layer 26) achieves optimal
performance.

Furthermore, Table 6 evaluates the impact of
varying the number of inserted layers. It shows that
inserting the codebook into a single layer, as in the
original method, outperforms multi-layer insertion.
Multi-layer insertion introduces instability by re-
trieving unprocessed reflective units at each layer,
limiting performance.

MBPP GSM8K

Single-layer Insertion (26) 63.4 85.3

Multi-layers Insertion
Layers 26-32 60.6 83.2
Layers 26,28,30,32 61.2 83.8
Every Layer 58.8 80.1

Table 6: Experiments on single-layer and multi-layers
insertion strategies.

Codebook Size. The codebook size, which rep-
resents the total number of reflective units, deter-
mines the capacity of the codebook. As shown
in Figure 3 (Middle), we observe that a codebook
size of 1024 yields optimal performance. Smaller
sizes may lead to underfitting, while larger sizes
can result in a sparse codebook, potentially causing
training instability.
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mechanism described in Equation 8), and ‘Random
Sampling’ (random sampling units instead of retrieval).

Number of Reflective Units. As illustrated in
Figure 3 (Right), the optimal number of reflective
units varies proportionally with task complexity.
Notably, while base LLaMA-3.1 achieves a sub-
stantial 78.4% performance on GSM8K, the in-
herently more challenging MBPP dataset requires
additional reflective insights to provide compre-
hensive guidance. This observation underscores
the relationship between task complexity and the
requisite quantity of reflective support.

3.7 Ablation Study
In this section, we conduct a comprehensive abla-
tion study to evaluate the impact of various compo-
nents in Meta-Reflection.

As shown in Figure 4, the meta-reflection code-
book is highly effective in storing and retrieving re-
flective units that guide LLMs through the problem-
solving process. The analysis further reveals that
both the sampling strategy and meta-reflection
alignment mechanism are essential for maintaining
solution diversity and integrating reflective insights,
respectively, thus enhancing overall performance.
Additionally, random sampling of reflective units
significantly underperforms our original method,
likely due to the noise introduced by the randomly
selected units, which hinders performance.

3.8 Visualization
We visualize the selection frequency distribution
of reflective units within the meta-reflection code-
book. As shown in Figure 5, the selection patterns
of reflective units vary significantly. Notably, cer-
tain units exhibit higher selection frequencies, po-
tentially reflecting commonly applicable insights,
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Figure 5: Visualization of reflective unit selection fre-
quencies distribution in the ECID dataset. The x-axis
represents the unit indices, while the y-axis shows their
cumulative selection counts during inference.

whereas others are selected less frequently, suggest-
ing their specialized nature. Additional visualiza-
tion results are provided in Appendix K.

4 Related Work

4.1 Reflection for Large Language Models
Large language models (LLMs) (Achiam et al.,
2023; Yang et al., 2024; Dubey et al., 2024), de-
spite their exceptional performance, still exhibit
undesired behaviors such as unfaithful reasoning
(Turpin et al., 2024), hallucination (Rawte et al.,
2023), and toxic generation (Zhang et al., 2024a).
Reflection techniques (Pan et al., 2023; Shinn et al.,
2023; Madaan et al., 2024) address these issues
by utilizing feedback to guide LLMs in refining
their outputs. Details of reflection techniques is in
Appendix A.1.

4.2 Parameter-Efficient Fine-Tuning (PEFT)
PEFT methods enable adaptation of large pre-
trained models to downstream applications while
avoiding the computational costs of full parame-
ter fine-tuning (Hu et al., 2023; Zhu et al., 2024).
These methods can be broadly categorized into two
primary approaches: adapter-based and prompt-
based methods. Details of these methods is in
Appendix A.2.

