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Abstract

Requiring a large language model (LLM) to
generate intermediary reasoning steps, known
as Chain of Thought (CoT), has been shown to
be an effective way of boosting performance.
Previous approaches have focused on gener-
ating multiple independent CoTs, combining
them through ensembling or other post-hoc
strategies to enhance reasoning. In this work,
we introduce a novel approach where LLMs are
fine-tuned to generate a sequence of Diverse
Chains of Thought (DCoT) within a single in-
ference step, which is fundamentally different
from prior work that primarily operate on par-
allel CoT generations. DCoT allows LLMs to
gain the ability to perform within-inference re-
finement of reasoning chains without requiring
external feedback. Through a rigorous set of
experiments spanning a wide range of tasks that
require various reasoning types, we show that
fine-tuning on DCoT improves performance
over the CoT baseline across model families
and scales (1.3B to 70B). These improvements
are particularly impactful for tasks with a large
result state space, such as those involving nu-
meric answers. Our work is also significant
because both quantitative analyses and manual
evaluations reveal the observed gains stem from
the models’ ability to refine an initial reasoning
chain by generating a second, improved chain
within the same inference step, demonstrating
previously elusive self-improvement. Our code
and data are publicly available.1

1 Introduction

Chain of Thought (CoT; Wei et al. 2022b), the
prompting method to generate intermediate reason-
ing steps to answer a question, is recognized as
a simple yet effective mechanism for improving
the performance of large language models (LLMs).
Given that requiring models to generate intermedi-
ary steps improves performance, it stands to reason

1https://github.com/UKPLab/acl2025-diverse-cot
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She visited 42 countries
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CoT

Single
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[Answer 1] … 42/2 = 21 … 21-10 =  11
[Answer 2] She visited 20 in Europe and

10 in South America. 
20 + 10 = 30

She visited 42 in total.
42-30 = 12

Half of the visited 
countries are in Asia

12/2 = 6
Final Answer 6

k=2

Question: Cornelia visited 42 countries. 20 of them in Europe and 10 in South 
America. From the rest of the countries, only half of them were in Asia.  How many 

Asian countries has she visited?

Figure 1: Diverse CoT (k = 2) generates k CoTs in a
single inference step and selects the correct answer.

that requiring models to generate multiple chains
could further improve performance. Prior work
exploring this idea includes that by Wang et al.
(2023), wherein they generate multiple CoTs and
ensemble them with a voting mechanism. However,
these approaches, and others like them (see Section
2), rely on independently generated CoTs, which
prevents the model from accessing previously gen-
erated chains during inference. This independence
limits the potential for within-inference refinement
and the ability to build upon earlier reasoning paths.

Therefore, we present a training method that
enables LLMs to generate multiple diverse reason-
ing chains sequentially in a single inference step.
Through our experiments, we find that this method
drives performance gains by allowing the model
to refine subsequent CoTs based on earlier ones.
To achieve this, we construct a training dataset of
Diverse CoTs (DCoT), where a single question is
associated with multiple valid CoTs. While previ-
ous studies treated each (question, CoT) pair as a
standalone data point (Ho et al., 2023; Huang et al.,
2023), we propose to concatenate CoTs into a sin-
gle sequence, forming training pairs of the format
(question, [CoTs]). In this way, models learn to
generate multiple CoTs in a single inference step.
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While all our training CoTs represent correct rea-
soning chains, we hypothesize that this training
regime will enable LLMs to generate sequentially
better CoTs—up to a certain number of iterations—
as they have access to previous reasoning chains,
leading to improved performance.

We demonstrate that fine-tuning using DCoTs
improves LLM performance over the CoT baseline
by rigorously testing on a range of tasks requiring
different types of reasoning across model families
and scales (1.3B to 70B). We further identify the
subset of tasks, namely those with a large result
state space, such as those involving numeric an-
swers, to particularly benefit from our method. In
addition, we show that generating a single CoT on
the DCoT fine-tuned model yields comparable re-
sults to the CoT baseline, while generating two or
more CoTs yields clear gains on average across all
tasks for all models. This, along with the manual
evaluation that we present below, demonstrates that
the gains provided by DCoT arise not from random
perturbations but from iterative refinement within
a single inference step. Additionally, we show that
DCoT fine-tuned models can be further augmented
by the same methods that boost CoT, such as the
self-ensemble of CoTs (Wei et al., 2022b). These
results suggest that instruction-tuning datasets can
be easily augmented with DCoT data, given that
many existing datasets already include CoT exam-
ples, often with multiple CoTs per question (Ho
et al., 2023; Huang et al., 2023). This makes the
creation of DCoT training datasets both practical
and efficient. Specifically, the contributions of this
work are as follows:

• We introduce a novel method that fine-tunes
LLMs to generate multiple reasoning chains
within a single inference step, enhancing sub-
sequent chains and boosting performance.

• We rigorously demonstrate the effectiveness
of our method on a range of LLM families and
sizes across multiple reasoning tasks, identify-
ing task types where it performs best—those
with large result state spaces.

• Through a combination of empirical and man-
ual analysis, we show that DCoT achieves
gains through within-inference revision of its
first CoT without external feedback or prompt
optimization, which, to the best of our knowl-
edge, is the first work to do so.

2 Related Works

In this section, we examine related work from three
distinct perspectives: (i) prompting methods that
enhance CoTs through diversity, (ii) research fo-
cused on instruction tuning models using CoTs,
and (iii) studies on self-correction in LLMs.

Improving Prompting through diversity. Many
works have shown the benefits of generating di-
verse CoTs and aggregating them (Wang et al.,
2023; Zhang et al., 2024; Yoran et al., 2023; Li
et al., 2023b; Weng et al., 2023; Zhao et al.,
2023a,b). In particular, Wang et al. (2023) pro-
posed the creation of self-assembles of CoTs to
improve LLM’s performance, which they call self-
consistency. They sample a series of CoTs, select
the most consistent answer, and show large perfor-
mance gains on reasoning tasks. Yoran et al. (2023)
extends this work by creating a meta prompt that
aggregates the reasoning paths instead of select-
ing the most common answer. Zhang et al. (2024)
propose explicit steps to contrast each CoT and
reflect on the final answer. However, none of these
works induce LLMs to generate multiple CoTs in
the same inference step.

Fine-Tuning on Diverse CoTs. The success of
CoT prompting led to the creation of instruction-
tuning datasets with CoTs (Chung et al., 2024).
Kim et al. (2023) argue that small LMs perform
poorly on CoT on unseen tasks compared to large
LMs. Hence, they create an instruction-tuning
dataset of CoT to equip small LMs with CoT capa-
bilities. Others suggest distilling CoTs from very
large language models (vLLMs) (Hsieh et al., 2023;
Li et al., 2023a). Ho et al. (2023) also show the
benefits of distilling CoTs from these vLLMs and
claim that sampling multiple CoTs per question
and training on these diverse CoTs is an effective
data augmentation technique that improves the per-
formance of distilled models. However, they do
not use this diversity at inference time, and unlike
us, their method only generates one CoT per ques-
tion. Ranaldi and Freitas (2024) proposes a sec-
ond step where the distilled student models gener-
ate multiple CoTs and with reinforcement learning
the student trains itself. Huang et al. (2023) show
that vLLMs can improve performance on reasoning
tasks by self-training on their own CoT generations
from sampling.

