
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 3839–3853
July 27 - August 1, 2025 ©2025 Association for Computational Linguistics

Enhancing Character-Level Understanding in LLMs through Token
Internal Structure Learning

Zhu Xu♣, Zhiqiang Zhao♣†, Zihan Zhang♣, Yuchi Liu♣, Quanwei Shen♣, Fei Liu♣,
Yu Kuang♣, Jian He♣, Conglin Liu♠

♣ School of Computer Science and Technology,
Chongqing University of Posts and Telecommunications

s231231076@stu.cqupt.edu.cn, † zhaozq@cqupt.edu.cn, s2312310{91, 46, 51, 42, 31, 20}@stu.cqupt.edu.cn
♠ Baidu AI Platform & Ecosystem

liuconglin@baidu.com

Abstract

Tokenization methods like Byte-Pair Encod-
ing (BPE) enhance computational efficiency in
large language models (LLMs) but often ob-
scure internal character structures within to-
kens. This limitation hinders LLMs’ ability to
predict precise character positions, which is cru-
cial in tasks like Chinese Spelling Correction
(CSC) where identifying the positions of mis-
spelled characters accelerates correction pro-
cesses. We propose Token Internal Position
Awareness (TIPA), a method that significantly
improves models’ ability to capture character
positions within tokens by training them on
reverse character prediction tasks using the tok-
enizer’s vocabulary. Experiments demonstrate
that TIPA enhances position prediction accu-
racy in LLMs, enabling more precise identifi-
cation of target characters in original text. Fur-
thermore, when applied to downstream tasks
that do not require exact position prediction,
TIPA still boosts performance in tasks need-
ing character-level information, validating its
versatility and effectiveness.

1 Introduction

Large language models (LLMs) have revolution-
ized natural language processing by employing to-
kenization methods such as Byte-Pair Encoding
(BPE) (Sennrich, 2015; Wang et al., 2020) to seg-
ment text into subword units, optimizing compu-
tational efficiency. However, BPE often obscures
internal character structures within tokens (Shin
and Kaneko, 2024; Xu and Ma, 2024), which poses
challenges for tasks requiring detailed character-
level information.

For instance, LLMs frequently struggle with
simple character-counting tasks. When prompted
with questions like "How many r’s are in

† Corresponding author.
The open-source model and training code can be found

at: https://github.com/FloatFrank/TIPA

Token
token_ids

业内/人事/称/撤/向/东南亚/亦/属/正常

Personnel in the industry say it is normal to withdraw to Southeast Asia.

（a）The internal information of tokens in large language models is unclear.

业内人士/称/撤/向/东南亚/亦/属/正常

（b）LLM has fully learned the internal character composition information of tokens.

Token segmentation is ongoing, but the LLM now understands

character composition and order.

Input 业内人事称撤向东南亚亦属正常

Tokens

Characters ？/ ？/称/撤/向/ ? /亦/属/ ?

Output 业内人事称撤向东南亚亦属正常

Unknown or knowing only a few.

Output

Tokens Insiders in the industry say it is normal to withdraw to Southeast Asia.

Tokenizer Vocabulary Tokens

Combine into one task and train.

PositionLength

Split Reverse

人事
105692

…?

(1)人
17340

(2)事
29826

人事
105692

业内人士
107455

(1)业
40952

(2)内
31843

(3)人
17340

(4)士
99253

业内
102970

Figure 1: (a) demonstrates LLMs’ inability to perform
spelling correction correctly without learning token-
internal character order. (b) shows TIPA’s core dataset
construction (left) and its character-level task enhance-
ment through token structure understanding without
architectural changes (right).

’strawberry’?" (Xu and Ma, 2024), many mod-
els fail to provide the correct answer due to their
limited understanding of character positions within
tokens, this limitation is more pronounced in lan-
guages like Chinese, where meaning relies heav-
ily on character composition and sequence. Mod-
els such as GPT-4o (Hurst et al., 2024) often
misidentify specific character positions in the tok-
enized text. For example, when asked to locate the
character "阁" in the sentence "为什么总称呼对方为阁下？" (Why do you always address each
other as ’Your Excellency’?) (Wu et al., 2023),
they frequently provide incorrect positions.

This lack of internal character structure
awareness adversely affects LLM performance
in character-sensitive applications like Chinese
Spelling Correction (CSC), where accurate identifi-
cation of misspelled characters and their positions
is crucial for efficient corrections.

Traditional Transformer-based (Vaswani, 2017)
language models emphasize next-token prediction,

3839

https://github.com/FloatFrank/TIPA

Task Type Example

Source (. . . 106 chars)网 路 技术有限公司
Traditional Task (. . . 106 chars)网 络 技术有限公司
Position Task [{108, 路 , 络 }]

Table 1: Accurately predicting the position of erroneous
characters and providing both the incorrect and cor-
rected characters serves two purposes: the incorrect
character verifies the model’s ability to precisely locate
errors, while the corrected character fulfills the error
correction task. This approach also reduces the number
of output tokens required by the model.

focusing on sequential dependencies between to-
kens. This focus does not inherently encourage
models to capture detailed positional relationships
within tokens, leading them to rely more on token
order rather than internal character composition.

To address this limitation, we propose Token
Internal Position Awareness (TIPA), a method
designed to enhance models’ ability to recognize
and predict character positions within tokens. TIPA
trains LLMs on reverse character prediction tasks
using the tokenizer’s vocabulary, compelling the
model to focus on each character’s position inde-
pendently of sequential context.

Figure 1 illustrates the disparity in CSC perfor-
mance between untrained and trained LLMs regard-
ing token character composition and sequence.

For example, a token like "小说" (novel) would
be decomposed in TIPA as a JSON structure: {2:
"说", 1: "小"}, mapping each character to its posi-
tion in descending order. This approach helps the
model develop a structural understanding beyond
typical left-to-right reading, which is crucial for
tasks requiring precise character positioning.

TIPA leverages the tokenizer’s own vocabulary,
allowing the model to internalize character com-
position and structure without relying on external
data, enhancing generalization in position-sensitive
tasks.

Our contributions are:

1. Enhanced Position Prediction: Demonstrat-
ing the value of accurate character position
prediction in CSC tasks, enabling faster and
more precise corrections (see Table 1).

2. Introduction of TIPA and MTIPA: Present-
ing TIPA and its extension, Multi-Token In-
ternal Position Awareness (MTIPA), which
improves models’ ability to capture character
positions for accurate predictions.

3. Versatility in Downstream Tasks: Showing
that TIPA enhances performance in tasks re-
quiring character-level information, even with-
out explicit position prediction.

2 Related Work

Tokenization methods like BPE (Sennrich, 2015;
Wang et al., 2020) and WordPiece (Schuster and
Nakajima, 2012) improve computational efficiency
in LLMs but obscure internal character structures.
Kaushal and Mahowald (2022) found that while
larger models encode character-level details bet-
ter, they may not explicitly understand character
positions within tokens. Recent byte-level mod-
els like ByT5 (Xue et al., 2022) process raw bytes
for character-level precision but require architec-
tural changes that prevent low-cost adaptation of
existing subword-based LLMs. Hybrid approaches
(e.g., CANINE (Clark et al., 2022)) improve char-
acter awareness but still lack efficient positional
modeling for multi-character tokens.

