
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 3705–3717
July 27 - August 1, 2025 ©2025 Association for Computational Linguistics

FOLDMOE: Efficient Long Sequence MoE Training
via Attention-MoE Pipelining

Guichao Zhu1†, Lintian Lei1†, Yuhao Qing1*, Yichao Fu2,
Fanxin Li1, Dong Huang1, Zekai Sun1, Heming Cui1*

1The University of Hong Kong, 2University of California, San Diego
{gczhu, leilt, qyhh}@connect.hku.hk, heming@cs.hku.hk

Abstract

Training LLMs with Mixture-of-Experts
(MoE) architecture on long sequences poses
significant challenges due to the all-to-all
communication bottleneck of expert paral-
lelism. While existing approaches attempt
to hide the communication costs in compu-
tation through token-level pipelining within
MoE layers, their effectiveness is limited
by the insufficient computation. We present
FOLDMOE, a high-performance MoE training
system that enables token-level overlapping
across entire Transformer blocks through
novel attention-MoE pipelining. We propose
an efficient pipeline schedule, and a novel
token buffering design to decouple attention
and MoE layer partitioning, along with a time-
uniform micro-batching strategy for enhanced
efficiency. Evaluations on GPT-MoE models
with sequences up to 32K tokens show that
FOLDMOE achieves up to 1.49x and 2.72x
speedup over state-of-the-art token-level
overlapping and non-overlapping baselines
respectively.

1 Introduction

Large Language Models (LLMs) excel in vari-
ous language tasks (Floridi and Chiriatti, 2020;
Brown, 2020), but scaling dense models for
improved performance (Kaplan et al., 2020;
Hoffmann et al., 2022) incurs high computa-
tional costs. Mixture-of-Experts (MoE) architec-
tures (Jacobs et al., 1991; Shazeer et al., 2017)
address this by replacing dense feed-forward net-
works with sparse expert networks, enhancing ef-
ficiency. This approach has proven effective in re-
cent MoE-based models like Mixtral (Jiang et al.,
2024a), DeepSeekV3 (Liu et al., 2024), and Min-
iMax01 (Li et al., 2025), which achieve superior
sample efficiency.

† Equal contribution. * Corresponding author.

1K 8K 16K 24K 32K
Sequence Length (tokens)

5

10

15

20

25

30

Ite
ra

tio
n

Ti
m

e
pe

r T
ra

nf
or

m
er

 B
lo

ck
 (m

s)

2.4x

4.7x

(a)

attention (comp.)
A2A (comm.)
expert (comp.)

1K 8K 16K 24K 32K
Sequence Length (tokens)

0

20

40

60

80

100

Ite
ra

tio
n

Ti
m

e
Sh

ar
e

(%
)

(b)

attention
A2A
expert

Figure 1: Execution time breakdown of training a
GPT-MoE model on 2 AWS g5.24xlarge instances
(each with 4 NVIDIA A10G GPUs)

These recent models also showcase a clear
trend toward longer sequence lengths, with Mix-
tral handling 32K tokens, DeepSeekV3 extending
to 128K, and MiniMax01 pushing boundaries to
an impressive 1M tokens. However, training MoE
models on such long sequences presents signifi-
cant challenges, particularly in distributed train-
ing environments. In the prevalent expert paral-
lelism training (Shazeer et al., 2017), where ex-
perts are distributed across devices, all-to-all com-
munication (A2A) is necessary for token routing.
Due to bandwidth constraints, this A2A commu-
nication emerges as a primary bottleneck in long
sequence training with enormous tokens, as it ex-
hibits a higher complexity constant compared to
expert computation (evident from Figure 1a, A2A
curve has larger slope than the expert curve).

To mitigate the A2A bottleneck of MoE training,
existing works have proposed a pipelining strat-
egy to enable token-level overlapping between A2A
communication and expert computation in MoE
layer (Hwang et al., 2022; He et al., 2022; Li et al.,
2025). This approach leverages the token-wise
independence of MoE layer, creating a pipeline
by partitioning (micro-batching) input tokens, and
concurrently executing computation and commu-
nication of different micro-batches, as illustrated
in Figure 2a. Unfortunately, the lightweight MoE

3705

z
comm.
comp.

z
comm.
comp.

z
comm.
comp.

A0
D0 C0

M0
D1

M1
C1D2 C2D3

M2
C3

M3 M4
D4 C4

A1 A2 A3 A4

C3 C4D0 C0
M0

D1
M1

C1D2 C2D3
M2 M3 M4

D4
A

1A1M+
uniform

MoE-only
(e.g., Tutel)

aAaM

1A1M

(a)

(b)

(c)

(d)

iteration time

A0
comm.
comp.

C4
A1 A2 A3 A4

D0 C0
M0

D1
M1

C1D2 C2D3
M2

C3
M3 M4

D4

D0
M0

D1
M1

D2 D3
M2 M3 M4

D4 C0 C1 C2 C3 C4
A0 A1 A2 A3 A4

Attention-MoE
(FoldMoE)

A attention D A2A dispatch C A2A combineMoE expert computationM

Figure 2: Different token-level overlapping strategies for training a single sequence on one Transformer-MoE
block. Computation and communication are on two streams (comp. and comm.) to overlap. Existing works (a)
pipeline only MoE layer for overlapping. Attention-MoE pipeline in (b) uses an aAaM schedule with large
bubbles due to the imbalanced stages (attention and expert computation). FOLDMOE in (c) proposes a 1A1M
schedule to reduce these pipeline bubbles by interleaving attention and expert computation. In (d), FOLDMOE
additionally uses time-uniform micro-batching to further reduce bubbles caused by imbalanced attention
micro-batches, achieving the largest speedup.

computation makes it hard to fully hide the large
A2A latency, especially in commodity cloud envi-
ronments with limited and unstable network band-
width. Our measurements show that expert com-
putation only constitutes up to 21% of execution
time share as sequence length increases to 32K,
being substantially overshadowed by the A2A over-
head (Figure 1b).