Self-Correction. Huang et al. (2023) defines it
as the ability of an LLM to correct its initial re-
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Figure 2: We train on a series of CoTs to make the model learn how to generate multiple CoTs in one inference step.
DCoT and CoT have the same amount of CoTs. However, DCoT is trained with different amounts of k CoTs for a
given query. At inference time, users can pick any k.

sponse without relying on external feedback. Most
works approach self-correction in LLMs with a
system with two steps: one that generates the an-
swer and another one that identifies errors (Shinn
et al., 2024; Madaan et al., 2023; Pan et al., 2024;
Kim et al., 2024; Weng et al., 2023; Jiang et al.,
2024; Du et al., 2024; Paul et al., 2024; Saunders
et al., 2022; Akyurek et al., 2023; Welleck et al.,
2023; Estornell et al., 2025). However, Hong et al.
(2024) claims that LLMs cannot identify their own
errors and Huang et al. (2024); Stechly et al. (2025);
Tyen et al. (2024) argue that the self-corrections
gains stem from the use of external feedback. Our
method differs from these methods in that we gen-
erate multiple CoTs in a single-inference step. As
we will demonstrate, this access to previous CoTs,
enables the model to refine subsequent reasoning
chains without explicitly identifying errors.

3 Methods

DCoT. We instruction-tune LLMs on diverse
CoTs to generate multiple CoTs in a single infer-
ence step. To this end, we devise a DCoT instruc-
tion template, where we introduce a set of com-
mands (in brackets) to request the number of CoTs
to generate:

Prompt: [Question] Question [Options] Op-
tions [Number of answers] k
Response: [Answer 1] CoT1 [Answer 2] ...
[Answer k] CoTk [Final answer] answer

In the input prompt, the instruction [Options]
provides the candidate answers for multiple-choice
questions answering tasks. For other tasks, such as
span extraction, this is omitted. In the response, the
[Final answer] instruction is the convergence
mechanism that conditions the model to generate
the final answer. We generate DCoT data in the
required format using methods described in Sec-
tion 3.1. For brevity, we refer to instruction-tuned
models on DCoT data as DCoT.

CoT (Baseline). So as to establish a comparable
baseline, we instruction-tune the same LLMs using
the more traditional CoT format. To ensure a fair
comparison, we use the same reasoning chains as
in DCoT. As shown in Figure 2, each data point is
composed of a question and a CoT, and a question
may appear in more than one data point but with
a different CoT. In this way, the model leverages
CoT diversity at training time, but, unlike in DCoT,
it does not do so at inference time. For brevity, we
refer to these models as CoT.

With these two methods, we aim to compare
two training regimes that use the same amount of
training CoTs and where the only difference lies
in the response format. We also do an exploratory
analysis of whether we can replicate the results of
our DCoT training with in-context learning in very
large commercial language models in Appendix C.
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3.1 Training Data Generation

We follow the methods set out by Ott et al. (2023)
to create CoTs for our CoT and DCoT datasets.
We use GPT 3.5 turbo in the zero-shot setting with
multiple triggers to generate CoTs. Specifically,
CoT Triggers are prompt suffixes, such as “Let’s
think step by step” that ‘trigger’ LLMs to generate
CoTs. We use the same triggers as in (Ott et al.,
2023). For each question, we select four random
CoT triggers. We limit the number of CoTs to four
to ensure that the targets fit the context window of
the LLMs. We restrict the training data to those
reasoning chains that lead to correct answers as
determined by the labels provided by the corre-
sponding dataset2. We report the prompt templates
and triggers in Appendix J.

Table 8 in Appendix A lists the datasets we use
to generate our CoTs and train the models. These
datasets were selected following prior works (Wang
et al., 2023; Yoran et al., 2023). We have added
BoardgameQA (Kazemi et al., 2023) to include
logic and ConditionalQA (Sun et al., 2022) to in-
clude natural conditional reasoning, which is highly
complex, and hence a revision of the answer can
be beneficial. With this selection, we cover mul-
tiple domains, output spaces, and reasoning abili-
ties. Following prior works (Khashabi et al., 2020;
Longpre et al., 2023; Wei et al., 2022a; Tafjord and
Clark, 2021), we train all our models in all datasets
at the same time to aim for generalizability. We
provide more details on Appendix A.

3.2 Models

We train a series of models covering the scaling
laws and different families. Concretely, we employ
Phi 1.5 (1.3B; Li et al. 2023c), Phi 2 (2.7B; Abdin
et al. 2023), LLaMA-2 7B, LLaMA-2 13B (Tou-
vron et al., 2023). With this selection, we can ana-
lyze two families and scaling laws within the fami-
lies. For all of our experiments, we select the non-
instruction tuned-based models so as to ensure that
the comparison between DCoT and CoT is fair. This
is because instruction-tuning datasets contain CoT
data (Touvron et al., 2023), which would make the
CoT baseline trained on longer and more diverse
CoTs, and hence, the comparison between the two
training regimes could be unfair. We also conduct
a smaller experiment on LLaMA-2 13B Chat to an-

2Initial experiments including wrong CoTs led to worse
results, probably because in a supervised fine-tuning scenario
they confused the model, so we only keep different CoTs that
lead to correct answers.

alyze whether our DCoT instruction-tuning method
can be applied to already-instruction-tuned mod-
els. Lastly, we also run our main experiments
on LLaMA-2 70B. However, due to the inference
costs, we train it on less data than the other models
and only evaluate it on subsets of the evaluation set
to show a hint of effectiveness on very large LMs.
We refer the reader to Appendix B for details on
the training setup of the models.

3.3 Evaluation

Our method is likely to be most effective in sce-
narios where access to previous CoTs and the cor-
responding answer is helpful, namely those tasks
with a large output space. Therefore, to rigorously
evaluate this, we test our method across tasks with
varying output space sizes. Specifically, we as-
sess our models on the following task types: Nu-
meric, Span Extraction, Multiple-Choice, Binary,
and Symbolic. We use the macro average F1 metric
for all these in-domain classification tasks and the
squad-metric (Rajpurkar et al., 2016) for these in-
domain span-extraction tasks (i.e., ConditionalQA
and HotpotQA). So as to select the value of the
hyperparameter k, we run our DCoT with k ∈ [1, 4]
and select the best k for each dataset based on the
dev set (Table 16 in Appendix I reports them). All
results are reported on the test set, with the excep-
tion of LLaMA02 70B. For LLaMA-2 70B, we
only train on a small subset of our training set and
also report results on subsets of the dev set with
no hyperparameter optimization at all using a k
of 2 (the minimum amount of refinements), due
to the costs. Further discussions are provided in
Appendix B.