Recent studies (Xu and Ma, 2024; Shin and
Kaneko, 2024) highlight LLMs’ limitations in tasks
requiring fine-grained character-level understand-
ing, attributing deficiencies to tokenization and
model architecture.

In CSC research, methods like ReLM (Liu et al.,
2024) reframed CSC as sentence rephrasing, while
self-supervised learning approaches (Jiang et al.,
2024) showed that models trained on error-free data
can outperform those using confusion sets. Li et al.
(2024) proposed C-LLM, using character-level tok-
enization to enhance character-level understanding.

To enhance models’ awareness of internal token
structures, studies have addressed limitations like
the “reversed curve phenomenon” (Berglund et al.,
2023; Thawani et al., 2023) and sensitivity to text
order (Chen et al., 2024). Itzhak and Levy (2022)
found that while models encode orthographic in-
formation without direct character-level training,
explicitly teaching spelling did not enhance per-
formance. Our work differs by incorporating char-
acter position information and reversing character
sequences during training, enabling a better under-
standing of internal token structures and improving
tasks like Chinese Spelling Correction.

3 Methodology

We introduce two novel techniques: Token Inter-
nal Position Awareness (TIPA) and Multi-Token
Internal Position Awareness (MTIPA), designed

3840

to enhance large language models’ capacity to rec-
ognize and leverage internal character structures
within tokens.

3.1 Token Internal Position Awareness (TIPA)
TIPA leverages the tokenizer’s vocabulary to train
the model to understand the internal structure of
each token. For tokens that can be fully represented
in UTF-8 (Yergeau, 2003), we apply a reverse pre-
diction task to capture token-internal positions.

Let T denote the tokenizer, and let V =
{t1, t2, . . . , tm} be the set of tokens in the vocab-
ulary of T . For each token t ∈ V that can be
fully represented in UTF-8, we decompose t into
its constituent characters:

Ct = [c1, c2, . . . , cn], (1)

where n is the number of characters in t.
We define a reverse position mapping Dt for

token t as:

Dt = {(i, ci) | i = n, n− 1, . . . , 1}. (2)

This mapping associates each position i (starting
from n) with the character at the i-th position in t,
effectively reversing the order of characters. The
training prompt template used for this purpose is
referenced in Table 2.

Algorithm 1 TIPA Algorithm

Require: Tokenizer T
Ensure: TIPA Dataset DTIPA

1: Initialize DTIPA ← ∅
2: V ← GetVocabulary(T)
3: for each token t ∈ V do
4: if t can be fully represented in UTF-8 then
5: Decompose t into characters Ct =

[c1, c2, . . . , cn]
6: Create reverse position mapping Dt =

{(i, ci) | i = n, n− 1, . . . , 1}
7: Add (t,Dt) to DTIPA
8: end if
9: end for

10: Prune irrelevant tokens from DTIPA
11: return DTIPA

Rationale for Reverse Ordering: By using re-
verse ordering, the first number output by the model
corresponds to the length of the token (n). This
approach integrates the token splitting task, length
information, and position information into a single
method. If we were to use forward ordering (i.e.,

positions starting from 1), the model might deduce
the length of the token indirectly through the se-
quence of positions (1, 2, 3, etc.), but it wouldn’t
inherently know this information. Reverse ordering
requires the model to output the token length as the
starting position, avoiding this ambiguity.

This method retains the advantages of tokeniza-
tion while enhancing the model’s grasp of character
composition and positional information within to-
kens. It slightly increases the training time due to
the additional reverse prediction task but does not
introduce any latency during inference.

The TIPA dataset DTIPA is then constructed as:

DTIPA = {(t,Dt) | t ∈ V (UTF-8)}. (3)

An overview of TIPA is illustrated in Figure 2.

TIPA Prompt Example

Instruction: 直接给出json输出，倒序给出输入的Token中包含的所有位置和字符
(Translation: Directly output the JSON, listing all char-
acters and their positions in reverse order from the input
token.)
Input: girl
Output: { "4": "l", "3": "r", "2": "i", "1": "g"}

Table 2: An example of the prompt (Zheng et al., 2024)
used in TIPA(←) training, along with its English trans-
lation.

3.2 Multi-Token Internal Position Awareness
(MTIPA)

Building upon TIPA, we propose Multi-Token In-
ternal Position Awareness (MTIPA) to enhance
the model’s understanding of character positions
within entire sentences or multi-token sequences,
especially for tasks that require precise prediction
of character positions.

In MTIPA, instead of focusing on individual to-
kens, we extend the reverse character prediction
task to full sentences sampled from the training
dataset. This allows the model to learn character
positions in the broader context of sentences.

Specifically, we randomly sample a subset of
sentences from the target task’s training dataset.
For each sampled sentence, we decompose it into
its constituent characters and create a reverse po-
sition mapping, similar to TIPA but applied to the
entire sentence.

An overview of MTIPA is illustrated in Figure 2.

3841

{“2”:“i”,“1” :“h”}
Tokenizer Vocabulary

你好
108386

hi
6023

{“2”:“好”,“1” :“你”}

Length ……

Reverse

Split

Position

Tokens(X) Targets(Y)

Pruning
(optional)

TIPA Datasets

Training Datasets

TIPA Only
Total Training Datasets

Sentences sampled
from the training dataset

乐此不疲
never tired of it

{“4”:“疲”,“3” :“不”, “2” :“此”, “1” :“乐” }

Sentences(X)

……
Targets(Y)

MTIPA Datasets

MTIPA
Total Training Datasets

TIPA-Only
LoRA Training

TIPA
Model

MTIPA
LoRA Training

……

……

MTIPA
Model

Figure 2: Overview of TIPA and MTIPA. TIPA enhances character-level structure awareness per token. MTIPA
extends this to multi-token sequences, enabling fine-grained positional understanding.

Algorithm 2 MTIPA Algorithm

Require: Training dataset Dtrain, sampling ratio r
Ensure: MTIPA dataset DMTIPA

1: Initialize DMTIPA ← ∅
2: Randomly sample a subset S ⊂ Dtrain with

sampling ratio r
3: for each sentence s ∈ S do
4: Decompose s into characters Cs =

[c1, c2, . . . , cn]
5: Create reverse position mapping Ds =

{(i, ci) | i = n, n− 1, . . . , 1}
6: Add (s,Ds) to DMTIPA
7: end for
8: return DMTIPA

In practice, we set the sampling ratio r to a small
value (e.g., 10%) to balance the amount of addi-
tional data and training efficiency.