5 Conclusion

In this paper, we introduce Meta-Reflection, a
novel feedback-free reflection mechanism that op-
erates with a single inference pass without requir-
ing external feedback. Our approach incorporates
reflective insights within a codebook structure, fa-
cilitating efficient storage, retrieval, and utilization
of historical insights to guide LLMs in problem-
solving tasks. To validate the practical applica-
bility of our method, we propose a new indus-
trial benchmark: E-commerce Customer Intent De-
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tection (ECID). Comprehensive experiments con-
ducted across diverse domains and the ECID bench-
mark demonstrate the effectiveness and efficiency
of Meta-Reflection.

6 Limitations

This work introduces Meta-Reflection, a novel
feedback-free reflection mechanism that operates
with a single inference pass without requiring ex-
ternal feedback. However, Meta-Reflection is pri-
marily applicable to parameter-accessible LLMs
(e.g., Qwen and LLaMA) and cannot be extended to
models where parameters are inaccessible through
API-only interfaces (e.g., ChatGPT and Claude).
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A Related Work

A.1 Reflection for Large Language Models

Large language models (LLMs) (Achiam et al.,
2023; Yang et al., 2024; Dubey et al., 2024; Lin
et al., 2025; Yuan et al., 2024), despite their ex-
ceptional performance, still exhibit undesired be-
haviors such as unfaithful reasoning (Turpin et al.,
2024), hallucination (Rawte et al., 2023), and toxic
generation (Zhang et al., 2024a). Reflection tech-
niques (Pan et al., 2023; Shinn et al., 2023; Madaan
et al., 2024) address these issues by utilizing feed-
back to guide LLMs in refining their outputs. For
instance, Self-Refine (Madaan et al., 2024) uses a
single LLM to generate, critique, and refine out-
puts, while Reflexion (Shinn et al., 2023) employs
memory mechanisms and LLM agents to reflect on
generations and feedback. Renze and Guven (2024)
demonstrated the effectiveness of various reflection
types across different domains. Nevertheless, re-
flection techniques often require high-quality ex-
ternal feedback or golden labels, typically unavail-
able during deployment (Huang et al., 2024; Dou
et al., 2024), and frequently involve multi-agent
inference processes, incurring significant computa-
tional costs. While Dou et al. (2024) incorporates
reflective information through self-training, its im-
plicit incorporation leads to suboptimal results. In
this work, we propose Meta-Reflection, which in-
corporates reflective information into a learnable
codebook, enhancing performance across various
tasks.

A.2 Parameter-Efficient Fine-Tuning (PEFT)

Parameter-Efficient Fine-Tuning (PEFT) methods
enable adaptation of large pretrained models to
downstream applications while avoiding the com-
putational costs of full parameter fine-tuning (Hu
et al., 2023; Wang et al., 2024; Zhu et al., 2025).
These methods can be broadly categorized into two
primary approaches: adapter-based and prompt-
based methods. Adapter-based methods intro-
duce additional trainable parameters to a frozen
pretrained model, with notable implementations
including LoRA (Hu et al., 2021) and Llama-
Adapter (Zhang et al., 2023). Prompt-based meth-
ods transform the discrete optimization of identi-
fying optimal hard prompts into a continuous opti-
mization problem using soft prompts, exemplified
by Prefix-Tuning (Li and Liang, 2021), Prompt-
Tuning (Lester et al., 2021), and P-Tuning (Liu
et al., 2022). In this work, we propose a lightweight

learnable codebook module capable of storing and
retrieving question-specific reflections, thereby en-
hancing LLM performance across diverse tasks.

B Sinkhorn Algorithm and Optimal
Transport

The vanilla optimization problem of optimal trans-
port, as formulated in Equation 6, aims to find
the optimal transportation matrix Γ̃. Neverthe-
less, the exact minimization over Γ̃ is generally
computationally intractable (Arjovsky et al., 2017;
Genevay et al., 2018; Li et al., 2020). To address
this, the Sinkhorn Algorithm (Cuturi, 2013) is uti-
lized to approximate Γ̃. Specifically, the algorithm
introduces a regularization term:

min
Γ∈Π(r,c)

⟨Γ,D⟩F +
1

λ
Γ(logΓ− 1)

︸ ︷︷ ︸
regularization term

, (9)

where ⟨, ⟩F denotes Frobenius inner product, and
λ is a hyper-parameter that controls the strength of
regularization.