3.3.1 Unseen Tasks
Generalization to new tasks remains a challeng-
ing problem. For example, Chung et al. (2024)
and Kim et al. (2023) shows the need to train on
thousands of tasks to achieve performance gains
on unseen tasks with CoTs. Since we advocate for
the augmentation of instruction-tuning data with
our DCoT, we need to evaluate that DCoT at least
does not cause performance degradation on unseen
tasks (i.e., tasks not used for training). Therefore,
we select four challenging unseen tasks encompass-
ing commonsense reasoning (CSQA; Talmor et al.
2019), multiple-choice math (AQuA, Ling et al.
2017), number generation for math (SVAMP, Pa-
tel et al. 2021), and number generation for object
counting (Suzgun et al. 2023).
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Numeric Span-Extraction Multiple-Choice Binary Symbolic

LLM Method Avg. GSM8K CQA HQA Avg. ARC BGQA Quartz Avg. StrQA LLC†

CoT 47.2 34.95 61.21 32.56 46.88 48.7 32.39 72.69 51.26 54.08 41
Phi 1.5 DCoT (Ours) 49.39 36.85 62.48 34.81 48.64 50.01 38.6 77.39 55.34 55.97 39
(1.3B) CoT + SC 46.48 40.33 63.39 33.63 48.51 53.81 21.59 75.11 50.17 51.96 32

DCoT + SC 49.01 40.18 65.23 37.79 51.51 53.24 27.6 81.08 53.97 55.97 31
CoT 60.85 56.71 65.13 52.65 58.89 70.87 39.48 82.91 64.42 61.06 58

Phi 2 DCoT 62.6 60.73 68.61 55.15 61.88 73.77 47.07 83.16 68.00 54.34 58
(2.7B) CoT + SC 61.5 64.97 68.14 55.82 61.98 74.36 28.99 85.2 62.85 59.51 55

DCoT + SC 65.12 68.08 70.53 58.61 64.57 76.06 44.16 86.09 68.77 51.43 66
CoT 58.97 28.51 65.73 53.88 59.80 61.63 43.13 79.32 61.36 64.59 75

LLaMA2 DCoT 60.8 29.57 70.99 56.26 63.62 62.7 41.91 81.37 61.99 61.64 82
7B CoT + SC 62.9 33.97 69.92 57.05 63.48 65.98 46.04 83.28 65.10 65.99 81

DCoT + SC 61.09 36.01 71.36 58.35 64.85 68.53 28.2 84.05 60.26 59.22 83
CoT 64.39 42.53 70.25 60.23 65.24 71.79 42.63 84.82 66.41 61.85 81

LLaMA2 DCoT 66.18 44.28 71.56 63.52 67.54 71.41 50.21 83.29 68.30 65.16 80
13B CoT + SC 66.82 50.27 72.72 62.34 67.53 74.82 40.8 85.84 67.15 67.75 80

DCoT + SC 68.12 54.51 72.61 65.92 69.26 74.89 41.27 85.07 67.08 64.65 86
LLaMA2 CoT 66.96 56 73.59 55.94 64.76 81.69 44.34 81.99 69.34 66.15 76
70B* DCoT 68.63 66 69.57 49.78 59.67 89.04 38.3 85.99 71.11 68.34 82
LLaMA2 CoT 64.87 42.76 71.71 60.83 66.27 70.43 44.39 84.04 66.29 66.78 78
13B Chat‡ DCoT 64.62 44.2 71.59 63.87 67.73 72.22 40.94 85.43 66.20 67.68 71

Table 1: Comparison of DCoT against CoT on the test sets. We note the larger improvements on tasks with a larger
output space (numeric and span extraction) in line with our hypothesis on where our method is more effective. *70B
results on the dev set. ‡CoT in chat models include CoT data not used in DCoT. †Results on LLC are not reliable
due to the small training and test set sizes.

3.3.2 Robustness Check
Lastly, we use Big Bench Hard (Suzgun et al.,
2023) for a control experiment to evaluate if
our method hinders reasoning on complex tasks
wherein CoT is beneficial only in models that are
significantly larger than the ones we test; in other
words, not using CoT is better for small mod-
els. This implies that it is extremely difficult for
small models to generate correct CoTs for these
tasks, and therefore, generating more than one is
even more difficult, so it is reasonable to question
whether DCoT can reduce performance.

4 Results and Analysis

In this section, we discuss our results with the aim
of answering the following questions:

1. Primary: Does fine-tuning on DCoT (DCoT)
provide performance gains compared to fine-
tuning on CoT (CoT) with a comparable num-
ber of reasoning chains? (Section 4.1)

2. Given the inference cost, is DCoT effective on a
reasonably small number of reasoning chains
(k)? (Section 4.2)

3. Can DCoT be safely included in instruction-
tuning datasets without unforeseen conse-
quences on unseen tasks? (Section 4.3) and
(Section 4.4)

4. Can DCoT benefit from CoT extensions? (Sec-
tion 4.5)

5. Are the improvements obtained a result of
within-inference refinement or a result of ran-
dom perturbations? (Section 4.6 and 4.7)

4.1 DCoT is Beneficial on In-Domain Tasks
Our main goal in this experiment is to compare
two training regimes: CoT and DCoT. The first two
rows of each model in Table 1 compare DCoT with
the CoT baseline using the greedy decoding.3 The
first result we observe is that DCoT, on average, is
superior across all our main models. Analyzing the
results per task type, we also observe that it is par-
ticularly effective on multiple-choice tasks, where
the Phi models achieve a performance boost of four
points. We also observe clear gains on span extrac-
tion and numeric tasks. However, performance on

3CoinFlip results are omitted because all models achieve
perfect scores.
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Method Phi 1.5 Phi 2 LL. 7B LL. 13B
CoT 47.51±1.77 63.51±.71 59.30±.54 65.41±.91

DCoT@1 47.87±1.71 63.91±2.58 61.28±.50 65.80±.44

DCoT@2 48.63±.67↑ 65.33±2.80↑ 62.46±.45↑ 67.30±.49↑
DCoT@3 48.96±.66 65.30±1.72 62.37±.23 66.92±.59

DCoT@4 48.76±.33 64.89±2.39 62.42±.59 66.70±.55

Table 2: DCoT average performance across different
number of CoTs per question on the dev sets.

binary and symbolic tasks presents a more mixed
picture. The challenges with StrategyQA (binary)
can be attributed to its constrained output space
(i.e., “yes” or “no”), which limits the scope for ef-
fective revisions. For symbolic tasks, we use the
Last Letter Concatenation dataset, which includes
only 300 training and 100 test instances and is our
smallest dataset (Appendix A). This small size re-
duces the reliability of the results, preventing us
from drawing definitive conclusions. The overall
performance of DCoT across all models confirms
the effectiveness of DCoT training.

We also conduct a smaller experiment on gen-
eral instruction-tuned models (LLaMA2 13B chat).
It is worth noting that comparing CoT with DCoT
is not completely fair in this setting because this
model has already been fine-tuned on CoTs (Tou-
vron et al., 2023); thus, the CoT training is larger
and more diverse than the DCoT one, as discussed
in Section 3.2. Despite this, Table 1 shows that
DCoT outperforms CoT in more than half of the
datasets. The results of our other smaller experi-
ment on LLaMA 2 70B also hint at the effective-
ness of DCoT on larger models.

4.2 One Refinement achieve Gains
In this experiment, we examine the number of
chains4 required to achieve performance gains rela-
tive to k = 1. Table 2 presents the average perfor-
mance across all datasets for varying values of k.
Notably, on average, k = 2 consistently enhances
performance across all models, supporting our hy-
pothesis that DCoT effectively refines the initial
response. However, increasing k to three or four
does not yield further improvements compared to
k = 2, except on GSM8k (math), where increasing
k up to 3 consistently improves performance (see
Table 11 in Appendix D). We also observe similar
patterns in our smaller experiments on LLaMA 13B

4Thanks to our DCoT training, the model generates exactly
k CoTs.