MTIPA is specifically applied in tasks that re-
quire precise character position prediction within
sentences. In our experiments, MTIPA is used in
Experiment 1, which involves Chinese Spelling
Correction (CSC) with position prediction. In Ex-
periment 2, which focuses on the traditional CSC
task without position prediction, MTIPA is not
used; only TIPA is applied. The MTIPA dataset is
too long, which can lead to a long training time,
and if LoRA training uses a large amount of infor-
mation to learn how to infer length information, it
may reduce the model’s ability to perform specific
tasks.

By integrating MTIPA into the training process,
the model gains a deeper understanding of charac-
ter positions in multi-token sequences, leading to
improved performance in tasks that demand precise
position awareness.

3.3 Extended Methodology with
Full-Parameter SFT

The tulu-3-sft-mixture dataset(Lambert et al., 2024)
developed by AI2 enables base LLM refinement
into conversational AI. We extracted vocabulary
from Llama-3.1(Grattafiori et al., 2024) tokenizer,
integrated all tokens into TIPA, and merged this
with tulu-3-sft-mixture for full-parameter super-
vised fine-tuning (SFT) of Llama-3.1-8B. This pro-
duced Llama-3.1-Tulu-TIPA-8B without requir-
ing additional character-level task datasets, main-
taining the model’s inherent capabilities while en-
hancing character-level processing through the in-
tegrated tokenizer vocabulary.

4 Redefining the Chinese Spelling
Correction Task

Dataset Traditional Position
Train 8,905,800 8,016,111
CSCD-Dev 188,362 55,449
CSCD-Test 188,310 54,897
Lemon 532,684 258,112

Table 3: Comparison of Output Token Counts between
Traditional and Position-based Methods for Various
Datasets.

We redefine the Chinese Spelling Correction
(CSC) task to require the model to output the
positions of incorrect characters along with their
corrections. For example, the sentence "业内人事称撤向东南亚亦属正常" (translation: "Indus-
try insiders say that withdrawing to Southeast Asia
is also normal") becomes:

["position": 4, "incorrect": "事", "correction":
"士"]

Here, the character at position 4, "事", is incor-
rect and should be corrected to "士".

3842

As shown in Table 3, the position-based method
results in fewer output tokens compared to the tra-
ditional method, highlighting its efficiency in this
task.

To evaluate model performance under this new
framework, we introduce several metrics.

4.1 Position Prediction Accuracy (PPA)

Let the source text be x = [x1, x2, . . . , xL].
When calculating this metric, the characters cor-

rected by the model are not considered, only its
ability to perceive locations is evaluated.

Let the model’s predicted set of incorrect posi-
tions and characters be:

P̂ = { (̂i, ĉ) }

where î is the predicted position, and ĉ is the
predicted incorrect character at that position.

Position Prediction Accuracy (PPA) is defined
as:

PPA =

∣∣∣ { ĉ = xî | (̂i, ĉ) ∈ P̂ }
∣∣∣

|P̂ |
That is, PPA measures the proportion of posi-

tions predicted by the model where the predicted
incorrect character ĉ matches the character xî at
position î in the source text x. The denominator
|P̂ | is the total number of positions predicted by
the model.

4.2 Sentence-Level Accuracy (SA)

Sentence-Level Accuracy (SA) measures the pro-
portion of sentences where all predicted corrections
are entirely accurate, including both the positions
and the corrected characters.

4.3 Sentence-Level Accuracy Ignoring
Position (SAIP)

Sentence-Level Accuracy Ignoring Position (SAIP)
calculates the proportion of sentences where all
predicted corrections are accurate, regardless of
whether the positions were correctly identified.

4.4 Non-Empty Sample Sentence Accuracy
(NESSA)

Non-Empty Sample Sentence Accuracy (NESSA)
evaluates the model’s performance on sentences
known to contain errors by calculating the propor-
tion of such sentences where all predicted correc-
tions are entirely accurate.

4.5 Character-Level Precision (CP), Recall
(CR), and F1 Score (CF1)

At the character level (Hu et al., 2024):

• Precision (CP) is the proportion of incorrect
characters identified by the model that is actu-
ally incorrect.

• Recall (CR) is the proportion of actual incor-
rect characters that are correctly identified by
the model.

• F1 Score (CF1) is the harmonic mean of Pre-
cision and Recall.

5 Experiments

We conducted comprehensive experiments to vali-
date the effectiveness of TIPA and MTIPA. Our
experiments are divided into three main parts:
position-aware CSC, traditional CSC, and general
model training and evaluation. Below, we detail
the datasets, baselines, and training protocols.

5.1 Datasets
Following the method of C-LLM (Li et al., 2024,
2022; Liang et al., 2023), we selected two new
Chinese Spelling Correction (CSC) benchmarks,
CSCD-NS and LEMON, to address the limitations
identified (Hu et al., 2024; Yin and Wan, 2023; Li
et al., 2022) in previous datasets like SIGHAN (Wu
et al., 2013; Yu and Li, 2014; Tseng et al., 2015;
Sun et al., 2024). Additionally, we incorporated a
large-scale pseudo-data set, Wang271K, generated
by ASR or OCR methods, to enhance our training
set. The datasets used for training and evaluation
are as follows:

• Wang271K (Wang et al., 2018): A dataset
containing 271,329 sentences with errors in-
troduced based on linguistic rules. This
dataset was used in combination with CSCD-
NS for training.

• CSCD-NS (Hu et al., 2024): A high-quality
CSC dataset where the primary source of char-
acter errors stems from pinyin input meth-
ods. It contains a significant amount of ho-
mophonic and word-level errors, making it su-
perior to SIGHAN. The validation data from
CSCD-NS was used as our validation set.

• LEMON (Wu et al., 2023): A novel, large-
scale, multi-domain CSC dataset featuring

3843

various real-world spelling errors. It spans
seven different sub-domains, including game
(GAM), encyclopedia (ENC), contract (COT),
medical care (MEC), car (CAR), novel
(NOV), and news (NEW), typically testing
the model’s domain correction capabilities in
a zero-shot setting.

The training set was composed of the combined
data from CSCD-NS and Wang271K. The valida-
tion set was derived from CSCD-NS, and the mod-
els were tested on both the CSCD-NS test data and
LEMON.

For Experiment 1, we combined the training
sets of Wang271K and CSCD-NS as our training
data. The validation set was the CSCD-NS valida-
tion set. We tested our models on the CSCD-NS
test set. (Li et al., 2024)

For Experiment 2, we followed the same data
split but focused on the traditional CSC task with-
out explicit position prediction. In addition, we
also tested the model on the Lemon dataset.

For general model training, we used tulu-3-sft-
mixture, an open-source conversational AI fine-
tuning dataset for the supervised fine-tuning (SFT)
stage(Lambert et al., 2024). We performed full-
parameter supervised fine-tuning of Llama-3.1-8B
using the combined tulu-3-sft-mixture and TIPA
dataset. The TIPA dataset was constructed by ex-
tracting vocabulary from the Llama-3.1 tokenizer
and integrating all tokens into the TIPA format.

