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Abstract

Large Language Models (LLMs) typically track
the order of tokens using positional encoding,
which causes the following problems: posi-
tional bias, where the model is influenced by
an ordering within the prompt, and a fixed con-
text window, as models struggle to generalize
to positions beyond those encountered during
training. To address these limitations, we devel-
oped a novel method called set encoding. This
method allows multiple pieces of text to be en-
coded in the same position, thereby eliminating
positional bias entirely. Another promising use
case for set encoding is to increase the size of
the input an LLM can handle. Our experiments
demonstrate that set encoding allows an LLM
to solve tasks with far more tokens than without
set encoding. To our knowledge, set encoding
is the first technique to effectively extend an
LLM’s context window without requiring any
additional training.1

1 Introduction

In recent years, advances in natural language pro-
cessing have been largely driven by decoder-only
transformers. These models process text as a se-
quence of words or subword units called tokens and
use positional embeddings to capture their position
within the sequence. However, this strict linear
ordering introduces two significant limitations in
Large Language Models (LLMs), which we aim to
address in this paper:

1. Positional Bias: In various applications, it is
necessary to present an LLM with a collection
of items that do not have a meaningful order.
However, when listing these items in a prompt,
a specific order must be chosen. This choice
can influence the LLM’s response, potentially
resulting in different outputs for different per-
mutations.

1The source code is available at https://github.com/
LukasKinder/Set-Encoding

2. Length Limitations: When processing long
text sequences, the number of tokens can ex-
ceed the range the model was trained on. In
this case tokens have new positional embed-
dings, which usually leads to deteriorating
performance.

Our approach, set encoding addresses both of
these issues. Through set encoding, a set can be
given to an LLM. By "set", we refer to the math-
ematical concept: a collection of unordered ele-
ments. Set encoding guarantees that an LLM can-
not be influenced by any order within the set. To
achieve this, we apply two simple modifications
to how LLMs operate: First, we overload the po-
sitional encoding so that the elements of the set
are embedded as if they occupy the same position.
Secondly, we block attention between the elements
of the set.

Set encoding can be applied to multiple-choice
question answering tasks. Prior work has already
shown that LLMs exhibit positional biases when
selecting answers from a list of options (Zheng
et al., 2023; Pezeshkpour and Hruschka, 2023; Wei
et al., 2024) (e.g. preferring the first option). With
set encoding we can prevent this bias, by encoding
the options as elements of a set. Our experiments
with the MMLU dataset (Hendrycks et al., 2020)
show that set encoding offers a guaranteed and
efficient way to remove positional bias without re-
quiring multiple model runs or complex debiasing
techniques. Additionally, we demonstrate that the
models are unable to develop a positional bias, even
when trained with biased data. We include more
experiments in the Appendix demonstrating that
set encoding can also remove positional bias for
few-shot learning.

Another advantage of set encoding is that it helps
LLMs process very long texts. Since set encoding
places multiple items at the same position we can fit
larger inputs into the context window of an LLM.
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To show this we conduct experiments using the
RULER dataset (Hsieh et al., 2024), which features
needle-in-a-haystack tasks. In these tasks, a rele-
vant piece of information (the ’needle’) must be
located within a large volume of distracting text
(the ’haystack’). By breaking the haystack into
multiple elements, set encoding allows Llama3 to
solve tasks involving up to 128k tokens, which is
a great improvement over its original 8k context
window. These results are especially interesting
because to our knowledge, all prior work that ex-
tended the context window of an LLM required ad-
ditional training (Chen et al., 2023a,b; Tworkowski
et al., 2024).

Additionally, we perform experiments with ques-
tions of the HotpotQA dataset (Yang et al., 2018).
Here we evaluate the ability of an LLM to answer
questions for which the answer can be found within
multiple provided documents. If the different docu-
ments are encoded as elements of a set, these tasks
can still be solved, even when the combined token
length exceeds the normal context window.

We also show include experiments in our Ap-
pendix showing that set encoding can remove posi-
tional bias for few-shot learning.

2 Related Work

Set encoding addresses two challenges in large lan-
guage models (LLMs): positional debiasing and
extending the context window. While prior re-
search has explored these issues independently, to
our knowledge, no existing work addresses both
simultaneously. Below, we provide an overview of
existing work on positional debiasing in Section
2.1 and context-window extension in Section 2.2.