LLM Method CSQA AQuA ObjCnt SVAMP

Phi 1.5

CoT 33.88 20.27 35.60 40.00

DCoT@1 32.26 21.51 25.20 40.50
DCoT@2 34.23 17.31 27.60 30.00
DCoT@3 33.81 22.38 30.80 30.00
DCoT@4 34.73 22.06 30.00 31.50

Phi 2

CoT 44.29 29.52 54.00 55.00

DCoT@1 44.15 34.86 58.40 60.50
DCoT@2 44.13 34.09 56.40 60.50
DCoT@3 45.99 31.83 57.60 60.00
DCoT@4 45.43 34.73 56.40 59.50

CoT 38.41 19.41 34.80 39.50

DCoT@1 36.94 17.70 40.00 41.50
LLaMA2 DCoT@2 40.79 17.27 39.60 43.00
7B DCoT@3 40.67 16.90 36.80 43.00

DCoT@4 40.43 17.21 37.20 39.00

CoT 46.55 24.85 45.2 62.50

DCoT@1 44.62 23.98 46.00 55.00
LLaMA2 DCoT@2 45.48 22.42 47.60 53.50
13B DCoT@3 47.42 20.72 52.40 56.50

DCoT@4 46.45 23.13 54.00 53.50

Table 3: CoT and DCoT across various k performance on
unseen tasks.

Chat and LLaMA 2 70B (also in Table 11). These
results suggest that, on average, a single refinement
is sufficient to improve performance, making it ef-
ficient and cheap. They also align with prior works
(Estornell et al., 2025), where 3 and 4 turns do not
always improve performance, as we will discuss in
Section 5.

DCoT@1 ≈ CoT. An important phenomenon we
observe in Table 2 is that the performance of DCoT
when generating a single CoT (i.e., DCoT@1) is very
similar to the CoT baseline, as expected. This result
shows that our DCoT training does not interfere
with the regular CoT generation. Therefore, DCoT
is a safe replacement to CoT in regular instruction-
tuning datasets.

4.3 No Degradation in Unseen Tasks

In this section, we evaluate the performance of
DCoT on unseen tasks to ensure that there is no
unexpected deterioration. Table 3 shows that DCoT
remains effective in Commonsense QA (multiple-
choice), where it shows the same trend as in-
domain scenarios (i.e., increasing k yields better
answers than the first one). However, the models
show limited effectiveness in the tasks that require
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Method Phi 1.5 Phi 2 LL. 7B LL. 13B

CoT 28.37 46.7 31.08 36.38
DCoT@1 28.31 44.56 31.23 34.59
DCoT@2 28.07 45.81 31.11 35.94
DCoT@3 28.35 45.92 31.00 36.90
DCoT@4 28.21 46.71 31.13 36.45

Table 4: Results on Big Bench Hard. LL stands for
LLaMA2.

numbers (i.e., AQuA, ObjCnt, and SVAMP). When
one generation yields worse answers, the next one
usually corrects it (e.g., AQuA on Phi 1.5, SVAMP
on LLaMA 13B). These limited gains in unseen
math tasks are in line with expectations, given that
LLMs’ performance on arithmetical reasoning in
out-of-domain settings is known to be poor (Qian
et al., 2023), and generalization to unseen tasks re-
quires thousands of tasks (Kim et al., 2023), while
we only trained on nine. Overall, while our results
show that DCoT presents only small improvements
in some of the cases, we note that there is no major
deterioration.

4.4 DCoT is Robust on Tasks where CoT is
Detrimental

We analyze the performance of our method on Big
Bench Hard, a benchmark where small models
do not benefit from CoTs (Suzgun et al., 2023)
to ensure that our method does not lead to unex-
pected performance degradation over the CoT base-
line. The results from Table 4 show that on these
tasks, DCoT exhibits similar performance to CoT,
thus demonstrating that DCoT does not lead to de-
terioration in challenging cases, where CoT might
be detrimental. Moreover, we can observe some
performance gains on Phi 2 and LLaMA-2 13B
when increasing k, further showing the robustness
of DCoT tuning. These experiments allow us to
conclude that there is no risk in adding DCoT train-
ing data to instruction tuning datasets.

4.5 DCoT Benefits from CoT Extensions

DCoT aims to be a new CoT mechanism for
instruction-tuning LLMs. To achieve this, we need
to confirm that it is a safe drop-in replacement
and works with any CoT extension, such as self-
consistency (Wang et al., 2023), a different decod-
ing strategy. This decoding method is an add-on
that has been shown to increase the performance

of CoT across a wide range of tasks by sampling
multiple generations and aggregating them by a
voting mechanism.

The last two rows of each model (i.e., CoT+SC
and DCoT+SC) in Table 1 compare our DCoT with
the CoT baseline using the self-consistency decod-
ing with four samples. We observe that our DCoT
also benefits from this mechanism and keeps its per-
formance gains over the CoT baseline, showing that
our method can be a replacement for CoT in future
instruction-tuning datasets. It is also worth noting
that, on average, our DCoT with the greedy decod-
ing even outperforms CoT+SC on the Phi models,
showing its high performance.

4.6 Manual Analysis: DCoT@2

We conduct a manual evaluation to verify our con-
clusions based on the quantitative results. Due to
the costs of manual evaluations, we conduct this
only on LLaMA 7B, the mid-size model of our
selection, to have insights that apply to our smaller
and larger models. Specifically, we aim to under-
stand how generating a second CoT can improve
performance. To this end, we select instances for
every dataset where LLaMA 7B with DCoT@1 out-
puts an incorrect answer while DCoT@2 results in
a correct answer. Then, we randomly sample five
of those instances per dataset, except in HotpotQA
and LLC, where only three instances fulfilled the
criteria, resulting in a total of 31 samples.

We note that the first reasoning chain of DCoT@2
might differ from that of DCoT@1 because they are
different runs. We find this to be the case in ten
instances. This implies that in most cases, the
first CoT is the same in both cases. Of these in-
stances where the first reasoning chain is shared,
we observe that the second CoT of DCoT@2 exhibits
a different reasoning pattern from the first in 15
cases. Therefore, a second, improved CoT allows
the model to generate a correct answer when the
first CoT results in an incorrect answer. We also ob-
serve three cases where the second CoT is the same
as the first one but corrects the logical conclusion.
In two cases, the second CoT corrects reasoning
steps from the first one, and in one case, the error
of the first CoT had a slight error in writing the
final answer that is corrected with the second one.
Overall, these observations confirm that DCoT re-
vises its first answer by generating a second CoT.
Table 14 in Appendix G shows a few examples.
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4.7 Manual Analysis: DCoT@3
Answers Patterns. To understand the behavior
of DCoT@3, we use GPT4o-mini to extract the three
answers given by the model. We focus on the
multiple-choice datasets to facilitate the answer ex-
traction by GPT4o-mini. Table 10 in Appendix H
shows that the most common pattern is that the first
answer is correct, and the subsequent CoTs repro-
duce it. This is expected because CoT achieves
competitive performance. Moreover, this further
evidences that the model does not randomly gener-
ate CoTs but tries to refine prior answers. There-
fore, if the first answer is correct, the model does
need to change it. More interestingly, we find
12 cases where the answer from the third CoT (a
wrong answer) is not selected and instead selects
prior answers (correct answers). In contrast, we
also find 12 cases where the third CoT yields a new
answer (the correct one), and the model selects it.
These observations suggest that the model is not
biased towards the last answer. We also observe 27
cases where a third wrong CoT changes a correct
second CoT. However, we find 45 cases where the
third CoT corrects the second one. We also provide
an analysis of the error cases in Appendix G.