To incorporate more computation to overlap
with A2A communication, we first propose to
establish an attention-MoE pipeline within each
Transformer block, enabling token-level overlap-
ping beyond MoE layers. For long-sequence
training, where the maximum allowed batch size
(i.e., number of sequences per training step) is
squeezed by sequence length due to memory
constraints, the micro-batching of attention layer
is performed on sequence dimension (Li et al.,
2021; Ma et al., 2024; Sun et al., 2024), where
each sequence is sliced into sub-sequences as to-
ken micro-batches. We leverage this token-level
micro-batching strategy to overlap attention com-
putation with A2A communication from previous
micro-batches, establishing an all-Attention-all-
MoE pipeline (aAaM) inside Transformer block,
as shown in Figure 2b. The attention layer’s
quadratic complexity with respect to sequence
length (see Figure 1a) provides sufficient compu-
tational workload to fully overlap A2A communi-
cation latency as sequences scale to be longer.

However, exploiting token-level overlapping in
attention-MoE pipeline raises several challenges.
First, the inherent latency disparities between at-
tention and expert computation stages introduce

large pipeline bubbles (i.e., idle time), as shown
in Figure 2b. The distinct computational complex-
ity of attention and MoE layers with respect to se-
quence length make it difficult to achieve complete
communication overlap with either stage alone.
Second, the non-uniform latency across attention
micro-batches might also create pipeline bubbles.
Due to the causal property, computational load of
attention increases progressively for later tokens in
the sequence. This uneven latency leads to ineffi-
cient overlapping illustrated in Figure 2c.

To this end, we present FOLDMOE, a long-
sequence MoE training system fully incorporating
attention-MoE pipelining. The system introduces
a novel 1-Attention-1-MoE schedule (1A1M), il-
lustrated in Figure 2c, which interleaves attention
and MoE computation to minimize pipeline bub-
bles caused by stage imbalance. To further address
the bubble issue caused by latency-uneven atten-
tion micro-batches, we design a token buffer to de-
couple the micro-batching between attention and
MoE layers, and a time-uniform sequence slicing
algorithm to heuristically partition each sequence
for attention pipelining, ensuring high overlap-
ping efficiency of attention and A2A communica-
tion (see Figure 2d). FOLDMOE is compatible
with existing long-sequence training techniques
like FlashAttention (Dao et al., 2022), tensor par-
allelism and sequence parallelism (Shoeybi et al.,
2019; Korthikanti et al., 2023).

Our contribution can be summarized as follows:
• For the first time, we extend token-level over-

lapping of A2A communication and computa-
tion to the entire Transformer block through

3706

attention-MoE pipelining, enabling efficient
training of MoE models on long sequences.

• We design an efficient token-level attention-
MoE pipeline schedule (1A1M) that effectively
hides A2A communication overhead.

• We develop a novel token buffering design be-
tween attention and MoE layers to enable time-
uniform token micro-batching without requir-
ing architectural modifications.

• We implement FOLDMOE and demonstrate its
effectiveness on GPT-MoE models with se-
quences up to 32K tokens, achieving up to 1.49x
speedup over state-of-the-art token-level over-
lapping approaches.

2 Background

2.1 Transformer-MoE Block
Contemporary MoE models (Jiang et al., 2024a;
Liu et al., 2024; Li et al., 2025) consist of stacked
decoder-only Transformer-MoE blocks 1, each
containing an attention layer followed by an MoE
layer (Figure 3). Only in attention layer do tokens
compute to interact with each other, while the re-
maining part performs token-wise operations, al-
lowing token-level input partitioning. For details
of Transformer language modeling, please refer to
Appx. A.
Causal attention in decoder models. The at-
tention layer uses masked self-attention (Vaswani
et al., 2017). For an input sequence
(x1,x2, . . . ,xn), it first projects each token
xi into three vectors: query qi, key ki, and value
vi, and then applies masked self-attention as:

Attn(xt;x1, . . . ,xt−1) =

t∑

i=1

softmax(
qt

Tki√
dk

)vi

(1)

, where ki ∈ Rdk . Note that each query qt only
requires k1,k2, . . . ,kt−1 and v1,v2, . . . ,vt−1

(i.e., KV pairs of its previous tokens) for masked
attention. This causal property enables pipelin-
ing the attention computation along sequence di-
mension. While prior works (Li et al., 2021;
Sun et al., 2024; Ma et al., 2024) focused on
pipelined attention to optimize computational de-
vice utilization, we instead exploit this property to
enhance communication-computation overlap in
MoE model training.

1For brevity, we will refer to Transformer-MoE blocks
simply as Transformer blocks in this paper.

G
PU

0
G

PU
1

Q

K

V

(a) attention layer (b) MoE layer

token expertMoE gate

A2A dispatch

A2A com
bine

attention
matrix

Figure 3: A Transformer-MoE block consists of an
attention layer followed by an MoE layer. (b) shows a
4-expert MoE layer with a top-1 gate under 2-way
expert parallelism.

Mixture-of-Experts layer. An MoE layer com-
prises a gate and multiple expert networks. Given
an input token x, the gate assigns a score g(x)i to
indicate its affinity with each expert Ei. Based on
these scores, the token is routed to top-k experts τ .
These experts process each token independently,
and their outputs are aggregated as the final output,
as shown in Equation 2. Since experts process data
in token-wise manner, computation of MoE layer
for a sequence of tokens is inherently chunkable
on token level.

MoE(x) =
∑

i∈τ
g(x)iEi(x) (2)

Expert parallelism (EP) (Shazeer et al., 2017)
is commonly used for training larger MoE by
distributing experts across multiple devices (e.g.,
GPUs), as illustrated in Figure 3b. Tokens are dis-
patched to experts residing on different devices,
and results are collected back to the original de-
vices for the following operations. This necessi-
tates two symmetric A2A communications for ex-
changing tokens among devices, referred to as A2A
dispatch and A2A combine, respectively. For more
details about MoE, please refer to Appx. B.

2.2 Comm.-Comp. Overlapping
To tackle the A2A bottleneck of MoE training,
previous works proposed to hide A2A communi-
cation in computation. When training with rel-
atively short sequences, sequence-level overlap-
ping (Jiang et al., 2024b; Liu et al., 2024) can
be applied to partition inputs on batch dimension,
overlapping the A2A and computation of differ-
ent sequences. This approach runs on the dimen-
sion of pipeline parallelism (Huang et al., 2019;
Narayanan et al., 2019), requiring large enough

3707

training batch to be partitioned into micro-batches
with less number of sequences. However, when
training with long sequences, where maximum al-
lowed batch size is decreased by large single se-
quence memory usage, this coarse-grained parti-
tioning causes large pipeline bubbles (Li et al.,
2021) and reduced overlapping efficiency. In
cases with extremely long sequences squeezing
the batch size to be one, this approach becomes
infeasible. On the other hand, token-level over-
lapping partitions inputs on token level (Hwang
et al., 2022; He et al., 2022; Li et al., 2025), en-
abling finer granularity of pipelining and overlap-
ping for long sequence training. Unfortunately,
this token-level overlapping is designed only in
MoE layer, as shown in Figure 2a, where the rel-
atively small computation-to-communication ratio
makes it hard to fully hide the A2A latency. We
extend the existing token-level overlapping from
MoE layers to the entire Transformer block, en-
abling fully overlap of A2A communication with
computation.