2.1 Positional Debiasing

Large language models are known to be influ-
enced by order choices within the input prompt.
For example, when answering multiple choice
questions, LLMs are known to give different
answers when the order of possible answers
changes (Pezeshkpour and Hruschka, 2023; Zheng
et al., 2023; Wang et al., 2023; Wei et al., 2024;
Xue et al., 2024; Wang et al., 2024b; Li et al.,
2023; Dominguez-Olmedo et al., 2023; Li and Gao,
2024). Also in few-shot learning, the order of the
provided examples is known to affect a model’s
outputs (Zhao et al., 2021; Yang et al., 2024; Ma
et al., 2023; Lu et al., 2021).

Existing research proposed several methods to

mitigate positional bias in LLMs. For example,
a possible strategy to deal with positional bias is
to run the model multiple times with different or-
der permutations and averaging the results (Zheng
et al., 2023; Wang et al., 2023; Pezeshkpour and
Hruschka, 2023; Dominguez-Olmedo et al., 2023).
However, while effective, this method comes with
a high computational cost: The number of possi-
ble permutations grows super-exponential with the
number of options. Set encoding on the other hand
does not require any additional computations.

Another way to mitigate positional bias is to cali-
brate the model’s predictions by adapting its output
probabilities. This can be done if a labeled dataset
is available, which is used to asses the models bias
(Wei et al., 2024). Alternatively, Zhao et al. (2021)
suggested calibrating the model by first letting it
run with a context free prompt to determine its bias.
Some studies also suggested that positional bias is
reduced for multiple choice question answering if
using a chain-of-thought approach instead of let-
ting the model output the answer directly (Wang
et al., 2024b,c). As opposed to set encoding, the
mentioned methods do not guarantee to remove all
positional bias and require additional runs of the
LLM, which comes at a higher computational cost.

2.2 Extending Context Windows
Increasing the context window of large language
models (LLMs) is crucial for enhancing their abil-
ity to handle longer input sequences, which is vi-
tal for many real-world applications (Wang et al.,
2024a). To address this, several techniques have
been developed that include:

Length Extrapolation – There are a variatey of
positional encoding methods that allow LLMs to
generalize to sequence lengths beyond what they
encountered during training. Absolute Positional
Embeddings (APE) embed position by adding a po-
sitional vector to the token embedding (Kenton and
Toutanova, 2019). However, if a model is using
trained positional vectors it is not able to general-
ize to longer context windows at all (Brown et al.,
2020; Zhang et al., 2022; Kazemnejad et al., 2024).
Rotary positional embeddings (RPEs) are a widely
used alternative to APE (Su et al., 2024) and are
for example used in Llama3 (Touvron et al., 2023).
In RPEs, the query and key vectors are partly ro-
tated depending on their absolute distance. RPEs
are flexible with regard to sequence length. How-
ever, RPEs do not enable an LLM to generalize
well to sequence lengths that are much longer than
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what the LLM was trained with (Kazemnejad et al.,
2024; Press et al., 2021; Wu et al., 2024). Another
technique for length extrapolation is penalizing at-
tention scores. This method, used in models like
T5 (Raffel et al., 2020) and ALiBi (Press et al.,
2021), adjusts attention scores based on the dis-
tance between tokens. However, this can lead to a
worse performance, as the model may struggle to
exchange information between tokens far away.

Efficient Long Sequence Training – Training
LLMs with very large context windows is expen-
sive, because the number of computations in self-
attention usually scales quadratically with the num-
ber of tokens (Wang et al., 2024a; Dubey et al.,
2024). This leads to high memory and computa-
tional costs, making it difficult to train models with
long sequences. To address this, various techniques
have been proposed to reduce the computational
burden during training (Chen et al., 2023a). For
instance, models like LONGLLAMA (Tworkowski
et al., 2024) and LongLora (Chen et al., 2023b)
use sparse attention by limiting attention to local
windows, thus improving efficiency during training.
Alternatively, Zhu et al. (2023) propose decoupling
the training sequence length from the target se-
quence length by skipping positions during training.
However, these approaches still have notable limi-
tations: they require additional training, the context
window remains constrained even after extension,
and their performance often falls short compared
to training directly with long context windows.

3 Methods

Set encoding allows the inclusion of a set within
the prompt of an LLM, where each element of the
set is a token sequence. The goal of set encod-
ing is to ensure that the LLM adheres to the set
property, meaning that the order of elements does
not influence how the model behaves. However,
standard LLMs typically violate the set property
for two reasons: positional encodings assigned to
tokens vary depending on their order within the
prompt, and causal attention allows later elements
to attend to earlier ones, creating dependencies that
are influenced by order.

To address these issues, both the positional en-
coding and the causal attention mechanisms must
be modified, as discussed in the following.