5 Discussion

Training Method. DCoT and CoT are trained on
exactly the same amount of CoTs and questions.
While the CoT baseline uses data points in the form
of [(q, cot1), (q, cot2), ...], DCoT uses data points in
the form of [(q, cot1, cot2, ...) , ...]. In other words,
a simple re-organization of the training CoTs into
the form of multiple CoTs per label has a major
impact on the model’s performance. The goal of
this training method is not to consistently generate
different reasoning chains because if the first one is
correct, there is no need to change it. This training
method aims to enable LLMs to revise prior CoTs
if needed. Importantly, DCoT@1 matches the per-
formance of the CoT baseline, indicating that it is
safe to augment existing instruction-tuning datasets
with DCoT data, as it will not hinder model perfor-
mance. Indeed, we envision a typical instruction-
tuning dataset containing both DCoT and CoT data.

DCoT revises the first answer. The results of
our experiments indicate that DCoT is different from
CoT-ensembling methods like self-consistency,
which also benefit from generating multiple can-
didate answers but do so across different and in-
dependent inference steps using high-temperature

values. DCoT, instead, generates multiple CoTs in
a single inference step, allowing each to be aware
of the previous ones. As discussed in Section 4.6
and 4.7, this enables the model to revise earlier
reasoning. Empirically, DCoT@2 consistently out-
performs DCoT@1, suggesting that such revision
contributes to improved performance. However,
DCoT@3 and DCoT@4 show diminishing returns, per-
forming similarly to DCoT@2. These findings show
that after the first answer revision and associated
performance gains, generating additional CoTs nei-
ther improves nor degrades performance, suggest-
ing that the model cannot improve its answer fur-
ther. This also confirms that the model does not
simply generate a sequence of random CoTs but
instead revises its first answer. The limitation on
scaling k aligns with observations from prior works
on self-correction from (Madaan et al., 2023; Kim
et al., 2024), where thanks to their external feed-
back (unlike us), they can achieve gains with up
to k = 4 and k = 3 respectively. Furthermore,
Estornell et al. (2025) observe a similar behavior
to our DCoT, most gains are obtained with k = 2,
and increasing k further can lead to marginal gains
or even small degradation.

Costs. Lastly, the performance gains achieved by
DCoT come at the cost of generating more tokens
(i.e., a second CoT). This trade-off between perfor-
mance and cost is common in prior works, such as
in (Wang et al., 2023; Yoran et al., 2023; Zhang
et al., 2024). A CoT in our training dataset requires,
on average, 124 Phi tokens and 142 LLaMA 2 to-
kens. Consequently, generating a second CoT to
achieve performance gains would incur a negligi-
ble cost increment of $0.00007 per model call,5

making DCoT a cost-effective alternative to CoT.

6 Conclusions

This work presents Diverse Chain of Thought
(DCoT), a new training method that aims to improve
LLM’s performance on reasoning tasks by gener-
ating multiple CoTs in a single inference step to
revise answers. Through extensive quantitative ex-
periments, we show the effectiveness and scalabil-
ity of our method across a wide range of reasoning
tasks, model families, and sizes. Furthermore, we
show its efficiency by achieving gains with a sin-
gle revision (i.e., k = 2), which incurs negligible
costs for the user. We also show that DCoT can

5Using the cost of LLaMA-2 13B on replicate.com
($0.5/1M tokens).
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be extended with any CoT extension, such as self-
consistency, wherein it outperforms CoT similarly
extended with self-consistency. Lastly, we show
that the reason behind the performance gains of
models fine-tuned with DCoT lies in its answer
revising abilities, where a single answer revision
is enough to achieve clear gains. We leave as fu-
ture work extending our DCoT fine-tuning to other
types of prompting methods such as code prompt-
ing (Puerto et al., 2024) or graph of thoughts (Besta
et al., 2024), and improving the scalability of k,
without external feedback.

Limitations

Our method is limited by the context window of
the underlying model. In this work, we have ex-
plored generating CoTs up to 4. Although we train
the model to generate different chains, this does
not guarantee it will generate intrinsically differ-
ent chains at inference time, and this is not always
desired (for example, once the model generates a
correct answer, there is no need to change the rea-
soning chain). This is a limitation shared by prior
works on generating diverse CoTs.

We limit the generation of the CoTs to a single
commercial LLM provider because our preliminary
experiments showed performance drops when com-
bining multiple LLM providers. Further research
on how to combine multiple LLM providers for
distilling to smaller models is interesting and we
leave that for future work.

Due to the computational costs, we could not ex-
tensively experiment on the 70B model. We could
only afford to train with one seed and on a smaller
dataset of 900 questions. Similarly, we could only
evaluate it on 100 random questions per dataset.
Nevertheless, the clear gains we observed on the
dev sets, where we do not do any hyperparame-
ter fine-tuning due to its costs, are indicative of
the potential of our method on very large language
models.

We do not conduct experiments on LLaMA 3
and 3.1 because, with them, we cannot do experi-
ments across model sizes in a single model family
as they only have 8B and 70B. LLaMA 3.2, on
the other hand, was released after the conclusion
of the core experiments and rerunning all experi-
ments would not add new insights that justify the
costs. Therefore, we conducted experiments with
two families, one for smaller models (1.3B and
2.7B) and another family for larger but still man-

ageable sizes (7B, 13B, and core experiments on
70B).
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A Datasets

All the datasets used in this work are exclusively in
English language. In particular, we use ARC (Clark
et al., 2018), BGQA (Kazemi et al., 2023),CoinFlip
(Wei et al., 2022b), ConditionalQA (CQA) (Sun
et al., 2022), GSM8K (Cobbe et al., 2021), Hot-
potQA (HQA) (Yang et al., 2018), LLC (Wei et al.,
2022b), Quartz (Tafjord et al., 2019), and Strat-
egyQA (StrQA) (Geva et al., 2021) for training,
while we use AQuA (Ling et al., 2017), Common-
senseQA (Talmor et al., 2019), Object Count (a task
of Big Bench Hard Suzgun et al. 2023), SVAMP
(Patel et al., 2021), and Big Bench Hard for out of
domain evaluation. For BGQA, we use the parti-
tion main-3, the most difficult one requiring 3-hop
reasoning skills.

Some of these datasets do not provide a vali-
dation set. In those cases, we randomly sample
500 instances from the training set and use them
as validation set. Similarly, when a dataset does
not provide a test set, we use the validation set as
a test and create a validation set from the unused
instances from the training set. When the training
set is not larger than 1k, we divide the validation
set into two. For Last Letter Concatenation (LLC),
the training set is very small (350 instances), and
the test set is also very small (150), so we pick 50
instances of the test set as validation and 100 as
test. We release in our github repository the exact
partitions we used.

Table 8 reports the licenses and sizes of the train-
ing, dev, and test sets of the datasets we used and

Table 9 reports for the out of domain datasets. We
use these datasets for research purposes only, ful-
filling their intended use.

Due to the large size of LLaMA-2 70B and its
computation costs, we trained it on a smaller sam-
ple data of 900 questions. Similarly, for inference,
we pick a random sample of 100 questions per
dataset.

B Experimental Setup

We run all our experiments on a GPU cluster with
an Nvidia A180. To run GPT models, we use the
Azure OpenAI service and prompt them with the li-
brary Langchain.6 We use Scikit-learn (Pedregosa
et al., 2011) for the implementation of the evalua-
tion metrics.