3 Attention-MoE Pipelining

For a given input sequence X = (x1,x2, . . . ,xn)
of n tokens, a Transformer block computes the
output sequence Y = (y1,y2, . . . ,yn):

zt = Attn(xt;x1, . . . ,xt−1) (3)

yt = MoE(zt) (4)

To establish an attention-MoE pipeline, we par-
tition a Transformer block into four sequential
pipeline stages: “attention computation → A2A
dispatch→ expert computation→ A2A combine”,
where the first stage is executed in the atten-
tion layer (Equation 3), while the remaining three
stages operate in the MoE layer (Equation 4).
Each sequence input to the Transformer block is
sliced into micro-batches (i.e., sub-sequences) and
fed into attention layer sequentially.

Attention computation can be pipelined by pre-
serving the computed keys and values for each to-
ken. Denote Xi:j as the sub-sequence from the i-
th to j-th token in the input sequence, with similar
notation for keys Ki:j , values Vi:j , and attention
outputs Zi:j . Following Equation 1, computing at-
tention for token xt requires only K1:t−1, V1:t−1

(i.e., keys and values of preceding tokens) and the
token itself. This property allows us to partition
inputs along the sequence dimension into micro-
batches, where each micro-batch only requires

access to keys and values from previous micro-
batches, as shown in Figure 5b. By maintaining
computed keys and values during processing, at-
tention computation can be performed in micro-
batches while overlapping with downstream MoE
communication from previous micro-batches, as
illustrated in Figure 2b. For instance, given an 8-
token input sequence X sliced into micro-batches
X1:4 and X5:8, the attention layer first processes
X1:4 to generate Z1:4, storing K1:4 and V1:4 for
subsequent use. The attention computation for
X5:8 can then commence immediately, running in
parallel with the A2A dispatch of Z1:4 in the MoE
layer.

The MoE layer similarly supports pipelining to
overlap expert computation with A2A communica-
tion of different micro-batches. The token-wise
nature of MoE computation enables sequence par-
titioning into token micro-batches, as described
in § 2.1. Combining both pipelined attention
and MoE layers establishes a complete token-
level pipeline within each Transformer block (Fig-
ure 2b). Once the A2A combine stage completes
processing the final micro-batch, the complete
output sequence is formed by concatenating all
micro-batch outputs before proceeding to the next
Transformer block. During the backward pass, the
pipeline schedule executes in reverse order while
maintaining the same overlapping patterns as the
forward pass.

4 FOLDMOE System

Atop attention-MoE pipelining paradigm, we de-
sign training system FOLDMOE to maximize
the communication-computation overlapping ef-
ficiency. This section introduces two key inno-
vations: First, we propose 1A1M scheduling, a
schedule to address pipeline bubbles arising from
stage imbalance. Second, we develop a time-
uniform micro-batching strategy to reduce bubbles
caused by micro-batch imbalance of attention. Fi-
nally, we show how to combine our system with
existing long-sequence training methods.

4.1 1A1M Scheduling

Trivially adopting an all-Attention-all-MoE
schedule (aAaM) from MoE-only pipeline in-
troduces large bubbles into the attention-MoE
pipeline, as shown in Figure 2d. This problem
arises from the uneven pipeline stages and false
dependencies of aAaM schedule. The data depen-

3708

(a) inter-stage dependencies

MiDi CiAi

(b) inter-microbatch dependencies

A(i-1) Ai A(i+1)

Figure 4: Two categories of data dependencies in the
attention-MoE pipeline.

attending
position

masked-out
position

micro-
batches(a) Attention matrix (b) Token-uniform micro-batching

K (V)

Q

<sos> dog is our best friend

<s
os

>
do

g
is

ou
r

be
st

fri
en

d

K (V)

Figure 5: Uneven attention computation of
token-uniform micro-batching. (b) shows that a later
micro-batches in the sequence have more previous
positions to attend, incurring more computation than
earlier micro-batches.

dencies of attention-MoE pipeline fall into two
categories, as shown in Figure 4: (1) Inter-stage
dependencies requiring sequential execution of
the four pipeline stages for each micro-batch,
and (2) Inter-microbatch dependencies mandating
sequential attention computation across micro-
batches. The aAaM schedule falsely delays expert
computation and A2A combine by waiting for the
attention stages of all following micro-batches.
This creates large bubbles at the end of the
pipeline where A2A combine can only overlap
with the shorter expert computation.

To address the problem of aAaM, we propose
to interleave the attention and expert computation
across micro-batches (1-Attention-1-MoE sched-
ule, 1A1M), to fully overlap two communication
stages with two computation stages. As shown in
Figure 2c, the 1A1M schedule executes A2A dis-
patch and expert computation of each micro-batch
as soon as possible after its attention is completed,
enabling the corresponding A2A combine to be ex-
ecuted earlier in the pipeline to overlap with com-
putation. This design effectively reduces the bub-
bles caused by falsely stalled A2A combine stages
at the end of the pipeline.

4.2 Time-Uniform Micro-Batching

A conventional token-uniform micro-batching
strategy (i.e., each micro-batch has the same num-
ber of tokens) leads to reduced overlapping effi-

token
buffer

time-uniform micro-batching

MoE
Layer

Attention
Layer

attention

A2A
com

bim
e

expert
com

p.

A2A
dispatch

1st1st 2nd2nd3rd 3rd

Figure 6: Token buffer between attention and MoE
layers to decouple their micro-batching. The sequence
can be freely partitioned into micro-batches for
time-uniform attention operation, without affecting the
MoE layer’s token-uniform micro-batching.

ciency in the attention-MoE pipeline. In atten-
tion layers, each micro-batch depends on previous
ones, causing later micro-batches to perform more
computations when attending to accumulated con-
texts under uniform sequence partitioning, as illus-
trated in Figure 5b. This computational imbalance
across attention micro-batches leads to inefficient
overlapping with time-uniform A2A communica-
tion, as shown in Figure 2b. To also obtain micro-
batches with fixed latency in attention layer for
better overlapping with A2A, we propose a time-
uniform micro-batching strategy, which (1) main-
tains uniform-size pipelining in MoE layer while
allowing non-uniform partitioning in attention lay-
ers, and (2) determines a sequence slicing scheme
maximizing overlap with A2A.

