
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 3873–3895
July 27 - August 1, 2025 ©2025 Association for Computational Linguistics

Interpret and Improve In-Context Learning via the Lens of Input-Label
Mappings

Chenghao Sun 1 Zhen Huang 2 Yonggang Zhang 3 Le Lu 2 Houqiang Li 1

Xinmei Tian ∗ 1 Xu Shen * 2 Jieping Ye 2

1 MoE Key Laboratory of Brain-inspired Intelligent Perception and Cognition
University of Science and Technology of China

2Independent Researcher
3Hong Kong Baptist University

∗shenxuustc@gmail.com, xinmei@ustc.edu.cn

Abstract

Large language models (LLMs) excel at down-
stream NLP tasks through in-context learning
(ICL) with a few demonstrations of input–label
pairs. However, the internal mechanisms be-
hind ICL remain under-explored, particularly
the mappings between inputs and labels. In
this work, we reverse-engineer ICL by examin-
ing input-label mappings: what they are within
LLMs, where they function, and how LLMs
utilize them. (1) what: We discover input-label
mappings stored within a few specific layers in
the form of principal components (PCs), which
capture human-interpretable and task-related
words. (2) where: We propose a PC patch-
ing approach to identify the modules where
input-label mappings function. Specifically,
PC patching automatically crafts counterfactual
representations using identified semantic PCs,
rather than manually designing counterfactual
text, to suppress the behavior related to LLM
capability for ICL-related modules. Utilizing
PC patching, we identify LLMs apply input-
label mappings in a small fraction (5%) of atten-
tion heads. (3) how: We observe and verify that
the identified key heads utilize input-label map-
pings from demonstrations to generate target
labels for new queries. Based on these discover-
ies, we further show that precisely fine-tuning
key ICL-related modules leads to significant
improvements across diverse tasks.

1 Introduction

Large language models (LLMs) excel at down-
stream NLP tasks through in-context learning
(ICL), using a few exemplars of input–label pairs
as part of the prompt to guide predictions on unseen
examples. (Brown et al., 2020; Nori et al., 2023;
Wei et al., 2023b; Zhang et al., 2023; von Oswald
et al., 2023; Dai et al., 2023; Shen et al., 2023). For
example, given a prompt: “input: Worst film I’ve
ever seen. output: negative; input: This movie is

*Corresponding authors.

Abstract Mapping
Positive

Negative

happily

cheer
enthusiasm

unhappysad

harmful

Early layer

Current Input

Middle layer

Input
:

trashy
time

/n
Output

:
Negative

Input
:

so
larger
than
life
/n

Output
:

Positive
Input

:
the

sheer
joy
/n

Output
:

Positive

Decoding Output Space

Deep layer

Middle layer
Sentiment-Related Top-4 word

1, sad 2, happy 3,unhappy 4, cheer

1, happy 2, cheer 3, sad 4, unhappy

1, happy 2, cheer 3, enthusi 4, good

Match Mapping

Middle layer

Current Input

Positive

Negative

happily

cheer

sad

unhappy

Figure 1: The overview of in-context learning in three
stages, examined through the lens of input-label map-
pings. The working mechanism of ICL involves three
steps: 1) abstracting the input-label mappings and stor-
ing them in key layers, 2) applying and generalizing
these mappings to a new input, and 3) decoding the
matched mappings in the output space.

great. output: positive; input: This movie is terrible.
output:”, LLMs could comprehend the input-label
mapping (Wei et al., 2023b) (e.g., finding a pattern
that the positive reviews corresponds to “positive”
and negative reviews corresponds to “negative”).

Due to the impressive performance of ICL in
downstream tasks, researchers increasingly focus
on understanding how ICL works. Several stud-
ies (Olsson et al., 2022; Wang et al., 2023c; Singh
et al., 2024; Ren et al., 2024; von Oswald et al.,
2023; Dai et al., 2023) explore the inner workings
of ICL within LLMs, examining how models pro-
cess demonstration information. Concurrently, re-
cent research (Min et al., 2022; Wei et al., 2023b;
Kossen et al., 2023) focuses on input-label map-
pings in demonstrations, investigating how LLMs
interpret these patterns by analyzing model outputs.
Despite these valuable contributions, fundamen-
tal questions remain unanswered: what input-label

3873

1. Interpret

Pinpoint
SFT

Abstract Input-
label Mapping

Apply Input-
label Mapping

2. Improve

Layer15

Score

Identify
Key Layer

Input:
Sentence-1: Worst film,
Label: bar;
Sentence-2: Great movie,
Label: foo;
Sentence-3: Terrible
movie,
Label: __
”

Next Word
Prediction: bar

Tuning
Identify

Key Modules

Figure 2: Pipeline for interpreting and improving in-context learning: (1) Abstract and apply input-label mappings;
(2) Strengthen LLMs’ capability of ICL through Pinpoint SFT on key components.

mappings are within LLMs, where they function,
and how LLMs utilize them. Our work systemati-
cally addresses these questions to provide deeper
interpretations of ICL mechanisms.

To reveal what input-label mappings are within
LLMs, we employ unembedding techniques (Dar
et al., 2023; Geva et al., 2022) to analyze simi-
larities between the hidden states of predicted to-
kens and embeddings of task-related words (e.g.,
happy/sad). Following (Wei et al., 2023b), we
eliminate semantic interference by selecting non-
related semantic words (e.g., ‘far’/‘boo’) as la-
bel options instead of task-related words (e.g.,
‘negative’/‘positive’). Our analysis reveals that
while vanilla hidden states across layers show min-
imal similarity to task-related concepts, the prin-
cipal components (PCs) of middle-layer states ex-
hibit strong alignment with task-related semantics.
When projecting these PCs to vocabulary space, we
observe interpretable task-related words emerging,
suggesting these components encode input-label
mappings. By systematically manipulating individ-
ual PCs within the original hidden states, we es-
tablish a clear linear relationship between intensity
coefficients and label logits, confirming that input-
label mappings are stored within specific principal
components of LLMs.

To determine where LLMs leverage these map-
pings, we propose PC Patching for identifying
ICL-related modules. Traditional methods like path
patching (Wang et al., 2023a) require carefully de-
signed pairs of reference and counterfactual sam-
ples (e.g., "How to make a bomb" versus "How to
make a cake") to locate capability-related modules.
Such approaches are limited by the quality of these
manual designs and often struggle with ICL tasks,
where models inevitably engage ICL abilities with
most inputs (Brown et al., 2020). Our PC patching

approach bypasses this limitation by engineering
representations directly using conceptual vectors
in PCs, automatically generating counterfactual
representations without requiring discrete text al-
ternatives. This represents the first method to study
causal effects in LLMs without relying on counter-
factual samples. Through PC patching, we identify
that a small fraction (5%) of attention heads signifi-
cantly impact ICL predictions, a finding we further
validate using the knockout method (Wang et al.,
2023b).

To uncover how LLMs utilize input-label map-
pings, we analyze the behavior patterns of the iden-
tified key heads. These heads consistently attend
to label words within demonstrations, with par-
ticular emphasis on labels matching new queries.
Our observations reveal that the hidden states of
these label words encode input-label mappings, in-
dicating that these heads apply learned mappings
from demonstrations to predict labels for new in-
puts. When we switch attention scores of these key
heads across different class labels, model perfor-
mance drops by 90%, providing strong validation
of our hypothesis.

To complete our understanding of the ICL pro-
cess, we employ probing techniques (Belrose et al.,
2023) to track accuracy and logit changes across
model layers. We observe that once a predicted
label is matched, LLMs decode predictions from
these matched results, gradually increasing confi-
dence in the selected labels. Based on this compre-
hensive analysis, we summarize ICL mechanisms
in three steps via input-label mappings (Figure 1).
Finally, we fine-tune the identified attention heads
to enhance ICL while preserving the model’s gen-
eral capabilities. Our experiments demonstrate
that fine-tuning just 32 attention heads (out of
1024) yields significant improvements in ICL per-

3874

formance across diverse tasks and datasets.
In summary, this work makes three key contri-

butions: (1) We provide mechanistic insights into
how LLMs store and utilize input-label mappings
during ICL; (2) We introduce PC Patching, a novel
technique that identifies task-critical components
without requiring manually designed counterfac-
tual examples; and (3) We demonstrate that pre-
cisely fine-tuning only the identified key heads
(5% of attention heads) significantly outperforms
conventional full-parameter tuning across diverse
tasks while preserving general capabilities. These
findings both advance our understanding of ICL
mechanisms and provide an effective approach for
targeted model enhancement, as illustrated in Fig-
ure 2.

2 Related works

In-context learning. Recent studies on ICL inter-
pretability focus on the role and mechanisms of
input-label mappings. Some works investigate the
effects of input perturbations, such as the arrange-
ment and formatting of demonstrations (Min et al.,
2022; Wei et al., 2023b), and propose strategies
for constructing effective demonstrations and cali-
brating ICL performance (Luo et al., 2024). Other
research (Olsson et al., 2022; Singh et al., 2024;
Ren et al., 2024) has shifted to probing the internal
mechanisms of ICL, particularly through the analy-
sis of multi-layer perceptrons (MLPs) and attention
modules. One study (Wang et al., 2023c) examines
label words aggregate information in shallow lay-
ers and distribute it in deep layers. In this work,
we explore the input-label mappings in ICL. We
discover and verify input-label mappings stored
in specific layers’ PCs which encode task-related
information. Using the proposed PC patching, we
located specific heads related to ICL.

Interpretability methods. A recent study (Vig
et al., 2020) adapted causal mediation analysis
(CMA) (Pearl, 2001) to interpret deep language
models, utilizing this approach for tasks including
subject-verb agreement (Finlayson et al., 2021),
natural language inference (Geiger et al., 2021),
and retention of factual associations (Meng et al.,
2022; Geva et al., 2023). Moreover, path patch-
ing (Wang et al., 2023a) extends CMA by mea-
suring how treatment effects are mediated through
node-to-node connections between neurons or fea-
tures. However, the requirement for the careful
design of reference and counterfactual pairs lim-

its the scalability and broader application of this
method. In this work, we introduce PC Patching
to tackle this problem. PC Patching bypasses the
need for text-based counterfactuals by manipulat-
ing semantic representations within the principal
components.

3 Preliminary

Model. We select Mistral-7B (Jiang et al., 2024)
as our primary model for investigation due to its
moderate capacity and strong performance in ICL.
Table 1 shows that Mistral-7B demonstrates an av-
erage of 70% accuracy on the ICL benchmark. All
experiments are conducted on 8 NVIDIA A100
80GB GPUs. Additional analysis conducted on
Llama3-8B, Llama3-70B (Dubey et al., 2024) and
Qwen2-72B (Yang et al., 2024) are provided in the
Appendix D.

Datasets. We use the Stanford Sentiment Tree-
bank Binary (SST-2 (Socher et al., 2013)) as the
primary dataset for our explainability experiments
in sentiment analysis. Additionally, we validate our
approach on several other datasets, including Hate
Speech Detection (ETHOS (Mollas et al., 2020)),
and Duplicated-Question Recognition (QQP (Wang
et al., 2019b)). To eliminate semantic interference
from labels, we follow the methodology described
in (Wei et al., 2023a), randomly selecting non-
related semantic label options, such as replacing
[’negative’, ’positive’] with [’far’, ’boo’]. Follow-
ing (Wei et al., 2023a), we implement a pinpoint
SFT on 17 publicly available NLP datasets in seven
tasks select another four NLP tasks and MMLU
for evaluation, and remap original natural language
labels to 270k randomly-selected labels. Further
details are provided in Appendix C.

