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Abstract

Patent claims define the scope of protection
and establish the legal boundaries of an in-
vention. Drafting these claims is a complex
and time-consuming process that usually re-
quires the expertise of skilled patent attorneys,
which can form a large access barrier for many
small enterprises. To solve these challenges,
researchers have investigated large language
models (LLMs) for automating patent claim
generation. However, existing studies highlight
inconsistencies between automated evaluation
metrics and human expert assessments. To
bridge this gap, we introduce Patent-CE, the
first comprehensive benchmark for evaluating
patent claims. Patent-CE includes comparative
claim evaluations annotated by patent experts,
focusing on five key criteria: feature complete-
ness, conceptual clarity, terminology consis-
tency, logical linkage, and overall quality. Ad-
ditionally, we propose PatClaimEval, a novel
multi-dimensional evaluation method specifi-
cally designed for patent claims. Our experi-
ments demonstrate that PatClaimEval achieves
the highest correlation with human expert eval-
uations across all assessment criteria among
all tested metrics. This research provides the
groundwork for more accurate evaluations of
automated patent claim generation systems.1

1 Introduction

The patent literature serves as a critical documenta-
tion of technological innovation (Mossoff, 2000).
Patents are legal documents that grant exclusive
rights to inventors in exchange for public disclosure
of their inventions (Frumkin, 1947). The patent
claims are the most legally significant section of a
patent document, as they define the scope of protec-
tion and delineate the boundaries of an invention
from known techniques to ensure legal enforce-
ability (European Patent Office, 2000). Drafting
precise and effective patent claims is a challenging

1https://github.com/scylj1/PatClaimEval

task, which requires not only technical expertise
but also an understanding of legal language and
jurisdiction-specific regulations (Faber, 1990). Un-
like general-purpose texts, patent claims must be
both broad enough to encompass potential varia-
tions of an invention and specific enough to with-
stand legal scrutiny. This complexity often neces-
sitates the involvement of skilled patent attorneys,
which often renders the process both time-intensive
and costly (LLP, 2023).

In response to these challenges, research has ex-
plored automated methods for patent claim genera-
tion to support inventors and attorneys. Large lan-
guage models (LLMs) have demonstrated remark-
able capabilities across a wide range of general and
patent-related tasks (Zhao et al., 2023; Jiang and
Goetz, 2025). For instance, Jiang et al. (2025c) ex-
amined whether LLMs could generate high-quality
patent claims based on patent descriptions, while
another work investigated whether LLMs could re-
vise patent claims to improve quality (Jiang et al.,
2025b). These studies aim to accelerate the claim
drafting process and reduce associated costs.

Despite these advances, a reliable automated
evaluation for the quality of generated patent claims
remains an unresolved challenge. Previous studies
have relied on human expert evaluations, which are
both time-consuming and costly, and they revealed
inconsistencies between existing automated met-
rics and human assessments (Zuo et al., 2024; Jiang
et al., 2025c,b). Table 1 highlights the fundamental
differences between patent claim evaluation crite-
ria and existing text evaluation methods. While
current evaluations often rely on sequence overlap,
semantic similarity, or multi-dimensional criteria
such as coherence and fluency, patent claims have
unique language requirements. Such requirements,
such as the consistent use of terminology, tech-
nical formality, and high-level precision, are not
common in other types of texts. Therefore, these
differences underscore the limitations of existing
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Reference claims:
1. A mobile communications device comprising:
a communication subsystem for communicating with a network;
a microprocessor operably connected to the communication subsystem and to a memory;
a local common address database accessible to a plurality of applications on the mobile communications device; and . . .
2. The mobile communications device of claim 1 wherein . . .
. . .
Candidate claims:
1. A mobile communications device comprising:
a communication subsystem configured to facilitate communication with a network;
a processor operably connected to the communication subsystem and to a memory,
the memory containing a local common address database and instructions that . . .
2. The mobile communications device of claim 1, wherein . . .
. . .

N-gram-based evaluations (measuring sequence overlaps):
BLEU ROUGE METEOR . . .

Embedding-based evaluations (measuring semantic similarities):
BERTScore BARTScore MoverScore SimCSE . . .

Multi-dimensional evaluations:
UniEval (Coherence, Consistency, Fluency, Relevance) AlignScore (Factual consistency) . . .

Human evaluations for patent claims:
Feature completeness Conceptual clarity Terminology consistency Logical linkage Overall quality

Table 1: Comparison between current automatic text evaluation metrics and patent claim evaluation criteria. Patent
claims have specific requirements different from other texts, which makes the evaluation difficult.

metrics and highlight a significant gap in the relia-
bility and validity of automated evaluation methods
for patent claims.

In this paper, we present the first benchmark for
patent claim evaluation and propose a novel evalua-
tion method tailored to the unique requirements of
patent claims. The main contributions of this work
are as follows:

1. We present Patent-CE, the first comprehensive
benchmark for patent claim evaluation. Patent-CE
includes 1,228 data points, which consist of a refer-
ence claim, two candidate claims, and comparative
evaluations annotated by patent experts in five di-
mensions: feature completeness, conceptual clarity,
terminology consistency, logical linkage, and over-
all quality.

2. We propose a novel multi-dimensional
evaluation method for patent claims, named Pat-
ClaimEval. PatClaimEval leverages Longformer
(Beltagy et al., 2020) as its backbone and is trained
on our dataset using a variation of contrastive learn-
ing (Gao et al., 2021).