To effectively decouple micro-batching of at-
tention and MoE layers, FOLDMOE introduces a
token buffer between them, as shown in Figure 6b.
This buffer temporarily stores tokens produced
by the attention layer and emits fixed-size micro-
batches in a first-in-first-out manner to the MoE
layer. The MoE layer can maintain uniform A2A
communication and expert computation as long as
the buffer contains sufficient unconsumed tokens
to form a complete micro-batch when needed. For
instance, consider an 8-token input sequence X
sliced into two micro-batches: X1:6 and X7:8. The
attention layer processes these sequentially, pro-
ducing Z1:6 and Z7:8. Upon receiving Z1:6, the
token buffer retains Z5:6 and forwards Z1:4 as the
first micro-batch for A2A dispatch and expert com-
putation, generating Y1:4. After receiving Z7:8,
the buffer combines it with the stored Z5:6 to emit
Z5:8, producing Y5:8.

The sequence slicing problem for attention
layer can be formulated as follows: given a train-
ing sequence length L and an overlap degree d,
the sequence needs to be sliced into d micro-
batches to maximize pipeline overlapping. A slic-

3709

A0
D0 C0

M0
D1 C(d-1)

M(d-1) Md
Dd CdC(d-2)

M(d-2)
D(d-1)

A1 A2 Ad

warm-up saturated cool-down

Figure 7: Attention slicing is performed upon the
1A1M pipeline with fixed-size MoE micro-batches.

ing scheme S is defined as:

S = {l1, l2, · · · , ld}

s.t.
d∑

i=1

li = L,

j∑

i=1

li ≥
j

d
· L

where the second constraint ensures sufficient to-
ken availability in the buffer for the MoE layer.
In a 1A1M pipeline, there are invariably two A2A
stages during warm-up phase, three A2A stages
during cool-down phase, and the saturated phase
in between, as shown in Figure 7. An effective at-
tention slicing strategy should minimize the warm-
up phase while maintaining uniform attention la-
tency during the saturated phase to maximize over-
lap with A2A.

FOLDMOE employs a heuristic algorithm to
produce a quick-start time-uniform slicing scheme
for each sequence. Specifically, the algorithm
aims to create a valid slicing scheme with a mini-
mal initial micro-batch size to start the leading A2A
as soon as possible, while ensuring subsequent
micro-batches have approximately equal attention
latencies. To estimate an ideal uniform latency for
attention micro-batch, we follow (Hoffmann et al.,
2022) to model the attention FLOPs for a l-token
sequence attending to a c-token context (including
the sequence itself) as:

FLOPs(l, c) = (4H + 3h)lc+ 8H2l (5)

where H denotes the model dimension (d_model)
and h is the number of attention heads. Each at-
tention micro-batch incurs a computational cost
of FLOPs(li,

∑L
i li). The ideal uniform la-

tency per micro-batch is calculated as t̂ =∑L
i FLOPs(1, i)/d. As detailed in Algorithm 1,

our algorithm begins with allocating a quick-start
micro-batch of size L/d, then iteratively deter-
mines subsequent micro-batch boundaries by find-
ing slices that yield attention latencies closest to t̂.
This process has a time complexity of O(L) for
each set of training configurations (i.e., training
sequence length and model specification).

The combination of sequence slicing strat-
egy and token buffer management enables

Algorithm 1: Quick-start time-uniform at-
tention slicing

Input: Total sequence length L, overlap
degree d, ideal slice time t̂

Output: Slicing scheme S
/* Init a quick-start slice to S */

1 m←
⌈
L

d

⌉
, S ← [];

2 S.append(m);
/* Cut one slice down from rest

whenever latency exceeds t̂ */
3 start← m;
4 while start < L do
5 end←

max{start+ 1, (len(S) + 1) ·m};
6 if L− end ≥ d− len(S) end
7 end← argmin

end≤i≤L+1
|FLOPs(i−

start, i)− t̂|;
8 end
9 S.append(end− start);

10 start← end;
11 end
12 return S;

time-uniform micro-batching across the en-
tire Transformer-MoE block, achieving full
communication-computation overlap during the
pipeline’s saturated phase (see Figure 2d).

4.3 Combining with Other Long-Sequence
Methods

FOLDMOE establishes the attention-MoE pipeline
not beyond each Transformer block, overlapping
communication and computation of a single de-
vice. This simplicity allows it to work with other
established long-sequence training methods.
Combine with FlashAttention. FOLDMOE can
seamlessly integrate FlashAttention (Dao et al.,
2022; Dao, 2023), since they both maintain
identical attention patterns with causal masking,
whether processing the sequence in micro-batches
or as a whole.
Combine with TP and SP. FOLDMOE is orthog-
onal to tensor parallelism (TP) (Shoeybi et al.,
2019) in the sense that: TP slices and paral-
lelizes operators across devices, while FOLD-
MOE slices data along the sequence dimension
within a single device. On the other hand, se-
quence parallelism (SP) (Korthikanti et al., 2023),

3710

4K 8K 16K 32K
seqlen

0

1

2

3

4

Sp
ee

du
p

0.
94

x

1.
34

x 2.
01

x

1.
29

x

1.
00

x

1.
52

x 2.
39

x

1.
42

x

GPT-MoE-S

4K 8K 16K 32K
seqlen

0

1

2

3

4

Sp
ee

du
p

0.
85

x 1.
64

x

1.
55

x 2.
33

x

1.
12

x

1.
63

x 2.
31

x

2.
72

x

GPT-MoE-M

4K 8K 16K 32K
seqlen

0

1

2

3

4

Sp
ee

du
p

1.
86

x

2.
26

x

1.
64

x

1.
21

x2.
00

x

2.
28

x

2.
17

x

1.
61

x

GPT-MoE-L
Megatron-MoE Tutel FoldMoE

Figure 8: End-to-end Performance of training MoE models on 16 GPUs with DP+TP/SP and EP.

d=1 d=2 d=4 d=8 d=16

0.4

0.6

0.8

1.0

Av
g.

