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Abstract

Multi-step multimodal reasoning tasks pose sig-
nificant challenges for multimodal large lan-
guage models (MLLMs), and finding effective
ways to enhance their performance in such sce-
narios remains an unresolved issue. In this pa-
per, we propose AR-MCTS, a universal frame-
work designed to progressively improve the rea-
soning capabilities of MLLMs through Active
Retrieval (AR) and Monte Carlo Tree Search
(MCTS). AR-MCTS follows the MCTS algo-
rithm and heuristically integrates an active re-
trieval mechanism during the expansion stage
to automatically acquire high-quality step-wise
reasoning annotations. Moreover, we further
introduce curriculum training objectives to pro-
gressively align with a process reward model,
ultimately achieving process-level multimodal
reasoning verification. Experimental results
across three complex multimodal reasoning
benchmarks confirm the effectiveness of AR-
MCTS. Further analysis demonstrates that it
can optimize sampling diversity and accuracy,
yielding reliable multimodal reasoning.

1 Introduction

Reasoning, as the fundamental capability of large
language models (LLMs) (OpenAI, 2023a; Dubey
et al., 2024) and multimodal large language mod-
els (MLLMs) (Liu et al., 2023b; Bai et al., 2023),
lays the foundation for generalization across a wide
range of downstream tasks (Luo et al., 2023; Yuan
et al., 2023; Lu et al., 2024b). In complex reasoning
scenarios, models often require multiple steps to
seek a final answer, resulting in various candidate
reasoning paths. Therefore, efficiently identifying
the correct path that includes key problem-solving
steps is essential. To achieve this, reasoning veri-
fication techniques (Lightman et al., 2024; Setlur
et al., 2024a; Wang et al., 2024c) employ high-
quality reward models for path selection, thereby
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offering a promising approach to improve the relia-
bility of model reasoning.

To improve the trustworthiness of complex rea-
soning, foundational efforts such as outcome re-
ward models (ORMs) (Cobbe et al., 2021a; Shao
et al., 2024) directly verify the quality of entire
reasoning trajectories. However, ORMs only pro-
vide result-oriented feedback. To further obtain
finer-grained verification, process reward models
(PRMs) (Lightman et al., 2024; Wang et al., 2024c;
Ma et al., 2023; Wang et al., 2024a) provide in-
termediate rewards for the model’s step-wise rea-
soning and employ reinforcement learning algo-
rithms for optimization (Ouyang et al., 2022). De-
spite these advancements, the manual annotation
of reasoning paths limits its scalability and appli-
cability (Xia et al., 2024). In response to these
challenges, recent developments in inference-time
scaling (Snell et al., 2024; Sardana et al., 2024)
have led to the integration of the MCTS algorithm
into LLMs (Browne et al., 2012). This combina-
tion allows the model to automatically sample and
evaluate potential solutions at each reasoning step,
designing value functions to update node weights
through back-propagation, thereby achieving auto-
matic step-wise reasoning annotation without hu-
man effort (Liu et al., 2023c; Zhang et al., 2024b,a;
Yuan et al., 2024; Chen et al., 2024a).

While MCTS-based methods have been widely
used in LLMs, their application to MLLMs remains
largely unexplored. The unique characteristics of
multimodal scenarios necessitate specialized adap-
tations of MCTS to address their complexities. Let
us illustrate these challenges by theoretically ana-
lyzing the limitations of existing MCTS methods.
At each expansion step of MCTS, given the input
x and the best reasoning path y selected after simu-
lation, the process can be modeled as:

p(y | x) = max
i∈k

pθ(y | ri, x)︸ ︷︷ ︸
Simulation

· pϕ(ri | x)︸ ︷︷ ︸
Expansion

, (1)
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where r and k represent reasoning paths and the
number of sampled paths, while ϕ and θ denote the
generator and the verifier, respectively. This for-
mula indicates that both expansion and simulation
phases jointly determine the success of reasoning.
Most existing methods focus on optimizing the
simulation process, only relying on beam search
based on the model’s internal knowledge for the
expansion phrase (Satir and Bulut, 2021; Freitag
and Al-Onaizan, 2017). This simple strategy is ef-
fective for text-only reasoning tasks, as LLMs are
well-pretrained on large-scale text data. However,
in multimodal reasoning tasks, MLLMs often face
misalignment issues between different modality in-
puts (Song et al., 2023; Rasenberg et al., 2020),
rendering their internal knowledge insufficient for
reasoning path expansion. Notably, errors at any
step may disrupt the whole reasoning chain (Miao
et al., 2024; Ling et al., 2023). Consequently, de-
veloping effective strategies for reliable path ex-
pansion in MLLMs poses a significant challenge in
multimodal reasoning tasks.

To address these challenges, our pivotal insight
is to dynamically supply relevant knowledge dur-
ing each step of the reasoning expansion in the
MCTS algorithm, thereby improving the reliability
of multimodal reasoning. Motivated by multimodal
retrieval-augmented techniques (Tan et al., 2024;
Liu et al., 2023a, 2024), we propose AR-MCTS,
a universal framework dedicated to progressively
improving the complex reasoning capabilities of
MLLMs through Active Retrieval and Monte Carlo
Tree Search. Specifically, we design a unified
retrieval module to retrieve key problem-solving
insights for supporting reasoning from a hybrid-
modal retrieval corpus. To further achieve reliable
multimodal reasoning verification, we define the
quality of each reasoning step as its potential to de-
duce the correct answer, enabling us to iteratively
obtain step-wise annotations using the MCTS al-
gorithm. Notably, we introduce an active retrieval
strategy during MCTS expansion, innovatively re-
placing beam search with dynamically retrieved
insights to enhance sampling diversity and relia-
bility. Based on these process-level annotations,
we progressively align a process reward model tai-
lored for multimodal reasoning through step-wise
Direct Preference Optimization (DPO) (Rafailov
et al., 2023a,b) and Supervised Fine-tuning (SFT)
objectives, achieving automatic reasoning verifica-
tion. Experiments on three complex multimodal
reasoning benchmarks validate the effectiveness of

AR-MCTS across various proprietary MLLMs. In
summary, our contributions are as follows:

• We theoretically model the key mechanisms of
the MCTS-based method in Equation (1), reveal-
ing its core limitations in multimodal reasoning.

• We are the first to introduce the retrieval mecha-
nism in each step of multimodal reasoning to re-
place traditional model self-sampling strategies,
enhancing both sampling diversity and accuracy.

• We propose the AR-MCTS framework, which
leverages the MCTS algorithm alongside an ac-
tive retrieval strategy for improving multimodal
reasoning. AR-MCTS automatically acquires
high-quality step-wise reasoning annotations to
progressively align a process reward model, en-
abling reliable automated reasoning verification.

• Experimental results on three complex multi-
modal reasoning benchmarks demonstrate the
effectiveness of AR-MCTS across various pro-
prietary models. Quantitative analyses reveal
that AR-MCTS optimizes sampling diversity and
verification accuracy, providing a promising so-
lution for reliable multimodal reasoning.

2 Related Work

LLM and MLLM Reasoning. The reasoning ca-
pabilities of LLMs (OpenAI, 2023a; Dubey et al.,
2024) and MLLMs (Liu et al., 2023b; Bai et al.,
2023; Chen et al., 2023b) have gained considerable
attention. Techniques like Chain-of-Thought (Wei
et al., 2022), Tree-of-Thought (Yao et al., 2023),
and Program-of-Thought (Gao et al., 2023; Chen
et al., 2023a) enhance response coherence by guid-
ing models to decompose problems with alignment
strategies. The reflection mechanism promotes
iterative response improvement (Renze and Gu-
ven, 2024). Moreover, Self-Consistency (Wang
et al., 2023) shows that sampling diverse solutions
and selecting the most consistent one can signif-
icantly enhance LLM reasoning. Robust reward
models are also effective in optimizing response
quality (Setlur et al., 2024b; Uesato et al., 2022;
Wang et al., 2024a; Li et al., 2023). Several studies
further enhance the reasoning capabilities of large
language models by integrating a diverse set of ex-
ternal tools, including search engines and Python
interpreters (Dong et al., 2025; Li et al., 2024b;
Zelikman et al., 2022; Li et al., 2025a,b). Recently,
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o1-level LLMs introduce a "slow thinking" mech-
anism that integrates large-scale RL, MCTS algo-
rithm and PRM to improve the step-wise reason-
ing (Zhang et al., 2024b; Gao et al., 2024; Zhang
et al., 2024a). Despite this progress, the reasoning
potential of MLLMs remains underexplored.