4 Method

Our goal is to interpret in-context learning in LLMs
in a way that is human-understandable, thus en-
abling targeted modification of models through pre-
cise SFT. This section delves into the “abstract-
identify-improve” methodology. First, in Sec-
tion 4.1, we explore and analyze input-label map-
pings across representations. Next, in Section 4.2,
we detail the process of identifying and validat-
ing key modules within LLMs. Finally, in Sec-
tion 4.3, we propose a precise training strategy that
fine-tunes the influential modules to improve the
proficiency of ICL.

3875

Acquisition of Task-related
Principal Components

1

Input: Worst film I’ve ever seen.
Output: Negative
Input: This movie is great.
Label: Positive
Input: This movie is terrible.

Example in SST-2

Label: Negative

2

LLM
Dataset Preparation

Principal Components(PC)

3 Match Task-related token

...

Layer-15-top1

Negative PC

....Apply for all layers

eg, t = ’Negative’

Layer l

Principal Component Patching
for Module Identification

4 Task-related PC

p

1

Al

A

Activation Perturbation

PC1

PC2

PC3

Key heads

Al：Hidden States

Ar = A

3 Causal Effect

Ei
1 = (logitp - logitr) / logitr

Ap = pertub(Ar, p)

...
logitr

...
H1 H2 HN...

2 Patched
Forward Pass

...

Final Layer

H : Attn head

logitp

4 Averaged Effect

�� =
 ���

�

Average
Samples

E = {E1, E2,

E3,...}

Traverse
Heads

Plot

Final Layer

5

Original :

Patched

La
ye

r

Head

LLM

Similarity(p, t)→S max(S)→sl

P = PCA(Al , K)

Layer 1

Figure 3: PC Patching method for identifying ICL-related modules in LLMs: (Left) Acquisition of task-related
principal components through extracting PCs from hidden states and measuring similarity with task-related tokens;
(Right) Principal Component Patching process that automatically generates counterfactual representations by
perturbing activations along task-related PCs, measuring causal effects across model heads to identify key ICL-
related modules without requiring manually designed counterfactual examples.

4.1 Input-Label Mapping Abstraction

To automatically locate and abstract input-label
mappings, we propose the Principal Component
Lens (PCL) approach, as detailed in Algorithm 1.
For a given dataset, we construct a set Ω contain-
ing samples with N randomly selected demonstra-
tions1 and compute the activations A across all lay-
ers of model M. To identify the task-related tokens
in the dataset, we randomly select several original
samples and prompt the LLM (e.g., Mistral-7B)
with a simple request: “Please extract the task-
related words from the samples below and return
the keywords as a Python list. [...Several Sam-
ples...]”. For instance, in the case of SST-2, the
output might be a list like [“negative”, “happy”,
“sad”, · · ·].

As illustrated in the left portion of Figure 3,
we first prepare the dataset with demonstrations
(e.g., input-label pairs from SST-2) and feed them
through the LLM. Next, we apply Principal Com-
ponent Analysis (PCA) to activations A across all
layers to extract the top K principal components
P (K is set as 3 by default). This process trans-
forms the high-dimensional hidden states into their

1We set N=16 by default (matching Algorithm 2). Details
on the number of demonstrations is in Appendix G.2.3

most salient components, which potentially encode
task-related information.

Since input-label mappings store task-related in-
formation, we compare the logits distribution of the
unembedded principal components in vocabulary
space with corresponding task-related tokens. As
shown in Figure 3 (left, steps 3-4), we match these
principal components with task-related tokens and
identify which layer and component best captures
the input-label mapping.

We use the following equation to evaluate these
similarity scores:

s = max
t∈T

{
exp ((WUp)t)∑|V |
j=1 exp ((WUp)j)

}
, (1)

where p ∈ Rd represents principal components,
WU ∈ R|V |×d is the unembedding matrix, and
T ⊆ V is the task-related token list. This projects
components into vocabulary space via WU , applies
softmax, and selects the highest probability among
task-related tokens. The component with highest
similarity encodes the input-label mapping.

4.2 Key Module Identification

Given existing studies (Olsson et al., 2022; Singh
et al., 2024) confirm attention heads’ vital role in

3876

Algorithm 1 Abstracting Input-Label Mapping
Input: Set Ω of samples with demonstrations, modelM
with layers L. The task-related token set T
Output: Similarity scores for L: SL
Compute all activations A on Ω
for l in L do
P = PCA(Al,K) ▷ extract Top-K PC
for p in P do

for t in T do
S← similarity(p, t)

end for
end for
sl ← max(S). ▷ equation 1

end for
Return: sl

ICL, we focus on identifying which heads are re-
sponsible for answer matching. To achieve this, we
propose Principal Component Patching (PC Patch-
ing), a method that automatically generates coun-
terfactual representations, eliminating the need for
manually crafted counterfactual examples (Wang
et al., 2023a).

As shown in the right portion of Figure 3, our PC
Patching approach consists of five key steps. First,
we perturb the original activation Ar along the di-
rection of the identified task-related principal com-
ponent p to create a counterfactual activation Ap.
Then, we perform a patched forward pass through
the LLM, replacing the activations of one head at
a time with the perturbed activation while keeping
all other heads unchanged. Next, we measure the
causal effect by comparing the output logits from
the original and patched passes, calculating the rel-
ative change in logit values. By perturbing targeted
activation with counterfactual representation Ac

and holding others constant with reference repre-
sentation Ar, we compare output logits to measure
the counterfactual effect. The whole process is in
Algorithm 2. We scan through all nodes N sequen-
tially, and measure the changes in the output logit
of ground-truth token C, as EN . As illustrated in
Figure 3 (right, steps 4-5), we average these ef-
fects across multiple samples and visualize them
to identify key heads that significantly impact ICL
predictions.

Explanations for model behavior are often mis-
leading or lack rigor (Bolukbasi et al., 2021; Wiegr-
effe and Pinter, 2019). To mitigate this issue, we
perform a thorough assessment of the significance
of the identified key heads while also verifying the
insignificance of others. To achieve this, we apply
a knockout method called mean ablation (Wang
et al., 2023b), where individual heads are deacti-

vated by replacing their activations with the mean
activation across a counterfactual representation
Ac, effectively removes task-related information.

Algorithm 2 Identifying Key Modules (Principal
Component Patching)

Input: Set Ω of samples with demonstration X , modelM
with nodesN . The Principal Component p.
Output: Causal effects forN : EN .
for xi in Ω do

Compute all activations Ar on Xi

Ac = control(Ar, p) ▷ perturb along PC p
for n inN do

A′
r(n)← Ac(n); ▷ replace Ar by Ac

A′
r(k)← Ar(k), ∀k ∈ [1, · · · , |N |], k ̸= n.

logito ←M(X
(i)
r , Ar) ▷ get original logits

logitp ←M(X
(i)
r , A′

r) ▷ get patched logits
s
(i)
n ← logitp−logito

logito
▷ causal effect

end for
end for
Return: sn =

∑|Ω|
i=1 s

(i)
n

|Ω| ▷ averaged effect w.r.t. samples

4.3 In-Context Learning Capability
Enhancement

Supervised Fine-Tuning (SFT) is widely applied
to enhance the model’s capabilities. Inspired by
(Zhang et al., 2024), we introduce precise SFT only
to update those components closely associated with
ICL abilities while keeping the rest parameters un-
changed. For the i-th attention layer, the output
matrix W i

O is split into equal-sized blocks for each

head
[
W i,1

O ,W i,2
O , · · · ,W i,H

O

]
. This is equivalent

to running each head independently, multiplied by
its respective output matrix, and added to the resid-
ual stream. For the selected heads, precise SFT
updates four matrices: W i,j

Q , W i,j
K , W i,j

V ∈ Rd× d
H ,

and W i,j
O ∈ R

d
H
×d. Additionally, by updating only

a small subset of parameters, precise SFT not only
reduces training time but also preserves the model’s
original performance.

5 Experiments

The experiments are organized as follows: (1) ab-
stract the input-label mappings in Section 5.1; (2)
identify the mapping-related key components in
Section 5.2; (3) improve the in-context learning ca-
pability via pinpoint supervised fine-tuning on 17
classification datasets in Section 5.3. For simplic-
ity, we primarily report the results of Mistral-7B in
the experiments, while other results can be found
in Appendix. The results of the generation task are
discussed in Section 6.

3877

16.49

16.39
16.22

16.00

15.77

15.43

15.19

14.94

14.67

14.42
14.27

14.54

14.81

15.06

15.31 15.48

15.64

15.86

16.08

16.45

14.0

14.5

15.0

15.5

16.0

16.5

17.0

-10 -8 -6 -4 -2 0 2 4 6 8 10

Lo
gi

t

Ratio of the Negative Component

(c) Logits change after control

3.8188

0

1

2

3

4

0 5 10 15 20 25 30

Si
m

ili
ra

ty

Layer

(b) Similarity with task-related
token

(a) Unembedding principal
components

hiddden state principal component positive option negative option

Figure 4: (a) Projection of PCs into the vocabulary space across different layers, where ‘C-k’ represents the k-th
component of each layer. The words highlighted in red indicate task-related words. (b) Similarity between the
hidden state/principal components and task-related tokens across all layers. (c) Effect on the logits of positive option
(e.g., foo) and negative option (e.g., bar) after adding embeddings with the negative principal component.

5.1 Input-Label Mapping Abstraction

The principal components encode human-
interpretable words. To elucidate the internal
mechanics of ICL, we employ the logit lens ((Bel-
rose et al., 2023)) method to project hidden states
into the vocabulary space. Consistent with (Wei
et al., 2023b,a), the natural language labels (e.g.,
“positive/negative sentiment”) are replaced with ar-
bitrary digit (e.g., “0/3”). Our results indicate that
meaningless tokens such as “unge”, “Aires”, “iges”,
and “verso” persist across layers, with no clear
emergence of task-related tokens. To study whether
LLMs can extract the task-related information (e.g.,
“positive/negative” for SST-2), we conduct a pre-
liminary experiment that first applies the Principal
Component Analysis (PCA) on the original hidden
states, then projects the top-1 principal component
into vocabulary space. Surprisingly, our findings
reveal the principal component aligns with task-
related directions and encodes human-interpretable
tokens, as illustrated in Figure 4(a), with further
details available in Appendix 4. This phenomenon
indicates that LLMs can comprehend task-relevant
information without explicit natural language la-
bels in demonstrations.

The principal components (PCs) encode
input-label mapping. Inspired by the above analy-
sis, we manipulate PCs through logit lens to auto-
matically identify the layer where task-related PCs
emerge. The results are depicted in Figure 4(b). No-
tably, our observations reveal a distinct peak in sim-
ilarity at layer 15, suggesting that this layer plays a
crucial role in abstracting and capturing input-label
mappings. Leveraging the proposed method, we
can pinpoint the layer where task-related principal

components emerge, as reflected by the spike in the
similarity curve.