           Set Item 2                           

          Set Item 1                                

           Set Item 3                           

        Set Item 4                           

  Pre-Set Tokens                                                                         Post-Set Tokens

Linear Token Sequence

Set Encoding

Normal Encoding

 Positional ID 

Figure 1: Comparison of how positional IDs are as-
signed to tokens with and without set encoding. The
example features a set with four token sequences with
varying length. X-dimension encodes the positional ID.

3.1 Positional IDs for set encoding

In standard LLMs, the tokens are assigned posi-
tional IDs that start at 0 for the first token in a se-
quence and increment by one for each subsequent
token. These IDs influence how positional infor-
mation is embedded during. In set encoding, we
reuse the same positional IDs across all elements
within the set. Figure 1 shows an example of how
positional IDs are distributed with and without set
encoding.

Formally lets say we have some tokens p that
come before the set, a set S of token sequences
and the tokens v that come after the set. Lets write
the n tokens of p as p0, ... , pn−1, the tokens of an
element x ∈ S are called sx0 , ... , sx|x|−1 and the
m tokens of v are written as v0, ... , vm−1. In this
case tokens are assigned positional IDs as follows:

• The positional ID of a token pi is: i.

• The positional ID of a token token sxi is: n+ i

• The positional ID of a token vi is: n +
max
x∈S

|x|+ i

Adapting the positional IDs of tokens like this
results in two notable consequences: Some tokens
to have the same positional ID and the highest posi-
tional ID is not equal to the total number of tokens.

3.2 Causal Mask for set encoding

Standard large language models use causal atten-
tion, meaning tokens can attend to and are influ-
enced by earlier tokens in the sequence. This is
typically implemented using an attention mask, a
triangular matrix that prevents tokens from attend-
ing to later tokens. However, if causal attention
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is applied between the elements of a set, later el-
ements could attend to earlier ones. This would
cause the processing of tokens to depend on the
order of the elements, violating the set property.

To avoid this, we have to change the causal at-
tention mask such that the elements of a set can not
attend to each other. Otherwise tokens can attend
previous tokens as normal. An example of this is
shown in Table 1.

Pre-Set Element x Element y Element z Post-Set

p0 p1 sx0 sx1 sy0 sy1 sz0 sz1 a0 a1

p0
Pre-Set

p1

sx0
Element x

sx1

sy0
Element y

sy1

sz0
Element z

sz1

a0
Post-Set

a1

Table 1: The causal mask of a prompt containing a
set S = {x, y, z}. Each element consists of 2 tokens
and there are 2 tokens before and after the set. Dark
cells represent that a token can attend another token.
Attention is masked, such that later elements can not
attend previous elements of the set. The causal mask
with vanilla self-attention would be simply a triangular
matrix. For this example the positional IDs would be
p0 → 0, p1 → 1, sx0 → 2, sx1 → 3, sy0 → 2, sy1 → 3,
sz0 → 2, sz1 → 3, v0 → 4 and v1 → 5.

Formally, using the naming convention intro-
duced in Section 3.1 tokens can attend to other
tokens as follows:

• A token before the set pi can attend any token
pj with j ≤ i.

• Within an element x a token sxi can attend any
token in p and any token sxj with j ≤ i.

• A token after the set ai can attend any token
in p, any token in the set S and any token aj
with j ≤ i

With set encoding each element of the set is
processed by the LLM as if it is the first within
the set. Given an input containing a set, the output
of the LLM and the way tokens are processed is
independent of the order within the set.

This method of reassigning positional IDs and
masking attention was independently developed by
Lu et al. (2024). However, they apply it for a very
different use case (efficient retrieval augmented
generation) whereas we use it for positional debi-
asing and extending the context window.

4 Experiments

To explore the capabilities of set encoding for posi-
tional debiasing, we investigate in Section 4.1 using
the MMLU data set, how set encoding can improve
results in multiple-choice question answering.

To explore the capabilities of set encoding to
extend the context window of an LLM without
any training, we performed experiments with the
RULER benchmark in Section 4.2. In this exper-
iment, we give Llama3 prompts involving more
than 16 times more tokens than what it was trained
with.

A potential limitation of set encoding is that by
preventing attention between set items, an LLM
could be argued to struggle to integrate informa-
tion of different elements. To explore this, we
conduct experiments in Section 4.3 on large multi-
document question answering tasks using a mod-
ified HotpotQA data set, where we increased the
number of questions in which the number of tokens
is up to 2 times the context size of Llama3.

Furthermore, we performed experiments show-
ing that set encoding can be used for positional
debiasing in a few-shot learning scenario. We pro-
vide results for the SST (Socher et al., 2013) and
MultiNLI (Williams et al., 2017) datasets in the
Appendix in Section A.2.1 and A.2.2 respectively.