 N
or

m
. T

hr
ou

gh
pu

t seqlen=4K

d=1 d=2 d=4 d=8 d=16
0.50
0.75
1.00
1.25
1.50

Av
g.

 N
or

m
. T

hr
ou

gh
pu

t seqlen=8K

d=1 d=2 d=4 d=8 d=16

1.0

1.5

2.0

Av
g.

 N
or

m
. T

hr
ou

gh
pu

t seqlen=16K

d=1 d=2 d=4 d=8 d=16

1.0

1.5

2.0

2.5

Av
g.

 N
or

m
. T

hr
ou

gh
pu

t seqlen=32K
Tutel FoldMoE

Figure 9: Average normalized throughput of FOLDMOE and Tutel training GPT-MoE-M.

which operates within TP groups, also performs
sequence-dimension partitioning as FOLDMOE.
Fortunately, since SP exclusively operates on
non-attention and non-MoE regions, e.g., layer-
norm (Lei Ba et al., 2016) and dropout (Srivastava
et al., 2014), it does not affect the data integrity of
FOLDMOE’s attention-MoE pipelining.

5 Evaluation

Testbeds. We evaluate FOLDMOE on a cluster
with 2 AWS g5.48xlarge nodes, each containing
8 NVIDIA A10G-24G GPUs, and the nodes are
linked by a 100 Gbps network.
Models and datasets. We evaluate the train-
ing workloads of the MoE counterparts of GPT-
2 (Brown, 2020) models from 3 representative
model sizes, GPT-MoE-L (large), GPT-MoE-M (me-
diam), GPT-MoE-S (small), as shown in Table 1.
Wikipedia dataset is used as training data, and the
training sequence length (seqlen) varies from 4K
to 32K, with each seqlen being a power of 2. More
details on model and experiment setups can be
found in Appx. C.
Baselines. We compare FOLDMOE’s training per-
formance with Megatron-MoE (core_r0.9.0) and
Tutel (v0.3.2). The former serves as a vanilla non-
overlapping baseline. Tutel is one of the state-
of-the-art MoE training system that implements
MoE-only overlapping between A2A and expert
computation. For each experiment with Tutel, we
turn on only its overlapping-related features, and

search through the overlap degree d (the number
of partitions) of 2, 4, 8 and 16 to report the best re-
sult. The same search is also conducted for FOLD-
MOE. We mainly focus on per-iteration training
latency as our evaluation metric.

5.1 Main Results
The main experiment conducts training on 16
GPUs, with 2-way cross-node DP and 8-way intra-
node TP+SP for attention layers, and 16-way EP
for MoE layers. We show the speedups on per-
iteration latency against Megatron-MoE for all
configurations in Figure 8. FOLDMOE acceler-
ates MoE training for all models: for GPT-MoE-S,
FOLDMOE speeds up training against the best
baselines by 1.14x, 1.19x, and 1.10x for seqlen
8K, 16K and 32K, respectively; for GPT-MoE-M,
FOLDMOE significantly speeds up against Tutel
by 1.12x, 1.49x, and 1.17x for seqlen 4K, 16K and
32K, respectively; for GPT-MoE-L, FOLDMOE ac-
celerates training by 1.32x and 1.33x against Tutel
for seqlen 16K and 32K, respectively.

5.2 Ablation Study
Forward and backward pass overlapping. Both
forward and backward pass of the training benefit
from the attention-MoE pipelining of FOLDMOE.
Figure 10 shows average training latency of Trans-
former blocks in GPT-MoE-L: under d = 2, for-
ward pass has 1.48x speedup and backward pass
has 1.64x against the baseline; under d = 8, for-
ward/backward pass speedups increase to 1.94x

3711

Forward Backward
0

1

2

3
TF

-B
lo

ck
 L

at
en

cy
 (s

) Megatron-MoE FoldMoE

Forward Backward
0

1

2

3

TF
-B

lo
ck

 L
at

en
cy

 (s
) Megatron-MoE FoldMoE

Figure 10: Latency of forward and backward pass of
Transformer-block in GPT-MoE-M with 32K seqlen.
Left: d=2. Right: d=8.

and 1.71x, respectively, benefiting from pipeline
bubbles being further reduced.
System component effectiveness. We have de-
veloped FOLDMOE step by step, introducing
aAaM, 1A1M schedule, and time-uniform micro-
batching for an efficient attention-MoE pipeline
within each Transformer block. As shown in
Figure 11a, 1A1M achieves better communica-
tion overlapping with computation, reducing the
A2A latency on the critical path. Adding time-
uniform micro-batching (1A1M+uniform) further
minimizes pipeline bubbles, leading to optimal
end-to-end performance. In the case of d = 2
(Figure 11b), 1A1M degrades to aAaM due to in-
sufficient token micro-batches for pipeline stage
interleaving, maintaining the same critical path
A2A latency.
Overlap degree. The overlap degree d serves as
the sole configuration parameter for pipeline set-
tings in both FOLDMOE and Tutel, determining
the granularity of computation and communica-
tion partitioning. While a larger d can potentially
yield higher speedups through reduced pipeline
bubbles, it also introduces increased overhead
from micro-batching operations, manifesting as
smaller but more numerous GPU kernel launches.
Figure 9 presents the average training throughput

0 50 100 150 200 250
TF-block latency (ms)

1A1M+
uniform

1A1M
aAaM

A2A attention expert others

(a) overlap degree d = 4

0 50 100 150 200 250
TF-block latency (ms)

1A1M
aAaM

(b) overlap degree d = 2

Figure 11: Breakdown of average Transformer block
latency on critical path of training GPT-MoE-L on 32K
seqlen with different FOLDMOE scheduling.

of the GPT-MoE-M block across various overlap de-
grees, normalized to the non-overlapping baseline
(d = 1). The results demonstrate a clear trade-off
in FOLDMOE’s performance: training through-
put initially improves with increasing d due to
better overlapping, reaches a peak, then declines
as micro-batching overhead exceeds overlapping
benefits. While Tutel exhibits a similar trade-
off pattern, it is constrained by insufficient expert
computation for overlapping. In contrast, FOLD-
MOE achieves higher peak throughput and shows
more gradual performance degradation by effec-
tively utilizing the larger attention computation to
hide A2A overhead.