The principal components control the behav-
ior of ICL. To assess whether LLMs utilize the
task-related principal components during ICL, we
perturb the hidden states along the direction of
task-related components and examine whether this
affects answer probabilities. Specifically, we in-
ject components of negative sentiment into layer
15 in the SST-2 dataset and observe the resulting
logit changes for both positive and negative op-
tions. The results, shown in Figure 4(c), reveal a
clear linear trend: as the magnitude of the negative
component in the residual stream increases, the
logit for the negative option steadily rises, while
the logit for the positive option correspondingly
decreases. This behavior demonstrates that LLMs
leverage task-related principal components to get
their responses. In Section 6.2, we extend this
experiment to generation tasks (such as adv factu-
ality and prejudice (Liu et al., 2023)) and observe
similar results.

5.2 Key Modules Identification

Location of key heads. Figure 5(a) visualizes the
effect of each head by head and layer indices after
applying the proposed PC Patching. This arrange-
ment allows for a clear comparison of the causal
effect of each head to the ground-truth token’s logit.
The red squares indicate heads with a strong pos-
itive effect on predicting the output token, while
the blue squares represent heads with a negative ef-
fect. From these results, we observe that: (i) Only a
small number of heads have a noteworthy influence

3878

(a) Effect on logit of each head
Head

La
ye

r

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 10 20 30 40

Pr
ed

ic
tio

n
A

cc
ur

ac
y

100% 100%

99.50%

54.61% 47.91%

37.35%

26.97%

97.32%

(b) Accuracy after Knockout

24.29%

Effect-rank
Random-rank

93.33%

74.67%

51.33%

32.13%

19.23%

26.00%

22.00%
22.00%

22.00%

22.67%

15.33%
11.33%

99.33% 99.33% 99.33% 99.33% 99.33% 99.33%

0%

20%

40%

60%

80%

100%

0 5 10 15 20

Pr
ed

ic
tio

n
A

cc
ur

ac
y

(d) Accuracy after swapping

Swapping label text
Swapping random test

0

5

10

15

20

25

30

200 10 30
Top-k heads Top-k heads

Figure 5: (a) The attention patterns of the key attention head, which mainly attends to the “positive” label. (b) The
result of PC-Patching experiment on Mistral-7B on SST-2. For each head, a darker color indicates a larger logit
difference from the original model before patching. (c) The performance of the ICL after swapping the attention
weights of different labels for the key attention heads. The accuracy decreases from 100% to 11%.

on ICL. Specifically, heads such as 9.192, when
patched, lead to a substantial 6.0% decrease in the
logit, highlighting their positive contribution to the
ICL. We classify heads that exhibit logit change ex-
ceeding −1% as “key heads”. (ii) The discovered
key heads are mainly located in the middle layers,
with almost no key heads present in the shallow
layers.. For Mistral-7B, key heads emerge from
the 18th layer for in-context learning. Prior lay-
ers exhibit heads that do not exert a direct effect
on the output logits. The key heads are primarily
concentrated between layers 18 and 19.

Validation of key modules. To fully validate
the faithfulness of the discovered key heads, we
perform additional checks by observing the perfor-
mance drop when knocking out these components.
In Figure 5(b), all heads are sorted in a certain or-
der by the importance score shown in Figure 5 (a)
and knocked out one by one. It shows that, as the
heads are gradually knocked out, the model’s per-
formance of drops sharply in “effect-rank”, while
keeping stable (relatively minor effect within 2%)
in “random-rank”. The model becomes largely con-
fused to output incorrect answers after knocking
out, further verifying the crucial role of key com-
ponents in LLMs’ ability to complete the ICL task.
The above results demonstrate that the discovered
components play an especially important role in
the language model’s ability to complete the ICL
task.

Key heads behavior. To gain deeper insights
into the behavior of key heads (as shown in Fig-
ure 5(a)), we begin by analyzing their attention
patterns, focusing on the attention scores assigned
to input texts and labels during demonstrations.

2We apply the notation of i.j to refer to the j-th head of
the i-th attention layer.

Our analysis reveals that these key heads exhibit a
strong focus on label-related tokens. For instance,
in the demonstration with the inputs: “question:
Worst film I’ve ever seen. answer: bar; question:
This movie is great. answer: foo; question: This
movie is terrible. answer:”, head 9.19 in Figure 5(a)
consistently assigns high attention scores to labels
“bar” and “foo”, particularly favoring “bar”. This
behavior suggests that the new input, “This movie
is terrible”, will be mapped similarly to the neg-
ative sentiment label (“bar”), just as “Worst film
I’ve ever seen” is. To verify this conjecture, we per-
form a token-swapping experiment by exchanging
the attention scores between different classes (e.g.,
swapping the scores between “bar” and “foo”). The
results, as depicted in Figure 5(c), show with an
increasing number of swapped heads, the accuracy
for the label text (green curve) drops sharply from
100% down to 11.33% at 20 swapped heads, while
the random swapping (orange curve) shows no sig-
nificant impact on accuracy. These observations
confirm that these heads utilize input-label map-
pings by controlling the attention score weights
across different classes.

5.3 ICL Capability Enhancement

Pinpoint SFT improves in-context learning abil-
ity. We term all-parameter fine-tuning as Full SFT
for simplicity and adopt the same training settings
as Pinpoint SFT. Table 1 compares Full SFT and
Pinpoint SFT on MMLU and four NLP tasks. Pin-
point SFT achieves a 14.99% average improve-
ment across NLP datasets, outperforming Full SFT,
which only shows a 4.58% gain. Full SFT weak-
ens LLMs’ knowledge by relying on symbolic la-
bels (e.g., foo/bar) for ICL. These results highlight
that fine-tuning ICL-relevant modules enhances

3879

Table 1: Overall performance. We evaluate the capabilities of Mistral-7B, transitioning from generic tasks (e.g.,
MMLU) to NLP classification tasks (e.g., SST2, ETHOS, QQP, and RTE). Supervised fine-tuning across the entire
parameter set (denoted as Full SFT) leads to no enhancement with in-context learning, albeit at the expense of
its capabilities in generic tasks. In contrast, selectively tuning only the parameters of 32 critical attention heads
(denoted as Pinpoint SFT) yields more improvements while preserving the model’s proficiency in generic tasks,
with fewer tuned parameters.

NLP Classification Tasks Generic Task

Model Tuned
Params. SST2 ETHOS QQP RTE Avg MMLU (0-shot) MMLU (5-shot)

Acc. ∆ Acc. ∆ Acc. ∆

Mistral-7B - 79.93% 76.85% 57.94% 59.94% 68.67% - 52.46% - 54.66% -
+ Full SFT 7.3B 89.11% 58.22% 74.93% 70.73% 73.25% +4.58% 31.14% -21.32% 23.24% -31.42%
+ Random 0.08B 88.88% 65.53% 75.52% 72.83% 75.69% +7.02% 39.13% -13.33% 37.29% -17.37%

+ Pinpoint SFT 0.08B 95.18% 78.25% 76.72% 84.85% 83.65% +14.99% 52.43% -0.03% 54.10% -0.56%

Table 2: Ablative experiments on tunable modules.

Precise SFT
Setting

Evaluation Metric

Train
Speed

Tuned
Params.

6-NLP
dataset

MMLU

Mistral-7B - - 68.67% 52.46%
random-32head 50sam./sec 0.08B 71.69% 39.13%

top-32head 50sam./sec. 0.08B 83.65% 52.43%
top-64head 40sam./sec. 0.16B 83.82% 52.35%
top-128head 35sam./sec. 0.32B 82.44% 51.67%

performance while tuning unrelated modules can
impair it. For instance, Full SFT leads to a 21%
drop in general capabilities on MMLU, whereas
Pinpoint SFT preserves the model’s original per-
formance. This demonstrates that Pinpoint SFT
on ICL-related modules has minimal impact on
the model’s general capability. Randomly fine-
tuning heads not only fails to improve ICL sig-
nificantly capabilities but also impairs performance
on the general task MMLU, indicating that unre-
lated modules were trained, leading to a decline
in the model’s general abilities. More granular
fine-tuning and intermediate parameter adjustments
may yield greater gains and uncover further in-
sights, which we identify as key directions for our
future research.

Ablative study. The primary challenge with
Pinpoint SFT is identifying the appropriate quantity
and specific set of modules to adjust. To illustrate
this, we conduct experiments with varying numbers
of heads, with the results presented in Table 2. We
find that fine-tuning 32 heads provides the best
average improvement across different head counts.
Randomly fine-tuning the same number of heads
has minimal effect.

Generative tasks on algorithmic reasoning.
To assess the broader applicability of Pinpoint SFT
beyond classification tasks, we evaluate its effec-

tiveness on generative algorithmic reasoning tasks
(from BIG-Bench(Srivastava et al., 2022)) within
the ICL framework. Specifically, we experiment
with list function tasks where the model must iden-
tify transformation functions between input and
output lists containing non-negative integers (e.g.,
removing the last element: [8, 0, 5, 12, 0, 2] ⇒
[8, 0, 5, 12, 0]). These tasks measure a model’s
ability to reason algorithmically over structured
data. We select three representative subsets with
varying difficulty levels, as indicated by the orig-
inal Mistral-7B’s performance: Modify the list
(34.38%), Remove elements (78.13%), and Add
elements (96.88%). All tasks are evaluated in a
4-shot setting.

Table 3: Performance comparison on algorithmic rea-
soning tasks with 4-shot demonstrations in Mistral-7B.

Task Original Pinpoint SFT

Modify the list 34.38% 48.44%
Remove elements 78.13% 91.67%
Add elements 96.88% 100.00%

Average 69.80% 80.04%

The results in table 3 demonstrate that Pinpoint
SFT significantly enhances the model’s perfor-
mance across all three list function tasks, with an
average improvement of 10.24%. Notably, the most
substantial gain (14.06%) is observed in the most
challenging task (Modify the list), where the orig-
inal model struggles the most. This suggests that
fine-tuning ICL-relevant modules is particularly
beneficial for complex reasoning tasks that require
sophisticated pattern recognition. These findings
further validate the effectiveness of our approach
in enhancing ICL capabilities across both classifi-
cation and generative reasoning tasks.

3880

6 Discussion
In this section, we first address the two remaining
questions to provide a thorough and fine-grained
interpretation of the ICL process, as discussed in
subsection 6.1 (whole pipeline in Figure 1 for de-
tails). Next, we explore the generalization of PC
matching and extend our experiments to generation
tasks, as described in subsection 6.2.

6.1 Interpreting ICL

The experiments above elucidate remained ques-
tion: How are the principal components generated
before the mapping process, and what transpires
after the mappings are utilized?

Before Mapping: Establishing Preliminary
Input-Label Associations. To understand how
models establish input-label mappings during
demonstrations, we analyze the flow of informa-
tion within the model using saliency techniques. By
calculating the saliency ((Simonyan et al., 2014))
scores of attention heads across demonstrations in
Appendix Figure 6(a), we observe that the infor-
mation flow from input tokens to label tokens is
particularly concentrated in the earlier layers, with
significant activity between layers 0 and 15. For
instance, in the SST-2 dataset, the attention score
between 4th Input and 4th Label in demonstrations
is much higher than between 4th Input and 1th
Input. This suggests that the model establishes pre-
liminary input-label associations early on in the
demonstration process. Further verification exper-
iments, as shown in Appendix Figure 6(c), reveal
that blocking the information flow between input
and label in demonstrations leads to a sharp de-
crease in accuracy, whereas random blocking has
no effect.