Multimodal Retrieval-Augmented Generation.
Recent Retrieval-Augmented Generation has
shown exceptional performance across various
NLP tasks by incorporating relevant information
from diverse sources (Jin et al., 2024; Asai et al.,
2024; Shi et al., 2024; Yoran et al., 2024; Yu et al.,
2023; Jin et al., 2025; Li et al., 2024c; Dong et al.,
2023; Cheng et al., 2024; Dong et al., 2024c; Tan
et al., 2025; Lei et al., 2023; Luo et al., 2024a). This
technique also enhance reasoning and question-
answering in the multimodal domain (Lim et al.,
2024; Tan et al., 2024; Liu et al., 2023a; Zhou,
2024). However, the reasoning process is largely
unexplained and lacks verification mechanisms. In
this paper, we propose an active retrieval strategy
that retrieves multimodal information at each step
to align the PRM, facilitating reliable reasoning.

3 Methodology

We propose the AR-MCTS framework to achieve
step-wise reasoning verification through active re-
trieval and Monte Carlo tree search. As shown in
Figure 2 & 3, AR-MCTS consists of two main com-
ponents: 1) It introduces a unified retrieval mod-
ule, including a high-quality hybrid-modal retrieval
corpus (§3.2) and a multimodal retrieval module
(§3.3). This module employs knowledge concept
filtering to select key insights for problem-solving
(§3.4). 2) It automates the acquisition of step-wise
annotations for multimodal reasoning using MCTS
and an active retrieval mechanism (§3.3). Then, it
leverages the annotated data to progressively align
the PRM in two stages (§3.6), allowing for fine-
grained verification of MLLM reasoning. Below,
we will first introduce the task definition (§3.1) and
then we delve into the specifics of our approach.

3.1 Preliminary

Monte Carlo Tree Search. MCTS is a widely
used sampling-based search method for decision-
making optimization. Its core algorithm consists
of four steps: selection, expansion, evaluation, and
back-propagation. By repeatedly executing these
four steps, it constructs a search tree. During the
selection phase, MCTS recursively selects child
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Figure 1: The statistics of our hybrid retrieval corpus.

nodes from the root using the Upper Confidence
Bound (UCB) (Srinivas et al., 2012):

UCB(i) = wi + C ∗
√
2 ∗ ln Ni

ni
, (2)

Problem Formulation. Formally, in multi-
modal reasoning, given a multimodal query Qm

and corresponding retrieved problem-solving in-
sights r from the retrieved hybrid-modal corpus
DH , we assume that the MLLM πθ operates in
an auto-regressive manner to generate a reasoning
path of k steps [y1, . . . , yk]:

pθ(y | Qm, R) =

k∏

i=1

pθ (yi | Qm, r, y<i) . (3)

In this paper, we obtain different intermediate rea-
soning trajectories as the MLLM decodes to a spe-
cific termination token. Following the setup of
(Tian et al., 2024), we formulate the generation pro-
cess as a Markov Decision Process (MDP) (Puter-
man, 1990) and adopt sentence-level MCTS model-
ing. In reinforcement learning terminology (Schul-
man et al., 2017), we define the current decoded
intermediate step yi as a state si, corresponding to
a leaf node. The process of backtracking to sample
the next step is considered an action ai. 1

3.2 Hybrid-Modal Retrieval Corpus
Construction

In an ideal scenario, enhancing reasoning capabil-
ities through retrieval resembles giving MLLMs
an open-book exam. However, the multimodal
reasoning field suffers from a persistent lack of
high-quality reasoning retrieval corpora. To sys-
tematically establish a high-quality reasoning re-
trieval library, we conduct a comprehensive survey
of open-source datasets, emphasizing both general

1Detailed definitions of MCTS are listed in the Appendix.
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and mathematics-specific reasoning knowledge in
multimodal contexts.

Mathematics-Specific Reasoning Knowledge.
Mathematical reasoning is an essential skill of fun-
damental models, supported by a series of high-
quality datasets. In the text-only aspect, we select
the widely used math datasets, GSM8K (Cobbe
et al., 2021b) and MATH (Hendrycks et al.,
2021). For the multimodal domain, we adopt
four meticulously cleaned math datasets: MATH-
VISTA (Lu et al., 2024b), MathVerse (Zhang et al.,
2024c), MathVision (Wang et al., 2024b), and WE-
MATH (Qiao et al., 2024). To further prevent data
leakage, we filtered out any overlapping portions
with our testing benchmark using regular expres-
sions, concatenating each sample’s question q, so-
lution process p, and answer a into a single text
format, along with the corresponding image stor-
age paths. Ultimately, we obtain 22K text-only
QA pairs and 12.5K multimodal sample pairs as
proprietary sources DM from six data sources, en-
compassing over 20 mathematical sub-fields, with
each sample containing detailed solution steps.

General Reasoning Knowledge. In the real
world, general reasoning extends beyond natural
subjects. To meet this broader need, we follow the
conventional RAG approach (Lewis et al., 2020;
Zhao et al., 2024) by utilizing Wikipedia as a web-
based retrieval source, alongside the COIG (Zhang
et al., 2023) large-scale question bank for general
reasoning. We conduct thorough data cleaning and
chunking operations, ultimately constructing this
extensive dataset as our general reasoning knowl-
edge base DG. The statistical information of our
hybrid-modal reasoning corpus DH = DM ∪DG

is presented in Figure 1. 2

3.3 Unified Multimodal Retrieval Module

Given a text-image pair from the multimodal test
set Qm = {x, t}, our goal is to retrieve the top-
K multimodal relevant knowledge for each sam-
ple. Since our retrieval library encompasses hybrid-
modal retrieval sources, two retrieval processes are
considered to obtain the top-K pairs:
Text Retrieval. Given a text query q for multi-
modal sample, we use a dense retriever to retrieve k
relevant documents Dq = {di}ki=1 from a text-only
corpus. In this work, we employ Contriever (Izac-
ard et al., 2022) to obtain hidden vectors for both

2Details of retrieval corpus processing and data contami-
nation analysis can be found in Appendix B.4 and Table 5

Text-to-Text 
Retriever

Cross-Modal 
Retriever

Multimodal 
Retrieval Module

Multimodal
Knowledge

Text-only
Knowledge

Hybrid-Modal
Retrieval Corpus

Question:  As shown in the 
figure, a circle is drawn with 
vertex C of the square as the 
center. What is the measure of 

the central angle ∠ ECF? ( ) ° 
Options:  A. 45; B. 60; C. 72; D. 
90; E. No correct answer
Answer: D

Top-K KnowledgeKnowledge
Concept
Filtering

Figure 2: The pipeline of our unified multimodal re-
trieval module.

queries and documents. The relevance score is cal-
culated by computing the dot-product similarity
between their representations, which facilitates the
retrieval of the Top-K documents Dq as follows:

Dq = argtopi=1,...,N
k

[
Ed(di)

⊤ · Eq(q)
]
. (4)

Cross-modal Retrieval. We utilize widely used
contrastive vision-language models CLIP (Radford
et al., 2021), which employs a dual-stream archi-
tecture featuring an image encoder EI(·) and a
text encoder ET (·). Furthermore, we use CLIP to
encode image-text pairs (x, t), obtaining the im-
age and text vectors EI(x) and ET (t). Since the
hybrid-modal retrieval corpus contains both multi-
modal and text-only samples, we follow previous
work (Tan et al., 2024) to derive encoding vectors
for the entire hybrid-modal corpus DH as follows:

Ex(x, t) =

{
EI(x)+ET (t)

2 , if t ̸= ∅ and x ̸= ∅,
ET (t), if t ̸= ∅ and x = ∅.