3. We demonstrate the effectiveness of Pat-
ClaimEval through extensive experiments. Our re-
sults show that PatClaimEval achieves the highest
correlation with human expert evaluations across
all assessment criteria compared to existing metrics,
including 6 N-gram-based methods, 4 embedding-
based approaches, 2 multi-dimensional evaluators,

and 1 LLM-as-a-judge method.
By tackling the evaluation problem, this research

paves the way for more reliable assessments of
automated patent claim generation systems, ulti-
mately contributing to advancements in this emerg-
ing field.2

2 Related Works

2.1 Patent Claim Generation

Some studies have explored LLMs for automati-
cally generating patent claims. An early investi-
gation by Lee and Hsiang (2020) served as a pre-
liminary effort and focused on fine-tuning GPT-2
(Radford et al., 2019) to generate patent-like texts.
The authors found that minimal training was suf-
ficient to produce patent-like outputs but did not
assess the quality of the generated text. Building
on this, Lee (2020) trained GPT-2 to transform one
section of a patent application into another, such
as the generation of abstracts from titles or claims
from abstracts. However, since abstracts are often
generic and imprecise, the generation of claims
from abstracts may not be a well-conditioned task.

Therefore, Jiang et al. (2025c) introduced a
description-based claim generation task and eval-
uated the performance of various LLMs on this

2Notably, we focus on reference-based claim evaluations,
which is different from the real patent examination. We intro-
duce details in the Limitation section.
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Dataset Task Domain Evaluation Criteria

QAGS (Wang et al., 2020) Summarization News Factual consistency

SummEval (Fabbri et al., 2021) Summarization News Fluency, coherence, consistency, rele-
vance

Persona-Chat (Zhang et al., 2018) Dialogue generation General Fluency, engagingness, consistency,
personalization

Topical-Chat (Mehri and Eskenazi, 2020) Dialogue generation General Naturalness, coherence, engagingness,
groundedness, understandability

ToTTo (Parikh et al., 2020) Table-to-text generation General Fluency, faithfulness, coverage

Patent-CE (Ours) Patent claim generation Patent
Feature completeness, conceptual clar-
ity, terminology consistency, logical
linkage, overall quality

Table 2: Comparison of commonly used benchmarks for text generation evaluation. Patent claims have unique
language requirements different from other type of texts.

domain-specific challenge. Their human evalua-
tion by patent professionals highlighted the limita-
tions of various LLMs in generating high-quality
patent claims and revealed inconsistencies between
automated and human evaluation metrics. While
previous studies tested the models on U.S. patents,
Jiang et al. (2025a) further investigated the claim
generation task on European patents. Additionally,
Jiang et al. (2025b) extended the research to claim
revision, investigating whether LLMs could further
enhance claim quality.

Another study proposed the task of next-claim
generation (Zuo et al., 2024), which involves gen-
erating the second and/or third claims based on the
first claim. Likewise, this research also demon-
strated a weak correlation between automated and
human evaluation results for the next-claim genera-
tion task.

2.2 Benchmarks for Text Generation
Evaluation

Accurately and efficiently evaluating the quality
of generated texts is important for developing text-
generation LLMs. Researchers have introduced
several text evaluation datasets across various do-
mains, each with distinct evaluation criteria. Ta-
ble 2 summarizes some commonly used bench-
marks for text generation evaluations.

Datasets, such as QAGS (Wang et al., 2020) and
SummEval (Fabbri et al., 2021), are designed to
evaluate summarization tasks within the news do-
main. These benchmarks focus on criteria includ-
ing factual consistency, fluency, coherence, and
relevance to ensure the generated summaries accu-
rately represent the source text while maintaining
readability. In addition, dialogue systems have

benefited from benchmarks such as Persona-Chat
(Zhang et al., 2018) and Topical-Chat (Mehri and
Eskenazi, 2020), which target open-domain conver-
sational tasks. Persona-Chat emphasizes personal-
ization, fluency, and engagingness, while Topical-
Chat introduces evaluation metrics for naturalness,
coherence, and groundedness to advance the devel-
opment of more realistic and context-aware con-
versational AI. Furthermore, the ToTTo dataset
(Parikh et al., 2020) supports the task of convert-
ing structured tables into natural text. It evaluates
fluency, faithfulness, and coverage to ensure the
generated text aligns accurately with tabular inputs
and effectively conveys the intended information.

Our Patent-CE dataset is specifically designed
for the task of patent claim generation. Unlike
other benchmarks, Patent-CE emphasizes feature
completeness, clarity, terminology consistency, and
logical linkage. All these critical aspects are for
the legal and technical precision required in patent
documentation. This dataset fills an essential gap
by providing a benchmark tailored to the patent
domain, presenting unique challenges not encoun-
tered in general-domain tasks.

3 Dataset

3.1 Human Annotation

Experienced patent experts were provided with
reference and candidate patent claims to evaluate.
Their evaluation was based on five aspects, adher-
ing to established examination criteria (Jiang et al.,
2025c): feature completeness, conceptual clarity,
terminology consistency, logical linkage, and over-
all quality. These evaluation aspects are consistent
with previous research and defined as follows.

3777



(1) Feature Completeness: The extent to which
the generated claims encapsulate all critical aspects
of the invention. (2) Conceptual Clarity: The clar-
ity and unambiguity of the language used in the
claims. (3) Terminology Consistency: The unifor-
mity in the use of terms throughout the claims. (4)
Correctness of Logical Linkages: The accuracy
with which features are interconnected and related.
(5) Overall Quality: An aggregate measure that
combines all the above criteria. Detailed evaluation
instructions can be found in Appendix A.