4.1 Positional Debiasing for the MMLU
dataset

The MMLU dataset (Hendrycks et al., 2020) is a
multiple-choice question benchmark that is widely
used to asses the question answering capabilities
of LLMs across diverse topics. For each question
there are four options ("A", "B", "C" or "D") and
the model is asked to select the correct one. Ex-
isting studies have highlighted positional biases in
LLMs when answering these questions. This bias
can stem from a model’s preference for a specific
position (e.g., always favoring the first option) or a
symbolic label (e.g., "B") (Zheng et al., 2023).

By encoding the presented options as a set, we
can avoid a model’s preference for a specific posi-
tion. To further prevent label-bias we used bullet
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points instead of capital letter as labels. Conse-
quently the models were required to state the cor-
rect option explicitly rather than selecting from
labeled choices. For example:

USER: In the complex z-plane, the set of
points satisfying the equation z²=|z|² is a
* pair of points
* circle
* half-line
* line

ASSISTANT: line

If set encoding were used, the 4 options were
encoded as elements of a set, preventing the LLMs
from perceiving any order among them.

We do not use the full MMLU dataset for our
evaluation, but only 93.5% of the questions. We
removed those 6.5 % of the questions, where the
answer options do not strictly respect a set of unla-
beled elements: First, options that reference each
other by label, e. g. if the options have labels "A",
"B", "C", "D", and option "C" is "A and B". Sec-
ond, options that assume that options are given in a
particular order, e.ġ. if the 3rd out of 4 options is
"All of the above". We provide the answers that led
to question exclusion in Table 6 in the Appendix.

In our experiments we used the recent models
Llama3-8b2 and Mistral-7b3, as well as Llama2-
7b4 and Falcon-7b5. We explicitly selected Llama2-
7b and Falcon-7b because previous work indicated
that these models do have a high positional bias
(Zheng et al., 2023).

A common issue with Large Language Models
is that they may learn biases from biased training
data. We demonstrate that set encoding prevents
models from developing positional bias, even when
trained on biased data, by performing some small-
scale training of the models under four conditions
that reflect different levels of answer imbalance in
the training data:

• No Bias: In this condition the correct answer
was equally likely to be any of the four options

2https://huggingface.co/meta-llama/
Meta-Llama-3-8B-Instruct

3https://huggingface.co/mistralai/
Mistral-7B-Instruct-v0.3

4https://huggingface.co/meta-llama/
Llama-2-7b-chat-hf

5https://huggingface.co/tiiuae/
falcon-7b-instruct

• Low Bias: The first options were correct in
40 % of instances, with the other three options
correct in 20 % each.

• Medium Bias: The first option was correct in
70 % of instances, with the other three options
correct in 10 % each.

• High Bias: The first option was always cor-
rect.

Fine-tuning for all models was done using the train-
ing data of the MMLU dataset. We trained the
models for 5 epochs using a learning rate of 5e− 6
and a batch size of 64, and Adam optimization
with bfloat16 precision. Due to hardware limita-
tions, we filtered out questions with > 256 tokens.
For those small-scale fine-tuning experiments, that
left us with around 19k questions, i. e. 17 % of all
questions of the training data of the MMLU data
set.

4.1.1 Results
We present the results for the MMLU dataset in
Figure 2. To measure bias, we calculated the frac-
tion of times the models selected the 1st, 2nd, 3rd,
and 4th options, and report the standard deviation
of these fractions. Additionally, we provide the
number of times the models predicted each of the
1st, 2nd, 3rd, and 4th in Table 5 in the Appendix.

Without training, set encoding did not prevent
the models to answer questions correctly (cf. or-
ange Ys in Figure 2). However, the performance
decreased by up to 10 % compared to the same
model without set encoding (cf. the blue Ys in Fig-
ure 2). After training, the models with and without
set encoding performed similarly well by and large,
except for the High Bias condition. When trained
on biased data, the performance of models without
set encoding declined (cf. worsening progression
of blue circle-pentagon-cross-star). This was espe-
cially apparent in the High Bias condition, where
the first option was correct for every training in-
stance. In this case, the models that did not use set
encoding almost always predicted the first option,
resulting in an accuracy of 25 %. However, with
set encoding, biased training data had no effect on
accuracy.

Interestingly, more recent models exhibit some
positional bias, but their accuracy appears to be
less impacted by it. Positional bias seems to affect
these models only when they are uncertain about
the correct answer, suggesting that the importance
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Figure 2: Results for the MMLU dataset in terms of accuracy for different Language models with and without set
encoding for training runs with various degrees of biased data.

of positional bias may have been overstated in pre-
vious research (Pezeshkpour and Hruschka, 2023;
Wei et al., 2024).