(5)
where ∅ denotes the empty set. For the i-th multi-
modal query Qm, we encode it into a mixed vector
Ex(Q

m) = EI(x)+ET (t)
2 . We perform cross-modal

retrieval between the encoding of each multimodal
query and the entire retrieval database, utilizing
FAISS (Johnson et al., 2021) for indexing to re-
trieve K samples for each query:

Dcross = argtopj=1,...,N
k

[
Ex(Q

m)⊤ · Ex(xj , tj)
]
.

(6)
Here, Ex(Q

m) and Ex(xj , tj) denote the embed-
dings of the multimodal query and the samples in
the hybrid-modal corpus.

3.4 Knowledge Concept Filtering
During our deployment process, we observe that
multimodal reasoning with retrieved knowledge is
highly sensitive to the consistency of fine-grained
knowledge concepts (e.g., algebra knowledge can’t
help in solving triangles problems). Most high-
quality visual math benchmarks provide detailed
category labels (e.g., “Angles and Length”) for
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each sample, motivating us to consider knowledge
concepts for fine-grained filtering. Given a mul-
timodal query Qm and its knowledge concept la-
bel Lkc, we encode the top-K retrieved hybrid-
modal samples from DH = {Dq ∪Dcross} accord-
ing to Equation (5) and compute the similarity with
the knowledge concept’s embedding ET (kc) fol-
lowing the pipeline in “Cross-Modal Retrieval”.
We strictly enforce the original retrieval similarity
threshold Tr and the knowledge concept consis-
tency threshold Tkc, allowing only those samples
that meet both criteria to serve as key insights Dins
for the query Qm:

Dins = {r ∈ DH | Sim(r,Qm) ≥ Tr & Sim(r, Lkc) ≥ Tkc},

where Sim(x, y) represents the cosine similarity
between the embeddings E(x) and E(y), r ∈ DH
denotes a retrieved insights from the corpus DH.
Detailed information on the filtering process can
be found in the Appendix.

3.5 Progressive Multimodal Reasoning
Annotation

As shown in Figure 3, we will present our detailed
algorithm design of AR-MCTS, which includes
four core operations:

• Selection. During the j-th simulation of the AR-
MCTS, the process begins with s0, represent-
ing the initial state containing the multimodal
input query Qm

0 = (x0, t0) and corresponding
retrieved problem-solving insights r0. The al-
gorithm proceeds to explore the MCTS by se-
lecting as Equation (2) iteratively, then we for-
mulate the multimodal query of the state sj as
Qm

j = {(xj , tj) | tj = t0 +
∑j

i=1 yi},

• Expansion with Active Retrieval Strategy.
Given the state si represented by the selected
leaf node, the MCTS-based approach backtracks
to the prior state, forming our multimodal input
(xi, ti, ri). The temperature in the traditional
expansion process is empirically increased to
greater than 0.6 to sample potential candidate
actions for the next step (Chen et al., 2024b).
Unlike them, we emphasize that the supporting
knowledge required for different reasoning tra-
jectories at each step should vary, and propose an
Active Retrieval strategy. As shown in Figure 3,
during the MCTS expansion phase at state si, we
first concatenate the input Qm

i with the previous

reasoning steps. Then we dynamically retrieve
the required candidate insights ri for each step
from the problem-solving insight library Dins
according to Equation (6), and replace the in-
sight ri−1 from the previous step with the latest
retrieved insights ri. According to the Equa-
tion (3), the process of sampling k reasoning
paths at state si can be modeled as follows:

pθ(y | x) =
k∏

i=1

pθ

(
{yji }kj=1 | Qm

i , ri

)
. (7)

• Simulation. We use the probability of deduc-
ing the correct answer based on partial solutions
as a criterion for quality assessment. Follow-
ing Wang et al., we apply a one-step rollout
for each node obtained during expansion to en-
sure efficiency. We construct a value function

as V (si) =
∑k

j=1 I(yj=ŷi)

k , where k, I denotes
the number of sampled reasoning paths and the
indicator function. If the final answer yj equals
the grounding truth ŷi, we set the value of the
current node to 1; Otherwise, we set it to 0.

• Back-Propagation. For the terminal nodes
reached during the rollout and the current leaf
node, MCTS performs a backward update of the
visit count and Q-value for each (s, a) along
the route from the current node to the root,
which is formulated as N(s, a)← N(s, a) + 1,
Q(s, a)← Q(s, a) + 1

N(s,a) (V (s)−Q(s, a)).

3.6 Curriculum Process Reward Modeling
After acquiring step-wise reasoning annotations,
we draw inspiration from curriculum learning (Sun
et al., 2024; Dong et al., 2024b) to design a two-
phase approach for PRM. In the first stage, the
model learns to distinguish the correctness of rea-
soning steps. Then, it learns to assign scores to
each step, facilitating generalization from easy to
hard.

Step-wise DPO Pre-alignment. Each round
of expansion and evaluation in AR-MCTS naturally
generates batches of positive and negative pairs,
inspiring us to align preferences using step-level
Direct Preference Optimization (DPO) as the objec-
tive. Under the state si (i-th reasoning step), given
a multimodal query Qm

i and a sampled reasoning
path set Yi = {yj}kj=1 , along with the correspond-
ing value set Vi = {vj}kj=1. We filter the paths
in Yi with value vj > 0.8 as positive samples y+j ,
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Query: Question + Step1

Retrieved Insights

Question:  As shown in the figure, 
a circle is drawn with vertex C of 
the square as the center. What is 
the measure of the central angle 
∠ ECF? ( ) °
Options:  A. 45; B. 60; C. 72; D. 90; 
E. No correct answer
Answer: D
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Question:  "As shown in the figure, 
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ABCD?  (Use π = 3.14) ( ) cm
Options:  A. 48; B. 40; C. 32; D. 24
Answer: D
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…

Result (0,1)
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Query: Question + ڂ𝑖=1
𝑛−1 Stepi

Retrieved Insights

Result (N)

PRM Score 2

Figure 3: Our AR-MCTS: The retrieval module actively retrieves key insights at each step of the MCTS process

while those with vj = 0 are regarded as negative
samples y−j . Therefore, for each problem Qm

i , we
can obtain K pairs of step-level preference pairs
D

step
i = (y+j , y

−
j )

K
j=1 and follow step-level DPO to

align the reasoning discernment capability:

LSDPO(πθ;πref) = −E(Qm,y+,y−)∼Dstep [logσ(βlog

πθ(y
+|Qm)

πθ(y+|Qm)
− βlog

πref(y
−|Qm)

πref(y−|Qm)
)],

The reference model πref is initially set to πθ and
remains constant during training. β is a hyperpa-
rameter, and σ denotes the sigmoid function. The
objective of LSDPO is to maximize the likelihood
of preferred y+ compared to the dispreferred y−.

Point-wise Fine-tuning. After pre-alignment,
PRM has gained the initial ability to distinguish
the correctness of step-wise reasoning. To fur-
ther unlock its reasoning scoring capability, we
apply a step-level cross-entropy objective to the
pre-aligned PRM πDPO as follows:

LPFT =
N∑

i=1

[
ŷi logπDPO

(ri) + (1− ŷi) logπDPO
(1− ri)

]
,

(8)

where ŷi is the golden label (0, 1) for the state si,
ri is the sigmoid score assigned by PRM. Finally,
we progressively achieve a well-aligned PRM.

Inference. We use PRM to evaluate each step
as outlined in Figure 3. Following Luo et al., we
adopt point-wise soft labels and discuss PRM’s
hard labels in the appendix. Unlike the training data
annotation, we extract the highest-scoring node
from K expanded reasoning paths in each round,
pruning low-quality paths. Besides, we set an early
stopping criterion at the 4th round to reduce com-

putational complexity. 3

4 Experiments

4.1 Experimental Setup

We perform experiments on two widely used
multimodal mathematical reasoning benchmarks:
MATHVISTA (Lu et al., 2024b) and WE-
MATH (Qiao et al., 2024). To further validate our
AR-MCTS in the general reasoning domain, we
perform cross-domain evaluation on the GAOKAO-
MM benchmark (Zong and Qiu, 2024). For base-
lines, we employ AR-MCTS on strong propri-
etary and open-source models: (1) Closed-source
MLLMs: GPT-4o (OpenAI et al., 2024), GPT-
4V (OpenAI, 2023c); (2) Open-source MLLMs:
LLaVA-OneVision-Qwen2-72B (Li et al., 2024a),
InternVL2-8B (Chen et al., 2024d), Qwen2-VL-
7B (Wang et al., 2024d), LLaMA3-LlaVA-NeXT-
8B (Liu et al.). Referencing relevant works on
MCTS (Wang et al., 2024c; Tian et al., 2024), we
implement Self-Consistency (Wang et al., 2023),
Self-Correction (He et al., 2024), and ORM (Cobbe
et al., 2021a) as our core comparison strategies.