3.2 Construction
To create a comprehensive dataset and mitigate po-
tential biases, we collected data from three different
sources.

First, we used the dataset from Jiang et al.
(2025c), in which LLMs were used to generate
patent claims based on descriptions from the United
States Patent and Trademark Office (USPTO). This
dataset also includes human evaluations which
compare the performance of different models. Sec-
ond, we incorporated data from another study that
investigated patent claim revision using data from
the European Patent Office (EPO) and also in-
cluded human evaluations (Jiang et al., 2025b).
Both studies rated claims based on feature com-
pleteness, conceptual clarity, terminology consis-
tency, logical linkage, and overall quality. We in-
tegrated these data to construct a comprehensive
evaluation benchmark. Additionally, to further in-
crease the dataset size and enhance robustness, we
conducted new annotations by consulting patent
attorneys. These additional annotations were ap-
plied to claims obtained from the aforementioned
studies.

We recognize that the absolute quality scores
from different sources may vary due to differences
in expert interpretation. However, the relative rank-
ing of the same claim sets should remain rather
consistent across evaluations. Therefore, similar
to prior work by Zuo et al. (2024), our dataset fo-
cuses on comparative evaluations. Each data point
consists of a quadruplet (A,B,C, y), where A rep-
resents the reference claims, B and C are two gen-
erated claims, and the label y indicates whether B
or C is better, or if they are of equal quality.

3.3 Statistics
The dataset consists of a total of 1,228 data points
evaluated in five aspects. As shown in Table 3,
the data distribution is relatively balanced for each

Dimension # (B > C) # (B = C) # (B < C)

Completeness 426 375 427
Clarity 424 378 426
Consistency 420 386 422
Linkage 430 366 432
Quality 422 382 424

Table 3: Data distribution of the Patent-CE dataset. The
data distribution is relatively balanced in each evaluation
dimension.

aspect, with similar proportions in each category.
Appendix B introduces more dataset statistics. We
randomly selected 184 examples (about 15%) as
the test set and used the remaining for training.

Our benchmark offers two major advantages:
Comprehensiveness: It incorporates patent data
from multiple patent offices, which makes it more
representative and robust than any previous work.
Larger scale: Although some data builds on previ-
ous work, we manually refine and annotate more
data to substantially expand the dataset size and
broaden coverage.

4 Method

We propose PatClaimEval, a new automated eval-
uation method to assess the quality of generated
patent claims compared to gold claims. Given a
reference claim set P and a candidate claim set
Q, the model predicts a quality score of Q, de-
noted as s(Q|P ). We train five models to evaluate
patent claims from different aspects, including fea-
ture completeness, conceptual clarity, terminology
consistency, logical linkage, and overall quality.
We do not jointly train one model for all five as-
pects, such as using multi-task learning (Zhang and
Yang, 2021), because of the conflicting optimiza-
tion objectives for different tasks. For example,
feature completeness and clarity are not inherently
related—the claim could include all essential fea-
tures, but the expression is ambiguous.

4.1 Model Architecture

We leverage Longformer3 (Beltagy et al., 2020) as
the backbone to handle long input sequences effi-
ciently. We have not used patent-specific LLMs
due to their limitations; for instance, PatentGPT is
closed-source (Bai et al., 2024), and PatentGPT-J
has a restricted context length (Lee, 2023). The
small context length is a particular problem for

3https://huggingface.co/allenai/
longformer-base-4096
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patent texts, as it may fall short of typical patent
claims. The average length of patent claims is more
than 1,000 tokens (Suzgun et al., 2023), and Long-
former can support up to 4,096 tokens of input.
Thus, we use Longformer because it is open source,
supports long input length (large enough for patent
claims), and offers a controllable model size. Fu-
ture work may investigate larger models with 7 or 8
billion parameters. The model encodes inputs and
obtains the representation for a given input claim
pair (P,Q) per

h = M([P ;Q]). (1)

It subsequently connects with a fully connected
layer to get a quality score and a sigmoid function
that maps the score to the range [0, 1] as

s(Q|P ) = σ(w⊤h+ b). (2)

4.2 Training Strategy

Our proposed training method draws inspiration
from contrastive learning (Khosla et al., 2020) as
the dataset presents relative relationships between
samples. In the context of NLP, contrastive learning
is used to align embeddings of related text pairs or
to learn discriminative representations (Gao et al.,
2021). Through contrastive loss functions, models
can capture nuanced differences between text sam-
ples, making contrastive learning particularly suit-
able for tasks involving relative comparisons. Un-
like traditional contrastive learning, which explic-
itly constructs positive and negative sample pairs,
our method integrates label information directly to
define optimization objectives tailored for different
evaluation aspects.

The training data consists of quadruplets
(A,B,C, y), where A is the reference claims,
B and C are two generated claims, and y ∈
{1, 0,−1} indicates their relative quality:

y =





1, if s(B|A) > s(C|A)

0, if s(B|A) = s(C|A)

−1, if s(B|A) < s(C|A)

(3)

The model computes scores sB = s(B|A) and
sC = s(C|A). To optimize the model, we define
the loss function as

L =
1

N

N∑

i=1

ℓ(sBi , sCi , yi), (4)

where ℓ(sBi , sCi , yi) is defined as

ℓ =





ReLU(m− (sBi − sCi)), if yi = 1,

ReLU(|sBi − sCi | − n), if yi = 0,

ReLU (m− (sCi − sBi)) , if yi = −1,
(5)

where m is the margin hyper-parameter that en-
forces a minimum separation between scores for
distinct quality levels, and n is a tolerance param-
eter that allows small differences between scores
when the two claim sets are judged equally good.