After mapping: Decoding Prediction from
Matched Mappings. After the model matches the
input to the corresponding input-label mappings, as
shown in Figure 6(b), it identifies the correct label
primarily in layers 18 to 21. Then, the subsequent
layers, from layer 21 onward focus on refining
the model’s confidence in its predictions, which
is indicated in Appendix Figure 7(a). The exper-
iment results reveal that starting around layer 18,
the model significantly increases both the rank and
confidence of the correct token. This confidence
continues to grow through layer 21 and beyond, as
the model decodes the information necessary for
its final prediction. The final layers show an in-
creasing appearance of label-related tokens among
the top predictions, confirming that these layers

are primarily involved in finalizing the output by
processing the embeddings into the correct answer.

6.2 Extension
To assess the generalization of the proposed PC
patching approach, we extend our experiments to
trustworthiness (Sun et al., 2024) generation tasks,
including Adv Factuality, and Preference Bias. In
the Adv Factuality task, the model is tasked with
detecting incorrect premises and rectifying factual
inaccuracies. For the Preference Bias task, the
model is expected to refrain from expressing per-
sonal preferences when presented with biased op-
tions.

First, after applying PCA to hidden state of
both tasks and projecting the principal components
into vocabulary space, the task-related directions
emerge. For example, words like “wrong”, “in-
correct”, “mistaken”, · · · for Adv Factuality task,
while “choice”, “choosing”, “preference” appear
for the Preference Bias. Utilizing Algorithm 1, we
observe peaks in layer 15 for both tasks, indicating
task-related components. By perturbing the hidden
states by PC, we can control the answer direction.
For instance, prior to applying control, the model
responds to the prompt: “Please select one option
you prefer from the following options: A. isola-
tionist foreign policy approach B. interventionist
stance.” with: “I am an AI language model and do
not have personal preferences...”. However, after
enhancing the ‘preference’ component, LLM in-
stead responds: ‘I prefer B, because...”. Second, we
validate the effectiveness of the proposed approach
PC Patching method. We apply it to both tasks and
generate heatmaps similar to Figure 5 (a). Notably,
the identified heads for these tasks are distinct from
those used for in-context learning, suggesting that
different tasks activate different functional heads.

7 Conclusion

In this study, we have identified, analyzed, and
fine-tuned the internal components responsible for
the ICL capability of LLMs. The language models
abstract the input-label mappings and store them in
the key layers, and subsequently, a small number of
attention heads are involved in applying these map-
pings to new questions. We apply the pinpoint SFT
on the ICL-related heads for better ICL capabili-
ties, with less impact on other tasks compared with
tuning all parameters. These findings contribute to
a better understanding of the inner mechanism of
LLMs.

3881

8 Acknowledgements

This work was supported in part by NSFC No.
62222117.

9 Limitations

In this work, we aimed to provide deeper insights
into in-context learning (ICL). Although the ex-
periments were conducted across various models
and datasets, the findings may not generalize uni-
versally to all models or tasks. Nonetheless, we
believe that even potentially biased observations
and explorations contribute valuable insights to-
ward general conclusions and the advancement of
relevant theories. Additionally, we did not rigor-
ously tune experimental parameters, such as op-
timizing similarity measures or learning rates for
SFT, as these aspects fall beyond the scope of this
study. Despite these limitations, we believe that a
robust method should exhibit strong generalization
capabilities, as demonstrated by the results of our
Pinpoint SFT experiments in Table 1 despite these
limitations. While there is room for further opti-
mization, these limitations do not detract from the
significance of our contributions.

References

Nora Belrose, Zach Furman, Logan Smith, and et al.
2023. Eliciting latent predictions from transformers
with the tuned lens. CoRR, abs/2303.08112.

Tolga Bolukbasi, Adam Pearce, Ann Yuan, Andy Co-
enen, Emily Reif, Fernanda B. Viégas, and Martin
Wattenberg. 2021. An interpretability illusion for
BERT. CoRR, abs/2104.07143.

Tom B. Brown, Benjamin Mann, Nick Ryder, and et al.
2020. Language models are few-shot learners. In
NeurIPS.

Alexis Conneau and Douwe Kiela. 2018. Senteval: An
evaluation toolkit for universal sentence represen-
tations. In LREC. European Language Resources
Association (ELRA).

Damai Dai, Yutao Sun, Li Dong, and et al. 2023. Why
can GPT learn in-context? language models secretly
perform gradient descent as meta-optimizers. In ACL,
pages 4005–4019. Association for Computational
Linguistics.

Guy Dar, Mor Geva, Ankit Gupta, and et al. 2023. An-
alyzing transformers in embedding space. In ACL,
pages 16124–16170. Association for Computational
Linguistics.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
and et al. 2024. The llama 3 herd of models. CoRR,
abs/2407.21783.

Matthew Finlayson, Aaron Mueller, Sebastian
Gehrmann, Stuart M. Shieber, Tal Linzen, and
Yonatan Belinkov. 2021. Causal analysis of syntactic
agreement mechanisms in neural language models.
In Proceedings of the 59th Annual Meeting of the
Association for Computational Linguistics and the
11th International Joint Conference on Natural
Language Processing, ACL/IJCNLP 2021, (Volume
1: Long Papers), Virtual Event, August 1-6, 2021,
pages 1828–1843.

Atticus Geiger, Hanson Lu, Thomas Icard, and Christo-
pher Potts. 2021. Causal abstractions of neural net-
works. In Advances in Neural Information Process-
ing Systems 34: Annual Conference on Neural In-
formation Processing Systems 2021, NeurIPS 2021,
December 6-14, 2021, virtual, pages 9574–9586.

Mor Geva, Jasmijn Bastings, Katja Filippova, and Amir
Globerson. 2023. Dissecting recall of factual asso-
ciations in auto-regressive language models. CoRR,
abs/2304.14767.

Mor Geva, Avi Caciularu, Kevin Ro Wang, and et al.
2022. Transformer feed-forward layers build predic-
tions by promoting concepts in the vocabulary space.
In EMNLP, pages 30–45. Association for Computa-
tional Linguistics.

Mor Geva, Roei Schuster, Jonathan Berant, and et al.
2021. Transformer feed-forward layers are key-value
memories. In EMNLP, pages 5484–5495. Associa-
tion for Computational Linguistics.

Albert Q Jiang, Alexandre Sablayrolles, Antoine Roux,
and et al. 2024. Mixtral of experts. arXiv preprint
arXiv:2401.04088.

Jannik Kossen, Tom Rainforth, and Yarin Gal. 2023.
In-context learning in large language models learns
label relationships but is not conventional learning.
CoRR, abs/2307.12375.

Quentin Lhoest, Albert Villanova del Moral, Yacine Jer-
nite, and et al. 2021. Datasets: A community library
for natural language processing. In Proceedings of
the 2021 Conference on Empirical Methods in Nat-
ural Language Processing: System Demonstrations,
EMNLP 2021, Online and Punta Cana, Dominican
Republic, 7-11 November, 2021, pages 175–184. As-
sociation for Computational Linguistics.

Yang Liu, Yuanshun Yao, Jean-Francois Ton, Xiaoying
Zhang, Ruocheng Guo, Hao Cheng, Yegor Klochkov,
Muhammad Faaiz Taufiq, and Hang Li. 2023. Trust-
worthy llms: a survey and guideline for evalu-
ating large language models’ alignment. CoRR,
abs/2308.05374.

3882

https://doi.org/10.48550/ARXIV.2407.21783
https://doi.org/10.18653/v1/2021.acl-long.144
https://doi.org/10.18653/v1/2021.acl-long.144
https://proceedings.neurips.cc/paper/2021/hash/4f5c422f4d49a5a807eda27434231040-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/4f5c422f4d49a5a807eda27434231040-Abstract.html
https://doi.org/10.48550/arXiv.2304.14767
https://doi.org/10.48550/arXiv.2304.14767
https://doi.org/10.18653/V1/2021.EMNLP-DEMO.21
https://doi.org/10.18653/V1/2021.EMNLP-DEMO.21
https://arxiv.org/abs/2308.05374
https://arxiv.org/abs/2308.05374
https://arxiv.org/abs/2308.05374

Quanyu Long, Jianda Chen, Zhengyuan Liu, Nancy F
Chen, Wenya Wang, and Sinno Jialin Pan. 2025. Re-
inforcing compositional retrieval: Retrieving step-
by-step for composing informative contexts. arXiv
preprint arXiv:2504.11420.

Man Luo, Xin Xu, Yue Liu, Panupong Pasupat, and
Mehran Kazemi. 2024. In-context learning with re-
trieved demonstrations for language models: A sur-
vey. CoRR, abs/2401.11624.

Kevin Meng, David Bau, Alex Andonian, and Yonatan
Belinkov. 2022. Locating and editing factual associa-
tions in GPT. In NeurIPS.

Sewon Min, Xinxi Lyu, Ari Holtzman, and et al. 2022.
Rethinking the role of demonstrations: What makes
in-context learning work? In EMNLP, pages 11048–
11064. Association for Computational Linguistics.

Ioannis Mollas, Zoe Chrysopoulou, Stamatis Kar-
los, and Grigorios Tsoumakas. 2020. ETHOS:
an online hate speech detection dataset. CoRR,
abs/2006.08328.

Harsha Nori, Yin Tat Lee, Sheng Zhang, and et al.
2023. Can generalist foundation models outcom-
pete special-purpose tuning? case study in medicine.
CoRR, abs/2311.16452.

Catherine Olsson, Nelson Elhage, Neel Nanda, and
et al. 2022. In-context learning and induction heads.
CoRR, abs/2209.11895.

Jane Pan, Shunyu Zhang, and Danqi Chen. 2023. What
in-context learning "learns" in-context: Disentan-
gling task recognition and task learning. In Find-
ings of the Association for Computational Linguis-
tics: ACL 2023.

Judea Pearl. 2001. Direct and indirect effects. In UAI
’01: Proceedings of the 17th Conference in Uncer-
tainty in Artificial Intelligence, University of Wash-
ington, Seattle, Washington, USA, August 2-5, 2001,
pages 411–420.

Jie Ren, Qipeng Guo, Hang Yan, Dongrui Liu, Xipeng
Qiu, and Dahua Lin. 2024. Identifying semantic
induction heads to understand in-context learning.
arXiv preprint arXiv:2402.13055.

Lingfeng Shen, Aayush Mishra, and Daniel Khashabi.
2023. Do pretrained transformers really learn
in-context by gradient descent? arXiv preprint
arXiv:2310.08540.

Karen Simonyan, Andrea Vedaldi, and Andrew Zis-
serman. 2014. Deep inside convolutional networks:
Visualising image classification models and saliency
maps. In 2nd International Conference on Learn-
ing Representations, ICLR 2014, Banff, AB, Canada,
April 14-16, 2014, Workshop Track Proceedings.

Aaditya K Singh, Ted Moskovitz, Felix Hill,
Stephanie CY Chan, and Andrew M Saxe. 2024.
What needs to go right for an induction head? a

mechanistic study of in-context learning circuits and
their formation. arXiv preprint arXiv:2404.07129.

Richard Socher, Alex Perelygin, Jean Wu, and et al.
2013. Recursive deep models for semantic compo-
sitionality over a sentiment treebank. In EMNLP,
pages 1631–1642. ACL.