To verify that set encoding does not introduce
positional bias, we conducted a chi-square test with
the null hypothesis that the probability of a model
selecting the 1st, 2nd, 3rd, and 4th options is equal.
With set encoding, all model had a p-value higher
than 0.05, suggesting that there was indeed no
bias. Without set encoding, the models exhibited
p-values below 0.01, except in the single case of
Llama3 after being trained with unbiased data.

4.2 Experiments with the RULER dataset

The RULER benchmark is designed as a needle-
in-a-haystack test, assessing a model’s ability to
locate a specific piece of information (the "nee-
dle") within an extensive body of irrelevant text
(the "haystack"). It consists of 13 task categories,
including retrieval, multi-hop reasoning, tracing,
and aggregation, with questions that can be au-
tomatically synthesized. For our evaluation, we
generated datasets with prompts of varying lengths:
4k, 8k, 16k, 32k, 64k, and 128k tokens. For each
token length, we synthesized 10 questions for each
task category, resulting in 130 questions per length.

A prompt of the RULER benchmark always con-
sists of three parts:

• A short initial description of the task.

• The "haystack": A large block of text contain-
ing both relevant and irrelevant information.

• A question, for which the answer is located in
the haystack.

We applied set encoding by dividing the haystack
into multiple equally sized chunks, treating each
chunk as an element of a set. The initial description
and final question remained outside the set. This
caused the highest positional ID to be equal to the
size of an element, plus the number of tokens for
the description and question.

4.2.1 Results
Figure 3 shows the accuracy of LLama3-8B with
and without set encoding across different prompt
lengths.6 The standard version of LLama3 without
set encoding performs well on prompts with up to
8k tokens but was unable to answer any questions
when the prompt exceeds its trained context win-
dow of 8k tokens. With set encoding LLama3 could
answer questions containing up to 128k tokens.
However, as the number of tokens increases, the
model’s performance gradually deteriorates. We

6Because of hardware constraints we used 4-bit quantized
versions of Llama3 in our experiments.
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Figure 3: Results for the RULER benchmark for Llama3, comparing performance without set encoding and with set
encoding for various element sizes.

also varied the element size within the set. For in-
stance, a haystack containing 16k tokens could be
divided into two elements of 8k tokens each or four
elements of 4k tokens each. The condition with the
highest number of elements occurred when each
element had a size of 1k tokens and the haystack
contained 128k tokens, resulting in a set with 128
elements. We observed reduced performance when
the set contained a larger number of shorter ele-
ments compared to fewer longer elements. This
suggests that, without additional training, Llama3
struggles to interpret inputs where many token se-
quences are placed at the same position.

4.3 Experiments with the HotpotQA dataset
The HotpotQA dataset (Yang et al., 2018) is de-
signed to evaluate a model’s ability to perform
question answering based on provided documents.
A question in the HotpotQA benchmark contains a
list of multiple documents followed by a question
about the documents. The documents are based on
Wikipedia articles and are each typically between
50 and 300 words long. In order to answer the ques-
tion, information of at least two documents needs
to be considered, while the other documents unre-
lated documents act as distractors. For example,
the question "When was the singer and songwriter
of Radiohead born?" requires finding the fact that
the singer and songwriter of Radiohead is Thom
Yorke from one document and then identifying his
birth-date from another document.

With set encoding we can treat the different docu-
ments as elements of a set. As explained in Section
3.2, set encoding prevents attention between the el-
ements of a set. Therefore we wanted to investigate
if set encoding hinders LLMs to answer a question
that requires combining information from different

elements of a set.
We did not use the normal HotpotQA datasset

for our experiments but a modified version of it.
This is because the original questions of HotpotQA
include little question with more than 8k tokens.
Therefore we took the original question of the Hot-
potQA dataset and added additional distracting doc-
uments. This way we created a training set of 90k
questions ranging up to 4k tokens and a test set of
7k questions ranging up to 16k tokens.

Fine-tuning was conducted over 3 epochs with
a learning rate of 5e − 6, the adafactor optimizer
with bfloat16 precision and a batch size of 16.

In HotpotQA, answers are typically single words
or short phrases. To evaluate performance, we con-
sider an answer correct if the model generates to-
kens that match the exact ground truth answer spec-
ified in the benchmark. Note that this means that
a semantically correct answer that is phrased dif-
ferently is considered false, thus overestimating
negatives.