For general model evaluation, we used the fol-
lowing benchmarks: IFEVAL(Zhou et al., 2023)
(instruction following evaluation with strict/loose
scoring), GSM8K (Cobbe et al., 2021) (math word
problem-solving), MMLU(Hendrycks et al., 2020)
(massive multitask language understanding), AEx-
ams(Hardalov et al., 2020) (Arabic exam ques-
tion answering), KoBEST(Jang et al., 2022) (Ko-
rean language understanding benchmark), and Hu-
manEval(Chen et al., 2021) (Python code gener-
ation), TyDi QA(Clark et al., 2020) (Multilingual
QA benchmark). Inspired by LLM The Genius
Paradox(Xu and Ma, 2024), we developed multi-
lingual datasets covering three tasks: Occurrence,
Length, and Distinct.

5.2 Baseline Models

We compared our methods against several baseline
models, including Pure-SFT, GPT-4o (Hurst et al.,
2024), DeepSeek v2.5, ERNIE-4.0, and GLM-4-
Plus, to assess the relative performance improve-

ments. For general model evaluation, we used
Llama-3.1-Tulu as a baseline.

5.3 Training Details

In Experiment 1 and Experiment 2, we fine-tuned
the open-source Qwen2.5-7B (Yang et al., 2024)
model using LoRA (Hu et al., 2021) to incorporate
TIPA and MTIPA. LoRA allows efficient adapta-
tion of large models without modifying the original
model weights, making it suitable for our experi-
ments.

For TIPA integration, we generated a TIPA
dataset by performing set deduplication on tokens
appearing in Wang271K, CSCD-NS, and LEMON
to reduce the number of tokens for TIPA opera-
tions. This does not mean that preference learning
has been applied to the dataset, because the result
of pruning more than 300,000 pieces of data is only
24,994 tokens, which is sufficient to include all
Chinese character tokens. This can be considered
as a preference for Chinese characters, which is
also a learning strategy. In practical applications,
we can directly perform TIPA on all tokens of the
tokenizer.

For MTIPA integration, we randomly sampled
10% of the training set and constructed the MTIPA
dataset using the same method as TIPA but applied
to multi-token sequences.

In Experiment 3, we extracted all tokens from the
Llama-3.1 tokenizer vocabulary, performed TIPA
operations to generate a dataset, and conducted
mixed training with the tulu-3-sft-mixture dataset.
Additional training details, hardware configura-
tions, and training time can be found in Appendix
A.2.

5.4 Experiment 1: CSC with Position
Prediction

In this experiment, we evaluated the models on the
redefined CSC task requiring position prediction.

5.4.1 Results

Table 4 presents the performance comparison. Our
TIPA-7B model outperformed the baseline Pure-
SFT-7B across all metrics, demonstrating the effec-
tiveness of TIPA in enhancing position awareness.
The MTIPA-7B model further improved perfor-
mance, indicating that incorporating multi-token
sequences benefits the model’s understanding of
character positions.

3844

Model PPA (%) SA (%) SAIP (%) NESSA (%) CP (%) CR (%) CF1 (%)

Qwen2.5-7B 4.03 32.76 37.62 0.61 0.86 1.42 1.07
GPT-4o 11.14 43.76 48.68 2.56 3.20 4.31 3.68
DeepSeek v2.5 6.67 49.60 50.88 0.65 0.63 1.98 0.95
GLM-4-Plus 13.53 38.52 43.46 4.39 1.18 7.00 2.02
ERNIE-4.0 4.06 40.10 43.07 0.72 1.60 3.64 2.22

Pure-SFT-7B 79.45 69.58 74.64 49.33 56.61 50.12 53.17
TIPA-7B 84.72↑5.27 70.70↑1.12 75.90↑1.26 51.63↑2.30 58.72↑2.11 51.54↑1.42 54.90↑1.73

MTIPA-7B(r=10%) 87.52↑8.07 72.40↑2.82 77.00↑2.36 54.67↑5.34 63.25↑6.64 54.95↑4.83 58.81↑5.64

Table 4: (Experiment 1)Results on position-based CSC using CSCD-NS test dataset, showing that TIPA-7B and
MTIPA-7B outperform the baseline in all evaluated metrics. GPT-4o’s advantage stems from its character-level
tokenization simplifying position identification, while other models face challenges with subword tokenization.
Cross-tokenizer comparisons are less meaningful, yet previous LLMs performed poorly on this task.

5.5 Experiment 2: Traditional CSC Task

In the second experiment, we assessed the models
on the traditional CSC task, which does not involve
explicit position prediction. We also compared
the impact of using forward (→) and reverse (←)
TIPA constructions. This task is based on single-
character to single-character mappings, and the
evaluation methods are similarly structured. Due
to the inherent difficulty large models like GPT-
4o face in producing outputs with equal character
lengths, we excluded any non-equal length data
from the evaluation metrics. This exclusion en-
sures that length inconsistencies do not skew the
experimental results. Detailed information on the
models’ output length consistency is available in
the appendix. Some models prefer to convert half-
width symbols to full-width ones, and we treat them
as correct by establishing a mapping between half-
width and full-width characters.

5.5.1 Results

Table 5 shows that TIPA improves model perfor-
mance even when position prediction is not re-
quired. The reverse TIPA construction (←) consis-
tently outperforms the forward version (→), sug-
gesting that reverse ordering better enhances the
model’s understanding of internal character struc-
tures.

5.5.2 Evaluation on LEMON Dataset

To further assess the generalization ability of our
models, we evaluated them on the LEMON dataset,
which contains longer and more complex sentences.
Table 6 shows that our TIPA-7B model achieves
higher character-level F1 scores across various sub-
sets of the LEMON dataset, indicating improved
performance on difficult cases.

5.6 Experiment 3: General Model Evaluation

To validate TIPA’s effectiveness beyond Chinese-
specific tasks and LoRA fine-tuning, we conducted
full-parameter supervised fine-tuning experiments
on the Llama-3.1-8B model.

5.6.1 Results
Table 7 shows that TIPA-enhanced models main-
tain comparable performance on benchmarks while
improving in character-sensitive tasks. The TIPA
model achieves particularly strong gains in IFE-
VAL (strict and loose) and AExams, demonstrating
enhanced instruction following capabilities.

Table 8 demonstrates TIPA’s effectiveness in
multilingual settings, with the average F1 score im-
proving from 47.85 to 52.81 across nine languages.
The most significant gains appear in Finnish, In-
donesian, and Korean, suggesting TIPA helps with
non-Latin scripts.

Table 9 confirms TIPA’s benefits for character-
level tasks, with the TIPA model outperforming
baseline by 3.95% on character occurrence count-
ing, 7.11% on sentence length prediction, and
achieving double the performance on distinct char-
acter counting (9.29% vs 18.74%).

6 Analysis

We conducted an in-depth analysis to understand
the impact of TIPA and MTIPA on model perfor-
mance.

6.1 Position Prediction Accuracy

Figure 3 compares position prediction accuracy
across different character positions. The MTIPA-
7B model consistently outperforms others, espe-
cially at higher character positions, indicating its
enhanced ability to handle longer sequences.