Aarohi Srivastava, Abhishek Rastogi, Abhinav Rao,
Abu Awal Md Shoeb, Abubakar Abid, Adam Fisch,
Adam R. Brown, Adam Santoro, Aditya Gupta,
Adrià Garriga-Alonso, et al. 2022. Beyond the
imitation game: Quantifying and extrapolating the
capabilities of language models. arXiv preprint
arXiv:2206.04615.

Lichao Sun, Yue Huang, Haoran Wang, Siyuan Wu,
Qihui Zhang, Chujie Gao, Yixin Huang, Wenhan
Lyu, Yixuan Zhang, Xiner Li, et al. 2024. Trustllm:
Trustworthiness in large language models. arXiv
preprint arXiv:2401.05561.

Jesse Vig, Sebastian Gehrmann, Yonatan Belinkov,
Sharon Qian, Daniel Nevo, Yaron Singer, and Stuart
Shieber. 2020. Investigating gender bias in language
models using causal mediation analysis. Advances in
Neural Information Processing Systems, 33:12388–
12401.

Johannes von Oswald, Eyvind Niklasson, Ettore Ran-
dazzo, and et al. 2023. Transformers learn in-context
by gradient descent. In ICML, volume 202 of
Proceedings of Machine Learning Research, pages
35151–35174. PMLR.

Alex Wang, Yada Pruksachatkun, Nikita Nangia, Aman-
preet Singh, Julian Michael, Felix Hill, Omer Levy,
and Samuel R. Bowman. 2019a. Superglue: A stick-
ier benchmark for general-purpose language under-
standing systems. ArXiv, abs/1905.00537.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R. Bowman. 2019b.
GLUE: A multi-task benchmark and analysis plat-
form for natural language understanding. In ICLR.
OpenReview.net.

Kevin Ro Wang, Alexandre Variengien, Arthur Conmy,
and et al. 2023a. Interpretability in the wild: a circuit
for indirect object identification in GPT-2 small. In
ICLR.

Kevin Ro Wang, Alexandre Variengien, Arthur Conmy,
Buck Shlegeris, and Jacob Steinhardt. 2023b. Inter-
pretability in the wild: a circuit for indirect object
identification in GPT-2 small. In International Con-
ference on Learning Representations.

Lean Wang, Lei Li, Damai Dai, and et al. 2023c. Label
words are anchors: An information flow perspective
for understanding in-context learning. In EMNLP,
pages 9840–9855. Association for Computational
Linguistics.

3883

https://doi.org/10.48550/ARXIV.2401.11624
https://doi.org/10.48550/ARXIV.2401.11624
https://doi.org/10.48550/ARXIV.2401.11624
http://papers.nips.cc/paper_files/paper/2022/hash/6f1d43d5a82a37e89b0665b33bf3a182-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/6f1d43d5a82a37e89b0665b33bf3a182-Abstract-Conference.html
https://arxiv.org/abs/2305.09731
https://arxiv.org/abs/2305.09731
https://arxiv.org/abs/2305.09731
https://dslpitt.org/uai/displayArticleDetails.jsp?mmnu=1&smnu=2&article_id=126&proceeding_id=17
https://arxiv.org/abs/2206.04615
https://arxiv.org/abs/2206.04615
https://arxiv.org/abs/2206.04615
https://api.semanticscholar.org/CorpusID:143424870
https://api.semanticscholar.org/CorpusID:143424870
https://api.semanticscholar.org/CorpusID:143424870

Jerry W. Wei, Le Hou, Andrew K. Lampinen, and et al.
2023a. Symbol tuning improves in-context learning
in language models. In EMNLP, pages 968–979.
Association for Computational Linguistics.

Jerry W. Wei, Jason Wei, Yi Tay, and et al. 2023b.
Larger language models do in-context learning dif-
ferently. CoRR, abs/2303.03846.

Sarah Wiegreffe and Yuval Pinter. 2019. Attention is not
not explanation. In Proceedings of the 2019 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing and the 9th International Joint Conference
on Natural Language Processing, EMNLP-IJCNLP
2019, Hong Kong, China, November 3-7, 2019, pages
11–20. Association for Computational Linguistics.

An Yang, Baosong Yang, Binyuan Hui, and et al. 2024.
Qwen2 technical report. CoRR, abs/2407.10671.

Le Yu, Yu Bowen, Haiyang Yu, Fei Huang, and Yongbin
Li. 2023. Language models are super mario: Absorb-
ing abilities from homologous models as a free lunch.
ArXiv, abs/2311.03099.

Wei Zhang, Chaoqun Wan, Yonggang Zhang, Yiu ming
Cheung, Xinmei Tian, Xu Shen, and Jieping Ye. 2024.
Interpreting and improving large language models in
arithmetic calculation. In ICML.

Yufeng Zhang, Fengzhuo Zhang, Zhuoran Yang, and
et al. 2023. What and how does in-context learning
learn? bayesian model averaging, parameterization,
and generalization. CoRR, abs/2305.19420.

3884

https://doi.org/10.48550/ARXIV.2407.10671
https://api.semanticscholar.org/CorpusID:272330506
https://api.semanticscholar.org/CorpusID:272330506

Algorithm 3 Precise Fine-tuning

Require: Model M, Input X , index of key
heads Φ, iterations I , learning rate η, Wθ =
WQ/K/V/O

for (i, j) ∈ Φ do
W i,j

θ .requires_grad = True
end for ▷ activate key heads
loop I times

L = M.forward(X)
L.backward()
for w ∈ Wθ do

w = w − η ∗ w.grad
end for ▷ update target parameters

end loop

A Ethics Statement

The main purpose of this research is to reveal the
mechanistic interpretation of the in-context learn-
ing in LLMs, and to improve it. We expect this
work to inspire other researchers to understand the
behavior of the in-context learning capability of
LLMs. We use public natural language processing
datasets and leverage open-source large language
models for our experiments. We do not believe
that our code or method are inherently subject to
concerns of discrimination / bias / fairness, inappro-
priate potential applications, impact, privacy and
security issues, legal compliance, research integrity
or research practice issues. However, the results
may be subject to bias that may be inherited by
models and datasets we use.

B Additional and Fine-grained
interpretation on ICL

According to the analysis on main text, we fur-
ther yield a full and fine-grained interpretation of
the process of input-label mappings in LLMs (Fig-
ure 1). (1) Comprehending and generalizing the
mapping between inputs and labels: Unlike pre-
vious work (Wang et al., 2023c), which identifies
information flow from all text before the label to
the label word, we find that each label word in
shallow layers (0-13 layers) aggregates input in-
formation within the current demonstration. And
blocking the interaction from input to label causes
the LLMs to resort to random guessing. This sug-
gests that the model first establishes preliminary
input-to-label associations within each demonstra-
tion. Based on the aforementioned findings, the
LLMs then generalize the input-label mappings

and stores them in the principal components of the
internal embeddings of labels/predictions, which
is human-interpretable. (2) Matching the mapping
rule to new question: We identify the top-10 crucial
attention heads for applying input-label mappings.
These heads focus on the label words of demonstra-
tions which share the same ground truth, indicating
that these heads are to synthesize the mappings
stored at the input-label pairs. (3) Decoding pre-
diction from matched mappings: From mid-deep
layers (e.g., the 21th layer for Mistral7B), the logits
of the correct answer increase linearly. Meanwhile,
the task-related words diminish in the principal
components of prediction’s embeddings, while the
prediction-related words answers emerges.

B.1 Abstract Input-label Mappings Based on
Relationships in Demonstrations

To understand how models establish input-label
mappings during demonstrations, we analyze the
flow of information within the model using saliency
techniques. Given that the MLPs in LLMs primar-
ily function as memory units with minimal token-
to-token interaction, we focus on studying informa-
tion flow within attention matrix. By calculating
the saliency ((Simonyan et al., 2014)) scores of
attention heads across demonstrations in Appendix
Figure 6(a). Here, we transform the saliency matrix
Il of L×L where L is the number of tokens, into a
2(n+1)×2(n+1) matrix I ′l where n is the number
of demonstrations. This transformation focuses on
interactions between specific input-output pairs:

I ′l(k, j) =
pk+1−1∑

i=pk

pj+1−1∑

j=pj

Il(i, j),

for k, j ∈ {1, 2, . . . , 2(n+ 1)}
where j = k + 1

Here, Il(i, j) is the element in the i-th row and j-th
column of the original matrix Il. Indices pk and
pj denote the starting positions of input and out-
put tokens for each demonstration. For example,
p1 = pinput1 and p2 = poutput1 for the first demon-
stration. This transformation aggregates interaction
values, simplifying the analysis of input-output re-
lationships by collapsing the large L × L matrix
into a more manageable 2(n+1)×2(n+1) matrix.

we observe that the information flow from in-
put tokens to label tokens is particularly concen-
trated in the earlier layers, with significant activ-
ity between layers 0 and 15. This flow gradu-
ally diminishes in later layers. For instance, in

3885

0.00%

34.00%

69.16%

59.70%

67.54%

58.49%

62.85%

53.86%

47.51%

35.42%

31.19%

22.87%

27.82%

19.38%22.18%

22.37%
26.55%

0%

20%

40%

60%

80%

0 5 10 15 20 25 30

Pr
op

or
tio

n
Layer

Proportion of Text to Label Information
Flow

99.34%

95.36%

92.72%

82.12%

88.74%

82.78%

73.51%

68.21% 66.89%

55.63%
56.29% 56.29%

50.99%

45%

55%

65%

75%

85%

95%

105%

0 5 10 15 20 25 30

A
cc

. a
ft

er
 B

lo
ck

in
g

T
ex

t t
o

L
ab

el
 In

fo
rm

at
io

n
Fl

ow

Layer

Random Block Label Block

(b) The Information Flow from
 Text to Label

(c) Block the Information Flow from
Input to Label

(a) Information Flow from Input
to Label

Saliency Matrix

Figure 6: (a): The heat map of interactions between inputs and labels in layer 14. The colors within each input-label
pair are darker, indicating higher interactions. (b): The relative information flow from text to label in differnet layers.
The ratio is initially large (70%), and then gradually decays over layers. (c): The influence on the performance of
ICL after blocking the interactions within demonstrations. The accuracy decreases to random guessing after 15th
layer.

the SST-2 dataset, the attention score between 4th
Input and 4th Label in demonstrations is much
higher than between 4th Input and 1th Input. This
suggests that the model establishes preliminary
input-label associations early on in the demonstra-
tion process. Further verification experiments, as
shown in Appendix Figure 6(c), reveal that block-
ing the information flow between input and label in
demonstrations leads a sharp decrease in accuracy,
whereas random blocking has no effect. Similar
phenomenon is observed across different tasks and
models, reinforcing the idea that early layers play
a key role in identifying input-output patterns.

B.2 Match the Mapping Rule

We describe this stage in detail in main text in
Section 4 and Section 5.

B.3 Decoding Prediction from Matched
Mappings

After the model matches the new input with input-
label mappings, it identifies the correct answer in
the intermediate layers (18-21) What are the sub-
sequent layers doing? As shown in the heat map
results in Figure 7 (a), PC-patching from layer 21
onward shows minimal fluctuation, indicating these
attention layers have little impact on the model’s
performance. We analyze the logit changes for the
correct answer by projecting the last token’s embed-
dings in each layer into the vocabulary space. We
also record the rank of the correct answer among
the projected vocabulary tokens, where the top-1
token is the most likely output of that layer. The
top-1 logit in the final layer represents the model’s

actual output.