4.3.1 Results

<8k 8k-16k

w/ finetuning w/ set encoding: .47 .36
w/o set encoding: .53 .02

w/o finetuning w/ set encoding: .17 .04
w/o set encoding: .45 0

Table 2: Results from the HotpotQA dataset. We applied
the Llama3 model (context length: 8k tokens) with and
without both fine-tuning and set-encoding, for questions
involving < 8k tokens and questions involving between
8k and 16k tokens.

The results of our experiments are summarized
in Table 2. Without set encoding, Llama3 was
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Figure 4: Performance of Llama3 (context size: 8k tokens) for HotpotQA questions that involve different numbers
of tokens, with and without set encoding. We trained Llama 3 with HotpotQA questions ranging up to 4k tokens.

mostly unable to answer questions with prompt
sizes exceeding its trained context window of 8k to-
kens. With set encoding, the model’s performance
is initially lower without training but significantly
improves after training. Notably, the fine-tuned
model with set encoding is able to answer questions
involving 8k to 16k tokens with an accuracy of
36 %. After fine-tuning the performance of Llama3
with and without set encoding is somewhat sim-
ilar for questions involving up to 8k tokens (53
vs. 47 %). This shows that set encoding does not
prevent Llama3 from solving multi-hop reasoning
tasks with a set of documents, even though tokens
of different documents cannot attend to each other.

We also show the results of Llama3 with and
without training for different numbers of tokens
in Figure 4. With set encoding, Llama3 can an-
swer a lot of questions ranging up to 16k tokens,
even though it was only trained with questions with
up to 4k tokens. Without set encoding, Llama3
only generalises to a few questions that are at most
1k tokens longer than its original trained context
window of 8k tokens.

5 Conclusion

Our work demonstrates that set encoding can be
used as a solution for two seemingly unrelated lim-
itations of LLMs: positional bias and restricted
context windows. Set encoding addresses these
two limitations by manipulating two mechanisms
of how LLMs operate during inference, namely the
positional IDs and the attention pathways. Some-
what surprisingly, we discover that LLMs can func-
tion despite these manipulations, even though the
LLMs were never trained with them. We want to
emphasize that set encoding does not necessarily
require (potentially expensive and destructive) re-
training or fine-tuning. However, set encoding may
initially lead to a slight performance degradation,
which can be recovered with a small amount of
additional training.

Our experiments on benchmarks like MMLU
confirm that with set encoding, LLMs do not have
any positional bias. The models are also blocked
from learning a bias even when trained on biased
training data.

Crucially, set encoding allows LLMs to extend
their effective context window, by splitting parts of
the prompts into multiple elements of a set. In our
experiments with RULER and HotpotQA, we show
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that set encoding enables Llama3 to perform tasks
involving many more tokens than what Llama3 was
trained with.

6 Limitations

While our proposed approach set encoding offers a
guaranteed method to remove positional bias and
is a promising mechanism to extending context
windows, we note the following limitations:

• While the LLMs in our experiment were able
to successfully use set encoding for a variety
of tasks, it often introduces a slight drop in ac-
curacy when used without additional training.

• While set encoding extends the total number
of tokens that a model can handle, each indi-
vidual element of the set must still fit within
the original context window size of the model.
This may require to split a long text into
smaller sequences that cannot attend to each
other, potentially reducing the LLMs ability
to interpret the text correctly.

• LLMs using set encoding may fail to answer
seemingly trivial questions. For example, it
may be unable to state the number of elements
in a set or repeat the entire content of the when
asked for it. An example of this behavior is
provided in the Appendix in Section A.1.

• The answers of some multiple choice ques-
tions fall into categories where options refer-
ence each other by label, or where the order
of the options are relevant, for example if an
option is "A and C", or "All of the above".
In these cases, set encoding may prevent a
model from answering the question. Conse-
quently, we had to remove questions of those
categories from the MMLU dataset. The an-
swers for the questions we removed can be
found in Table 6 in the Appendix.

• Set encoding requires internal changes to
model inference. This restricts the approach
to models where such changes can be imple-
mented. Notably, some models such as the
popular and recent GPT3 and GPT4 are only
available through API calls, where such modi-
fications cannot be done.
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A Appendix

A.1 Example dialogue with Llama 3

An example dialogue with Llama3-8b-instruct that
uses set encoding without any additional training.
In the first user message the items " - Apple", " -
Potato" and " - Tomato" are encoded as a set. The
LLM initially states that the list contains only one
item. However, it is able to recognize if something
is in the list or not if explicitly asked about it.

USER: Here is a List:
- Apple
- Potato
- Tomato
What are the three items in the list?

ASSISTANT: There is only one item in the
list:
1. Potato

USER: Is ‘Apple’ in the list?