With this regularization term, the optimal Γ̃ can
be approximated as:

Γ̃ = diag(v)Qdiag(u), (10)

where Q = e−λD, and v, u are two coefficient
vectors whose values can be iteratively updated as:

vt+1
i =

ri∑k
j=1Qijut

j

,

ut+1
j =

cj∑k′
i=1Qijv

t+1
i

(11)

The critical aspect then lies in determining the
marginal weights r and c, which control the to-
tal supplying and demanding units, respectively.
A larger weight indicates that the reflective unit
exhibits semantic similarity to the ground truth
reflection tokens. We define the weight as dot prod-
uct between its embedding and the mean pooling
embedding from the other set:

ri = max{p′T
i ·

∑k
j=1 pj

k
, 0},

cj = max{pT
j ·

∑k′
i=1 p

′
i

k′
, 0} (12)

After obtaining the approximated optimal trans-
portation matrix Γ̃, we can compute the loss as
defined in Equation 7.
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C E-commerce Customer Intent
Detection (ECID) Benchmark

In the domain of Intelligent Customer Service
(ICS) for e-commerce, effectively and efficiently
discerning customers’ core intentions when they
contact ICS for assistance is critical to enhancing
service quality (Cheng et al., 2024; Kolasani, 2023).
In this work, we introduce an industrial bench-
mark, named E-commerce Customer Intent Detec-
tion (ECID) to evaluate our proposed method. This
dataset is in Chinese, focusing on customer interac-
tions within major Chinese e-commerce platforms.
The following sections detail the construction of
this dataset and elaborate on its specific tasks.

Task. The primary objective of the ECID dataset
is to infer the core intention of customers seeking
ICS assistance, based on previous communication
records between customers and customer service
platforms, customer purchase histories, and order
information. The core intention refers to the cus-
tomer’s current concern or the problem they wish to
resolve. Specifically, each data point in the dataset
comprises input information from five fields:

• Customer Question. The specific issue or
obstacle encountered by the customer.

• Customer Request. Customer requirements,
encompassing all objectives or desired out-
comes expressed during interactions with the
ICS, sellers, and platform customer service
representatives, as well as any proactively ini-
tiated request.

• Solution. Proposals offered by the platform
or sellers to address the customer’s issue.

• Customer Attitude. The customer’s attitudes
towards the proposed solutions, as expressed
during communication.

• Processing status. PThe current state of the
customer’s submitted request.

ECID aims to match the aforementioned input
information with the most appropriate intention
from a predefined list. In real-world applications,
we categorize intentions into 36 distinct types, each
representing a specific issue customers seek to re-
solve. For the ECID dataset, a condensed list of
six intentions is provided, from which the most
relevant core intention must be selected. An illus-
trative example is presented in the accompanying
Figure 6.

Question:
1. ⽤户遇到的问题：1天前⽤户反馈收到的落地⾐
帽架质量太差，太薄。

2. ⽤户的诉求：1天前⽤户因质量问题申请退货退
款，⾦额为*元，29分钟前⽤户询问退货运费承
担者。

3. 平台或商家给出的解决⽅案：商家最初提出*元
的补偿⽅案，随后建议⽤户调整置物架看看，并
告知⽤户⼚家品控不同。在⽤户坚持退货后，商
家表示会加强品控并告知⽤户运费需要⾃⾏承担。

4. ⽤户对解决⽅案表达的态度：⽤户对商家最初*
元补偿的解决⽅案表示不满，并明确表示不接受，
坚持要退货。在商家告知需要⾃⾏承担运费后，
⽤户表示强烈不满，并表示将把实际情况反馈在
评价⾥，必要时请平台介⼊处理。

5. 处理状态：当前状态卖家已经同意退款，等待买
家退货，运费卖家承担。1天前发货包裹已签收。

诉求清单列表：['A 退运费', 'B 争议处理规则', 'C 预
约上⻔取件', 'D 退货款', 'E 填写退货快递单号', 'F 
投诉物流服务问题’]

Answer: A 

Figure 6: An example of the ECID dataset.