We train all models using LoRA (Hu et al., 2022)
with the PEFT library (Mangrulkar et al., 2022)
and use vLLM (Kwon et al., 2023) as the inference
engine. For training, we load the models with fp8,
while for inference, we load them with fp16. We
train models for three epochs, save checkpoints for
each epoch and select the best checkpoint based on
the average results on the dev set.

Due to the challenge of running very large mod-
els, such as LLaMA-2 70B, to simplify the evalua-
tion setup. We trained the model with 8-bit quanti-
zation and ran the evaluation on 4-bit. Instead of
evaluating on the full dev sets, we had to evaluate
on a random sample of 100 questions per dataset
and only evaluate the last checkpoint. Therefore,
we could not conduct hyperparameter tuning either.
Because of these challenges, we cannot report re-
sults on the test set, and instead, we only report
results on the dev set. It is important to emphasize
again that we do not conduct any hyperparameter
tuning, so the results on the dev set are represen-
tative of the performance of our method on large-
scale models.

Table 5 shows the traning time needed for both
methods across all our models. The parameters
we use to train the models are reported in Table 6.
Table 7 reports the best hyperparameters we found
on the dev set.

C Prompting

We conducted exploratory experiments to evaluate
the effectiveness of DCoT prompting on commer-
cial black-box LLMs. We use prompts to require
models to generate multiple CoTs, compare them,

6https://github.com/langchain-ai/langchain
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Method Phi 1.5 Phi 2 LL. 7B LL. 13B

DCoT 12h 20h 35h 51h
CoT 9h 15h 26h 39h

Table 5: Training time for DCoT and CoT

Param. name Value

lora_r 64
lora_alpha 16
lora_dropout 0.1
batch size 4
max_grad_norm 0.3
learning_rate 2e-4
weight_decay 0.001
optim paged_adamw_32bit
lr_scheduler_type constant
max_steps -1
warmup_ratio 0.03
group_by_length True
max_seq_length 4096
packing False
seeds 0, 42, 2024
load_in_8bit True

Table 6: Training parameters

and generate an answer, all in a single inference
step. We found that smaller LLMs, with fewer than
100B parameters, lacked the capacity to perform
this complex task. When prompted, they often gen-
erated the same CoT repeatedly. Even when they
did generate multiple CoTs, our manual evaluation
revealed they failed to effectively select the cor-
rect answer from among them. These results are
in line with prior results that indicate that these
smaller models are also not the most effective in
generating CoTs (Kim et al., 2023). While GPT-
4o showed more success, the complexity of the
task also heightened its tendency to hallucinate.
Consequently, we observed no performance boost
through prompting alone and thus focused our ex-
periments on instruction tuning using DCoTs, as
detailed in subsequent sections.

The prompts we used with GPT4o for DCoT
and CoT are “Generate k different reasoning chains
that answer the question. Make sure that none of
the reasoning chains are repeated. Generate each
reasoning chain independently, and not based on
previous reasoning chains. This means that each
reasoning chain must be as different from the others

Model Method Seed Epoch

Phi 1.5
CoT 0 2

DCoT 42 2

Phi 2
CoT 0 3

DCoT 2024 2

LLaMA2 7B
CoT 0 2

DCoT 0 3

LLaMA2 13B
CoT 42 3

DCoT 42 3

Table 7: Best hyperparameters tuned on the dev set.

as possible. When generating the different reason-
ing chains, do so without knowledge of the answer.
Each step in each of the reasoning chains must
build on the previous steps in that reasoning chain.
Once the required number of reasoning chains are
generated, generate an answer based on the all the
answers generated by all the reasoning chains.” and
“Generate a reasoning chain that answer the ques-
tion.” In both cases, after generating the CoT, we
extracted the answer with the following prompt for
SVAMP “Therefore, based on the solution above,
extract the number that represents the answer:” and
“Therefore, based on the solution above, select one
of the options (options) as the answer to the ques-
tion (just give me the option and nothing else).” for
ARC and Quartz.

D Dev Set Results

We report the mean and stardard deviation results
from the validation set across threee random seeds
in Table 11.

E DCoT across k per Task Type

Table 12 shows the performance of DCoT across
k per task type. We observe that 2 revisions (i.e.,
k = 3) is beneficial for math reasoning, while
multiple choice and span extraction only needs
one revision. As we mentioned in the main paper,
symbolic results are not reliable due to the small
training and set sizes of the dataset.

F OOD Results on Tasks requiring
Number Generation

Table 13 shows the average results across all out-of-
domain datasets that requires number generation
for all tasks. We can see that the average perfor-
mance across all numerical tasks remains relatively
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Dataset Task Train Dev Test License Source Description Citation

ARC Multiple
choice

1033 294 1150 CC BY-SA 4.0 Link Science (Clark et al., 2018)

BGQA Multiple
choice

716 500 1000 CC BY Link Logic (Kazemi et al., 2023)

Coin Flip Multiple
choice

1000 1333 3333 mit Link State-
tracking

(Wei et al., 2022b)

CQA Span extrac-
tion

958 285 804 CC BY-SA 4.0 Link Conditional (Sun et al., 2022))

GSM8K Num. Gener-
ation

1000 500 1319 mit Link Math (Cobbe et al., 2021)

HQA Span extrac-
tion

1000 500 7405 CC BY-SA 4.0 Link Explicit
multi-hop

(Yang et al., 2018))

LLC Generation 350 50 100 N/A Link Symbolic (Wei et al., 2022b)
Quartz Multiple

choice
953 384 784 CC BY-SA 4.0 Link Relationships (Tafjord et al., 2019)

StrQA Boolean QA 998 343 344 mit Link Implicit
multi-hop

(Geva et al., 2021))

Table 8: Training datasets. The training size corresponds to our CoT generations to build the DCoT dataset.

Dataset Task Dev License Source Citation

AQuA Multiple choice
Math

254 Apache 2.0 Link (Ling et al., 2017)

CSQA Multiple choice
commonsense

1220 mit Link (Talmor et al., 2019)

SVAMP Generation (num-
bers)

100 mit Link (Patel et al., 2021)

Big Bench Hard Multiple choice &
Generation

6511 mit Link (Suzgun et al., 2023)

Table 9: Out of domain datasets.

similar across all k values for all models except
Phi-1.5, the smallest and weakest model.

G Manual Analysis

Appendix G shows two examples of how the sec-
ond CoT of LLaMA 7B with DCoT corrects the
first CoT.

Error Cases. To understand why DCoT@3 does
not further improve performance on average com-
pared to k = 2, we randomly sample five instances
per dataset where DCoT@3 fails to give the right an-
swer and analyze the reasoning chains. We observe
that an overwhelming majority of 26/40 exhibit the
same second and third CoT and, therefore, do not
improve nor decrease performance. We also ob-
serve four cases where the second and third CoTs

show very similar semantics but different wording,
two cases where the first and third CoTs are the
same, two cases where all the CoTs are the same,
two cases where the CoTs are similar but the arith-
metic results are different, three cases where all
the CoTs are different, and once case where all
the answers are correct but do not match the label.
This analysis shows that one of the reasons for the
similar average performance of k = 2 and k = 3
is that DCoT struggles to make a third better answer.
This suggests that the model is not generating a
series of random CoTs but it is trying to revise its
prior answers. This limitation shown in these small
fine-tuned models is also seen on very large LMs
with prompting Appendix C.
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Pattern ARC BGQA Quartz

AAA → A 226 421 320
AAB → A (o) 6 4 2
AAB → A (x) 2 2 1
AAB → B (o) 2 3 7
AAB → B (x) 6 2 5
ABA → A (o) 4 8 12
ABA → A (x) 5 1 1
ABA → B (o) 0 0 0
ABA → B (x) 0 0 0
ABB → A (o) 0 2 2
ABB → A (x) 2 2 2
ABB → B (o) 10 8 16
ABB → B (x) 17 22 11
ABC → A 1 0 1
ABC → B 2 0 0
ABC → C 2 1 0

Table 10: Answer pattern in DCoT@3 for multiple choice
datasets. (o) means correct final answer and (x) incor-
rect.