4.2 Overall Results

Table 1 illustrates the main results. Overall, AR-
MCTS significantly improves visual reasoning per-
formance across various MLLMs and reasoning
verification strategies on two benchmarks, con-
clusively demonstrating the advantages of our ap-
proach. Below, we identify the following insights:

1) MLLMs struggle to self-correct reason-
ing errors. The self-correction strategy strug-

3Details of PRM training guideline, data collection and
composition analysis are listed in Appendix B.7, B.6 & 4.6.
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Table 1: Mathematical reasoning assessment on different MLLMs using MATHVISTA and WE-MATH testmini Sets.
Following MathPUMA (Zhuang et al., 2024), we selected six reasoning-related domains for MATHVISTA. The top
scores for each model are highlighted in bold. For more details, please refer to the Appendix B.

Model Method
MATHVISTA WE-MATH

ALL ↑ GPS ↑ MWP ↑ ALG ↑ GEO ↑ STA ↑ S3 ↑ AVG ↑ IK ↑ IG ↑ CM ↑ RM ↓

GPT-4o

Zero-shot 59.0 59.6 65.1 61.2 60.7 72.4 46.1 40.8 31.8 13.7 33.9 37.8
Self-Consist. 61.8 68.3 65.1 68.0 68.2 74.8 53.0 45.2 29.9 12.8 38.8 32.8
Self-Correct. 59.9 61.1 65.6 61.2 61.1 72.8 43.6 42.9 31.2 15.2 35.2 34.2
ORM 61.9 68.3 66.1 68.0 68.2 74.8 50.3 44.3 26.5 10.9 38.9 38.0
AR-MCTS 62.6 68.6 66.4 68.0 68.8 75.3 56.4 46.8 28.0 12.8 40.4 31.8

LLaVA-
OneVision-72B

Zero-shot 64.2 80.8 69.4 73.3 77.0 66.8 40.6 24.6 42.5 14.1 17.5 59.7
Self-Consist. 66.0 79.8 73.1 74.0 76.6 67.8 38.2 36.9 33.9 15.8 29.0 42.4
Self-Correct. 58.3 78.4 68.8 70.1 74.9 56.8 30.3 14.7 55.4 11.8 8.7 73.3
ORM 65.9 80.3 73.1 74.0 77.0 67.8 44.2 30.6 34.9 18.1 21.5 54.3
AR-MCTS 66.3 79.8 73.1 74.4 76.6 67.8 38.9 37.4 33.7 18.1 28.4 41.1

InternVL2-8B

Zero-shot 57.3 62.5 62.4 61.2 60.7 59.1 23.6 17.4 59.8 10.1 12.4 58.9
Self-Consist. 61.8 77.4 64.0 73.0 72.8 62.1 35.1 26.6 45.5 13.5 19.8 51.6
Self-Correct. 46.8 57.7 31.2 55.9 56.1 46.2 30.3 9.8 62.7 8.6 5.5 80.8
ORM 61.1 67.8 64.0 64.1 64.9 68.4 32.7 29.7 42.9 16.0 21.7 47.2
AR-MCTS 63.1 62.9 71.6 59.9 62.6 71.4 43.6 30.5 37.7 14.7 23.2 51.2

Qwen2-VL-7B

Zero-shot 58.8 45.5 60.5 45.5 47.9 70.8 33.9 19.8 51.2 12.6 13.5 62.6
Self-Consist. 61.2 54.8 61.8 56.2 55.2 72.1 33.9 23.6 46.9 13.7 16.8 57.5
Self-Correct. 50.8 43.3 53.2 45.9 43.9 62.1 26.7 20.0 54.1 11.1 14.5 58.5
ORM 62.3 55.5 62.7 56.9 56.5 72.4 34.6 26.4 42.9 11.2 20.8 54.8
AR-MCTS 64.1 63.9 72.6 60.9 63.6 72.4 40.6 28.1 40.0 14.3 21.0 54.2

gles across reasoning benchmarks. Although a
minor improvement is noted with GPT-4o, other
weaker open-source MLLMs experience signifi-
cant declines after the self-correction, particularly
Qwen2VL-7B, which shows a drop of over 8% on
MATHVISTA (ALL). This discovery corresponds
with the findings of He et al., highlighting the in-
stability of correction methods that rely on the
self-knowledge of MLLMs, especially in small
MLLMs.

2) PRM outperforms ORM in complex reason-
ing. Compared to ORM, AR-MCTS with PRM
demonstrates a more significant performance im-
provement across most MLLM backbones on the
S3 metrics in WE-MATH (GPT-4o: 56.4% vs
50.3%; Qwen2-VL: 40.6% vs 34.6 %). This high-
lights that PRM, by meticulously verifying each
step of the reasoning process, achieves stronger
alignment in multi-step reasoning tasks.

3) AR-MCTS better unlocks the reasoning
potential of weaker MLLMs. Compared to
LLaVA-OneVision-72B, Qwen2-VL-7B with AR-
MCTS shows a significant improvement over the
zero-shot setting on MATHVISTA (ALL: 5.3%↑)
and in WE-MATH (AVG: 8.3%↑). A similar find-
ing is observed with InternVL2-8B, indicating that
the performance gains of AR-MCTS are more pro-
nounced in smaller MLLMs. This observation fur-
ther verifies the importance of integrating active
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Figure 4: The results of MLLMs on GAOKAO-MM.

retrieval in reasoning. AR-MCTS is a reliable plug-
and-play framework, offering a promising solution
for reasoning alignment in weaker MLLMs.

4.3 General Reasoning Domain Verification

To validate the effectiveness of AR-MCTS in
the general multimodal reasoning field, we fur-
ther evaluate the Chinese human-level reasoning
benchmark, GAOKAO-MM. As shown in Fig-
ure 4, both the closed-source GPT-4o and the
open-source small MLLM Qwen2-VL-7B with
AR-MCTS framework demonstrate significant im-
provements over the backbone and self-consistency
approaches, verifying the generalization of AR-
MCTS across different languages and disciplines.
Notably, AR-MCTS with GPT-4o achieves stable
improvements in mathematics and physics (12.5%
↑ and 7.7% ↑), while also showing some gains
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Table 2: Ablation study with Qwen2-7B. "w/o Active
Retrieval" corresponds to the "vanilla PRM baseline",
while "w/o PRM" denotes using "Beam search with re-
trieval". "Filtering" is the "knowledge concept filtering".

Models MATHVISTA
(ALL)

WE-MATH
(S3)

GAOKAO
-MM(ALL)

AR-MCTS 64.1 40.6 37.4
w/o PRM 61.0 (-3.1) 37.7 (-2.9) 33.2 (-4.2)
w/o Filtering 62.8 (-1.3) 39.5 (-1.1) 34.5 (-2.9)
w/o Active Retrieval 61.9 (-2.2) 38.7 (-1.9) 33.4 (-4.0)
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Figure 5: Scaling analysis on inference samplings. Ran-
dom Choice denotes randomly sampling from 1 to 32.

in the humanities (e.g. history 20%↑). This em-
phasizes that AR-MCTS with PRM not only im-
proves the complex reasoning abilities of MLLMs,
but also effectively mitigates the knowledge gaps
of MLLMs in the humanities through its retrieval
mechanism.