3845

Model
Sentence Level Character Level

Detection Correction Detection Correction
P R F1 P R F1 P R F1 P R F1

Qwen2.5-7B 45.69 57.99 51.11 42.16 53.51 47.16 31.50 68.11 43.08 27.44 59.33 37.52
GPT-4o 35.88 65.19 46.28 33.36 60.62 43.03 34.10 86.64 48.94 31.14 79.10 44.68

Pure-SFT-1.5B 50.06 43.59 46.60 42.89 37.34 39.92 53.05 49.32 51.12 42.93 39.91 41.36
TIPA(→)-1.5B 75.58 62.11 68.18 71.55 58.80 64.55 77.27 64.38 70.24 71.91 59.91 65.36
TIPA(←)-1.5B 75.43 62.21 68.19 71.19 58.72 64.36 75.60 64.58 69.66 70.21 59.98 64.69

Pure-SFT-3B 78.39 66.96 72.22 74.87 63.96 68.99 80.59 69.25 74.49 75.54 64.91 69.82
TIPA(→)-3B 77.80 67.73 72.42 75.10 65.38 69.91 79.49 69.80 74.33 75.63 66.41 70.72
TIPA(←)-3B 78.78 68.47 73.26 75.83 65.90 70.52 80.88 70.88 75.55 76.52 67.06 71.47

Pure-SFT-7B 78.46 69.07 73.47 75.44 66.42 70.64 80.73 70.94 75.52 77.05 67.70 72.07
TIPA(→)-7B 78.04 69.56 73.55 75.32 67.14 70.99 79.98 72.63 76.13 76.76 69.70 73.06
TIPA(←)-7B 81.79 70.95 75.98 78.84 68.40 73.25 83.33 73.34 78.01 79.64 70.09 74.56

Table 5: (Experiment 2)Traditional CSC results on CSCD-NS test dataset. TIPA improves character-level detection
and correction, with reverse-order TIPA showing greater gains at larger model scales.

Model Character-Level F1 Score (%)
CAR COT ENC GAM MEC NEW NOV CSCD-NS AVG

Qwen2.5-7B 34.04 50.35 46.73 25.34 53.51 34.3 28.99 37.52 38.85
GPT-4o 41.87 44.11 47.98 31.62 51.48 47.11 37.52 44.68 43.3

Pure-SFT-1.5B 44.2 52.73 44.11 27.95 51.21 48.59 29.31 41.36 42.43
TIPA(→)-1.5B 45.20 52.95 46.19 28.4 50.03 47.41 29.68 65.36 45.65
TIPA(←)-1.5B 44.92 50.81 44.69 28.49 50.81 48.46 29.09 64.69 45.24

Pure-SFT-3B 49.18 59.34 46.93 26.13 55.15 56.25 32.68 69.82 49.44
TIPA(→)-3B 49.72 59.47 48.54 32.71 55.12 55.44 32.85 70.72 50.57
TIPA(←)-3B 49.22 60.51 48.56 34.67 56.02 55.8 33.32 71.47 51.20

Pure-SFT-7B 52.47 58.77 53.28 32.32 61.62 60.27 35.41 72.07 53.28
TIPA(→)-7B 56.07 64.02 52.91 35.56 62.56 60.24 38.96 73.06 55.42
TIPA(←)-7B 53.69 59.79 55.65 36.46 63.15 61.16 39.65 74.56 55.51

Table 6: (Experiment 2)Character-level F1 scores on LEMON and CSCD-NS for various domains. TIPA-7B
consistently achieves higher F1, indicating better generalization.

Metric TULU TULU-TIPA

IFEVAL0-shot, strict↑ 64.88 67.84
IFEVAL0-shot, loose↑ 68.02 70.24
GSM8K8-shot↑ 74.53 74.53
MMLU5-shot↑ 65.30 65.30
AExams↑ 38.92 40.22
KoBESTF1↑ 51.09 52.37
HumanEvalpass@1↑ 53.05 51.83

Table 7: Standard benchmark evaluation of Llama-3.1-
Tulu and Llama-3.1-Tulu-TIPA-8B, showing compa-
rable performance with TIPA-enhanced model.

6.2 Training Dynamics

Figure 4 shows the comparison of character-level
metrics and position accuracy across different
epochs for Pure-SFT-7B, TIPA-7B, and MTIPA-
7B. MTIPA-7B achieves the highest performance
ceiling.

Language F1
TULU TULU-TIPA

Arabic 67.22 67.02
Bengali 30.44 31.13
English 61.16 64.83
Finnish 49.74 60.99
Indonesian 56.76 66.64
Korean 46.16 56.37
Russian 44.07 44.95
Swahili 47.73 53.10
Telugu 27.39 30.28
Average 47.85 52.81

Table 8: TyDi QA multilingual evaluation showing im-
proved performance with TIPA.

6.3 Impact on Downstream Tasks

Our analysis confirms that TIPA and MTIPA signif-
icantly enhance models’ understanding of internal
character structures, leading to improved perfor-
mance in both position prediction and traditional
CSC tasks. The models no longer need to “guess”

3846

Metric TULU TULU-TIPA

Occurrence 34.62 38.57
Length 24.48 31.59
Distinct 9.29 18.74

Table 9: Average character-level comparison between
TULU and TIPA systems across eight languages (CN,
EN, JP, KR, AR, EN-Hard, FR, RU).

0

10

20

30

40

50

60

70

80

90

100

PP
A
(%

)

25%
258

9%
77

4%
23

3%
11

3%
7 1%

2
2%
1

88%
600

87%
543

79%
331

68%
172

60%
80

40%
36 36%

14

90%
594 88%

564 86%
364

84%
193

76%
94

61%
54

32%
13

91%
607

92%
560 87%

350
86%
208

76%
104

70%
62

62%
26

Averaged Prediction Success Rate by Position (Every 15 Positions)

GPT-4o

PURE

TIPA

MTIPA

1-15 16-30 31-45 46-60 61-75 76-90 91-105
Position Group

0

200

400

600

800

1000

Nu
mb
er
 o

f
Pr
ed

ic
ti

on
s

1042

818

620

398

223

163

62

680

622

419

252

133
89

39

660 643

424

229

124
89

40

664

612

401

242

137
88

42

Total and Successful Predictions by Position

GPT-4o

PURE

TIPA

MTIPA

Figure 3: (Experiment 1)Comparison of position pre-
diction accuracy by character position. MTIPA-7B
achieves consistently higher accuracy, especially at
longer positions.

the composition of tokens, as the training includes
explicit character structure information.

Furthermore, by not altering the tokenizer or
model architecture, our methods maintain compat-
ibility with existing systems and do not introduce
additional inference latency.