Data Processing. The ECID dataset is derived
from customer service system records of the
Taobao e-commerce platform, collected over a sin-
gle day. From this collection, we randomly sam-
pled 30,000 data points in an unbiased manner.
Each data point comprises information from vari-
ous sources, including customer-service represen-
tative chat logs, customer-seller communications,
customer order details, and ongoing request pro-
cessing records. We employed a fine-tuned LLM,
specifically Qwen2-7B-Instruct, to extract the
aforementioned five fields of information from the
diverse sources.

We initially applied a rule-based method to elimi-
nate incomplete or inconsistent data (such as newly
registered users without any purchase history), re-
sulting in approximately 4,000 refined data points.
Subsequently, we utilized GPT-4-turbo-128k and
Qwen2-72B-Instruct for data labeling. Using a
voting system, we selected the most appropriate
intention from a predefined list of 36 intentions,
along with five secondary matching intentions, to
create a set of candidate intentions and answers for
each data point. To ensure high data quality, we dis-
carded instances where the highest voting rate was
below 80%. We also implemented human evalua-
tion, randomly sampling and verifying the accuracy
of answers. This rigorous process yielded 1,170
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high-quality data points, each accompanied by a
Chain-of-Thought (CoT) reasoning process. The
dataset was partitioned into a 7:3 ratio for training
and testing.

We conducted data anonymization to remove
sensitive information from the dataset. Personal
identifiable information, including customer names,
addresses, and contact details, was redacted. Ad-
ditionally, all monetary values within the dataset
were masked using asterisks (*) to ensure confiden-
tiality.

D Public Datasets

We evaluate our method across three public
datasets spanning diverse domains: two program-
ming benchmarks (MBPP and HumanEval) and
one mathematical reasoning dataset (GSM8K).

Programming. For evaluating our method on
programming tasks, we utilize two Python code
programming benchmarks: MBPP (Austin et al.,
2021) and HumanEval (Chen et al., 2021). The
MBPP dataset consists of approximately 1,000
Python programming problems, while HumanEval
encompasses 161 problems, each accompanied by
comprehensive unit test cases. We adhere to the
official train-test split for MBPP, employing its
training set for model training. As HumanEval
provides only a test set, we use it exclusively for
evaluation purposes. Following Dou et al. (2024),
we employ the Pass@k metric, which quantifies the
percentage of problems where the model success-
fully passes all unit tests within k attempts. During
the code generation process, in line with previous
work by Roziere et al. (2023), the actor model is
provided with the unit test cases.

Mathematical Reasoning. For mathematical rea-
soning evaluation, we employ the Grade School
Math 8K (GSM8K) dataset (Cobbe et al., 2021),
a comprehensive benchmark containing approxi-
mately 8,000 grade school mathematics word prob-
lems. This dataset is particularly valuable due to
its linguistic diversity and high-quality annotations,
featuring detailed human-curated solution trajecto-
ries and precise answers for each problem (Madaan
et al., 2024). Following standard practices, we
strictly adhere to the official train-test split (7,473
for training, 1,319 for testing) in our experimental
setup. Performance is evaluated using the Exact
Match (EM) metric, which assesses the precise cor-
respondence between model-generated responses

and ground-truth answers (Madaan et al., 2024),
providing a rigorous measure of mathematical rea-
soning capabilities.