4.4 Quantitative Analysis

Ablation Study. To explore the effects of compo-
nents in AR-MCTS, we conduct an ablation study
in Table 2. The term "w/o" indicates versions with-
out specific components. Our key findings are: 1)
Removing any component from AR-MCTS results
in performance decline, highlighting the necessity
of all component designs. 2) Removing the PRM
or active retrieval causes a significant performance
drop (MATHVISTA: 3.1% and 2.2%), highlight-
ing that both step-wise verification and active re-
trieval effectively enhance MLLM’s reasoning ca-
pabilities. 3) Notably, knowledge concept filtering
achieves stable performance gains, indicating that
it effectively reduces noise in retrieved knowledge
and highlights the importance of consistency be-
tween the retrieved knowledge and the problem
during reasoning.
Scaling Analysis on Inference Sampling. As
shown in Figure 5, we perform a scaling analysis
to evaluate the performance of various strategies
across two benchmarks with sampled paths ranging
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Figure 6: The comparison of solution sampling.

Figure 7: The visualization of the sampled solutions.

from 1 to 32. Our main conclusions are listed: 1)
When the number of sampled solutions exceeds
a certain threshold (16), self-consistency (SC) ex-
hibits performance fluctuations in WE-MATH. 2)
AC-MCTS consistently outperforms ORM and SC,
with this superiority becoming more pronounced
as N increases. We attribute this advantage to our
automated process labeling, which offers high scal-
ability and low annotation costs while providing
more reliable feedback for path verification.

4.5 Does AR-MCTS Improve Sampling?

In this section, we explore whether AR-MCTS can
efficiently improve the quality of the candidate solu-
tion sampling from the following two perspectives:

Accuracy Analysis. To validate that AR-
MCTS can efficiently improve the solution sam-
pling accuracy in multimodal reasoning, we ana-
lyze the "Correctness of questions" of Qwen2-VL
during the sampling process in the two benchmarks.
The accuracy can be formulated as P c

Q =
N c

Q

NQ
,

where N c
Q denotes the number of questions contain-

ing at least one correct candidate solution, while
NQ denotes the number of questions. As shown in
Figure 6, AR-MCTS demonstrates consistent gains
in both benchmarks compared to the traditional
beam search sampling. As the number of candidate
solutions increases, the answer accuracy P c

Q ex-
hibits a positive correlation. This finding confirms
that AR-MCTS is a scalability framework that ef-
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Figure 8: The composition analysis on retrieval corpus of WE-MATH and MATHVISTA.

ficiently improves the reliability of the sampling
space in multimodal reasoning, thereby addressing
the inherent challenges of MCTS-based methods.

Diversity Analysis. To investigate whether
AR-MCTS enhances the diversity of sampled solu-
tions, we sample 250 problems from MATHVISTA

and use AR-MCTS to sample 4 candidate solutions
for each, resulting in 1,000 samples. We use BGE-
M3 (Chen et al., 2024c) as our semantic embedding
model, apply PCA for dimensionality reduction,
and use DBSCAN (Ester et al., 1996) clustering to
visualize the solution representations.

Figure 7 shows the visualization between the
beam search (left) and AR-MCTS (right). The
representations of candidate solutions sampled by
beam search tend to collapse into a small area with
several noise points (in gray), reflecting that the
beam search may lead to redundancy in sampling.
Under the same setting, AC-MCTS clusters more
centroids for the same problem set (38 vs.46) and
exhibits a more dispersed distribution. This verifies
that AR-MCTS alleviates the issue of limited diver-
sity in solutions sampling, efficiently covering the
problem-solving space and providing strong prior
conditions for the simulation process of MCTS.

4.6 The Composition Analysis of Retrieval
Knowledge

To gain deeper insights into which knowledge
sources provide the greatest benefits to our mul-
timodal reasoning test set, we conduct a compre-
hensive ranking of the hybrid-modal knowledge
retrieved from samples of MATHVISTA and WE-
MATH based on similarity, selecting the Top-50
relevant knowledge samples and visualizing their
respective sources. As shown in Figure 8, both
MATHVISTA and WE-MATH exhibit significant di-
versity in their retrieved knowledge, whether from
text-only or multimodal sources. This highlights
the motivation for constructing our hybrid-modal
retrieval library from diverse, high-quality reason-

ing datasets. It also confirms that the insights
needed for problem-solving do not necessarily orig-
inate from the same type of data source but should
be enhanced through diverse reasoning knowledge.
Our hybrid-modal reasoning retrieval library effec-
tively addresses this need.

5 Conclusion

In this paper, we introduce AR-MCTS, a univer-
sal framework designed to enhance complex mul-
timodal reasoning capabilities. AR-MCTS inte-
grates the MCTS algorithm with an active retrieval
strategy to automatically acquire high-quality step-
wise reasoning annotations, progressively aligning
a PRM for process-level multimodal reasoning ver-
ification. Experiments confirm the effectiveness
of AR-MCTS across various MLLMs and bench-
marks, demonstrating its ability to optimize sam-
pling diversity and verification accuracy, thus pro-
viding a promising solution for reliable reasoning.
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A More Details about AR-MCTS

A.1 The Algorithm Workflow of AR-MCTS

In this section, we will explore the overall workflow
of AR-MCTS, highlighting its key components and
steps involved in the retrieval and inference pro-
cess. For each query q, we begin by applying the
“Unified Retrieval” module to extract key insights,
denoted as Dins. These insights serve as a sub-
corpus for performing active retrieval during the
MCTS process.

As outlined in Algorithm 1, distinct retrievers
are utilized to handle text-only and multimodal
corpora separately. The top-K knowledge retrieved
from both routes is then combined to form Dtop-K.
This set of documents undergoes further refinement
through the “Knowledge Concept Filter,” yielding
the final corpus of key insights, Dins.

Once the key insights are obtained, the AR-
MCTS inference algorithm, detailed in Algo-
rithm 2, is executed. During each expansion step
t, given a beam size B, the top-B most relevant
insights are retrieved from Dins. Each retrieved doc-
ument is paired with the previous state st−1 and
fed into independent paths, where the multimodal
large language model (MLLM),M, generates the
next state. The Process Reward Model (PRM), πθ,
then evaluates the candidate states s(t,1), . . . , s(t,B)

and assigns PRM scores to each. The state with the
highest PRM score is appended to the selected path
P . This process continues until a terminal state is
reached, resulting in the final reasoning trajectory
and the corresponding answer.

B More Details about Experimental Setup

B.1 Benchmarks and Datasets

Here are the details of the benchmarks/datasets
we used in our hybrid-modal retrieved corpus and
experiments. The statistics of the datasets are
recorded in Table 3.

• WE-MATH (Qiao et al., 2024) is a benchmark
based on textbook knowledge units, focusing
on decomposing complex problems into sub-
problems using fundamental concepts. It mir-
rors how students learn progressively and is
organized hierarchically, following textbook
content to maintain independent knowledge
units while establishing logical connections
between levels. It uses diverse evaluation met-
rics to comprehensively assess models’ ability

Table 3: The statistics of General and Math-Specific
Reasoning Knowledge.

Dataset Count Percentage

General Knowledge

Wikipedia(zh-CN) 4.7B 23.9%
Wikipedia(en-US) 15B 73.6%
COIG 178K 0.1%

Mathematics-Specific Knowledge

Text-only Datasets
GSM8K 8,792 24.6%
MATH 12,500 36.2%

Multimodal Datasets
MATHVISTA 6,141 17.8%
MathVerse 2,612 7.6%
MathVision 3,040 8.8%
WE-MATH 1,740 5.0%

of solving multimodal mathematical problems
step by step.

• MATHVISTA (Lu et al., 2024b) is a mathe-
matical visual benchmark consisting of 6,141
examples. These examples are divided into
two subsets: testmini (1,000 examples), for
which answers are provided, and test (5,141
examples), for which answers are not publicly
available. We use this dataset as a bench-
mark to evaluate visual understanding and
compositional reasoning abilities. Addition-
ally, we employ LLaVA-OneVision-70B to
generate answers for the test split, creating an
in-domain corpus that can be used for retriev-
ing answers in the testmini set.

• MathVision (Wang et al., 2024b) is a care-
fully curated dataset consisting of 3,040 high-
quality mathematical problems, each accom-
panied by a visual context derived from real
mathematics competitions. The collection
covers 16 distinct mathematical domains and
is categorized across five levels of difficulty.
We use this dataset as part of math reasoning
knowledge base.