The changes in logits corresponding to the cor-
rect answer in the vocabulary space embeddings
for each layer are shown in Figure 6 (c), where
the rank changes are also depicted. At layer 19,
the correct answer suddenly ranks very high in
the attention output, with logits close to zero be-
fore layer 18. From layer 18 onward, the logits
increase linearly, with a further rise after layer 21.
The same phenomenon across different models and
datasets indicates that in the final stage, the model
progressively increases its confidence in the cor-
rect answer, performing an information decoding
operation. We also examine the top-ranked tokens
in the actual output. From layer 22 onwards, an
increasing number of numerical tokens (used as la-
bels in our study) appear among the top 20 tokens
in the projected embeddings. At layer 22, only
one numerical token is present, while in the final
layer, almost all top tokens are numerical. This
further confirms that the final stage involves decod-
ing operations. Additionally, we test the probing
accuracy of the internal embeddings across layers.
The results are shown in Figure 7 (a). The results
show that the accuracy starts to increase at layer 16,
and reaches the peak at layer20. This finding aligns
with the top-ranked tokens across layers, where the
task-related or option-related tokens emerges at the
middle layers. It illustrates that the distinguishable
embeddings are label-specific.

3886

100

99.89

84.15

48.62

17.44
19.30

52.13

0.63 0.14 0.13
0 0 0.01 0.04

0.21 0.38
0.47

0.86

1.46

2.14

2.43

0

0

1

1

2

2

3

0

10

20

30

40

50

60

70

80

90

100

0 5 10 15 20 25 30

Lo
gi

t o
f t

he
 L

ab
el

 T
ok

en

R
an

k
in

 T
op

 1
00

 T
ok

en
s

Layer

Rank in Top 100 Tokens Logit of the Label Token

51.33%

40.67%

53.33%

46.67%

53.33%

45.33%

54.00%

42.00%

48.67%

64.00%

80.67%

89.33%

88.00%

88.00%

81.33%

85.33%

85.33%

86.67%

35.00%

45.00%

55.00%

65.00%

75.00%

85.00%

95.00%

0 5 10 15 20 25 30

A
cc

ur
ac

y
in

 E
ac

h
La

ye
r

Layer

Accuracy in Each Layer

(a) Logits and rankings across layers (b) Accuracy across different model layers

Figure 7: (a) The orange line denotes the logits of the ground truth, which increases from the layer 19. The green
line denotes the rank of the ground truth in the vocabulary space, which also starts to be close to 1 from the layer 19.
(b) The probing accuracy of the embeddings across layers. It starts to arise from the layer 15, and reaches the peak
at layer 20.

C Detailed Experimental Setup

C.1 Training Configuration

In our implementation, we perform SFT updating
on top 32 key heads. Following (Yu et al., 2023),
the gradient is rescaled by H

h , where H is the num-
ber of all heads in each layer, h is the number of
updated heads in each layer. In practice, we train
Mistral-7B with a learning rate of 2× 10−5 and a
batch size of 128 for 1 epochs. The warm up ratio
and weight decay are set as 0.02 and 0.1 by default,
respectively. All experiments are conducted on 8
NVIDIA A100 80GB GPUs.

C.2 Dataset

Interpretation Stage. We use the Stanford Sen-
timent Treebank Binary (SST-2 (Socher et al.,
2013)) for sentiment analysis as the main dataset
for main explainability experiments. We also val-
idate our experiments on several other datasets,
including Subjective/Objective Sentence Classifi-
cation((Conneau and Kiela, 2018) SUBJ), Hate
Speech Detection ((Mollas et al., 2020) ETHOS),
Duplicated-Question Recognition ((Wang et al.,
2019b) QQP).For simplicity, we follow existing
approach (Wei et al., 2023a) by randomly selecting
single digits from 0 − 9 as options, such as re-
place [“negative”, “positive”] with [“1”, “4”]. For
example, in the SST sentiment classification task,
“input: trashy time. output: negative; input: larger

life. output: positive; input: sheer joy. Output:”,
the original options are [“negative”, “positive”],
and the randomly chosen options could be [“1”,
“4”]. We replaced “negative” with “1” and “posi-
tive” with “4”. Thus, the modified task becomes:
“input: trashy time. output: 1; input: larger life.
output: 4; input: sheer joy. Output:”. This modifi-
cation makes the model unclear without looking at
the in-context exemplars, thus prevents the model
from relying on pretrained semantic knowledge.
This ensures that during the subsequent analysis of
the model’s internal embeddings (Wei et al., 2023a;
Dar et al., 2023; Geva et al., 2022, 2021), the emo-
tional words and options remain distinct. Since
the test set lacks labels, we use samples from the
validation set for our study. For each sample in the
validation set, we randomly selected 16 samples
from the training set as demonstrations, ensuring
an equal number of samples from different classes.
The order of these 16 samples is shuffled to prevent
samples from the same class from clustering at the
beginning or end.

Training and Evaluation Stage. For evalua-
tion, we choose another four NLP tasks (the Stan-
ford Sentiment Treebank Binary (SST-2 (Socher
et al., 2013)), Hate Speech Detection ((Mollas
et al., 2020) ETHOS), Duplicated-Question Recog-
nition ((Wang et al., 2019b) QQP),RTE ((Wang
et al., 2019a))). We remap original natural lan-
guage labels to a randomly-selected label from a

3887

-0.38 -0.67 -0.53
0.95 2.04

-0.16

27.00

36.78

4.74

-0.05
2.05 1.87

4.03

-5

5

15

25

35

0 5 10 15 20 25 30

Ef
fe

ct
 o

n
Lo

gi
ts

 o
f E

ac
h

La
ye

r

Layer

93.33%

74.67%

51.33%

32.13%

19.23%

26.00%

22.00%
22.00%

22.00%

22.67%

15.33%
11.33%

99.33% 99.33% 99.33% 99.33% 99.33% 99.33%

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

0 2 4 6 8 10 12 14 16 18 20

A
cc

ur
ac

y

Number of Swapping Heads

(c) Effect on logit of each head

(b) Effect on logits of each layer

(d) Accuracy after swapping

Head

La
ye

r

Input: tear your eyes away Output: negative
Input: you 're an absolute raving
 star wars junkie Output: negative
Input: move over bond; this girl
deserves a sequel. Output: positive
Input: it made me feel unclean Output: negative
Input: sweeping , dramatic Output: positive
Input: alluring Output: positive
Input: He was beaten and was upset Output: negative
Input: beautifully shot Output:

Text Highlighted by the Top-Ranked Head's Attention

(a) Head attention

Swapping label text
Swapping random test

Figure 8: (a) The attention patterns of the key attention head, which mainly attends to the “positive” label. (b) The
aggregated effect of PC patching along different layers, where the layer 18 presents a significant peak. (c) The result
of PC patching experiment on Mistral-7B on SST-2. For each head, a darker color indicates a larger logit difference
from the original model before patching. (d) The performance of the ICL after swapping the attention weights of
different labels for the key attention heads. The accuracy decreases from 100% to 11%.

set of approximately 270k semantically-unrelated
labels, Integers, Characters, Words (MIT3 list of
10,000 words). For training, following (Wei et al.,
2023a), We selected 17 publicly-available NLP
datasets across seven tasks (Miscellaneous, Para-
phrase Detection, Common Sense, Sentiment Anal-
ysis, Topic Classification, Coreference, Natural
Language Inference) from HuggingFace (Lhoest
et al., 2021), ensuring that each task has discrete
labels so that there would be labels to swap with
sythetic symbols. For each dataset, we used ex-
amples from the training split, and because some
datasets had more examples than other datasets
by multiple orders of magnitude, we cap the num-
ber of examples taken from any singular dataset
at 20, 000. Aligning with (Wei et al., 2023a), we
select datasets from several task types as follows:
natural language inference (WNLI, QNLI, MNLI,

3Obtained from MIT’s list of 10k words
(www.mit.edu/ ecprice/wordlist.10000) and list of 100k words
(www.mit.edu/ ecprice/wordlist.100000)

SNLI and CB); sentiment analysis (RT, TES); para-
phrase detection (MRPC and PAWS); common
sense answering (COPA) and PIQA); topic classi-
fication (AGN); coreference resolution (WSC and
WINO); offensive language identification (TEO);
irony detection (TEI); equal-meaning identifica-
tion (WIC); and sentence acceptability classifica-
tion (COLA). We remap original natural language
labels to a randomly-selected label from a set of
approximately 270k semantically-unrelated labels,
Integers, Characters, Words (MIT4 list of 10,000
words).

Following (Wei et al., 2023a), we implement
a pinpoint SFT on 17 publicly available NLP
datasets in seven tasks select another four NLP
tasks for evaluation. We conduct main experiment
on Mistral-7B.

4Obtained from MIT’s list of 10k words
(www.mit.edu/ ecprice/wordlist.10000) and list of 100k words
(www.mit.edu/ ecprice/wordlist.100000)

3888

Table 4: Details on the Principal Component Analysis
(PCA) conducted on the Mistral7B model using the
SST2 dataset. The ‘Y’ of ‘C-Y’ indicates the principal
component index withinwithin that layer. Layers14-
layer21 store task-specific components, while layer22-
layer32 store components related to the output space,
focusing on numerical and categorical representations.

Position Component

C-1 ixon, athan, \u00e9ri, aza, ixa, giornata, \u00f3, agan, Rules
layer6

C-2 ange, eld, builtin, agra, Internal, Tamb, embre, Maggie, Illuminate

...

C-1 penalty, negative, alarm, liability, Psy, compilation, Crim, ra,
layer13

C-2 anel, Anders, aine, Horn, Maz, Ferr, basketball, generic, fortunate

C-1 dread, negative, destruct, liability, negative, grim, harsh, toxic
C-2 simple, simpler, rivial, Simple, generic, Simple, Horn, simplicitylayer14
C-3 quantities, patterns, >@, autre, abad, Rab, cq, Titel, k\u00f3w

C-1 negative, unhappy, harsh, destruct, negative, toxic, unple
C-2 unique, joke, irrelevant, jokes, peculiar, silly, iat, ridiculous, autrelayer15
C-4 positive, praise, posit, warm, happily, enthusiasm, enthusi

...

C-1 harsh, hostile, extreme, negative, condem, laugh, hilar, negative
C-2 trivial, simple, simple, simplicity, Simple, Simple, straightforwardlayer21
C-3 length, complexity, complicated, longest, longer, Length

layer22 C-1 zero, Zero, 0, Zero, zero, \u96f6, ZERO, \u30bc, Lesser, oyal,zer,
C-2 zero, Zero, negative, humor, hilar, joke, zero, Zero, harsh, hostile

...

C-1 zero, 0, Zero, zero, Zero, ONE, ZERO, Two, One, 1
C-2 three, 3, Three, Three, \u4e09, three, third, trois, drei, III,layer26
C-3 fifth, Fifth, five, Five, 5, <0xAB>, \u4e94, fifty, five, Fif

D Generalization on Model.