E Baselines

We evaluate our method against three categories
of baselines: Common Reasoning, Parameter-
Efficient Fine-Tuning (PEFT), and Reflection-
Based approaches. The specifics of these baseline
implementations are detailed below:

Common Reasoning Approaches. For common
reasoning approaches, we evaluate both Zero-Shot
and Few-Shot (2-shots) (Brown et al., 2020) strate-
gies. In both settings, we employ the Chain-
of-Thought (CoT) (Wei et al., 2022b) reasoning
methodology to facilitate structured generation pro-
cesses.

Parameter-Efficient Fine-Tuning (PEFT) Ap-
proaches. We implement three widely-adopted
PEFT methods for model tuning: LoRA (Hu et al.,
2021), P-Tuning (Liu et al., 2022), and Llama-
Adapter (Zhang et al., 2023). Through exten-
sive hyper-parameter grid search: For LoRA, we
augment the query, key, and value matrices with
adapter matrices of rank {8, 16}. For P-Tuning,
we experiment with prompt lengths of {16, 32, 64}
and implement the MLP-based re-parameterization
function (Liu et al., 2022). For Llama-Adapter, we
explore adapter lengths of {32, 64} and position
them within the final 15 layers of the LLM (Zhang
et al., 2023).

Reflection-Based Approaches. We implement
two reflection-based approaches as our primary
baselines:

Re-ReST (Dou et al., 2024) implements a self-
reflection mechanism to optimize self-training data
quality. The method operates in two phases: first
refining the training dataset through reflective in-
corporation, then conducting model fine-tuning on
the enhanced data. This approach enables implicit
integration of reflective insights, allowing for im-
proved performance during single-pass inference.
We employ their official implementation*, adapting
it to our experimental settings with corresponding
datasets and base LLMs.

Reflection-RAG implements a Retrieval Aug-
mented Generation (RAG) framework (Gao et al.,
2023; Peng et al., 2024) for reflection-based rea-
soning. The method stores reflections generated

*https://github.com/PlusLabNLP/Re-ReST
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from the training dataset as described in Section 2.1.
During inference, it retrieves relevant reflections
based on question similarity, leveraging the intu-
ition that similar questions often share comparable
solution strategies and hints. The retrieval process
consists of two phases for enhanced accuracy: First,
we employ BGE-m3†, a widely-adopted text embed-
ding model for RAG systems, to identify the top-6
similar question-reflection pairs. Subsequently, we
utilize BGE-reranker-v2-m3‡ to re-rank these can-
didates and select the reflection whose associated
question exhibits the highest relevance to the in-
put query. The selected reflection then serves as
guidance for the LLM’s problem-solving process.
To optimize retrieval efficiency, we cache question
embedding matrices in GPU memory, significantly
reducing retrieval latency.

F Implementations Details

Models. To evaluate our proposed approach, we
employ three widely used base LLMs as Ac-
tor LLMs: Qwen-2-7B-Instruct§ (Yang et al.,
2024), Llama-3.1-8B-Instruct¶ (Dubey et al.,
2024), and CodeLlama-7B-Instruct|| (Roziere
et al., 2023). Additionally, we utilize Qwen-2-72B-
Instruct** as the Reflector Model in our experi-
ments.

Implementations Details. In the reflection gen-
eration phase, we set a maximum of 4 iteration
steps, discarding data that fails to solve the prob-
lem correctly after 4 action-reflection loops. To
ensure certainty, we set the reflector LLM’s tem-
perature to 0, eliminating sampling variability.

For codebook tuning, we employ grid search to
identify optimal hyper-parameters across various
tasks. The codebook size is selected from {512,
1024}, positioned at either the last 3rd, 6th, or 9th
layer. The number of selected reflective units is
chosen from {16, 32, 64}.

We implement a progressive optimization
paradigm to enhance model performance. Dur-
ing meta-reflection alignment, we set the epoch
to either 1 or 2 with a learning rate of 1e-4. We
utilize the Sinkhorn Algorithm to approximate the

†https://huggingface.co/BAAI/bge-m3
‡https://huggingface.co/BAAI/bge-reranker-v2-m3
§https://huggingface.co/Qwen/Qwen2-7B-Instruct
¶https://huggingface.co/meta-llama/Llama-3.1-8B-

Instruct
||https://huggingface.co/meta-llama/CodeLlama-7b-

Instruct-hf
**https://huggingface.co/Qwen/Qwen2-72B-Instruct

transportation matrix, with 10 iterations to ensure
accurate approximation (details in Appendix B).