H DCoT@3 Answer Patterns

Table 10 shows the answer patterns of LLaMA 2
7B with DCoT@3 on multiple choice tasks.

I DCoT Best k Parameter

Table 16 shows the best k (i.e., number of CoTs)
per model and dataset according to the dev set.

J Data Generation

We report the CoT triggers used to generate the
training CoTs in Table 15. As we can see, the
triggers condition LLMs to generate answers in
different scenarios. This, combined with high-
temperature values (0.7), allows GPT 3.5 turbo to
generate diverse CoTs. To extract the answers from
the CoTs, we used the following format: “{cot}
Therefore, the answer (A, B, C, or D) is:” where
we change (A, B, C, D) for the corresponding op-
tions of the dataset. If the dataset expects a number
and not a list of options, we don’t give any list of
options in the prompt and extract the number with
a regular expression. Lastly, for the span extraction
datasets, we use the following template: “{text}
{question} Answer: {answer} {cot_trigger}.” The
idea behind this template is to provide the golden
answer and prompt the model to generate rationales
that explain that answer and use them as CoTs as in

(Kim et al., 2023). The total GPT cost to generate
the CoTs is $43.68.
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LLM Method k Avg ARC BGQA CQA GSM8K HQA LLC Quartz StrQA

Phi 1.5 DCoT

1 47.87±1.71 44.13±1.94 39.43±3.91 61.83±.74 36.07±1.70 38.70±3.18 36.00±3.46 71.69±1.73 55.13±.35
2 48.63±0.67 46.98±2.60 41.94±3.10 60.87±1.14 38.80±3.10 39.79±3.80 30.00±4.00 74.29±2.69 56.40±.87
3 48.96±0.66 47.32±1.66 42.75±1.92 60.75±1.15 39.00±1.71 38.19±2.81 32.67±7.02 75.42±2.38 55.57±1.52
4 48.76±0.33 46.78±1.14 43.23±2.22 60.16±1.32 38.93±3.31 37.33±2.92 32.67±7.02 75.60±3.32 55.41±1.30

CoT 47.51±1.77 46.60±2.38 36.65±1.90 59.55±0.61 37.40±3.22 35.28±4.22 36.67±9.02 75.07±2.36 52.84±2.47

Phi 2 DCoT

1 63.91±2.58 75.21±1.84 45.01±3.03 65.39±1.57 56.47±1.68 62.44±2.63 62.67±16.29 82.88±1.09 57.28±2.35
2 65.33±2.80 76.46±2.52 46.89±3.85 65.69±2.12 57.60±1.64 63.71±2.18 66.67±9.02 84.10±1.36 56.44±3.33
3 65.30±1.72 75.87±1.42 48.06±1.75 65.90±2.02 58.20±1.91 61.66±2.06 68.00±5.29 83.91±1.18 56.28±3.90
4 64.89±2.39 75.91±2.72 49.11±2.31 65.92±1.01 57.07±1.33 59.86±.96 66.00±8.00 84.09±1.88 56.97±5.00

CoT 63.51±.71 74.19±.61 42.08±.79 66.92±.29 62.80±3.53 56.45±.78 62.71±3.00 77.92±7.30 66.74±15.54

LLaMA-2

DCoT

1 61.28±.50 59.36±2.29 43.67±.35 65.31±.50 29.73±1.63 62.92±3.16 86.67±2.31 80.63±.92 61.96±1.45
7B 2 62.46±.45 61.63±1.46 43.56±.80 66.05±.80 33.40±.80 63.86±1.23 86.67±3.06 82.11±1.57 62.38±1.21

3 62.37±.23 60.98±2.37 44.23±.95 66.65±1.21 33.53±.50 63.46±1.46 86.67±1.15 80.89±2.65 62.51±.86
4 62.42±.59 62.13±3.21 43.85±.45 65.98±2.72 33.33±.50 63.63±2.16 86.00±3.46 82.20±2.78 62.20±1.42

CoT 59.30±.54 56.54±3.83 41.91±2.32 59.85±3.91 31.93±1.42 57.81±3.73 82.67±3.06 79.24±2.16 64.42±1.52

LLaMA-2

DCoT

1 65.80±.44 71.08±1.95 46.92±3.13 67.97±1.48 42.40±.35 69.97±.61 76.00±5.29 85.07±.40 66.99±2.10
13B 2 67.30±.49 74.85±1.68 46.40±4.13 68.55±1.33 44.53±1.51 72.35±.93 81.33±3.06 84.89±.90 65.46±1.17

3 66.92±.59 73.29±2.17 48.65±4.48 67.32±2.19 46.53±1.89 71.17±2.07 74.00±15.62 84.89±.52 63.07±.49
4 66.70±.55 74.17±2.78 46.58±3.03 68.46±1.40 43.93±3.42 70.92±3.54 78.67±3.06 82.46±.99 64.23±2.56

CoT 65.41±.91 71.66±2.15 44.45±1.53 68.39±1.70 42.67±2.32 66.12±.82 82.00±5.29 82.37±.82 65.64±1.29

LLaMA-2

DCoT

1 64.53 71.85 47.11 67.37 41.60 70.52 68.00 82.81 66.97
13B Chat* 2 65.95 70.73 47.76 69.16 42.40 71.02 74.00 84.87 67.68

3 66.10 72.22 46.82 67.48 43.60 72.08 76.00 84.87 65.76
4 66.17 71.85 45.03 69.70 45.00 71.75 74.00 86.44 65.59

CoT 66.27 70.43 45.36 70.71 44.20 70.11 80.00 82.53 66.78

LLaMA-2

DCoT

1 66.48 85.80 36.92 65.89 56.00 49.78 78.00 87.00 72.41
70B* 2 68.63 89.04 38.30 69.57 66.00 49.78 82.00 85.99 68.34

3 68.07 86.64 38.55 68.87 60.00 49.78 80.00 88.00 72.70
4 68.06 88.94 32.62 67.21 66.00 49.78 82.00 85.00 72.92

CoT 66.96 81.69 44.34 73.59 56.00 55.94 76.00 81.99 66.15

Table 11: Dev set results using 3 random seeds. *One seed for LLaMA-2 13B Chat and 70B.