By minimizing this loss, the model learns to
align the predicted scores with the relative quality
judgments. The margin m is a hyper-parameter that
controls the separation between scores, ensuring
that the model is confident in its predictions for
cases where one claim set is clearly better than the
other. This objective function allows the model to
capture fine-grained distinctions in quality across
diverse claim pairs. We introduce the training and
evaluation details in Appendix C.

5 Experiments

5.1 Baselines
BLEU (Papineni et al., 2002) and ROUGE (Lin,
2004) are classic metrics widely used for evaluating
text overlaps. BLEU measures n-gram precision
by comparing candidate and reference texts, while
ROUGE primarily evaluates recall-based overlap,
commonly used in summarization. METEOR
(Banerjee and Lavie, 2005) improves on BLEU
by incorporating synonymy, stemming, and other
linguistic features, thereby providing a more flexi-
ble approach to measuring textual overlap.

BERTScore (Zhang et al., 2019) computes simi-
larity using contextualized embeddings from BERT
(Devlin et al., 2019), enabling a more nuanced as-
sessment of semantic similarity between reference
and candidate sentences. BARTScore (Yuan et al.,
2021), derived from the BART model (Lewis et al.,
2020), uses a generative scoring approach to evalu-
ate the likelihood of generating the candidate text
from a reference. MoverScore (Zhao et al., 2019)
measures the semantic similarity by calculating
the minimum cost of transforming candidate em-
beddings to reference embeddings, effectively cap-
turing semantic alignment. SimCSE (Gao et al.,
2021) further enhances representation quality by
using contrastive learning to generate sentence em-
beddings, which have been shown to perform well
in semantic similarity tasks.
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We also test recent multi-dimensional evalua-
tion frameworks, including UniEval (Zhong et al.,
2022) and AlignScore (Zha et al., 2023). UniEval
provides a unified evaluation protocol for differ-
ent aspects of natural language generation, such
as coherence and fluency. Since our dataset does
not include context information or source texts,
we use UniEval to evaluate the relevance between
generated and reference claims. Additionally, we
use AlignScore as a representative to assess factual
consistency between source and generated content.

The LLM-as-a-judge paradigm is becoming pop-
ular (Zheng et al., 2023), where LLMs are used as
evaluators of generated content. This approach
leverages the capabilities of pre-trained LLMs,
such as GPT-4 (OpenAI, 2023), to serve as sur-
rogate judges that can assess generated text for
qualities like fluency, coherence, and factual con-
sistency. In our experiments, we specifically focus
on G-Eval-4 (Liu et al., 2023) because it has shown
high agreement with human preference across mul-
tiple benchmarks (Zheng et al., 2023). Other LLM-
as-a-judge models are not tested because they use
synthetic examples generated by GPT-4 for train-
ing, such as JudgeLM (Zhu et al., 2023) PandaLM
(Wang et al., 2024). We ask GPT-4 to evaluate
the given claims through chain-of-thought (CoT)
prompting (Wei et al., 2022) by comparing them
to the reference claims. The evaluation dimensions
are the same as human expert metrics. We intro-
duce detailed settings in Appendix D.

5.2 Evaluations
We used the Kendall-Tau correlation to assess the
overall alignment with human judgment, follow-
ing the approach of previous work by Zuo et al.
(2024). This correlation metric evaluates the con-
sistency of the global ranking while disregarding
minor errors in individual predictions. We addition-
ally report the Spearman correlation. Compared
to Kendall-Tau, Spearman is more sensitive to large
rank differences, providing a complementary per-
spective on the metric ability to predict relative
claim quality.

Since the dataset originally presents a three-way
classification problem, we also use accuracy and
F1 scores to assess model performance. These met-
rics reflect the model’s ability to make precise de-
cisions for individual input pairs, providing a more
comprehensive view of its effectiveness. Classifica-
tion labels can be obtained directly from G-Eval-4,
while for other metrics, we assume quality scores

to be equivalent if the score differences are less
than 10−4.

6 Results

6.1 Correlations with Human Evaluations

Table 4 presents the Kendall-Tau and Spearman cor-
relation between different automated metrics and
human evaluation results across five criteria: fea-
ture completeness, conceptual clarity, terminology
consistency, logical linkage, and overall quality.

Overall, PatClaimEval demonstrates the high-
est correlation with human evaluations across
all criteria, suggesting its effectiveness in evaluat-
ing patent claim quality. For feature completeness,
PatClaimEval achieves a correlation of τ = 0.400
and ρ = 0.504, which outperforms all other met-
rics. This finding holds consistently across other
criteria, with correlations of τ = 0.461 and ρ =
0.518 for clarity, τ = 0.354 and ρ = 0.424 for
consistency, τ = 0.419 and ρ = 0.518 for linkage,
and τ = 0.477 and ρ = 0.602 for overall qual-
ity. Notably, these values are not only the highest
but also significantly surpass existing metrics in
their alignment with human judgments. Particu-
larly in overall quality, PatClaimEval outperforms
the second-best result by approximately 41.5% and
58.0% for Kendall-Tau and Spearman correlation
respectively.