For supervised fine-tuning (SFT), we explore
either 2 or 3 epochs with learning rates selected
from {1e-4, 5e-5, 1e-5} for tuning.

All experiments are conducted on servers
equipped with Intel(R) Xeon(R) Platinum 8163
CPUs @ 2.50GHz and NVIDIA Tesla V100 GPUs.

G Inference Details

In this section, we outline the inference process
step by step, specifically for generating the first
output token:

First: The input question x is served as the input
and processed by the first L layers of the LLM
to generate a sequence of token representations,
denoted as HL

query = [qL1 , q
L
2 , ..., q

L
m] ∈ Rm×C ,

where m represents the sequence length and C
denotes the dimension.

Second: Mean-pooling Pmean is applied to
HL

query to derive the question representation h ∈
R1×C . This representation is used to retrieve k
relevant reflective units ri ∈ R1×C (token-level
representations enriched with reflective insights),
forming the sequence P̂ref = [r1, r2, ..., rk] ∈
Rk×C . The reflection sequence is then con-
catenated with the original sequence HL

query,
resulting in the reflective-enhanced sequence
[qL1 , q

L
2 , ..., q

L
m, r1, r2, ..., rk] ∈ R(m+k)×C .

Finally: The reflective-enhanced sequence is
processed through the remaining N − L layers to
generate the first output token.

It is important to note that the above process is
executed only once at the generation of the first
token. After the initial token is generated, the sub-
sequent token generation follows the same process
as a standard causal language model.

H Training Efficiency Analysis

We evaluate the training cost of Meta-Reflection.
As shown in Table 7, the training cost of
Meta-Reflection slightly increases compared to
LoRA, primarily due to the additional alignment
stage. However, this tradeoff is justified by
Meta-Reflection’s superior performance and effi-
cient inference capabilities, as demonstrated in Ta-
bles 1, 2, 3 and Table 4, respectively. These benefits
collectively make this tradeoff highly worthwhile.
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Methods Time Cost (↓) Memory Cost (↓)
Alignment SFT Total

LoRA − 30.9 s 30.9 s 19.6 GB
Ours 21.9 s 17.6 s 39.5 s 20.9 GB

Table 7: We evaluate training efficiency on the MBPP
dataset by measuring both time and memory costs. The
epochs and batch size are set to 1 for each stage.

I Prompts

In this section, we present the domain-specific
prompt templates utilized in our approach for var-
ious task domains. We emphasize that the ‘{re-
flection}’ component is only integrated into the
prompt after the actor LLMs’ first attempt. Initial
trials are executed without any reflective guidance
to establish baseline performance.

I.1 Prompts for Programming Tasks

Prompt for Actor LLMs:
You are an AI that only responds with
python code, NOT ENGLISH. You will be
given a function signature and its docstring
by the user. Write your full implementa-
tion (restate the function signature, the class
definition, or the necessary libraries).
[Function signature]: {func_sign}
[Your code should pass these tests]: {unit
tests}
[Hint or past experience that may guide
you]: {reflection}

Prompt for Reflector LLMs:
You are a Python programming assistant,
your task is to instruct a student on correct-
ing a mistake in a programming question.
You will be given:
1. A function signature.
2. The student’s implementation
3. A series of unit tests for the implementa-
tion.
Your goal is to write a few sentences to pro-
vide a corrective solution that can solve not
only this question but also a series of similar
questions. Remember point out the common
pitfalls or easily misunderstood aspects of
this problem based on the student’s incor-
rect implementation. Then the student need
this as a hint when he/she try again later.