6.4 General Model Findings
Our general model experiments reveal several key
insights:

• TIPA integration through full-parameter SFT
maintains model performance on benchmarks
while improving character-level capabilities

• The multilingual evaluation shows TIPA’s ben-
efits extend beyond Chinese to other scripts
and languages

• Character-level tasks demonstrate significant
improvements, particularly in counting dis-
tinct characters

• The approach scales effectively to larger mod-
els (8B parameters) without performance

1 2 3 4 5 6 7 8 9 10
Epoch

20

30

40

50

60

P

P Comparison

1 2 3 4 5 6 7 8 9 10
Epoch

20

30

40

50

R

R Comparison

1 2 3 4 5 6 7 8 9 10
Epoch

20

30

40

50

60

F1

F1 Comparison

1 2 3 4 5 6 7 8 9 10
Epoch

40

50

60

70

80

PP
A

PPA Comparison

PURE TIPA MTIPA

Figure 4: (Experiment 1)Training dynamics showing
character-level metrics and position accuracy. MTIPA-
7B achieves the highest performance ceiling.

degradation

These results suggest that TIPA’s benefits are
not limited to Chinese-specific tasks or LoRA fine-
tuning, but represent a general improvement in
LLMs’ character-level understanding.

7 Conclusion

We introduced Token Internal Position Aware-
ness (TIPA) and Multi-Token Internal Position
Awareness (MTIPA) to enhance large language
models’ (LLMs) ability to accurately predict char-
acter positions within tokens. Our experiments
demonstrate TIPA’s effectiveness across three sce-
narios: position-aware Chinese spelling correction,
traditional CSC tasks, and both training and evalu-
ation of general models. The method shows partic-
ular strength in:

1. Improving position prediction accuracy
in Chinese text (up to 8.07% absolute gain) 2.
Enhancing traditional CSC performance (up to
5.64% F1 improvement) 3. Boosting multilin-
gual and character-level capabilities without sac-
rificing benchmark performance 4. Scaling effec-
tively to larger models through both LoRA and
full-parameter fine-tuning

By training LLMs on reverse character predic-
tion tasks using the tokenizer’s vocabulary, TIPA,
and MTIPA effectively address the limitations im-
posed by tokenization methods like Byte-Pair En-
coding (BPE) while maintaining compatibility with
existing systems.

8 Limitations

While our study presents promising results, there
are several limitations:

3847

• The methods’ ability to predict positions
for out-of-vocabulary (OOV)(Sennrich, 2015;
Wang et al., 2020) words, which do not di-
rectly appear in the tokenizer’s vocabulary,
requires further investigation.

• Directly mixing TIPA datasets during general
model SFT training may induce a bias toward
shorter text sequence generation when using
excessive data proportions. While this can
be mitigated by setting minimum token con-
straints, more fundamental solutions through
pretraining or reinforcement learning stages
warrant further exploration.

9 Acknowledgments

This work was supported by the "Major Special
Project for Technological Innovation and Applica-
tion Development" (Grant No. CSTB2024TIAD-
STX0036) from the Chongqing Municipal Science
and Technology Bureau. We sincerely appreciate
the insightful comments and constructive sugges-
tions from the reviewers, which significantly im-
proved the quality and rigor of this manuscript.
We are especially grateful to Dr. Yixian Shen, a
postdoctoral researcher at the University of Am-
sterdam, for generously providing computational
resources and invaluable guidance during the large-
scale model training phase. Their expertise and sup-
port were instrumental in advancing this research.

A Appendix

A.1 The limitations of GPT-4o

In Table 10, we present examples highlighting the
limitations of GPT-4o in handling character-level
tasks due to its lack of internal character structure
awareness.

These examples illustrate how GPT-4o struggles
with tasks that require precise character-level un-
derstanding. The tokenization process obscures
internal character structures, leading to errors in
character counting, splitting, and position identifi-
cation. Our proposed methods, TIPA and MTIPA,
aim to address these issues by enhancing models’
awareness of internal token structures.

A.2 Implementation Details

In our experiments, we utilized PyTorch and the
Hugging Face Transformers (Wolf et al., 2020) li-
brary to implement our models. We fine-tuned the
open-source models using LoRA (Hu et al., 2021)

(Low-Rank Adaptation of Large Language Mod-
els) with specific configurations to efficiently adapt
the large models without modifying the original
weights.

A.2.1 TIPA Training Methodology
We implemented two approaches for TIPA training:

• Unpruned TIPA: We first extracted all vocab-
ulary from the tokenizer and filtered out to-
kens that could not be properly parsed as UTF-
8. We then applied the TIPA method to create
the TIPA dataset, which was mixed with the
CSC dataset and shuffled before LoRA fine-
tuning.

• Pruned TIPA: We tokenized a large CSC
dataset and intersected these tokens with the
tokenizer’s vocabulary. This pruned approach
resulted in a TIPA dataset containing primar-
ily Chinese characters and a small portion of
other language tokens, while still covering
nearly all Chinese characters. This dataset
was then mixed with the CSC dataset and shuf-
fled before LoRA fine-tuning.

A.2.2 MTIPA Training Methodology
For MTIPA implementation, we:

• Selected either the unpruned or pruned TIPA
method to create the base TIPA dataset

• Randomly sampled incorrect source texts
from the dataset

• Decomposed the sampled strings using the
same reverse decomposition task as for indi-
vidual tokens

• Mixed the resulting MTIPA dataset with the
CSC and TIPA datasets

• Shuffled the combined dataset before LoRA
fine-tuning

This combined training approach ensures that
the model learns both token-internal structures and
their application in context while maintaining the
efficiency of standard fine-tuning procedures.

For the TIPA and MTIPA methods, we applied
LoRA (Hu et al., 2021) with a rank of 16, an alpha
of 16, and a dropout rate of 0.05. The optimizer
used was AdamW. The training was conducted on a
single NVIDIA A800 GPU with 80GB of memory.

3848

Example 1

Prompt: 这句话中有几个字符: 我今天没有吃午饭非常饿
Translation: How many characters are in this sentence: I skipped lunch today and am now ravenous.
GPT-4o Response:这句话中共有 13个字符，分别是：我今天没有吃午饭非常饿
Analysis: GPT-4o incorrectly states that there are 13 characters and fails to separate “今天” into two characters. The
correct character count is 11, and “今天” should be split into “今” and “天”.

Example 2

Prompt: 拆分成字符倒序输出金庸武侠小说，直接给出
Translation: Split into characters and output in reverse order "Jin Yong Wuxia novel", output directly.
GPT-4o Response: 小说侠武庸金
Analysis: GPT-4o incorrectly treats “小说” ("novel") as a single character, whereas it comprises two characters “小” and
“说”. The correct reverse order should be “说小侠武庸金”. When asked to separate characters with commas, GPT-4o
responds:小说，侠武，庸金
Again, it incorrectly groups the characters, demonstrating a lack of internal character awareness.