ASSISTANT: I apologize for the mistake
earlier! According to the original list,
yes, "Apple" is indeed in the list.
So, the correct answer is:
1. Potato
2. Apple

USER: Is ‘Melon’ in the list?

ASSISTANT: No, "Melon" is not in the
original list. The original list only
contains two items:
1. Potato
2. Apple

USER: Is ‘Tomato’ in the list?

ASSISTANT: Yes, "Tomato" is indeed in the
original list! I apologize for my earlier
mistake when I said there was only one item.
So, the correct answer is:
1. Potato
2. Apple
3. Tomato

A.2 Positional debasing for few-shot learning

In context-based or few-shot learning, an LLM is
provided with a few question-answer pairs as ex-
amples to guide its responses. While this approach
can enhance performance, studies have shown that
the order in which examples are presented influ-
ence the models decision (Zhao et al., 2021; Yang
et al., 2024; Ma et al., 2023). With set encoding
we can prevent this positional bias by treating each
example as a distinct element of a set. We show
results for the SST-2 dataset and the Multi NLI
dataset in the following two sections. In both ex-
periments, we applied set encoding without any
additional training of the models. We consider
both experiments to be interesting negative results,
as set encoding effectively removes positional bias
but does not consistently improve accuracy.

A.2.1 Experiments with the SST-2 dataset
The SST-2 dataset(Socher et al., 2013) is a col-
lection of binary sentiment classification tasks. It
requires a model to decide if a written movie review
expresses positive or negative sentiment. In our ex-
periment we place two positive and two negative ex-
ample reviews with their corresponding label in the
prompt. These examples were followed by the tar-
get review, which the LLM had to classify. We re-
peated this experiment 6 times with different order-
ings of the examples (Positive-Positive-Negative-
Negative, Positive-Negative-Positive-Negative, ... ,
Negative-Negative-Positive-Positive). Positive and
negative examples where drawn randomly from the
SST-2 training set and varied for each question.
Our evaluation was conducted on the SST-2 test
set, which contains 1,818 samples.

The results for the models Llama3-8b, Mistral-
7b and Phi-3-mini-4k are shown in Table 3. We
report accuracy and the fraction of false answers
that were false-positives. Without set encoding
the accuracy fluctuates dependent on the the or-
der of examples. Furthermore, the types of mis-
takes made by the models also change with differ-
ent orderings of positive and negative examples.
For instance, when the example order is "Positive-
Negative-Positive-Negative," Llama3 incorrectly
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PPNN PNPN PNNP NPPN NPNP NNPP Avg. ACC Min ACC Max ACC
ACC .97 .96 .96 .96 .97 .97 .96 .96 .97normal FP / (FP + FN) .71 .79 .76 .69 .64 .68
ACC .97 .97 .97 .97 .97 .97 .97 .97 .97

Llama3-8b
set FP / (FP + FN) .64 .65 .64 .64 .64 .66

ACC .97 .97 .96 .96 .96 .96 .96 .96 .97normal FP / (FP + FN) .37 .40 .28 .20 .14 .14
ACC .96 .96 .96 .96 .96 .96 .96 .96 .96

Mistral-7b
set FP / (FP + FN) .16 .16 .16 .16 .16 .16

ACC .96 .96 .96 .96 .95 .95 .96 .95 .96normal FP / (FP + FN) .24 .27 .18 .18 .09 .12
ACC .94 .94 .94 .94 .94 .94 .94 .94 .94

Phi-3-mini-4k
set FP / (FP + FN) .12 .11 .12 .12 .11 .12

Table 3: Results for the SST benchmark. We evaluated the models in a 4-shot scenario with two positive and two
negative examples. The order in which these examples were given differed in each run. We report accuracy as well
as the fraction of mistakes that were false positives.

E N C E C N N E C N C E C E N C N E Avg. ACC Min ACC Max ACC Bias
ACC .63 .65 .62 .66 .67 .68 .65 .62 .68normal frac. .64 .10 .27 .61 .10 .29 .65 .10 .25 .56 .08 .37 .54 .10 .36 .50 .11 .39 .014
ACC .60 .60 .60 .60 .60 .60 .60 .60 .60

Llama3-8b
set frac. .63 .02 .35 .63 .02 .35 .63 .02 .35 .63 .02 .35 .63 .02 .35 .63 .02 .35 .000

ACC .67 .67 .65 .62 .66 .63 .65 .62 .67normal frac. .57 .10 .33 .55 .06 .39 .42 .20 .38 .40 .12 .48 .49 .04 .47 .40 .07 .53 .032
ACC .63 .63 .63 .63 .63 .63 .63 .63 .63