In addition, N-gram-based metrics demon-
strate relatively higher correlations than
embedding-based methods in evaluating patent
claims. While N-gram-based methods can some-
times achieve correlation scores exceeding 0.3 in
different evaluation aspects, embedding-based met-
rics rarely surpass this threshold. For instance,
ROUGE-L achieves the second-highest Spearman
correlation in logical linkage with a score of 0.391.
N-gram-based methods rely on surface-level over-
lap between generated and reference text, without
capturing semantic information or contextual rel-
evance. These methods typically underperform
compared to embedding-based approaches, which
calculate semantic similarities, in standard text eval-
uation tasks (Zhang et al., 2019; Zhao et al., 2019;
Yuan et al., 2021). However, patent claim evalua-
tion results diverge from these prior findings due
to its unique focus on patent examination criteria.
Both reference and candidate claims describe the
same invention but often use different expressions.
In this context, high semantic similarity does not
necessarily indicate adherence to patent require-
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Type Metric
Completeness Clarity Consistency Linkage Quality

τ ρ τ ρ τ ρ τ ρ τ ρ

N-gram

BLEU-1 0.305 0.345 0.359 0.401 0.284 0.329 0.335 0.376 0.326 0.369
BLEU-4 0.271 0.304 0.280 0.312 0.227 0.263 0.256 0.289 0.269 0.305
ROUGE-1 0.305 0.342 0.314 0.351 0.238 0.279 0.301 0.341 0.292 0.332
ROUGE-2 0.305 0.342 0.280 0.312 0.215 0.251 0.268 0.303 0.269 0.306
ROUGE-L 0.282 0.317 0.280 0.312 0.261 0.303 0.346 0.391 0.303 0.344
METEOR 0.316 0.358 0.371 0.414 0.307 0.355 0.324 0.364 0.292 0.331

Embedding

BERTScore 0.241 0.279 0.251 0.281 0.242 0.283 0.272 0.303 0.239 0.268
BARTScore 0.165 0.188 0.130 0.146 0.211 0.242 0.196 0.219 0.164 0.185
MoverScore 0.199 0.227 0.199 0.217 0.223 0.264 0.231 0.265 0.210 0.243
SimCSE 0.177 0.196 0.165 0.173 0.143 0.165 0.220 0.246 0.165 0.186

Miscellaneous UniEval 0.339 0.383 0.337 0.375 0.261 0.302 0.301 0.338 0.337 0.381
AlignScore 0.146 0.162 0.145 0.160 0.261 0.305 0.200 0.226 0.224 0.255

LLM-as-a-judge G-Eval-4 0.377 0.410 0.412 0.481 0.276 0.353 0.350 0.385 0.277 0.310

Ours PatClaimEval 0.400 0.504 0.461 0.518 0.354 0.424 0.419 0.518 0.477 0.602

Table 4: Kendall-Tau (τ ) and Spearman (ρ) correlation of automated metrics with human evaluation results. The
highest number in each criterion is in bold, and the second-best result is underlined. PatClaimEval shows the
highest correlation with human assessments in all criteria.

ments, resulting in weak correlations with human
judgments. In contrast, gold-standard patent claims
use precise language and expressions designed to
meet examination standards. Thus, more overlaps
with these gold claims may better reflect higher
quality, potentially explaining why simple overlap-
based methods outperform embedding-based simi-
larity approaches in this domain. These findings ex-
tend to metrics of UniEval and AlignScore. While
AlignScore assesses factual consistency and shows
less correlation, UniEval that measures relevance
between candidate and reference claims performs
relatively better.

G-Eval-4 shows strong performance in eval-
uating completeness, clarity, and linkage. G-
Eval-4 achieves correlation scores of τ = 0.377
and ρ = 0.410 for completeness, which surpasses
all other metrics except for PatClaimEval and is
consistent with findings from prior research (Jiang
et al., 2025b). The high correlation in feature com-
pleteness can be attributed to GPT-4’s proven capa-
bilities in information extraction (OpenAI, 2023;
Li et al., 2023). In the context of claim evaluation,
GPT-4 effectively extracts key features from both
reference and candidate claims. In consequence,
it enables accurate comparisons and reaches high
scores in feature completeness assessments. How-
ever, its performance in terminology consistency
and overall quality is less impressive. A plausible
explanation is that GPT-4 is not extensively trained
on patent-specific texts, which limits its ability to
comprehend the unique linguistic and structural

requirements of patent claims. Consequently, rely-
ing solely on prompting without further fine-tuning
may be insufficient for accurately evaluating patent
claims.

6.2 Classification Performance

Table 5 presents the accuracy and F1 scores of
different metrics on each evaluation criterion as a
classification problem, including feature complete-
ness, conceptual clarity, terminology consistency,
logical linkage, and overall quality.

PatClaimEval achieves the highest accuracy
and F1 scores across nearly all evaluation cri-
teria. Specifically, for conceptual clarity, Pat-
ClaimEval achieves an accuracy of 60.3% and an
F1 score of 59.5%, outperforming all other metrics.
This superior performance extends to consistency
and overall quality, where PatClaimEval consis-
tently outperforms other methods. In feature com-
pleteness, G-Eval-4 demonstrates slightly better
performance to PatClaimEval, with both accuracy
and F1 scores of 54.8%. Despite these strengths,
PatClaimEval’s absolute scores in some evaluation
criteria, such as consistency, remain modest (50.0%
accuracy and 49.3% F1 score). The moderate ab-
solute scores indicate potential for improvement,
such as expanding dataset sizes, larger models, or
more sophisticated training strategies. Nonetheless,
PatClaimEval represents a significant advancement
as it achieves a 3.8% improvement in accuracy and
a 10.5% increase in F1 score over the second-best
method for overall quality evaluation. It currently
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Type Metric
Completeness Clarity Consistency Linkage Quality