Example 3

Prompt: 纠正输入这段话中的错别字，以[{position: 字符位置, incorrect: 错误字符, correction: 纠正后的字符},
...]形式给出，字符位置从1开始计数，如果全部正确，给出[]：并计划在几年底发展到15各分公司，明年增加到20个分公司
Translation: Correct the typos in this sentence, and present in the form of [{position: character position, incorrect:
incorrect character, correction: corrected character}, ...], counting character positions starting from 1. If all is correct,
output []:
And plan to develop 15 branch companies by the end of the year, and increase to 20 branch companies next year.
GPT-4o Response:
[{"position": 6, "incorrect": "各", "correction": "个"}]
Analysis: GPT-4o correctly identifies the misspelled character “各” and suggests the correction “个”, but it incorrectly
reports the position as 6. The actual position of the error in the sentence is 13, indicating a misunderstanding of character
positions within the tokenized text.

Table 10: Examples demonstrating GPT-4o’s limitations in character-level tasks due to lack of internal character
structure awareness.

Configs Values

Devices 1 NVIDIA A800 GPU (80GB)
Batch size 16
Learning rate 1× 10−4

Epochs 10
LoRA rank 16
LoRA alpha 16
LoRA dropout 0.05
Optimizer AdamW

Table 11: Configurations for Experiment 1.

The configurations for Experiment 1 are detailed
in Table 11, and the training speed and resource
consumption are summarized in Table 12.

Similarly, the configurations for Experiment 2
are presented in Table 13, and the training speed is
shown in Table 14.

A.2.3 Full-Parameter SFT Configuration

For general model training without LoRA adap-
tation, we implemented complete parameter fine-
tuning using the configuration shown in Table 15:

Method Batches Speed GPU hours

Pure-SFT-7B 188,340 ∼ 1 s/batch 52.6 h
TIPA-7B 203,960 ∼ 1 s/batch 56.7 h
MTIPA-7B 222,780 ∼ 1.6 s/batch 99.0 h

Table 12: Training speed and resource consumption for
Experiment 1.

A.3 Datasets

We utilized several datasets for training and eval-
uation. The datasets and their characteristics are
summarized in Tables 16 and 17. The total num-
ber of unique tokens after deduplication across all
datasets is 24,994.

The distribution of token lengths in the pruned to-
ken set used to construct the TIPA dataset is shown
in Figure 5. We observed that most tokens have
lengths of 1 or 2 characters.

A.4 Prompts Used in Experiments

We provide the prompts used in our experiments
for different models and tasks. Due to the length of
the prompts, we format them to allow for automatic

3849

Configs Values

Devices 1 NVIDIA A800 GPU (80GB)
Batch size 16
Learning rate 1× 10−4

Epochs 6 (results reported at epoch 3)
LoRA rank 16
LoRA alpha 16
LoRA dropout 0.05
Optimizer AdamW

Table 13: Configurations for Experiment 2. The models
achieved optimal performance at epoch 3, beyond which
overfitting was observed.

Method Batches Speed GPU hours

Pure-SFT-7B 56,502 ∼ 0.96 s/batch ∼ 15 h
TIPA(→)-7B 61,188 ∼ 0.95 s/batch ∼ 16 h
TIPA(←)-7B 61,188 ∼ 0.95 s/batch ∼ 16 h
Pure-SFT-3B 56,502 ∼ 0.58 s/batch ∼ 9 h
TIPA(→)-3B 61,188 ∼ 0.58 s/batch ∼ 10 h
TIPA(←)-3B 61,188 ∼ 0.58 s/batch ∼ 10 h
Pure-SFT-1.5B 56,502 ∼ 0.35 s/batch ∼ 5.5 h
TIPA(→)-1.5B 61,188 ∼ 0.35 s/batch ∼ 5.9 h
TIPA(←)-1.5B 61,188 ∼ 0.35 s/batch ∼ 5.9 h

Table 14: Training speed and resource consumption for
Experiment 2.

line wrapping.

A.5 Analysis of Output Length Consistency
We analyzed the proportion of outputs where the
corrected text has the same character length as the
original text. This metric reflects the models’ abil-
ity to maintain length consistency, which is impor-
tant for certain applications.

In Table 19, Qwen2.5-7B and GPT-4o were ex-
plicitly instructed to output texts of the same length
as much as possible, but their averages are rela-
tively low, indicating that these models do not fully
grasp the length information of the tokens. Our
models were not instructed to output texts of the
same length, as all training samples were of equal
length. This demonstrates the models’ ability to
mimic and generalize length information through
training methods. In CSCD-NS, the error patterns
of tokens are present in the training set, so the
Pure-SFT-3B model has good mimicking ability.
In the LEMON dataset, since more new tokens
may appear, TIPA has trained character composi-
tion awareness for all possible tokens, while the
Pure-SFT method cannot perceive such tokens dur-
ing training, so TIPA shows better generalization
ability. However, this does not involve including
the test set in the training set, because the tokens are
known in the vocabulary, and we can train the tok-

Configs Values

Devices 4 NVIDIA H100 GPUs (80GB)
Batch size 32 (gradient accumulation)
Learning rate 5× 10−6

Epochs 2

Table 15: Full-parameter SFT configurations. All un-
specified parameters align with TULU training settings.
Training completed in 3d 8h 10m 26s.

Dataset Samples Unique Tokens

Training
CSCD-NS Train 30,000 22,012
Wang271K 271,329 20,369

Validation
CSCD-NS Dev 5,000 16,003

Table 16: Training and validation datasets were used in
our experiments. “Unique Tokens” refers to the number
of unique tokens appearing in the tokenizer after dedu-
plication.

enizer’s vocabulary without obtaining any datasets.

A.6 Additional Results
We provide additional examples from our experi-
ments to illustrate the impact of TIPA and MTIPA
on model outputs.

A.6.1 Experiment 1: CSC with Position
Prediction

Table 20 shows several examples comparing the
outputs of the Pure-SFT-7B model and the MTIPA-
7B model on the CSC task with position prediction.

A.6.2 Experiment 2: Traditional CSC Task
Table 21 provides examples from Experiment 2,
comparing the outputs of the Pure-SFT-7B model
and the TIPA-7B model on the traditional CSC
task.

A.7 Loss Analysis
Figure 6 compares training and validation loss
across different methods. The TIPA-7B model
exhibits the fastest loss reduction during training,
indicating more efficient learning.

3850

Dataset Filtered Samples Unique Tokens

CSCD-NS Test 5,000 15,946
NOV 6,000 10,503
CAR 3,245 10,881
COT 993 3,564
ENC 3,274 13,399
GAM 393 3,055
MEC 1,942 4,813
NEW 5,887 12,010

Table 17: Testing datasets used in our experiments after
filtering. “Filtered Samples” indicates the number of
samples remaining after filtering out those with unequal
source and target sentence lengths. “Unique Tokens”
refers to the number of unique tokens appearing in the
tokenizer after deduplication.

1 2 3 4 5 6 7 8 9 10 11 12 16 80

Length

100

101

102

103

104

Co
un
t

6182

12173

4017

2165

269

93

56

17
13

3
2

1

2

1

Token Length Distribution (Log Scale)

Figure 5: Token length distribution in the pruned token
set used for constructing the TIPA dataset. The y-axis is
on a logarithmic scale(Hunter, 2007). The token with a
length of 80 is an exceptional case and can be excluded
in practical applications to avoid excessively long tokens
in TIPA.