Mistral-7b
set frac. .53 .02 .45 .53 .02 .45 .53 .02 .45 .53 .02 .45 .53 .02 .45 .53 .03 .45 .000

ACC .77 .74 .78 .78 .75 .78 .76 .74 .78normal frac. .44 .16 .39 .43 .12 .45 .42 .19 .39 .38 .20 .42 .41 .16 .43 .39 .20 .41 .006
ACC .70 .70 .70 .70 .70 .70 .70 .70 .70

Phi-3-mini-4k
set frac. .44 .08 .48 .44 .08 .49 .44 .08 .48 .44 .08 .49 .44 .08 .49 .44 .08 .48 .000

Table 4: Results for the MultiNLI benchmark. The models were evaluated in a 3-shot scenario across six different
conditions, with the prompt containing various permutations of examples representing entailment, neutral, and
contradiction relationships. For each experiment setup we report the overall accuracy and the fraction of times the
model predicted entailment, neutral and contradiction (cells indicated by color).

predicts a negative review as positive in 79% of its
mistakes. However, when the order is "Negative-
Positive-Negative-Positive," this error rate drops to
64%.

A.2.2 Experiments with the Multi-NLI
dataset

The MultiNLI dataset (Williams et al., 2017) con-
tains tasks involving two statements for which a
model has to decide if the second statement has
an entailment, neutral or contradictory relation to
the first statement. In our experiment we placed
three labeled examples in the prompt featuring an
entailment, contradiction and neutral relation. We
repeated the experiment 6 times for each possible
permutation of the three examples. The examples
where drawn randomly drawn from the multiNLI
training-set and varied for each question. For eval-
uation, we used the MultiNLI validation set, which
contains 10,000 samples.

The results for the models Llama3-8b, Mistral-
7b and Phi-3-mini-4k are shown in Table 4. To
quantify the overall bias of a model, we treated
the fractions of predictions for entailment, con-
tradiction, and neutral as 3-dimensional vectors.

The average cosine distance among the vectors
of the 6 different conditions is reported under the
"Bias" column. Additionally, we report accuracy
and the distribution of predictions across "Entail-
ment," "Neutral," and "Contradiction".

Without set encoding, both the accuracy and the
distribution of predictions fluctuate depending on
the order of examples. Set encoding effectively
eliminates positional bias, as reflected in the con-
sistent prediction across permutations.
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No Finetuning Finetuning:
No Bias

Finetuning:
Low Bias

Fintuning:
Medium Bias

Finetuning:
High Bias

1st 2nd 3rd 4th 1st 2nd 3rd 4th 1st 2nd 3rd 4th 1st 2nd 3rd 4th 1st 2nd 3rd 4th
normal .61 .13 .15 .12 .31 .22 .22 .25 .32 .19 .24 .24 .47 .17 .17 .19 .98 .01 .01 .0Llama2-7b set .25 .26 .24 .24 .25 .26 .25 .25 .26 .25 .25 .24 .25 .25 .24 .25 .25 .24 .25 .25
normal .27 .23 .25 .25 .24 .25 .25 .25 .26 .23 .25 .26 .32 .23 .22 .24 .98 .01 .01 .0Llama3-8b set .24 .26 .25 .24 .26 .25 .24 .26 .25 .25 .25 .25 .25 .26 .25 .25 .25 .24 .25 .26
normal .25 .24 .24 .27 .22 .25 .26 .26 .28 .24 .24 .24 .34 .23 .22 .21 1.0 .0 .0 .0Mistral-7b set .26 .24 .26 .25 .25 .25 .25 .25 .26 .24 .25 .24 .25 .25 .26 .24 .24 .25 .26 .25
normal .57 .21 .15 .07 .28 .23 .26 .24 .34 .19 .27 .21 .7 .1 .1 .1 .99 .0 .0 .0Falcon-7b set .24 .24 .26 .25 .25 .26 .25 .24 .24 .24 .26 .25 .25 .25 .25 .25 .25 .24 .25 .25

Table 5: The frequency of the models selecting the 1st, 2nd, 3rd or 4th option during our evaluation with the MMLU
dataset (In our evaluation dataset each option was equally often the correct one.). With set-encoding each option has
equal likelihood to be selected.

Filtered Words/Phrases
A and B
A and C
B and C
A or B
A or C
B or C

Neither A nor B
All of the above

All options
Both

All the above
All of these

Either of these
None of the above
Neither of these
None of these

Table 6: The list of options we filtered out for the MMLU benchmark. An option containing any of these strings
indicates a relationship between the options. This would make their interpretation difficult without considering their
relative position.
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