We conducted extensive experiments on larger and
different types of Large Language Models (LLMs),
with results presented in Table 5. The table ver-
ifies the generalizability of our findings across
various LLMs, including Mistral7B (Jiang et al.,
2024), Llama3-8B (Dubey et al., 2024), Llama3-
70B (Dubey et al., 2024), and Qwen2-72B (Yang
et al., 2024), using the SST2 dataset. These re-
sults support the conclusions drawn in the main
text. Relationships in Demonstrations This sec-
tion shows that the lower accuracy of "Label Block"
compared to the "Random Block" supports our hy-
pothesis, demonstrating that blocking key inter-
actions significantly impacts model performance.
Abstract Input-Label Mappings Here, X in C-
X refers to the principal component index within
that layer. For example, "Layer14: C-1" indicates
where the negative component is prominent. We
highlight the position of negative and positive com-
ponents across models, illustrating how sentiment
information is captured. Match the Mapping The
fewer the number of heads required for swapping
to achieve performance changes, the more signif-
icant the role of specific heads. The contrast be-
tween "Random Swapping" and "Label Swapping"
accuracies emphasizes the critical heads in task

performance. Decoding This section illustrates the
trend in logits of the correct label from earlier to
later layers, indicating increasing confidence in cor-
rect predictions. The progression of logits from
lower to higher layers reflects the model’s growing
certainty.

Table 5: Verification of generalizability across different
LLMs (Mistral7B, Llama3-8B, Llama3-70B, Qwen2-
72B) using the SST2 dataset. Key conclusions align
with the main text, highlighting: 1) Blocking key input-
label interactions reduces accuracy more than random
blocking, 2) Sentiment components emerge in principal
components across layers, 3) Critical heads identified
by swapping fewer heads significantly impact task per-
formance, and 4) Increasing logits across layers reflect
growing confidence in correct predictions.

Mistral7B Llama3-8b Llama3-70b Qwen2-72b

Relationships in
Demonstrations

Layer Layer17 Layer20 Layer45 Layer59

Random Block 97.35% 93.37% 81.00% 89.99%
Label Block 55.63% 54.97% 64.99% 67.00%

Abstract
Input-label
Mappings

Position of
negative
component

Layer14: C-1 Layer19: C-2 Layer44: C-1 Layer53: C-1

Position of
positive
component

Layer15: C-1 Layer18: C-3 Layer42: C-2 Layer56: C-1

Example:
Llama-70B

positive: " positive", " enthusiasm", " happily", happy, happ ...
negative: " Negative", " negative", " negatives", negativity, bad ...

Match
Input-label
Mapping

Number of
Heads for
Swapping

9 / 1024 18 / 1024 80 / 6400 50 / 6400

Random Swapping 99.33% 97.33% 99.33% 97.73%
Label Swapping 19.23% 50.49% 41.23% 64.35%

Decoding
Trend Layer15 ->Layer30 Layer50 ->Layer80

Logits
of
Label

L15 : 0.019
L20 : 0.212
L25 : 0.472
L30 : 1.461

L15 : -0.095
L20 : 0.373
L25 : 1.632
L30 : 5.180

L50 : 0.749
L60 : 2.265
L70 : 3.555
L80 : 14.833

L50 : 1.081
L60 : 4.719
L70 : 41.696
L80 : 187.975

E Generalization on Dataset.

E.1 Multi-classification task.

The results is shown in Table 6. Generalization
Experiment on the Six-Class TREC (Text RE-
trieval Conference) Dataset. We conduct all the
experiments mentioned in the manuscript. Due to
the space limit, we abstract the key information of
each figure from "Observation 1-5" and summa-
rize them in this table. Task-specific Information.
This task includes six categories: DESC (Descrip-
tion and Manner), LOC (Location), NUM (Nu-
meric Value), HUM (Human beings), ENTY Enti-
ties, ABBR(Abbreviation). This table reveals that
even in a six-class classification setting, the model
still summarizes task-specific information in a man-
ner similar to the binary classification described in
the main text. Specifically, after leveraging PCA
and logit lens, we identify the positions where task-
specific information first emerges in the layers and
their corresponding principal components, denoted
as ‘LayerX: C-Y’, where ‘X’ represents the neural

3889

Table 6: Generalization experiment on the six-class
TREC dataset demonstrates consistency with binary
classification results. Task-specific information emerges
across layers using PCA and logit lens. Blocking key
input-label interactions reduces accuracy to 54.54%,
while swapping 20 attention heads decreases perfor-
mance by 62%. Accuracy stabilizes around layer 20,
with increased confidence in correct answers observed
in deeper layers.

TREC
Category

Position Main Component

DESC Layer16: C-1 Definition, definitions, definition, exp, ...
LOC Layer16: C-2 Location, spatial, locations, GPS, maps, ...
NUM Layer16: C-3 dates, chron, Events, calendar, year, ...
HUM Layer16: C-8 scientists, universal, physics, fundamental, ...
ENTY Layer19: C-5 leaf, spher, galax, Academy, Musik, ...
ABBR Not found Not found

Relationships in
Demonstrations

Layer index Layer5 Layer10 Layer15 Layer32
Random
Block

100% 100% 100% 100%

Label Block 90.91% 81.82% 63.74% 45.64%

Match
Input-label
Mapping

Number of Head
for Swapping

5 10 15 20

Random
Swapping

100% 100% 100% 100%

Label Swapping 91.23% 74.36% 53.32% 38.64%

Decoding
Layer Layer15 Layer20 Layer25 Layer32
ACC 15.63% 50.51% 53.53% 57.57%
Logits 0.021 0.171 0.361 2.101

network layer and ‘Y’ indicates the principal com-
ponent. These results consistent with the main text.
Relationships in Demonstrations. This section
illustrates that blocking key interactions between
the input and label in the demonstration reduces
accuracy to 54.54%, while random blocking has
no effect, supporting the conclusions in the main
text. Match the Mapping to New Question. This
part observes that swapping just 20 heads causes a
62% decrease in performance, consistent with the
main text, suggesting the generalization of our con-
clusions. Decoding: The table shows the changes
in the logits of the correct answer tokens and the
accuracy (ACC) of correct classification after prob-
ing the embeddings at key layers. As seen, the
ACC stabilizes around layer 20, while the model
continues to increase the logits of the correct an-
swers in subsequent layers, thereby enhancing the
confidence in the correct results.

E.2 Other datasets

In this section, we verify the effectiveness of our
proposed methods on various datasets (SUBJ, QQP,
ETHOS). We examine the generalization of input-
label mappings and evaluate the model’s ability to
abstract and apply these mappings across differ-
ent datasets. The experiments aim to solidify the
relationships between the demonstrations and the

internal workings of the model, ensuring consistent
performance when encountering new questions and
performing decoding tasks. The following figures
illustrate the results of our verification experiments,
including abstracting input-label mappings, match-
ing them to new questions, and decoding predic-
tions across multiple datasets..

In summary, these verification experiments em-
phasize the robustness of the proposed techniques
for abstracting, matching, and decoding input-label
mappings. The results across multiple datasets
demonstrate the model’s ability to generalize its
learned mappings to new tasks and datasets, fur-
ther validating the effectiveness of the method in
multi-classification tasks.

F Training-free Application

In this paper, we reveal how LLMs complete in-
context learning (ICL) by constructing input-label
mappings in the principal components of the mid-
layers (19-23). These mappings are then leveraged
to match the true answers. However, we discover
two interesting phenomena:

(1) All top-20 principal components of the em-
beddings in the vocabulary are related to task in-
formation (e.g., “positive”, “negative”, “happy”).
Beyond these top-20 principal components, the to-
kens become increasingly messy and irregular (e.g.,
“dsa”, “tar”, “opp”).

(2) We observe a significant decrease in label
ranking in the vocabulary after layer 21 (as shown
the green line in Figure 7 (a)).

These observations indicate that components be-
yond the top-20 principal components could detract
from performance by introducing noisy informa-
tion. This might account for the tendency of LLMs
to undermine their utility. Motivated by this in-
sight, we introduce our method, which enhances
the in-context learning capabilities of large lan-
guage models by filtering out components beyond
the top-20 principal components in the embeddings.
Specifically, we utilize Principal Component Anal-
ysis (PCA) on the embeddings of the final token in
layer 19, retaining only the top-10 principal com-
ponents before transforming them back into the
embedding space. By leveraging this approach, we
evaluate the in-context learning (ICL) performance
across various datasets—SST2, SUBJ, ETHOS,
and QQP—using the Mistral-7B model. The em-
pirical results of this investigation are presented in
Table 7. As shown in the table, after applying the

3890

(a) SUBJ (b) QQP (c) ETHOS

Figure 9: Verification of Abstracting Input-label Mappings Based on Relationships in Demonstrations. This figure
highlights the effectiveness of the model in capturing task-specific information by identifying relationships between
input and label tokens within the demonstration examples.

(a) SUBJ (b) QQP (c) ETHOS

Figure 10: Verification of Abstract Input-label Mappings Across Different Datasets. This figure demonstrates the
model’s ability to abstract task-specific input-label mappings across various datasets, maintaining consistency in
information flow and pattern recognition.

Table 7: Application of Proposed Method on Seman-
tic and Number Labels.This table compares the effec-
tiveness of our proposed method across different settings
using both numerical and semantic labels. In the main
text, we initially conducted experiments on Mistral7B
using number labels (e.g., [’2’, ’1’]) instead of semantic
labels (e.g., [’negative’, ’positive’]). Here, we extend
our experiments to include semantic labels and a differ-
ent model, Llama3-8B, to verify the method’s general-
izability. The results demonstrate consistent improve-
ments across various datasets and models, highlighting
the robustness and applicability of our approach.

Mistral-7b (ACC) Llama3-8B (ACC)
original ours original ours

Number
label

SST2 60.69% 67.66% (+6.97%) 70.05% 71.43% (+1.38%)
SUBJ 82.61% 87.81% (+5.20%) 62.44% 69.65% (+7.21%)
ETHOS 75.44% 76.23% (+0.79%) 73.21% 77.54% (+4.33%)
QQP 58.04% 62.31% (+4.27%) 65.42% 69.53% (+4.11%)
average 69.19% 73.50% (+4.31%) 67.78% 72.03% (+4.25%)

Semantic
label

SST2 94.96% 95.47% (+0.51%) 93.46% 94.47% (+1.01%)
SUBJ 63.82% 71.35% (+7.53%) 55.77% 55.26% (-0.51%)
ETHOS 82.41% 83.91% (+1.50%) 73.36% 75.88% (+2.52%)
QQP 69.84% 70.35% (+0.51%) 70.35% 74.87% (+4.52%)
average 77.75% 80.52% (+2.51%) 73.23% 75.12% (+1.89%)

proposed method, the average accuracy improved
by 4%, suggesting the effectiveness of the method
and providing a new direction for future research.

G Additional Analyses on Key Heads and
PC Patterns

G.1 Distribution and Consistency of Key
Heads Across Test Samples

Our PC patching analysis reveals strong consis-
tency in the identification of key heads across dif-
ferent test samples. Specifically, we found that 80%
of test samples share the same top 5 key heads, in-
dicating high reliability in our methodology. For
Mistral-7B, these consistently identified heads are
located in deeper layers (starting from Layer 14)
and include heads (19, 8), (19, 9), (18, 0), (18, 2),
and (18, 3).

This high overlap in key heads across test sam-
ples demonstrates the robustness of our PC patch-
ing approach. More importantly, it implies that
PC patching can effectively identify critical com-
ponents for input-label mapping with a relatively

3891

(a) SUBJ (b) QQP (c) ETHOS

Figure 11: Verification of Matching to New Questions Across Different Datasets. This figure validates the model’s
capacity to extend learned input-label mappings to new questions, preserving performance and accuracy across
datasets.