5.3 Training Convergence

FOLDMOE preserves the convergence character-
istics of model training. To validate this, we
trained GPT-MoE-S with 8K seqlen using 16-way
DP/EP, comparing the loss curves between FOLD-
MOE and Tutel at the same overlap degree d = 2.
As demonstrated in Figure 12a, models trained
with FOLDMOE and Tutel exhibit identical con-
vergence patterns, confirming that FOLDMOE
maintains convergence fidelity. Figure 12b shows
that FOLDMOE reaches the same training loss us-
ing less GPU hours than Tutel.

0 1000 2000 3000 4000 5000
Iteration

6

8

10

LM
 L

os
s

Tutel (d=2)
FoldMoE (d=2)

(a) FOLDMOE kept the same
logical convergence
efficiency as Tutel. The loss
curve of both systems
overlap in the figure.

0 20 40 60
GPU Hour

6

8

10

LM
 L

os
s

Tutel (d=2)
FoldMoE (d=2)

(b) Reaching the same
training loss 5.21 using the
same overlap degree d = 2,
FOLDMOE takes 21% less
time than Tutel.

Figure 12: Training loss curve of GPT-MoE-S over (a)
logical training steps and (b) physical time.

6 Conclusion

We present FOLDMOE, a system for efficient
MoE training on long sequences through novel
attention-MoE pipelining. By introducing a
1A1M pipeline schedule and time-uniform micro-
batching strategy, FOLDMOE enables effec-
tive token-level overlapping of A2A communica-
tion with computation across entire Transformer
blocks. FOLDMOE is compatible with other long
sequence training methods. Our evaluations show

3712

that FOLDMOE accelerates the training of GPT-
MoE models by up to 1.49x speedup using up to
32K sequence length on 16 GPUs compared to
state-of-the-art systems.

Limitations

While FOLDMOE demonstrates strong perfor-
mance for training Transformer-based MoE mod-
els with long sequences, it is subject to two limita-
tions: (1) Selection of an optimal overlap degree.
Selecting an overlap degree (i.e., the number of
micro-batches) is crucial for striking a balance be-
tween pipeline speedup and micro-batching over-
head. This ideal overlap degree depends on model
size, sequence length, and hardware specifics, and
is currently left to be determined through light
runtime profiling and manual tuning. (2) FOLD-
MOE currently employs FP16 training to improve
throughput. In long-sequence settings, rounding
errors can accumulate across chunked layers, po-
tentially causing minor numerical fluctuations in
convergence. That said, as demonstrated in Fig-
ure 12, the impact on model quality remains neg-
ligible, with FOLDMOE preserving near-identical
loss curves compared to baseline implementations
and achieving faster convergence.

Acknowledgments

We thank our anonymous reviewers for their
insightful feedback. We also thank Xingjian
Zeng for the helpful discussion and comments.
The work is supported in part by National Key
R&D Program of China (2022ZD0160201), HK
RGC RIF (R7030-22), HK RGC GRF (ref No.:
17208223 & 17204424), a Huawei flagship re-
search grant in 2023, SupernetAI, and the HKU-
CAS Joint Laboratory for Intelligent System Soft-
ware.

References
Yoshua Bengio, Réjean Ducharme, and Pascal Vincent.

2000. A neural probabilistic language model. Ad-
vances in neural information processing systems, 13.

Tom B Brown. 2020. Language models are few-shot
learners. arXiv preprint arXiv:2005.14165.

NVIDIA Corporation. 2020. Nvidia collective com-
munication library (nccl) documentation. Available
at: https://docs.nvidia.com/deeplearning/
nccl/user-guide/docs/index.html. Accessed:
30/09/2024.

Tri Dao. 2023. Flashattention-2: Faster attention with
better parallelism and work partitioning. arXiv
preprint arXiv:2307.08691.

Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and
Christopher Ré. 2022. Flashattention: Fast and
memory-efficient exact attention with io-awareness.
Advances in Neural Information Processing Sys-
tems, 35:16344–16359.

William Fedus, Barret Zoph, and Noam Shazeer. 2022.
Switch transformers: Scaling to trillion parameter
models with simple and efficient sparsity. The Jour-
nal of Machine Learning Research, 23(1):5232–
5270.

Luciano Floridi and Massimo Chiriatti. 2020. Gpt-3:
Its nature, scope, limits, and consequences. Minds
and Machines, 30:681–694.

Jiaao He, Jidong Zhai, Tiago Antunes, Haojie Wang,
Fuwen Luo, Shangfeng Shi, and Qin Li. 2022.
Fastermoe: Modeling and optimizing training of
large-scale dynamic pre-trained models. In Pro-
ceedings of the 27th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming,
PPoPP ’22, page 120–134, New York, NY, USA.
Association for Computing Machinery.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Men-
sch, Elena Buchatskaya, Trevor Cai, Eliza Ruther-
ford, Diego de Las Casas, Lisa Anne Hendricks,
Johannes Welbl, Aidan Clark, and 1 others. 2022.
Training compute-optimal large language models.
arXiv preprint arXiv:2203.15556.

Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan
Firat, Dehao Chen, Mia Chen, HyoukJoong Lee, Ji-
quan Ngiam, Quoc V Le, Yonghui Wu, and 1 others.
2019. Gpipe: Efficient training of giant neural net-
works using pipeline parallelism. Advances in neu-
ral information processing systems, 32.

Changho Hwang, Wei Cui, Yifan Xiong, Ziyue Yang,
Ze Liu, Han Hu, Zilong Wang, Rafael Salas, Jithin
Jose, Prabhat Ram, and 1 others. 2022. Tutel:
Adaptive mixture-of-experts at scale. arXiv preprint
arXiv:2206.03382.

Robert A Jacobs, Michael I Jordan, Steven J Nowlan,
and Geoffrey E Hinton. 1991. Adaptive mixtures of
local experts. Neural computation, 3(1):79–87.

Albert Q Jiang, Alexandre Sablayrolles, Antoine Roux,
Arthur Mensch, Blanche Savary, Chris Bamford,
Devendra Singh Chaplot, Diego de las Casas,
Emma Bou Hanna, Florian Bressand, and 1 oth-
ers. 2024a. Mixtral of experts. arXiv preprint
arXiv:2401.04088.