• MATHVERSE (Zhang et al., 2024c) is a com-
prehensive and specialized visual mathemat-
ics benchmark designed to evaluate the mul-
timodal mathematical reasoning abilities of
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Algorithm 1 Unified Retrieval
Require: Query q, hybrid-modal retrieval corpus DH, top-K, cross-modal retriever Rc, text-to-text

retriever Rt

Ensure: Top-K retrieved hybrid-modal samples Dtop-K
1: for all di ∈ DH do ▷ Text-Only Retrieval
2: Query embedding Eq ← Rt(q)
3: Document embedding Edi ← Rt(di)

4: Retrieved documents Dtext = argtopi=1,...,N
K

[
E⊤

di
· Eq

]

5: end for
6: for all image-text pair (x, t) ∈ DH do ▷ Cross-modal Retrieval
7: Image embedding EI(x)← Rc(x)
8: Text embedding ET (t)← Rc(t)
9: if t ̸= ∅ ∧ x ̸= ∅ then

10: Ex(x, t)← EI(x)+ET (t)
2

11: else if t ̸= ∅ ∧ x = ∅ then
12: Ex(x, t)← ET (t)
13: end if
14: Mixed vector Ex(Q

m)← EI(x)+ET (t)
2

15: Retrieved documents Dcross ← argtopj=1,...,N
K

[
Ex(Q

m)⊤ · Ex(xj , tj)
]

16: end for
17: Dtop-K ← {Dq ∪Dcross}
Require: Knowledge concept label Lkc, original retrieval threshold Tr, knowledge concept consistency

threshold Tkc
Ensure: Key insights Dins for query q
18: Key insights Dins = {r ∈ DH | Sim(r, q) ≥ Tr & Sim(r, Lkc) ≥ Tkc} ▷ Knowledge Concept

Filtering

Algorithm 2 Inference with AR-MCTS
Require: Beam Size B, question q, Process Reward Model πθ, max depth T , MLLMM, multimodal

retriever R
Ensure: Selected path (thought process and answer) P

1: P = [s0], t = 0 ▷ Initialize Selected Path
2: while t < T ∧ non-terminal path in P do
3: Retrieved insights Dins
4: Dtop_B ← R(P, Dins)
5: for all di ∈ Dtop_B do
6: s(t,i) ←M(P, di)
7: PRM score score(st,i) = πθ(st,i)
8: end for
9: j ← index(argmax(score))

10: Add s(t,j) to P
11: Increment t← t+ 1
12: end while
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MLLMs. It comprises a dataset of 2,612
visual math problems, with 1,236 newly
acquired from public question repositories
and 1,376 sourced from existing benchmarks.
Each problem has been transformed by human
annotators into six distinct versions—text-
dominant, text-lite, text-only, vision-intensive,
vision-dominant, and vision-only—each offer-
ing different levels of multimodal information.
In our study, we utilize the "vision-only" ver-
sion as image data and the "text-only" version
as textual data to construct a knowledge base.
This dataset is employed solely for the pur-
pose of knowledge base construction and not
as a benchmark.

• MATH (Hendrycks et al., 2021) is a dataset
comprising 12,500 challenging competition
mathematics problems. Each problem in-
cludes a comprehensive step-by-step solution,
which can be used to train models in generat-
ing answer derivations and explanations. The
dataset features problems from various mathe-
matics competitions, including the AMC 10,
AMC 12, AIME, and others. We utilize this
dataset as a text-only corpus for mathematical
domain reasoning.

• GSM8K (Cobbe et al., 2021b) (Grade School
Math 8K) is a dataset containing 8,500 high-
quality, linguistically diverse grade school
math word problems. This dataset was de-
signed to support question-answering tasks for
basic mathematical problems requiring multi-
step reasoning. This dataset is also used as
part of our text-only mathematics-specific rea-
soning corpus.

• COIG (Zhang et al., 2023) (Chinese Open
Instruction Generalist) is a set of Chinese
instruction datasets to advance the training
and fine-tuning of Chinese LLMs. COIG in-
cludes five key corpora: a manually verified
translated instruction corpus (66,858 entries),
an exam-based Chain-of-Thought (CoT) in-
struction corpus derived from national exams
(63,532 entries), a human value alignment cor-
pus reflecting general and region-specific cul-
tural values (34,471 entries), a counterfactual
correction multi-round chat corpus address-
ing hallucinations and inconsistencies (13,653
dialogues), and a Leetcode instruction cor-
pus supporting code-related tasks (11,737 en-

tries). We utilize this dataset along with the
Wikipedia corpus (English version and Chi-
nese version) as our general reasoning knowl-
edge base.

• GAOKAO-MM (Zong and Qiu, 2024) is a
comprehensive Chinese multimodal bench-
mark designed based on the Chinese National
College Entrance Examination (Gaokao). It
encompasses eight academic subjects and in-
cludes twelve categories of images, such as
diagrams, function graphs, maps, and pho-
tographs. The benchmark aims to evaluate
models’ abilities to understand and reason
over diverse multimodal content, reflecting
the complexity and breadth of knowledge. We
construct the domain-specific knowledge base
using questions and answers from the years
2010 to 2021, while employing the questions
from 2022 and 2023 as the test set.

B.2 Baselines and Backbone Models
To assess the gains from our approach, we compare
it against a number of baselines as follows.

• Self-Consistency (Wang et al., 2023) in-
volves sampling multiple reasoning paths
from a large language model. Since each
path may lead to different final answers, Self-
Consistency selects the most consistent an-
swer as the final output by marginalizing these
sampled paths. This method is based on the
intuition that complex reasoning problems of-
ten have a unique correct answer that can be
reached through various approaches.

• Self-Correction (Madaan et al., 2023) is an
iterative refinement method that improves the
output of large language models (LLMs) or
Multimodal large language models (MLLMs)
through self-feedback. The core idea is to
mimic the human revision process in writing:
first, a preliminary output is generated, feed-
back is provided on this output, and improve-
ments are made iteratively based on the feed-
back. Notably, this process allows for iterative
optimization.

• ORM (Cobbe et al., 2021a) samples data from
the reasoning training set to obtain result-
oriented annotations for each sampled path.
These data are then used to train a verifier
that assists the generator in identifying higher-
quality reasoning paths during prediction. In
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this paper, we use the same data as for training
PRM, with the distinction that the annotations
are made directly using ground truth results
rather than through AR-MCTS for step-level
annotations, training ORM to assess the qual-
ity of reasoning paths.

In addition, we provide a detailed introduction
to the MLLMs used in our experiments and their
corresponding language backbone models.

• Qwen2-VL (Wang et al., 2024e), developed
by Alibaba Cloud, represents an advanced it-
eration of the Qwen-VL series. By employ-
ing the Naive Dynamic Resolution mecha-
nism, it dynamically processes images with
varying resolutions and aspect ratios. The
model achieves state-of-the-art performance
on several visual understanding benchmarks,
including MATHVISTA, MathVision, and WE-
MATH.

• InternVL2 (Chen et al., 2024d) family com-
prises multimodal large language models de-
signed for advanced multimodal understand-
ing tasks, demonstrating performance com-
petitive with proprietary systems. Built using
a progressive alignment training strategy, In-
ternVL2 supports multimodal inputs, gener-
alizes across diverse downstream tasks, and
spans models ranging in size from 1 billion
to 108 billion parameters. The InternVL2-
8B variant exhibits remarkable capabilities
in complex reasoning and shows promise for
mathematical problem-solving applications.

• LLaVA-NeXT (Liu et al.) is a large-
scale multimodal language model optimized
through a cost-effective, realistic visual
instruction-tuning dataset. It emphasizes en-
hanced visual reasoning, optical character
recognition (OCR), and visual conversation
capabilities. LLaVA-NeXT demonstrates su-
perior performance across various multimodal
benchmarks, including MMMU and MATH-
VISTA.

• LLaVA-OneVision (Li et al., 2024a) is a
family of large-scale multimodal large lan-
guage models (MLLMs) designed to extend
the performance boundaries of open MLLMs
across diverse scenarios, including single-
image, multi-image, and video applications. It

processes text, images, interleaved image-text
inputs, and videos, supporting resolutions of
up to 2304×2304 pixels. LLaVA-OneVision
is available in various sizes, ranging from 0.5
billion to 72 billion parameters, and facilitates
robust task transfer learning across modalities.
Notably, it demonstrates exceptional video un-
derstanding by leveraging task transfer capa-
bilities developed from image-based training.