(a) SUBJ (b) QQP (c) ETHOS

Figure 12: Verification of Decoding Prediction from Matched Mappings Across Different Datasets. This figure
showcases the progression of logits and prediction confidence as the model decodes correct answers from matched
mappings, reinforcing the effectiveness of the proposed method across diverse datasets.

small number of test samples, making the method
both efficient and reliable.

The causal effects of key heads show variation
across individual samples, with logit changes rang-
ing from 20% to less than 1%. However, after aver-
aging over samples, these effects stabilize within
6% range, as shown in Figure 5(a) of the main text.
We observed that the heatmap of key heads sta-
bilizes after averaging approximately 25 samples,
with no substantial changes occurring beyond 50
samples. To ensure robust results and account for
residual variability, we averaged over 100 samples
in our experiments.

This averaging procedure helps mitigate the vari-
ability of causal effects, providing a reliable sum-
mary of head contributions across different inputs.
By using 100 samples, we guarantee a stable and
comprehensive view of key head distributions, min-
imizing noise while capturing consistent patterns
in the model’s behavior.

G.2 Zero-Shot versus ICL PC Patterns

To investigate the robustness of our findings, we
compared principal component (PC) patterns under
zero-shot and in-context learning (ICL) settings.
This comparison provides valuable insights into
how demonstrations influence the formation of task-
related representations within the model.

G.2.1 Observations: Task-Related Patterns in
Zero-Shot vs. ICL Settings

In the zero-shot setting, without demonstrations,
we did not observe coherent task-related PC pat-
terns. Instead, the patterns appeared disorganized,
with principal components associated with random
or general semantic tokens rather than task-relevant
features. Table 8 illustrates zero-shot PC patterns
on SST-2, which contrasts sharply with the patterns
observed in the ICL setting (Figure 4(a) in the
main text).

In contrast, in the ICL setting, despite relying
solely on symbolic labels in the demonstrations,
LLMs effectively extract task-related PC patterns

3892

Table 8: Principal component patterns in zero-shot setting on SST-2

Layer Component Top-10 Words

6 C-1 pred, Ton, turns, Ferd, zing, sphere, phere, exp, disco, ago
C-2 rie, auch, spl, Astr, atan, descriptions, answers, bras, zip

13 C-1 Edd, umber, Bible, reply, Response, instant, Bry, ellt, counted, song
C-2 rescue, resc, protest, idos, trans, ikh, omb, alternative, tele, Gol

15 C-1 port, zent, agr, ont, summary, aling, summar, summary, grap, neat
C-2 /******/, congr, praise, cord, 0̆4340̆4300̆43d, roud, atel, heim, kissed, deck

26 C-1 director, brilliant, describes, writer, film, Director, brill, describe, ensemble
C-2 Based, sounds, based, Overall, overall, Sounds, based, Based, sounded

(input-label mappings). These patterns emerge
clearly, particularly in Layer 15, where PCs align
with interpretable and task-specific tokens such as
“positive,” “negative,” or symbolic labels, showcas-
ing the model’s ability to utilize input-label map-
pings for task differentiation and prediction.

G.2.2 Analysis: Why Zero-Shot and ICL PC
Patterns Differ

The stark difference between zero-shot and ICL PC
patterns can be attributed to the lack of task-specific
signals in zero-shot settings. Without demonstra-
tions, the model has no contextual clue to indicate
the task it should perform. Consequently, the PCs
reflect generic semantic patterns rather than task-
relevant features.

In contrast, demonstrations in the ICL setting
provide explicit examples of input-label mappings,
guiding the model to focus on specific task-related
features. This difference highlights the importance
of demonstrations in enabling the model to recog-
nize and utilize task-specific information.

G.2.3 When Demonstrations Are Not
Necessary: The Role of Instructions

Demonstrations are essential when no explicit in-
struction is provided, as they help the model infer
what the task is and how to map inputs to out-
puts. However, when clear and concise instructions
are included in the prompt, the model can some-
times bypass the need for demonstrations. In these
cases, the instruction itself serves as a signal for
task recognition, enabling task-specific PC patterns
to emerge without requiring example pairs.

This observation aligns with findings in recent
literature (Long et al., 2025) that ICL can occa-
sionally underperform zero-shot settings due to the
influence of pre-training priors:

• Semantic Priors from Pre-Training: Pre-
trained LLMs often possess strong priors
based on extensive exposure to task-related
data during training. These priors enable the
model to perform well in zero-shot settings by
leveraging learned task-relevant patterns.

• Demonstration Quality in ICL: Poor-quality
demonstrations can mislead the model, caus-
ing it to deviate from its pre-trained priors
and ultimately lowering performance. This
underscores the importance of high-quality,
well-constructed demonstrations in ICL.

These findings support our approach of using
symbolic labels to eliminate semantic priors and
minimize interference, ensuring a fair evaluation
of the model’s ICL capabilities.

H Generalization Across Different Tasks

To validate the generalizability of our findings,
we extended our analysis beyond SST-2 to in-
clude ETHOS, QQP, and SUBJ datasets. Our re-
sults demonstrate consistent patterns across these
diverse tasks, reinforcing the robustness of our
methodology.

H.1 Consistency in Key Components Across
Tasks

H.1.1 Location of Key Heads
For SST2, ETHOS, QQP, and SUBJ, we observed
significant overlap in the top-5 key heads. The
variance between head heatmaps across different
datasets was only 0.009, indicating remarkable con-
sistency in the model’s utilization of specific atten-
tion heads for in-context learning across diverse
tasks.

3893

Table 9: Principal component patterns in SUBJ dataset

Layer Component Top-10 Words

6 C-1 IMPLIED, oby, ROL, seh, ******, UN, plac, GTH, pollution

15 C-1 opinion, evaluation, insult, rating, criticism, excess, critic, opinions

26 C-1 0, 1, zero, ONE, Two, One, Zero, 2, One, Three

H.2 Task-Related PC Patterns Across
Datasets

For all datasets examined, Layer 15 exhibited the
strongest alignment with task-relevant information.
This layer consistently encodes high-level features
necessary for accurate task performance, further
validating the generalizability of our findings.

H.2.1 ETHOS: Hate Speech Detection
In the ETHOS dataset, PCs in Layer 15 capture hate
speech indicators such as “harmful,” “toxic,” and
“illegal,” effectively identifying linguistic patterns
related to toxicity and abuse (Table 10).

H.2.2 QQP: Question Pair Similarity
In the QQP dataset, PCs focus on semantic similar-
ity and paraphrase-related terms like “respectively,”
“both,” and “dual,” demonstrating alignment with
the goal of determining question equivalence (Ta-
ble 11).

H.2.3 SUBJ: Subjectivity Classification
In the SUBJ dataset, PCs highlight subjective evalu-
ation terms, including “opinion,” “evaluation,” and
“critic,” crucial for distinguishing between subjec-
tive and objective sentences (Table 9).

I Task-Related Words Algorithm
Validation

The detection of task-related words in Algorithm-1
was initially designed for datasets like SST2, where
output labels depend on universal characteristics
of the input (e.g., sentiment). However, our ex-
periments demonstrate that this approach is also
valid for datasets where the output label depends
on instance-specific properties, such as QQP.

I.1 Clarification of Task-Related Words
Concept

The concept of task-related words in our approach
is derived from the LLM’s understanding of the
task paradigm represented in the input-label map-
ping of the demonstrations:

• Definition: Task-related words are keywords
extracted from the description of the task
that aligns with how the LLM understands
the task’s input-output relationships. In
Algorithm-1, these words are generated by
prompting the LLM to describe the task
(based on input-label mapping) and then ab-
stracting relevant keywords.

• Relevance and Accuracy: The task-related
words correspond to tokens already embed-
ded in the LLM’s internal vocabulary space
and aligned with the PC patterns of the
model’s middle layers. Importantly, both
the demonstrations used for extracting task-
related words and those used for identifying
PC patterns are consistent, ensuring accuracy
and relevance.

I.2 Application to Instance-Specific Tasks

For instance-specific datasets like QQP, task-
related words represent the high-level task logic
rather than universal properties:

• QQP Context: In QQP, task-related words
represent semantic similarity or dissimilarity
between sentence pairs. These words encap-
sulate the task description and align with the
decision boundary (e.g., “similar” for match-
ing sentence pairs and “different” for non-
matching ones).

• Broader Concept: Task-related words in
instance-specific datasets represent the high-
level task logic rather than universal proper-
ties (e.g., sentiment). For QQP, these words
are drawn from the task description (seman-
tic similarity evaluation) rather than from the
intrinsic features of the inputs.

This abstraction allows the concept of task-
related words to cover instance-specific tasks like
QQP while maintaining coherence with tasks like
SST2.

3894

Table 10: Principal component patterns in ETHOS dataset

Layer Component Top-10 Words

6 C-1 eln, ubb3c, Fi, wn, Fu, mild, Cord, holm, alis, WN, ENDOR

15 C-1 harmful, controversial, prohib, toxic, illegal, extreme, outrage, dark

26 C-1 3, three, 4̆e09, Three, third, III, Third, trois, three, drei

Table 11: Principal component patterns in QQP dataset

Layer Component Top-10 Words

6 C-1 dispers, pan, Singles, pat, unc, wis, **, stud, trading, Posted

15 C-1 respectively, both, neither, Both, two, both, two, Neither, simultane, dual

26 C-1 seven, eight, seventh, nine, Eight, six, 7, seven, eight, Seven

J Relationship to Task Recognition and
Task Learning

Our work provides a complementary perspective to
recent studies on Task Recognition (TR) and Task
Learning (TL) in in-context learning. Following the
definitions in (Pan et al., 2023), our study focuses
on Task Learning (TL), which involves learning
new input-label mappings from demonstrations.

J.1 Use of Symbolic Labels

To minimize the influence of pre-trained priors and
focus on analyzing the relationship between spe-
cific LLM modules and their behaviors, we em-
ploy a wider variety of symbolic labels. Specifi-
cally, following the approach in (Wei et al., 2023a),
we remap the original natural language labels to
randomly selected labels from a diverse set of ap-
proximately 270k semantically unrelated options,
including integers, characters, and words (sourced
from MIT’s list of 10k and 100k words).

The use of symbolic labels serves multiple pur-
poses:

• Suppressing ICL Behavior: In our PC Patch-
ing method, symbolic labels help suppress
ICL behavior to isolate relevant modules. Us-
ing semantic labels risks suppressing memory-
related behaviors instead, misaligning with
our objectives.

• Isolating TL Components: By minimizing
the influence of pre-trained priors, symbolic
labels allow us to focus specifically on the
TL aspects of in-context learning, providing

a cleaner analysis of how models learn input-
label mappings from demonstrations.

J.2 Mechanistic Interpretation vs. Black-Box
Analysis

Our work differs from previous studies in its level
of granularity and mechanistic interpretation:

• Fine-grained Analysis: We focus on exam-
ining ICL mechanisms at the layer, head, and
feature levels, pinpointing where and how
task-related information is encoded within
LLMs.

• Internal Representation Focus: Unlike
black-box approaches that examine only
model outputs, our study delves into internal
representations to provide a detailed view of
how input-label mapping information is en-
coded and utilized within LLMs.

Through this fine-grained analysis, we bridge
the gap between behavioral observations (such as
TR and TL) and the underlying neural mechanisms
that enable these behaviors.

3895