Chenyu Jiang, Ye Tian, Zhen Jia, Shuai Zheng, Chuan
Wu, and Yida Wang. 2024b. Lancet: Acceler-
ating mixture-of-experts training via whole graph
computation-communication overlapping. Proceed-
ings of Machine Learning and Systems, 6:74–86.

3713

https://docs.nvidia.com/deeplearning/nccl/user-guide/docs/index.html
https://docs.nvidia.com/deeplearning/nccl/user-guide/docs/index.html
https://doi.org/10.1145/3503221.3508418
https://doi.org/10.1145/3503221.3508418

Jared Kaplan, Sam McCandlish, Tom Henighan,
Tom B Brown, Benjamin Chess, Rewon Child, Scott
Gray, Alec Radford, Jeffrey Wu, and Dario Amodei.
2020. Scaling laws for neural language models.
arXiv preprint arXiv:2001.08361.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Vijay Anand Korthikanti, Jared Casper, Sangkug Lym,
Lawrence McAfee, Michael Andersch, Mohammad
Shoeybi, and Bryan Catanzaro. 2023. Reducing
activation recomputation in large transformer mod-
els. Proceedings of Machine Learning and Systems,
5:341–353.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hin-
ton. 2016. Layer normalization. ArXiv e-prints,
pages arXiv–1607.

Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu,
Dehao Chen, Orhan Firat, Yanping Huang, Maxim
Krikun, Noam Shazeer, and Zhifeng Chen. 2020.
Gshard: Scaling giant models with conditional com-
putation and automatic sharding. arXiv preprint
arXiv:2006.16668.

Aonian Li, Bangwei Gong, Bo Yang, Boji Shan, Chang
Liu, Cheng Zhu, Chunhao Zhang, Congchao Guo,
Da Chen, Dong Li, and 1 others. 2025. Minimax-01:
Scaling foundation models with lightning attention.
arXiv preprint arXiv:2501.08313.

Shen Li, Yanli Zhao, Rohan Varma, Omkar Salpekar,
Pieter Noordhuis, Teng Li, Adam Paszke, Jeff
Smith, Brian Vaughan, Pritam Damania, and
Soumith Chintala. 2020. Pytorch distributed: expe-
riences on accelerating data parallel training. Proc.
VLDB Endow., 13(12):3005–3018.

Zhuohan Li, Siyuan Zhuang, Shiyuan Guo, Danyang
Zhuo, Hao Zhang, Dawn Song, and Ion Stoica.
2021. Terapipe: Token-level pipeline parallelism
for training large-scale language models. In Inter-
national Conference on Machine Learning, pages
6543–6552. PMLR.

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang,
Bochao Wu, Chengda Lu, Chenggang Zhao,
Chengqi Deng, Chenyu Zhang, Chong Ruan, and 1
others. 2024. Deepseek-v3 technical report. arXiv
preprint arXiv:2412.19437.

Ruilong Ma, Xiang Yang, Jingyu Wang, Qi Qi, Haifeng
Sun, Jing Wang, Zirui Zhuang, and Jianxin Liao.
2024. HPipe: Large language model pipeline par-
allelism for long context on heterogeneous cost-
effective devices. pages 1–9, Mexico City, Mexico.

Deepak Narayanan, Aaron Harlap, Amar Phanishayee,
Vivek Seshadri, Nikhil R Devanur, Gregory R
Ganger, Phillip B Gibbons, and Matei Zaharia. 2019.
Pipedream: Generalized pipeline parallelism for dnn
training. In Proceedings of the 27th ACM sympo-
sium on operating systems principles, pages 1–15.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, Alban Desmaison, Andreas Köpf, Edward
Yang, Zach DeVito, Martin Raison, Alykhan Tejani,
Sasank Chilamkurthy, Benoit Steiner, Lu Fang, and
2 others. 2019. PyTorch: an imperative style, high-
performance deep learning library. Curran Asso-
ciates Inc., Red Hook, NY, USA.

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz,
Andy Davis, Quoc Le, Geoffrey Hinton, and Jeff
Dean. 2017. Outrageously large neural networks:
The sparsely-gated mixture-of-experts layer. arXiv
preprint arXiv:1701.06538.

Mohammad Shoeybi, Mostofa Patwary, Raul Puri,
Patrick LeGresley, Jared Casper, and Bryan Catan-
zaro. 2019. Megatron-lm: Training multi-billion pa-
rameter language models using model parallelism.
arXiv preprint arXiv:1909.08053.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: a simple way to prevent neural networks
from overfitting. The journal of machine learning
research, 15(1):1929–1958.

Ao Sun, Weilin Zhao, Xu Han, Cheng Yang, Xinrong
Zhang, Zhiyuan Liu, Chuan Shi, and Maosong Sun.
2024. Seq1f1b: Efficient sequence-level pipeline
parallelism for large language model training. arXiv
preprint arXiv:2406.03488.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information process-
ing systems, 30.

3714

https://doi.org/10.14778/3415478.3415530
https://doi.org/10.14778/3415478.3415530
https://doi.org/10.18653/v1/2024.naacl-industry.1
https://doi.org/10.18653/v1/2024.naacl-industry.1
https://doi.org/10.18653/v1/2024.naacl-industry.1

A Language Modeling

Autoregressive modeling. Natural language has a
sequential structure, which is commonly modeled
by LLMs as joint probability over all tokens in the
sequence (Bengio et al., 2000):

P (X) =

T∏

t=1

P (xt|x1,x2, . . . ,xt−1) (6)

, where T is the sequence length, and xt is the
token at position t in sequence X . Contempo-
rary LLMs are usually built as a stack of decoder-
only Transformer blocks (Brown, 2020; Floridi
and Chiriatti, 2020) to model the autoregressive
property in Equation 6.
Transformer. Each Transformer block consists
of two categories of components: attention mod-
ules (Vaswani et al., 2017) an token-wise modules,
including FFN, layernorm (Lei Ba et al., 2016),
and dropout (Srivastava et al., 2014). FFN will be
replaced by MoE layer in Transformer-based MoE
models (Fedus et al., 2022; Lepikhin et al., 2020).
LayerNorm (Lei Ba et al., 2016) is a token-wise
operation, which normalizes its input along the
last dimension, which is the embedding dimension
of each token. Dropout (Srivastava et al., 2014) is
an element-wise operation, which randomly sets a
fraction of its input to zero during training to pre-
vent overfitting, and scales the rest by the inverse
of the keep probability. None of these operations
requires information beyond a single token, and
thus do not affect our design of partitioning the
whole Transformer block at token level.