• GPT-4o (OpenAI, 2024), a proprietary large-
scale multimodal model developed by Ope-
nAI, processes vision, text, and audio inputs.
Built on Transformer architecture, the model
is pre-trained on next-token prediction tasks
and refined through a post-training alignment
process. GPT-4o exhibits state-of-the-art mul-
timodal understanding, achieving outstanding
results across a variety of complex multimodal
tasks.

• GPT-4V (OpenAI, 2023b), also developed by
OpenAI, is a highly capable multimodal sys-
tem enabling users to process image inputs
and interleaved image-text data with GPT-4
models. It achieves impressive human-level
performance across a broad spectrum of tasks,
including scene text understanding, abstract
reasoning, and open-world question answer-
ing.

• Qwen2 (Yang et al., 2024) is a series of
large language models (LLMs) based on the
Transformer architecture, trained on a high-
quality, diverse dataset of over 7 trillion to-
kens using next-token prediction. Spanning
parameter sizes from 0.5 billion to 72 bil-
lion, Qwen2 is designed to enhance mathe-
matical and coding reasoning capabilities. It
achieves performance competitive with propri-
etary models across benchmarks for reasoning,
language understanding, and generation. The
Qwen2 series includes both foundational mod-
els and instruction-tuned variants, fine-tuned
on datasets for single-turn and multi-turn in-
struction following.

• InternLM2.5 (Cai et al., 2024) is a series of
LLMs optimized for superior mathematical
reasoning. Based on the InternLM2.5 founda-
tional models, the series includes chat mod-
els fine-tuned through supervised fine-tuning
(SFT) and reinforcement learning from human
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feedback (RLHF), enabling robust instruction-
following capabilities in downstream tasks.
Notably, InternLM2.5-Chat-1M supports a 1-
million-token context, demonstrating excep-
tional performance on long-context bench-
marks.

• Llama3 (Dubey et al., 2024) is a family
of LLMs built on a standard dense Trans-
former architecture, natively supporting mul-
tilinguality, coding, reasoning, and tool inte-
gration. Pretrained on a large-scale, metic-
ulously curated dataset, it undergoes post-
training through supervised fine-tuning (SFT),
rejection sampling (RS), and direct prefer-
ence optimization (DPO). The flagship model,
LLaMA3-405B, represents a significant scale-
up from its predecessor, LLaMA2, trained on
15.6 trillion text tokens. It delivers competi-
tive performance with GPT-4 across diverse
benchmarks, including GSM8k, MATH, and
MMLU.

B.3 Implementation Details

For uni-modal retrieval, we utilize mcontriever-
mscoco, a multilingual version of Contriever (Izac-
ard et al., 2022) fine-tuned on the MSMARCO
dataset, as the text encoder. For multimodal re-
trieval, we employ the frozen CLIP model (ViT-
L/14@336px variant) (Radford et al., 2021) as the
multimodal encoder for both texts and images. To
ensure the diversity and relevance of multimodal
retrieval results, we incorporate five types of simi-
larity measures: text-to-text, text-to-image, image-
to-image, image-to-text, and cross-modal retrieval
(introduced in Section 4.2) . Given the exten-
sive size of the knowledge base, we leverage the
open-source indexing engine FAISS (Johnson et al.,
2021) to efficiently index dense vectors and retrieve
the Top-k knowledge pieces.

For the Curriculum Process Reward Modeling,
in the "Step-Wise DPO Pre-Alignment" phase, the
learning rate is set to 5e-7 with a cosine scheduler
and a 0.1 warm-up ratio. We use DeepSpeed ZeRO
Stage 3 (Rasley et al., 2020) and Flash-Attention
2 (Dao, 2023) for efficiency, with a global batch
size of 64. Training utilizes a sigmoid loss func-
tion with a beta value of 0.3 and spans 2 epochs,
with checkpoints every 500 steps. Mixed precision
training with bf16 is employed, and the maximum
context length is 4096 tokens.

In the "Point-Wise Fine-Tuning" phase, we per-

form full fine-tuning on our PRM with a learning
rate of 7e-6, using a linear scheduler with 20 warm-
up steps. All models are trained with DeepSpeed
ZeRO Stage 3 and Flash-Attention 2. We use a
global batch size of 128, a weight decay of 0.1, and
train for 3 epochs, saving checkpoints every 200
steps. Mixed precision training with bf16 is used,
and the maximum context length is set to 8192 to-
kens. We run all our experiments on 8 NVIDIA
A800 GPUs.

In our experiments, For the MATHVISTA, we
picked 6 categories from the original 12: ALL
(overall accuracy), GPS (geometry problem solv-
ing), MWP (math word problems), ALG (algebraic
reasoning), GEO (geometry reasoning), and STA
(statistical reasoning). For WE-MATH, we selected
8 categories: S1 (one-step problems), S2 (two-step
problems), S3 (three-step problems), AVG (strict
overall average scores), IK (insufficient knowl-
edge), IG (inadequate generalization), CM (com-
plete mastery), and RM (rote memorization).

B.4 Detailed Processing about Retrieved
Corpus

For Chinese evaluation on GAOKAO-MM, we
utilize the COIG dataset and Chinese Wikipedia
dump which contains over 2.6 million articles as
the textual knowledge base. We first apply the tool
WikiExtractor (Attardi, 2015) to extract clean texts
from the Wikipedia dump and remove low-resource
articles, which results in over 1.3 million articles.
We then split each article into disjoint passages
of 256 characters, resulting in 4.7B passages. To
enrich our knowledge base with more relevant in-
domain information, we split GAOKAO-MM ques-
tions from 2010 to 2021 as a multimodal knowl-
edge base. Since the evaluation is conducted on
a more up-to-date subset of GAOKAO-MM from
2022 to 2023, we can effectively mitigate the risk
of data leakage.

For English evaluation on MATHVISTA and WE-
MATH, we choose COIG, GSM8K, MATH, and
the English Wikipedia dump as the textual knowl-
edge base. Following the same pre-processing steps
of the Chinese Wikipedia dump, we obtain over
15B passages from the English Wikipedia dump
as the basic retrieval unit. We have opted to em-
ploy MathVerse and MathVision as the multimodal
knowledge base for their relevance to mathemati-
cal problem-solving and comprehension. Follow-
ing MRAG-COT (Liu et al., 2023a), we use re-
sponses from LLaVA-OneVision (Li et al., 2024a)
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as pseudo-answer for the test set of MATHVISTA.
Due to the absence of an appropriate high-quality
multimodal reasoning retrieval source or a training
set with answer annotation, we incorporate the test-
mini set of WE-MATH into the knowledge base of
MATHVISTA and include the testmini set of MATH-
VISTA into the knowledge base of WE-MATH.

B.5 Details about Knowledge Concept
Filtering

As stated in the main text, high-quality labels are
available for test sets like MATHVISTA and WE-
MATH. However, not all external retrieval libraries
or evaluation datasets have fine-grained concept
labels (e.g., Wikipedia). To ensure the scalability
of concept filtering, we use the open-world Tagger
InsTag (Lu et al., 2024a) for offline knowledge
concept annotation and repeat the aforementioned
process for consistency filtering.

Specifically, we select the TagLM-13b-v2.0
model 4. For text-only data, we directly annotated
using InsTag and concatenated all coarse and fine-
grained labels. For multimodal data, we gener-
ated captions for the images using the correspond-
ing evaluation MLLM backbone, referencing In-
ternVL2 (Chen et al., 2023b) and Vista (Zhou et al.,
2024). We design the following caption generation
template: "This is an image of a reasoning ques-
tion; can you provide a detailed description of the
image content?" We then concatenated the captions
with the text and further used InsTag for annotation.
After obtaining fine-grained labels, we followed
the process outlined in the ”Knowledge Concept
Filtering” section for consistency screening.

B.6 PRM Training Data Collection.