Only provide the few sentence description
in your answer, not the implementation.
Example output: ‘The hint to this program-
ming problem is ...’
[Function signature]: {func_sign}
[Function impl]: {fun_impl}
[Unit test results]: {test results}

I.2 Prompts for Mathematical Reasoning
Task

Prompt for Actor LLMs:
You are an AI assitant, you are required to
solve mathematical question.
[Question]: {question}
[Hint or past experience that may guide
you]: {reflection}

Prompt for Reflector LLMs:
You are a mathematical expert, your task is
to instruct a student on correcting a mistake
in a math question. Note that you should
ONLY provide a corrective solution that
can solve not only this question but also a
series of similar questions, and you must
not reveal the answer to prevent leaking.
Your output should only contain the solu-
tion without any explanation.
Example output: ‘For this question, you
should first calculate...‘
[Question]: {question}
[Student response]: {response}

I.3 Prompts for E-commerce Customer Intent
Detection Task

Prompt for Actor LLMs:
你是一个来自电商平台的AI客服智能助
手，你的输入分为两部分：
##用户需求以及订单的信息，分为以下
五个字段内容： 1. 用户遇到的问题，
即用户遭遇到的异常情况或障碍； 2.用
户的诉求，即用户所有的在与助手、商
家和平台人工客服沟通过程中表达的想
要实现的目的或达成的内容以及主动发
起的申请，包括退款申请、投诉申请、
赔偿申请等； 3. 平台或商家给出的解
决方案； 4. 用户对解决方案表达的态
度； 5. 处理状态；
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## 定义好的诉求清单，用列表作为输
入，其中一共有6个诉求，诉求由字
母+诉求文字表示（比如 ’B退运费’）
##你现在需要根据以上信息从诉求清单
列表中选择出最匹配的用户诉求，你的
输出应该包括： 1.你的思考过程 2.诉求
清单中最为匹配的诉求对应的字母，有
且仅有一个。
[问题]：{question}
[一些可能对你有用的提示和来自过去
的错误经验]：{reflection}

Prompt for Reflector LLMs:
你是一个智能AI助手，现在需要你解决
一些电商智能助手在推断用户诉求时存
在的问题。目前输入分为三部分内容：
##用户需求以及订单的信息，分为以下
五个字段内容： 1. 用户遇到的问题，
即用户遭遇到的异常情况或障碍； 2.用
户的诉求，即用户所有的在与客服、商
家和平台人工客服沟通过程中表达的想
要实现的目的或达成的内容以及主动发
起的申请，包括退款申请、投诉申请、
赔偿申请等； 3. 平台或商家给出的解
决方案； 4. 用户对解决方案表达的态
度； 5. 处理状态；
## 定义好的诉求清单，用列表作为
输入，其中一共有6个诉求，诉求由
字母+诉求文字表示（比如 ’A 退运
费’），核心任务是根据用户需求和订
单信息选择出最匹配的诉求
##一段错误的匹配过程，其中包括思考
过程和预测的诉求
现在需要你对上述错误的匹配过程的进
行反思，并提供正确的解决方案，以指
导再次遇到类似订单情况下能够找出最
匹配的诉求。注意，你的输出不应该包
括正确答案（防止出现答案泄漏），应
该给出如何思考从而指导下一次的匹配
过程，并且保证通用性（对相似问题也
可以提供帮助）。”’
[问题]: {question}
[匹配过程]: {response}

J Case Study

We conduct a case study on the GSM8K dataset.
As illustrated in Figure 7, we compare three distinct
methodologies. The base LLM, under Zero-Shot
settings, demonstrates a lack of domain-relevant
knowledge and fails to solve the problem without

external guidance. The Reflection-RAG approach
retrieves similar problems from the training knowl-
edge base and leverages their associated reflections
as guidance. However, despite the high similarity
of retrieved problems, their reflection guidance pro-
cesses often deviate significantly from the required
reasoning path of the given problem. This misalign-
ment prevents fine-grained guidance and introduces
noise, resulting in suboptimal performance. In con-
trast, our proposed method achieves superior per-
formance by incorporating reflective insights into
the codebook and retrieving question-specific re-
flective insights during inference, enabling precise
step-by-step guidance for the LLM to successfully
solve the problem.