Acc F1 Acc F1 Acc F1 Acc F1 Acc F1

N-gram

BLEU-1 50.5 42.6 54.3 46.7 47.8 39.2 53.8 46.5 52.2 44.3
BLEU-4 48.9 41.4 50.5 43.5 45.1 37.0 50.0 43.2 49.5 42.0
ROUGE-1 50.5 42.8 52.2 44.8 45.7 37.5 52.2 45.0 50.5 42.9
ROUGE-2 50.5 42.8 50.5 43.4 44.6 36.6 50.5 43.6 49.5 42.0
ROUGE-L 49.5 41.8 50.5 43.5 46.7 38.3 54.3 46.9 51.1 43.4
METEOR 51.1 43.2 54.9 47.2 48.9 40.1 53.3 46.0 50.5 42.8

Embedding

BERTScore 46.7 39.1 48.9 42.2 45.7 37.6 51.1 44.8 48.4 41.8
BARTScore 43.5 35.9 42.9 36.3 44.6 36.4 47.3 40.7 44.6 37.5
MoverScore 45.1 38.4 46.7 41.1 44.6 36.8 48.4 42.0 46.2 39.5
SimCSE 44.6 38.4 45.7 40.7 41.3 34.6 48.4 42.6 44.6 38.6

Miscellaneous UniEval 52.2 44.1 53.3 45.8 46.7 38.3 52.2 45.0 52.7 44.8
AlignScore 42.9 36.4 44.0 38.0 46.7 38.3 47.3 40.8 47.3 40.1

LLM-as-a-judge G-Eval-4 54.8 54.8 55.6 55.9 45.9 43.7 54.8 54.6 49.6 46.9

Ours PatClaimEval 52.7 53.2 60.3 59.5 50.0 49.3 52.7 54.7 56.5 57.4

Table 5: Accuracy (Acc %) and F1 scores (F1 %) on each evaluation criterion. The highest number in each column is
in bold, and the second-best result is underlined. PatClaimEval demonstrates relatively high and balanced accuracy
and F1 scores across all evaluation criteria.

stands as the most effective approach for patent
claim evaluation.

PatClaimEval and G-Eval-4 exhibit balanced
performance between accuracy and F1 scores.
Both models achieve similar accuracy and F1
scores across all five evaluation criteria, in con-
trast to other metrics, where F1 scores are normally
notably lower than their accuracies. This balance
reflects an effective trade-off between precision and
recall. Although G-Eval-4 does not lead in accu-
racy across all aspects, its F1 scores are consistently
higher than other metrics except for PatClaimEval.
Based on a careful examination of the results, we
attribute this strength to G-Eval-4’s ability to han-
dle "equal cases", in which two candidate claims
receive identical quality scores. Metrics such as N-
gram-based and embedding-based methods strug-
gle to evaluate such cases effectively, resulting in
discrepancies between their accuracy and F1 scores.
The balanced performance of PatClaimEval and G-
Eval-4 highlights their robustness and reliability in
patent claim evaluation.

6.3 Qualitative Analysis

We show an example of claim comparison in Ta-
ble 7 to demonstrate the inherent challenges of
this task, where A represents the gold claim, and
B and C are candidate claims. We identify three
types of differences between generated claims B
and C. First, Claim C demonstrates higher clarity
and language precision. It correctly uses an an-
nular edge, whereas Claim B incorrectly uses a

annular edge, a basic grammatical error. Further-
more, in Claim 3, C uses further comprising, which
aligns with the gold claim and drafting conventions,
while B uses the inappropriate comprises. Sec-
ond, Claim C exhibits a stronger logical linkage be-
tween components. It introduces dependent clauses
in Claim 3 properly using wherein that preserves
structural relationships between features, whereas
Claim B omits such linkages. Third, Claim C uses
the phrase are configured to when describing some
features. While this phrasing deviates from the
gold claim, it does not degrade the quality. Over-
all, Claim C is better than Claim B. However, cur-
rent metrics cannot capture such subtle and special
differences, which could lead to unreliable perfor-
mance in claim evaluation.

7 Conclusion

We introduce Patent-CE, the first comprehensive
benchmark for evaluating patent claims. Patent-
CE includes comparative evaluations annotated
by patent experts, which focus on five key cri-
teria that align with established patent examina-
tion standards: feature completeness, conceptual
clarity, terminology consistency, logical linkage,
and overall quality. Moreover, we propose Pat-
ClaimEval, a novel multi-dimensional evaluation
method specifically designed for patent claims. Ex-
tensive experiments demonstrate the effectiveness
of PatClaimEval. It achieves the highest correlation
with human expert evaluations across all assess-
ment criteria when compared to existing metrics.
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This research provides valuable resources for de-
veloping automated evaluation methods of patent
claims and establishes a solid foundation for more
reliable assessments of claim generation systems.

Limitations

We acknowledge several limitations in this research.
Firstly, the dataset used in this study includes only
patents documented in English, which may affect
the applicability to patents in other languages. In
addition, the correlations of our method with hu-
man assessments are still somewhat low (Kendall-
Tau < 0.5) and improvements are needed. Better
semantic methods or different kinds of CoT prompt-
ing strategies may also be worth investigating. Fur-
thermore, our evaluation approach relies on a gold
standard. It provides a more reliable way to eval-
uate patent claims and is especially useful when
developing related models for claim generation.
However, real-world patent examinations by patent
offices consider a range of criteria, including nov-
elty, non-obviousness, and language requirements,
without necessarily referencing a predefined gold
standard. Patents are evaluated based on their intrin-
sic merit and their relation to prior art. Therefore,
exploring reference-free evaluation approaches for
patent claims is an important and worthwhile direc-
tion for future work.