Model k MC Avg. Span Avg. Math Binary Symbolic* Total Avg

Phi 1.5

CoT 52.77±1.55 47.41±2.41 37.40±3.22 52.84±2.47 36.67±9.02 47.51±1.77

1 51.75±2.17 50.26±1.71 36.07±1.70 55.13±.35 36.00±3.46 47.87±1.71
2 54.40±1.52 50.33±2.25 38.80±3.10 56.40±.87 30.00±4.00 48.63±.67
3 55.16±1.11 49.47±1.98 39.00±1.71 55.57±1.52 32.67±7.02 48.96±.66
4 55.20±.88 48.74±2.05 38.93±3.31 55.41±1.30 32.67±7.02 48.76±.33

Phi 2

CoT 65.75±.33 62.26±.78 62.80±3.53 66.74±15.54 62.71±3.00 63.51±.71

1 67.70±1.74 63.92±1.36 56.47±1.68 57.28±2.35 62.67±16.29 63.91±2.58
2 69.15±1.72 64.70±1.12 57.60±1.64 56.44±3.33 66.67±9.02 65.33±2.80
3 69.28±.33 63.78±1.52 58.20±1.91 56.28±3.90 68.00±5.29 65.30±1.72
4 69.70±1.33 62.89±.63 57.07±1.33 56.97±5.00 66.00±8.00 64.89±2.39

LLaMA 7B

CoT 57.09±.96 58.11±1.12 31.93±1.42 64.42±1.52 82.67±3.06 59.30±.54

1 61.22±.92 64.12±1.74 29.73±1.63 61.96±1.45 86.67±2.31 61.28±.50
2 62.43±.56 64.96±1.01 33.40±.80 62.38±1.21 86.67±3.06 62.46±.45
3 62.03±.21 65.06±1.30 33.53±.50 62.51±.86 86.67±1.15 62.37±.23
4 62.73±.38 64.81±2.34 33.33±.50 62.20±1.42 86.00±3.46 62.42±.59

LLaMA 13B

CoT 65.80±1.02 65.66±2.28 42.67±2.32 65.64±1.29 82.00±5.29 65.41±.91

1 67.69±1.20 68.97±.52 42.40±.35 66.99±2.10 76.00±5.29 65.80±.44
2 68.72±1.49 70.45±1.13 44.53±1.51 65.46±1.17 81.33±3.06 67.30±.49
3 67.91±1.25 69.85±1.30 46.53±1.89 63.07±.49 74.00±15.62 66.92±.59
4 68.17±1.58 70.00±1.16 43.93±3.42 64.23±2.56 78.67±3.06 66.70±.55

Table 12: DCoT performance across k for each task type. *Symbolic results are not reliable due to the small size of
the dataset LLC.
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LLM Method Average AQuA ObjCnt SVAMP

Phi 1.5

CoT 31.96 20.27 35.6 40
DCoT@1 29.07 21.51 25.2 40.5
DCoT@2 24.97 17.31 27.6 30
DCoT@3 27.73 22.38 30.8 30
DCoT@4 27.85 22.06 30 31.5

Phi 2

CoT 46.17 29.52 54 55
DCoT@1 51.25 34.86 58.4 60.5
DCoT@2 50.33 34.09 56.4 60.5
DCoT@3 49.81 31.83 57.6 60
DCoT@4 50.21 34.73 56.4 59.5

LLaMA2 7B

CoT 31.24 19.41 34.8 39.5
DCoT@1 33.07 17.7 40 41.5
DCoT@2 33.29 17.27 39.6 43
DCoT@3 32.23 16.9 36.8 43
DCoT@4 31.14 17.21 37.2 39

LLaMA2 13B

CoT 44.18 24.85 45.2 62.5
DCoT@1 41.66 23.98 46 55
DCoT@2 41.17 22.42 47.6 53.5
DCoT@3 43.21 20.72 52.4 56.5
DCoT@4 43.54 23.13 54 53.5

Table 13: DCoT and CoT results on out-of-domain numerical reasoning tasks.
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Type Text

1st and 2nd
CoTs are
the same but
the 1st CoT
makes an
error when
generating
the answer.
2nd CoT
corrects
that.

Question: Take the last letters of each words in “Billie Paloma Tanner Raul” and
concatenate them.
[Answer 1] 1. Write down the words: Billie Paloma Tanner Raul
2. Take the last letter of the first word "Billie", which is "e".
3. Take the last letter of the second word "Paloma", which is "a".
4. Take the last letter of the third word "Tanner", which is "r".
5. Take the last letter of the fourth word "Raul", which is "l".
6. Concatenate these letters together: "ealr".
7. The result word is "ealr".
[Answer 2] Sure, let’s break it down step by step:
1. The last letter of "Billie" is "e".
2. The last letter of "Paloma" is "a".
3. The last letter of "Tanner" is "r".
4. The last letter of "Raul" is "l".
Now, if we concatenate these letters, we get the word "earl". Therefore, the answer
is "earl".
[Final answer] earl

2nd CoT
shows a
different
reasoing
pattern
and yields
the correct
answer.

Question: Cornelia likes to travel. She visited already 42 different countries. 20 of
them were in Europe and 10 in South America. From the rest of the countries, only
half of them were in Asia. How many Asian countries has Cornelia visited?
[Answer 1] 1. We know that Cornelia visited 42 countries in total.
2. We also know that 20 of those countries were in Europe and 10 were in South
America.
3. Therefore, the remaining countries must be half of the total number of countries
Cornelia visited, which is 42/2 = 21.
4. We know that Cornelia visited only half of the Asian countries, which means there
are 21 - 10 = 11 Asian countries left to be determined.
5. Therefore, Cornelia visited 11 Asian countries in total.
[Answer 2] Step 1: Let’s start by finding out how many countries Cornelia visited in
Europe and South America. We know that she visited 20 countries in Europe and 10
countries in South America, so the total number of countries she visited in these two
regions is: 20 + 10 = 30
Step 2: We know that Cornelia visited 42 countries in total. We also know that 30
of these countries were in Europe and South America. Therefore, the number of
countries she visited outside of these regions is: 42 - 30 = 12
Step 3: We are told that only half of the countries Cornelia visited outside of Europe
and South America were in Asia. This means that the number of countries she visited
in Asia is: 12 / 2 = 6
Therefore, Cornelia visited 6 Asian countries.
[Final answer] 6

Table 14: Examples of self-correction. Correct reasonings in sky blue. Incorrect reasonings in odark range.

3807



CoT Triggers

Answer: Let’s think step by step.
Answer: Before we dive into the answer,
Answer: Let’s think like a detective step by step.
Answer: Let’s think about this logically.
Answer: Let’s solve this problem by splitting it into steps.
Answer: The answer is after the proof.
Answer: Let’s differentiate using step by step reasoning .
Answer: Let’s think step by step using inductive reasoning.
Answer: Let’s be concise and think step by step.
Answer: Let’s reflect on each answer option step by step.
Answer: Let’s think step by step given every option equal consideration.
Answer: Let’s think step by step like a scientist.
Answer: Let’s use step by step inductive reasoning.
Answer: Let’s work by elimination step by step.
Answer: Let’s use step by step deductive reasoning.
Answer: Let’s work this out in a step by step way to be sure we have the right answer.

because of the following reasons:
Justification:
Here’s why:
Here is a list of the reasons:
Now, let’s think step by step about the reasons:

Table 15: List of CoT triggers used to generate the training CoTs. The bottom part of the table are the triggers for
span extraction datasets.

Dataset Phi 1.5 Phi 2 LLaMA2 7B LLaMA2 13B

ARC 4 2 4 4
BGQA 2 4 4 2
ConditionalQA 2 4 4 1
GSM8K 2 3 2 3
HotpotQA 2 2 1 3
LCC 1 2 1 2
Quartz 4 4 2 2
StrategyQA 3 1 1 1

Table 16: Best number of cots (k parameter) for each model and dataset in our best DCoT models according to the
dev set.
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