0 10000 20000 30000 40000 50000 60000 70000 80000

Step

0.0

0.1

0.2

Lo
ss

Train Loss vs Step (Smoothed)

DIRECT

TIPA

1 2 3 4 5 6

Epoch

0.030

0.035

Ev
al

 L
os

s

Eval Loss vs Epoch

DIRECT

TIPA

Figure 6: (Experiment 2)Training and validation loss
comparison across different methods in the traditional
CSC task. The TIPA-7B model exhibits the fastest re-
duction in loss during training, indicating more efficient
learning and better generalization capabilities compared
to the baseline.

3851

Experiment Prompt (Chinese / English) (temperature = 0.01)

Experiment 1 (All models) Chinese: 纠正输入这段话中的错别字，以 [{position: 字符位置, incorrect: 错误字符, correction: 纠正后的字符}, ...] 形式给出，字符位置从 1开始计数，必须是单个字符，如果全部正确，给出 []。
English: Correct the typos in this paragraph of input and provide
it in the form [position: character position, incorrect:
wrong character, correction: corrected character,
...], where character position starts counting from 1, must be a
single character, if all is correct, give [].

Experiment 2 (Testing GPT-4o,
Qwen2.5-7B original models) (tem-
perature = 0.01)

Chinese: 纠正输入这段话中的错别字，直接给出纠正后的文本，无需任何解释，不要补充任何标点符号，尽可能输出等长的新句子！
English: Correct the typos in this paragraph of input and directly
give the corrected text, no need for any explanation, do not add
any punctuation marks, and try to output a new sentence of equal
length!

Experiment 2 (Trained models) Chinese: 纠正输入这段话中的错别字，直接给出纠正后的文本，无需任何解释。
English: Correct the typos in this paragraph of input, and di-
rectly give the corrected text, no need for any explanation.

Table 18: Prompt templates used in our experiments, presented in both Chinese and English. The prompts were
designed to elicit the desired output formats from the models.

Model CAR COT ENC GAM MEC NEW NOV CSCD-NS AVG

Qwen2.5-7B 59.69 65.16 63.44 55.98 65.71 58.72 58.33 66.02 61.63
GPT-4o 77.69 83.18 83.87 82.44 86.56 79.80 79.63 87.74 82.61

Pure-SFT-1.5B 95.13 96.88 96.06 96.18 95.83 97.27 96.12 96.28 96.22
TIPA(→)-1.5B 95.04 95.47 95.97 96.95 95.67 97.06 96.33 98.68 96.40
TIPA(←)-1.5B 94.67 95.57 95.97 95.42 95.62 96.96 96.0 98.52 96.09

Pure-SFT-3B 94.82 95.37 95.66 95.67 96.55 97.50 94.97 98.92 96.18
TIPA(→)-3B 95.01 95.37 96.46 95.93 96.14 97.55 94.43 98.66 96.19
TIPA(←)-3B 95.50 96.07 95.94 97.20 96.86 97.40 95.47 98.66 96.64

Pure-SFT-7B 93.93 95.27 95.51 96.44 93.72 97.03 94.05 98.60 95.57
TIPA(→)-7B 95.75 96.27 96.30 97.71 96.04 98.05 96.07 99.16 96.92
TIPA(←)-7B 94.58 94.76 95.51 97.20 95.57 97.55 95.42 98.84 96.18

Table 19: Proportion (%) of outputs where the corrected text has the same character length as the original text across
different domains and models. The average (AVG) is also provided.

3852

Source Text:
...产品的移动芯片及相关平台开发， 期 芯片类产品支持...
Pure-SFT-7B Output:
[{ "position": 53 , "incorrect": "期", "correction": "其" }]
MTIPA-7B Output:
[{ "position": 52 , "incorrect": "期", "correction": "其" }]
Translation: "...development of mobile chips and related platforms for products, its chip products support..."
Comment: The MTIPA-7B model correctly identifies the position of the incorrect character "期" (should be "其") at
position 52, whereas the Pure-SFT-7B model predicts position 53.

Source Text:
...加盟中超大连实德后 再 球队效力三年，上赛季结束后离队，最终选择退役
Pure-SFT-7B Output:
[{ "position": 38 , "incorrect": "再", "correction": "在" }]
MTIPA-7B Output:
[{ "position": 37 , "incorrect": "再", "correction": "在" }]
Translation: "...after joining Dalian Shide in the Chinese Super League, he served the team for three years, left after last
season, and finally chose to retire."
Comment: The MTIPA-7B model accurately predicts the position of the incorrect character "再" (should be "在") at
position 37, while the Pure-SFT-7B model predicts position 38.

Table 20: Examples from Experiment 1 comparing Pure-SFT-7B and MTIPA-7B outputs on the CSC task with
position prediction. The MTIPA-7B model demonstrates enhanced position prediction accuracy.

Source Tokens:
.../以 /吃的 /名 / 意 /来 /一场 /说 /走 /就 /走 /的 /美食 /之旅 /
Pure-SFT-7B Output:
.../以 /吃的 / 心情 /来 /一场 /说 /走 /就 /走 /的 /美食 /之旅 /
TIPA-7B Output:
.../以 /吃的 / 名义 /来 /一场 /说 /走 /就 /走 /的 /美食 /之旅 /
Translation: "Take a spontaneous food journey in the name of eating."
Comment: The TIPA-7B model correctly reconstructs "名义" ("name"), improving the fluency and accuracy of the
sentence compared to the Pure-SFT-7B model’s output.

Source Tokens:
/伦敦 /又 / 粗 / 线 /了一 /家 /哈利 / · /波特 /主题 /的 /酒店 /套房 /
Pure-SFT-7B Output:
/伦敦 /又 / 粗 / 线 /了一 /家 /哈利 / · /波特 /主题 /的 /酒店 /套房 /
TIPA-7B Output:
/伦敦 /又 / 出现 /了一 /家 /哈利 / · /波特 /主题 /的 /酒店 /套房 /
Translation: "London has another Harry Potter themed hotel suite appeared ."
Comment: The TIPA-7B model accurately corrects "粗线" (nonsensical in this context) to "出现" ("appear"), enhancing
the sentence’s coherence.

Source Tokens:
/ 本事 /一家人 / ...
Pure-SFT-7B Output:
/本 /是 / 亲 /一家 / ...
TIPA-7B Output:
/本 / 是一 /家人 / ...
Translation: "We were originally a family."
Comment: The TIPA-7B model correctly reconstructs the phrase "是一家人" ("are a family"), improving the grammati-
cality and meaning of the sentence.

Table 21: Examples from Experiment 2 comparing Pure-SFT-7B and TIPA-7B outputs on the traditional CSC
task. The TIPA-7B model demonstrates an enhanced understanding of token internal structures, leading to better
corrections.

3853