Ethics Statement

GPT-4 is under a commercial license provided by
OpenAI, and we access it through its API. The use
of existing artifacts, including models, evaluation
metrics, and datasets, is consistent with their in-
tended use. Our proposed dataset is used for patent
claim generation evaluation and will be released
under CC-BY-NC-4.0 license. This dataset does not
include potential personal information or offensive
content, and no ethics review board was involved.
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A Human Annotations

We invite licensed patent attorneys for human eval-
uations. These professionals are provided with
reference claims and candidate claims for assess-
ment. They are informed about the intended use

of the evaluation results. Table 8 outlines the de-
tailed evaluation criteria, aligned with prior re-
search (Jiang et al., 2025c). We compare the scores
and construct the comparative evaluation dataset.

B Dataset Statistics

We report the token length statistics of the Patent-
CE dataset using the Longformer tokenizer in this
section. The results are summarized as follows:
the minimum length is 156 tokens, the maximum
length is 1,461 tokens, the average length is 644
tokens, the median length is 631 tokens, and the
standard deviation is 245 tokens. All claims fall
within the token limit of Longformer (4096 tokens),
and thus no truncation or segmentation strategies
were used. This ensures that input length limita-
tions do not affect the evaluation results. Since the
dataset does not include very long claims, the pro-
posed method may not generalize well to extremely
long claims that exceed the model’s input capacity.

C Experimental Details

All training and testing processes are conducted on
NVIDIA A100 GPUs. The total running time is
about 20 hours. We randomly select 10% samples
from the training set as the validation set. Dur-
ing training, we use a batch size of 4, a learn-
ing rate of 5e-6, a weight decay of 0.01, and
training epochs of 10. For BLEU, ROUGE, ME-
TEOR, and BERTScore, we use the package from
the HuggingFace evaluate library.4 For Mover-
Score5, BARTScore6, AlignScore7, SimCSE8, and
UniEval9, we use their code from original reposito-
ries. We use the scipy Python library to calculate
the correlation scores and scikit-learn for accuracy
and F1 scores.

D G-Eval-4

We use the following prompt for G-Eval consis-
tent with previous research (Jiang et al., 2025b),
as shown in Table 6. We use GPT-4 to evaluate
feature completeness, conceptual clarity, terminol-
ogy consistency, and logical linkage. The overall
quality is calculated based on the same formula of
human evaluation in Table 8.

4https://github.com/huggingface/evaluate
5https://github.com/AIPHES/emnlp19-moverscore
6https://github.com/neulab/BARTScore
7https://github.com/yuh-zha/AlignScore
8https://github.com/princeton-nlp/SimCSE
9https://github.com/maszhongming/UniEval
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Instructions:
You will be given the draft claims and the referenced claims of the same patent. Your task is to rate the draft claims on
four metrics using the referenced claims as the gold standard. Please make sure you read and understand these instructions
carefully. Keep this document open while reviewing, and refer to it as needed.

Evaluation Criteria:
1. Completeness of Essential Features (0–100)
The extent to which the generated claims encapsulate all critical aspects of the invention.

0–20: Most essential features are missing or poorly described.
21–40: Some essential features are present but significant gaps remain.
41–60: Majority of essential features are covered but with minor omissions.
61–80: Almost all essential features are well described with very few gaps.
81–100: All essential features are thoroughly and comprehensively covered.

2. Conceptual Clarity (0–100)
The clarity and unambiguity of the language used in the claims.

0–20: Claims are very unclear and ambiguous.
21–40: Claims have significant clarity issues, making them difficult to understand.
41–60: Claims are mostly clear but contain some ambiguous language.
61–80: Claims are clear with minimal ambiguity.
81–100: Claims are exceptionally clear and completely unambiguous.

3. Consistency in Terminology (0–100)
The uniformity in the use of terms throughout the claims.

0–20: Terminology is highly inconsistent.
21–40: Significant inconsistencies in terminology.
41–60: Some inconsistencies in terminology but mostly uniform.
61–80: Terminology is largely consistent with minor inconsistencies.
81–100: Terminology is completely consistent throughout.

4. Technical Correctness of Feature Linkages (0–100)
The accuracy with which the features are interconnected and related.

0–20: Features are poorly linked with many inaccuracies.
21–40: Significant issues with the linkages of features.
41–60: Mostly accurate linkages with some incorrect connections.
61–80: Accurate linkages with minor inaccuracies.
81–100: Features are accurately and correctly linked throughout.

Evaluation Steps:
1. Read the referenced claims carefully and identify the invention’s features. Assume the referenced claims have scores of
100 in all Evaluation Criteria.
2. Read the draft claims and compare them to the referenced claims.
3. Assign a score for each metric based on the Evaluation Criteria.