K Visualization

We visualize the selection frequency distribution
of reflective units in the meta-reflection codebook
across three additional benchmark datasets from
programming and mathematical reasoning domains.
As shown in Figure 8, the reflective units exhibit
significant variations, consistent with the findings
in Section 3.8. This distribution pattern indicates
that the retrieval process adaptively selects differ-
ent reflective units based on the specific questions,
thereby providing tailored guidance for LLMs in
problem-solving tasks.
Additionally, we visualize the feature distributions
of reflective units in the meta-reflection codebook.
Each reflective unit is first reduced to one dimen-
sion through dimensionality reduction and subse-
quently normalized. As shown in Figure 9, the
results demonstrate diverse distributions across re-
flective units, indicating their ability to capture var-
ied semantic information without feature space col-
lapse (Jing et al.).
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Every 2 miles a car drives the tires rotate 725 times. Jeremy drives 400 miles a month. If 
each tire can undergo 10,440,000 rotations how many years before the tire needs to be 
replaced?

Question

Zero-Shot
To find out how many years before the tire needs to be replaced, we need to calculate the 
total number of rotations the tire will undergo in a year, and then divide that by the total 
number of rotations the tire can handle       ...      Now, let's divide the total number of 
rotations the tire can handle (10,440,000) by the number of rotations per year 
(2400):10,440,000 rotations / 2400 rotations/year = 4346.67 years. So, the tire will need to 
be replaced in approximately 4347 years.

Reflection-RAG

[Reflection]: For this question, you should first calculate the total distance Nina travels 
in one month and then consider the pattern of her travel distance every second month. After 
that, calculate the total distance she would travel in 2 years by considering the pattern of 
her travel distance.
To solve this problem, we need to follow these steps: ##Step 1: Calculate the total 
distance Jeremy travels in one month. Jeremy drives 400 miles a month. ## Step 
2:         ...      The number of years before the tire needs to be replaced is 10440000 / 
3480000 = 3. The final answer is: 3.

Meta-Reflection
To solve this problem, we need to follow these steps: 1. Calculate the total number of 
rotations per mile. 2. Calculate the total number of rotations per 400 miles.3. Calculate 
the total number of years before the tire needs to be replaced. Step 1: Calculate the total 
number of rotations per mile. The car drives the tires 725 times every 2 miles. To find the 
number of rotations per mile, we divide 725 by 2:725 / 2 = 362.5 rotations per mile. Step 2: 
Calculate the total number of rotations per 400 miles. Since Jeremy drives 400 miles a 
month, we multiply the number of rotations per mile by 400:362.5 * 400 = 145,000 rotations 
per month. Step 3: Calculate the total number of years before the tire needs to be replaced. 
We know that each tire can undergo 10,440,000 rotations. To find the number of months 
before the tire needs to be replaced, we divide the total number of rotations by the number 
of rotations per month:10,440,000 / 145,000 = 72 months. To convert the number of months to 
years, we divide by 12:72 / 12 = 6 years. Therefore, the tire needs to be replaced in 6 
years. #### 6.

[Similar Question]: Nina loves to travel. She tries to travel at least 400 kilometers in one 
month outside of her home country. Every second month she does twice that distance. If she 
were able to keep up with her resolution, how many kilometers would she travel during 2 
years?

Figure 7: A case study on the GSM8K dataset.
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Figure 8: Visualization of reflective unit selection frequency distributions across three benchmark datasets in
programming and mathematical reasoning domains. A meta-reflection codebook of size 512 is uniformly maintained,
with 16 units uniformly selected per inference.
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Figure 9: Visualization of feature distributions for reflective units in the meta-reflection codebook.
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