B Mixture-of-Experts

MoE Architecture. Given an input token x ∈ Rd,
the gate g : Rd → R|E| assigns a score to indicate
its affinity with each expert Ei, where E is the set
of all experts in this layer. As shown in Equation 7,
the gate g is a linear transformation upon each in-
put token x, followed by a softmax function. It
projects from the input space to R|E|, where E is
the set of all experts in this layer.

g(x) = softmax(Wgx) (7)

Modern expert networks in MoE are often im-
plemented as fully-connected feed-forward net-
works (FFNs) with the same hidden size. , as
shown in Equation 8, where W (i) and b(i) are pa-
rameter weights of expert i, while σ is a non-linear

activation function.

ei(x) = σ(x ·W (i)
1 + b

(i)
1) ·W (i)

2 + b
(i)
2 (8)

An FFN expert is usually designed to project each
input to a higher dimensional hidden space and
then back to the input space.
Expert Capacity. In MoE layers, a fixed ex-
pert capacity is typically assigned to each expert
to promote balanced computational load distribu-
tion across experts and amongst expert parallel
ranks. This capacity constraint dictates the max-
imum number of tokens an expert is permitted to
process during a single forward pass.

The expert capacity is commonly defined in
terms of a capacity factor (CF), which quantifies
the ratio of allocated token slots per expert to the
expected average number of tokens each expert
would handle under perfectly balanced load con-
ditions. The expert capacity can be formally ex-
pressed as:

Expert Capacity = CF · B · L|E| ,

where B denotes the batch size, L represents the
sequence length, and |E| signifies the total num-
ber of experts. The selection of the CF embodies a
trade-off between computational efficiency, mem-
ory footprint, and the potential for token drop-
ping.

C Experiment Setups

Software testbeds. The experiments are con-
ducted using CUDA 12.4, NCCL 2.21.5 (Corpo-
ration, 2020), and PyTorch 2.5.1 (Paszke et al.,
2019) as the underlying software stack. Megatron-
LM (Shoeybi et al., 2019) is used as the training
framework.
Model details. According to Hoffmann et al.
(2022)’s modeling, the attention-to-MoE compu-
tation ratio is mainly determined by d_model,
expert hidden size and seqlen, thus we mainly
vary these parameters to evaluate our system un-
der different conditions. We enhance the original
GPT model by replacing every other Transformer
block’s FFN layer with an MoE layer, where ex-
perts are still FFNs, with top-1 GShard gate (Lep-
ikhin et al., 2020).
Training configurations. We scale EP by one ex-
pert per GPU. For MoE layers, only EP (Shazeer
et al., 2017) is applied, while DP, TP and SP (Li
et al., 2020; Shoeybi et al., 2019; Korthikanti

3715

GPT-MoE-S GPT-MoE-M GPT-MoE-L

n_layer 6 6 12
d_model 512 768 1024
n_heads 8 8 8
n_expert_per_gpu 1 1 1
expert_hidden_size 1024 1536 2048

Table 1: Model configurations for GPT-MoE variants.

et al., 2023) are mixedly applied on attention lay-
ers. In each set of comparative experiments, we
used the largest batch size that did not cause an
out-of-memory error in any system. Adam opti-
mizer (Kingma and Ba, 2014) is used for training.
We predominantly employ a capacity factor of 1.0
for all experiments.
Metrics. Our experimental evaluation primarily
focuses on the average per-block training latency
of models. To ensure measurement accuracy and
eliminate initialization overhead, we execute 20 it-
erations for each experimental configuration and
exclude the first five iterations to account for sys-
tem warm-up effects. The final metrics are com-
puted by averaging the latencies from iterations
6 through 20, and then normalizing by the total
number of Transformer blocks in the model to ob-
tain the per-block latency. This methodology pro-
vides a more reliable measure of steady-state per-
formance while controlling for variations in model
depth across different architectures.

D Experiment Results

Table 2 include the detailed Transformer block la-
tency of our main experiments in § 5.1.

3716

Model SeqLen System d=1 d=2 d=4 d=8 d=16

GPT-MoE-L

4096
FoldMoE - 502.67 400.10 578.19 1093.32
Megatron-MoE 800.94 - - - -
Tutel - 635.28 431.37 936.80 527.75

8192
FoldMoE - 1029.06 832.73 738.90 1157.71
Megatron-MoE 1688.37 - - - -
Tutel - 1808.21 1943.72 746.55 1116.06

16384
FoldMoE - 1991.33 1309.26 1616.71 1811.94
Megatron-MoE 2839.86 - - - -
Tutel - 2731.00 1730.58 4315.75 3251.08

32768
FoldMoE - 3278.31 4016.33 2724.75 3209.82
Megatron-MoE 4382.43 - - - -
Tutel - 3620.50 11569.79 7965.96 7609.02

GPT-MoE-M

4096
FoldMoE - 363.94 322.06 516.52 1225.78
Megatron-MoE 361.86 - - - -
Tutel - 441.06 427.28 446.73 468.61

8192
FoldMoE - 597.94 572.44 710.68 1037.50
Megatron-MoE 935.77 - - - -
Tutel - 569.65 1695.62 1020.66 892.82

16384
FoldMoE - 1331.96 1189.83 1209.73 1321.54
Megatron-MoE 2749.70 - - - -
Tutel - 1774.98 4209.27 2230.82 2640.12

32768
FoldMoE - 2130.07 2998.03 2765.12 2540.53
Megatron-MoE 5787.19 - - - -
Tutel - 2483.79 5478.15 8120.67 6677.55

GPT-MoE-S

4096
FoldMoE - 373.87 272.95 523.96 858.39
Megatron-MoE 272.36 - - - -
Tutel - 468.93 422.93 289.46 390.60

8192
FoldMoE - 403.56 418.75 655.35 939.90
Megatron-MoE 613.19 - - - -
Tutel - 728.45 458.18 750.66 550.49

16384
FoldMoE - 1032.03 949.55 788.57 1794.69
Megatron-MoE 1885.48 - - - -
Tutel - 939.75 1726.05 1382.16 1109.29

32768
FoldMoE - 3041.63 2763.40 2705.85 1759.33
Megatron-MoE 2499.82 - - - -
Tutel - 2775.18 3301.95 1930.80 2981.09

Table 2: Average Transformer block latency (ms) under different experiment configurations.

3717