Example:
Referenced Claims: «Claims»
Draft Claims: «Claims»
Evaluation Form (scores ONLY):
- Completeness of Essential Features: X
- Conceptual Clarity: X
- Consistency in Terminology: X
- Technical Correctness of Feature Linkages: X

Table 6: G-Eval prompt used for claim evaluation originated from Jiang et al. (2025b)

E Example Claim Comparison

We present an example of claim comparison in
Table 7, where the differences between Claim B
and C are marked in blue.
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Gold Claim A
1. A shroud for connecting to a container having a closure portion, the shroud comprising: a housing having a luer connector;
a spike having a fluid lumen transitioning into the connector; a plurality of segments terminating in a continuous annular edge
surrounding the spike and defining a plurality of openings; and a plurality of protrusions circumferentially spaced, each of the
plurality of protrusions having (i) a proximal end connected to the continuous annular edge and (ii) a distal end positioned in
one of the plurality of openings, the distal end of each protrusion inwardly extending from the continuous annular edge, the
protrusions defining a receiving volume dimensioned to receive the closure portion of the container, whereby the protrusions
deflect outwardly away from an initial position during contact and traversing of the closure portion of the container and
return to approximately their initial position when the closure portion of the container passes the distal end of the protrusion,
whereby the protrusions deflect inwardly towards the closure portion of the container when a removing force is applied to the
container, thereby preventing removal of the container.
2. The shroud of claim 1, wherein the housing comprises a surface with parallel raised features for facilitating gripping by a
user.
3. The shroud of claim 1, further comprising a vent housing and wherein the spike further comprises a vent lumen connected
to the vent housing.
4. The shroud of claim 3, wherein the vent housing further comprises a filter.

Generated Claim B
A shroud for connecting to a container having a closure portion, the shroud comprising: a housing having a connector;
a spike having a fluid lumen fluidically coupled to the connector; a plurality of segments terminating in a annular edge
surrounding the spike and defining a plurality of openings; a plurality of protrusions circumferentially spaced and inwardly
extending from the annular edge, the protrusions defining a receiving volume dimensioned to receive the closure portion of
the container, wherein the protrusions have a proximal end connected to the annular edge and a distal end positioned in the
opening, whereby the protrusions deflect outwardly away from an initial position during contact and traversing of the closure
portion of the container and return to approximately their initial position when the closure portion of the container passes the
distal end of the protrusion, whereby the protrusions deflect inwardly towards the closure portion of the container when a
removing force is applied to the container, thereby preventing removal of the container.
2. The shroud of claim 1, wherein the housing comprises a surface with raised features for facilitating gripping by a user.
3. The shroud of claim 1 further comprises a vent housing and the spike further comprises a vent lumen coupled to the vent
housing.
4. The shroud of claim 3, wherein the vent housing further comprises a filter.

Generated Claim C
1. A shroud for connecting to a container having a closure portion, the shroud comprising: a housing having a connector;
a spike having a fluid lumen fluidically coupled to the connector; a plurality of segments terminating in an annular edge
surrounding the spike and defining a plurality of openings; a plurality of protrusions circumferentially spaced and inwardly
extending from the annular edge, the protrusions defining a receiving volume dimensioned to receive the closure portion
of the container, wherein the protrusions have a proximal end connected to the annular edge and a distal end positioned in
the opening, whereby the protrusions are configured to deflect outwardly away from an initial position during contact and
traversing of the closure portion of the container and return to approximately their initial position when the closure portion
of the container passes the distal end of the protrusion, whereby the protrusions are further configured to deflect inwardly
towards the closure portion of the container when a removing force is applied to the container, thereby preventing removal of
the container.
2. The shroud of claim 1, wherein the housing comprises a surface with raised features for facilitating gripping by a user.
3. The shroud of claim 1, further comprising a vent housing and wherein the spike further comprises a vent lumen coupled to
the vent housing.
4. The shroud of claim 3, wherein the vent housing further comprises a filter.

Table 7: An example of claim comparison. Differences between B and C are marked in blue, and C is better.
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Criteria Rating Description

Feature Completeness

• 0-2: Most essential features are missing or poorly described.

• 3-4: Some essential features are present but significant gaps remain.

• 5-6: Majority of essential features are covered but with minor omissions.

• 7-8: Almost all essential features are well described with very few gaps.

• 9-10: All essential features are thoroughly and comprehensively covered.

Conceptual Clarity

• 0-2: Claims are very unclear and ambiguous.

• 3-4: Claims have significant clarity issues, making them difficult to understand.

• 5-6: Claims are mostly clear but contain some ambiguous language.

• 7-8: Claims are clear with minimal ambiguity.

• 9-10: Claims are exceptionally clear and completely unambiguous.

Terminology
Consistency

• 0-2: Terminology is highly inconsistent.

• 3-4: Significant inconsistencies in terminology.

• 5-6: Some inconsistencies in terminology but mostly uniform.

• 7-8: Terminology is largely consistent with minor inconsistencies.

• 9-10: Terminology is completely consistent throughout.

Logical Linkages

• 0-2: Features are poorly linked with many inaccuracies.

• 3-4: Significant issues with the linkages of features.

• 5-6: Mostly accurate linkages with some incorrect connections.

• 7-8: Accurate linkages with minor inaccuracies.

• 9-10: Features are accurately and correctly linked throughout.

Overall Quality

• Calculated by:
(completeness ∗ 4 + clarity ∗ 2 + consistency ∗ 2 + correctness ∗ 3)÷ 11

• 0-2: Very poor overall quality, fails to meet most criteria.

• 3-4: Low overall quality with significant issues across multiple criteria.

• 5-6: Average overall quality, meets criteria at a basic level.

• 7-8: High overall quality with minor issues.

• 9-10: Excellent overall quality, meets or exceeds all criteria.

Table 8: Rating criteria for human annotation deriving from Jiang et al. (2025c)
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