As highlighted by MathPUMA (Zhuang et al.,
2024), the challenge arises because the three multi-
modal benchmarks we evaluate lack training sets.
Following the collection described in §3.2, we uti-
lize four multimodal and two text-only datasets
for process annotation, excluding any sources cur-
rently under evaluation. We extract multimodal
QA pairs and use our AR-MCTS algorithm to au-
tomatically generate and annotate detailed solution
processes. Notably, the GAOKAO-MM dataset is
entirely in Chinese, which complicates reliance on
English data sources. To address this, we classify
data from 2010 to 2021 for AR-MCTS annotation,
while questions from 2022 to 2023 serve as the test

4https://huggingface.co/OFA-Sys/TagLM-13b-v2.0

Table 4: Mathematical evaluation on MATHVISTA test-
mini sets. We select 6 out of the original 12 mathemati-
cal categories in MATHVISTA: ALL (overall accuracy),
GPS (geometry problem solving), MWP (math word
problems), ALG (algebraic reasoning), GEO (geome-
try reasoning), and STA (statistical reasoning). In the
results for each model, the best accuracy scores are high-
lighted in bold.

Model Method ALL GPS MWP ALG GEO STA

GPT-
4V

Zero-shot 53.7 59.6 53.8 59.8 58.2 58.5
Self-Consist. 56.2 65.4 53.2 63.7 63.2 58.8
Self-Correct. 50.4 56.3 50.2 55.9 56.1 57.4
ORM 56.6 65.3 53.1 65.2 63.2 59.0
AR-MCTS 57.4 66.1 53.9 64.8 63.2 59.5

LLaVA-
NEXT

Zero-shot 22.5 22.3 13.4 24.4 24.7 22.3
Self-Consist. 23.1 22.6 16.7 26.0 24.3 24.3
Seld-Correct. 22.5 22.6 17.2 24.9 22.6 25.2
ORM 24.4 22.6 17.5 27.9 24.3 29.9
AR-MCTS 25.6 23.0 17.4 28.1 28.6 31.5

set.

B.7 PRM Training Guideline

Our PRM leverages the corresponding text back-
bone for evaluating MLLMs and consistently uses
Qwen2-7B for closed-source models. Due to
the lack of step supervision in multimodal rea-
soning, we collect existing open-source text-only
PRM datasets, such as AlphaMath (Chen et al.,
2024a), Math-Shepherd (Wang et al., 2024c), and
PRM800K (Lightman et al., 2024). We first fol-
low previous text-only works (Wang et al., 2024c;
Zhang et al., 2024a) and perform preliminary fine-
tuning alignment on our PRM backbone. Using
the pre-aligned LLM, we apply the annotated data
Dalign from AR-MCTS and follow section "Cur-
riculum Process Reward Modeling" to finalize the
PRM. Consequently, we do not perform targeted
fine-tuning on any MLLMs with in-domain data;
instead, we focus on optimizing the PRM, signifi-
cantly reducing computational resource consump-
tion.

C More Details about Experimental
Results

C.1 Results on More MLLMs backbones

To further validate the scalability of AR-MCTS,
we conduct generalization studies on the widely
used open-source MLLM Llama3-Llava-Next-8B
and the powerful closed-source MLLM GPT-4V
using MATHVISTA. As shown in Table 4, AR-
MCTS continues to achieve stable improvements
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Table 5: The contamination analysis on hybrid-modal
retrieval corpus.

Dataset MATHVISTA WE-MATH

Text-only Datasets
COIG 0.1% 0.1%
WIKIPEDIA(EN-US) 0.6% 1.1%
GSM8K 4.5% 2.0%
MATH 4.5% 1.8%

Multimodal Datasets
MATHVERSE 0.7% 2.9%
MATHVISION 0.3% 0.9%
WE-MATH 0.5% -
MATHVISTA-testmini - 4.2%

and aligns with the three core conclusions from our
main experiments:

• 1. MLLMs struggle to self-correct reasoning
errors.

• 2. PRM outperforms ORM in complex rea-
soning tasks.

• 3. AR-MCTS better unlocks the reasoning
potential of weaker MLLMs.

This further confirms the scalability of our core
experimental findings.

C.2 Contamination Analysis on
Hybrid-modal Retrieval Corpus

To further ensure that our hybrid-modal retrieval
corpus does not contain any data leakage examples
from the test set, we perform a data contamina-
tion analysis. We employ commonly used n-gram
contamination algorithms to assess the overlap be-
tween the Top-50 samples retrieved by the retriever
from different data sources and various test sets. As
shown in Table 5, we follow the AUTOIF (Dong
et al., 2024a) and test the n-gram threshold of 13.
The results show that all data sources exhibited
an overlap of less than 5% with MATHVISTA and
WE-MATH. This highlights that there is no overlap
between our retrieval library and the test sets.

C.3 Ablations on Different Retrievers
To validate the effectiveness of our general retrieval
component, we conduct ablation studies by replac-
ing different text and multimodal retrievers. Specif-
ically, we used the following:

• Text Retrievers: BM25 (Sparse), Contriever
(Dense)

Table 6: The ablations of different text retrievers.

Model ALL GPS MWP ALG GEO STA

Qwen2-VL-7B 58.8 45.5 60.5 45.5 47.9 70.8
+ BM25 60.2 54.8 57.9 53.3 54.6 72.1
+ Contriever 59.9 53.9 58.5 53.3 54.1 72.4

Table 7: The ablations of different multimodal retriev-
ers.

Model S1 S2 S3

Qwen2-VL-7B 53.4 37.2 33.9
+ CLIP-ViT-L/14 54.9 38.7 34.5
+ Jina-CLIP-v1 54.4 36.9 34.1

• Multimodal Retrievers: CLIP-ViT-L/14,
Jina-CLIP-v1 (Koukounas et al., 2024)

The experimental results are presented in the Ta-
ble 6 and 7, where we concatenated the top two re-
trieval results for each sample. The results indicate
that different retrievers provide varying degrees of
enhancement for downstream reasoning tasks. This
not only demonstrates that our general retrieval
module is plug-and-play but also highlights the
rationale behind our mixed retrieval library.

C.4 Comparison of Different Training
Objectives for PRMs

Table 8: The comparison of different training objectives
for PRMs.

Model ALL GPS MWP ALG GEO STA

PRM (Hard) 62.9 63.3 71.5 59.4 62.2 71.0
PRM (Soft) 64.1 63.9 72.6 60.9 63.6 72.4

In this section, we explore the relationship be-
tween the training method of PRM and its multi-
modal reasoning capabilities. Following the setup
of Luo et al., we investigate the use of hard la-
bels versus soft labels trained through a linear layer
connected to a large model.

As shown in Table 8, we find that PRM trained
with soft labels performs better than that trained
with hard labels on MATHVISTA.

Limitations

Despite our best efforts to optimize the AR-MCTS
process, there are still several limitations and areas
for improvement.
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• Computational Cost Optimization: Annotat-
ing processes with MCTS algorithms requires
significant computational resources, leading to
high resource consumption—a common chal-
lenge in reasoning verification. However, AR-
MCTS costs are still substantially lower than
manual annotation. As a plug-and-play frame-
work, AR-MCTS focuses on optimizing reason-
ing without the need to train multimodal founda-
tional models, which significantly reduces com-
putational overhead. The emergence of efficient
techniques like vLLM (Kwon et al., 2023) is also
helping to address this issue.

• Exploration of PRM for Multimodal Model
Foundations: AR-MCTS represents a pioneer-
ing effort in step-wise reasoning within the mul-
timodal domain, utilizing foundational training
of MLLMs to align the PRM process. An ideal
scenario would involve training the PRM within
these models to enhance interactions between
image and text and provide supplemental infor-
mation for process-level reasoning. However,
the lack of annotated data and higher computa-
tional demands present significant challenges in
this area, which remains largely unexplored and
is a direction for our future work.

• Deep Integration of Retrieval and Reasoning:
Research highlights knowledge gaps in stepwise
reasoning (Liu et al., 2024). AR-MCTS intro-
duces a dynamic retrieval strategy that effec-
tively addresses this issue. We believe this area
still holds great potential for exploration, par-
ticularly in dynamically supplementing missing
knowledge based on feedback from multimodal
large models, which will be a key focus of our
future research.

In summary, achieving trustworthy step-wise rea-
soning still presents challenges that await resolu-
tion and exploration. We sincerely hope that our
team and researchers in the MLLM field can col-
laborate to address these issues in the future.
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